第一讲 等差数列基础篇
新高考 核心考点与题型 数列 第1讲 等差数列及其前n项和 - 解析
第1讲 等差数列及其前n 项和[考情分析] 等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.知 识 梳 理1.等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列. 数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数).(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2. 3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(5)若S n 为等差数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列.[微点提醒]1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.4.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).考点一 等差数列的性质及应用 多维探究角度1 等差数列项的性质【例1】在等差数列{a n }中,a 1+3a 8+a 15=120,则a 2+a 14的值为( ) A.6B.12C.24D.48解析 ∵在等差数列{a n }中,a 1+3a 8+a 15=120,由等差数列的性质,a 1+3a 8+a 15=5a 8=120, ∴a 8=24,∴a 2+a 14=2a 8=48.【变式1】设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( ). A .-6 B .-4 C .-2 D .2解析 (1)S 8=4a 3⇒8(a 1+a 8)2=4a 3⇒a 3+a 6=a 3,∴a 6=0,∴d =-2,∴a 9=a 7+2d =-2-4=-6.【变式2】已知数列{}{},n n a b 为等差数列,若11337,21a b a b +=+=,则55a b +=_______思路:条件与所求都是“n n a b +”的形式,由{}{},n n a b 为等差数列可得{}n n a b +也为等差数列,所以()33a b +为()()1155,a b a b ++的等差中项,从而可求出55a b +的值解:{}{},n n a b 为等差数列{}n n a b ∴+也为等差数列 ()()()3311552a b a b a b ∴+=+++()()553311235a b a b a b ∴+=+-+= 答案:35【变式3】等差数列log 3(2x ),log 3(3x ),log 3(4x +2),…的第四项等于( )A.3B.4C.log 318D.log 324∵log 3(2x ),log 3(3x ),log 3(4x +2)成等差数列,∵log 3(2x )+log 3(4x +2)=2log 3(3x ), ∵log 3[2x (4x +2)]=log 3(3x )2,则2x (4x +2)=9x 2,解之得x =4,x =0(舍去). ∵等差数列的前三项为log 38,log 312,log 318,∵公差d =log 312-log 38=log 332,∵数列的第四项为log 318+log 332=log 327=3.【例2】 设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A.63B.45C.36D.27解析 由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列,即2(S 6-S 3)=S 3+(S 9-S 6), 得到S 9-S 6=2S 6-3S 3=45,所以a 7+a 8+a 9=45.【变式1】在等差数列{a n }中.若共有n 项,且前四项之和为21,后四项之和为67,前n 项和S n =286,则n =________.解析 (1)依题意知a 1+a 2+a 3+a 4=21,a n +a n -1+a n -2+a n -3=67.由等差数列的性质知a 1+a n =a 2+a n -1=a 3+a n -2=a 4+a n -3,∴4(a 1+a n )=88,∴a 1+a n =22. 又S n =n (a 1+a n )2,即286=n ×222,∴n =26.【变式2】在等差数列{a n }中,前m 项的和为30,前2m 项的和为100,则前3m 项的和为________. 记数列{a n }的前n 项和为S n ,由等差数列前n 项和的性质知S m ,S 2m -S m ,S 3m -S 2m 成等差数列,则2(S 2m -S m )=S m +(S 3m -S 2m ),又S m =30,S 2m =100,S 2m -S m =100-30=70,所以S 3m -S 2m =2(S 2m -S m )-S m =110,所以S 3m =110+100=210.【例3】 已知S n 是等差数列{a n }的前n 项和,若a 1=-2 015,S 2 0152 015-S 2 0092 009=6,则S 2 019=________.解 由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列.设其公差为d ,则S 2 0152 015-S 2 0092 009=6d =6,∴d =1.故S 2 0192 019=S 11+2 018d =-2 015+2 018=3,∴S 2 019=3×2 019=6 057. 【变式1】在等差数列{}n a 中,12008a =-,其前n 项和为n S ,若121021210S S -=,则2008S 的值等于( ) A. 2007- B. 2008- C. 2007 D. 2008 思路:由121021210S S -=观察到n S n 的特点,所以考虑数列n S n ⎧⎫⎨⎬⎩⎭的性质,由等差数列前n 项和特征2n S An Bn =+可得nS An B n=+,从而可判定n S n ⎧⎫⎨⎬⎩⎭为等差数列,且可得公差1d =,所以()1120091n S S n d n n =+-=-,所以()2009n S n n =-,即20082008S =-,答案:B【变式2】设S n ,T n 分别是等差数列{a n },{b n }的前n 项和,若a 5=2b 5,则S 9T 9=( )A .2B .3C .4D .6解 由a 5=2b 5,得a 5b 5=2,所以S 9T 9=9a 1+a 929b 1+b 92=a 5b 5=2,故选A.【变式3】等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于( )A.3727B.1914C.3929D.43解 a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727.考点二 等差数列的判定与证明典例迁移【例1】 (经典母题)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0,得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1). 当n =1时,a 1=12不适合上式.故a n=⎩⎨⎧12,n =1,-12n (n -1),n ≥2.【迁移探究1】 本例条件不变,判断数列{a n }是否为等差数列,并说明理由. 解 因为a n =S n -S n -1(n ≥2),a n +2S n S n -1=0,所以S n -S n -1+2S n S n -1=0(n ≥2). 所以1S n -1S n -1=2(n ≥2).又1S 1=1a 1=2,所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列.所以1S n =2+(n -1)×2=2n ,故S n =12n . 所以当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1), 所以a n +1=-12n (n +1),又a n +1-a n =-12n (n +1)--12n (n -1)=-12n ⎝⎛⎭⎫1n +1-1n -1=1n (n -1)(n +1). 所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列.【迁移探究2】 本例中,若将条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式.解 由已知可得a n +1n +1=a n n +1,即a n +1n +1-a n n =1,又a 1=35,∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25,∴a n =n 2-25n . 规律方法 1.证明数列是等差数列的主要方法:(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数. (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)都成立. 2.判定一个数列是等差数列还常用到结论:(1)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列.(2)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列.问题的最终判定还是利用定义. 【变式1】 (2017·全国Ⅰ卷)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.解 (1)设{a n }的公比为q ,由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6,解得⎩⎪⎨⎪⎧q =-2,a 1=-2.故a n =(-2)n .(2)由(1)可得S n =a 1(1-q n )1-q=-23+(-1)n2n +13.由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23=2⎣⎡⎦⎤-23+(-1)n·2n +13=2S n ,故S n +1,S n ,S n +2成等差数列.【变式2】 已知数列{a n }满足:a 1=2,a n +1=3a n +3n +1-2n .设b n =a n -2n3n .证明:数列{b n }为等差数列,并求{a n }的通项公式.证明 ∵b n +1-b n =a n +1-2n +13n +1-a n -2n 3n =3a n +3n +1-2n -2n +13n +1-3a n -3·2n3n +1=1, ∴{b n }为等差数列,又b 1=a 1-23=0.∴b n =n -1,∴a n =(n -1)·3n +2n . 考点三 等差数列的前n 项和及其最值【例4】 在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( ) A .S 15 B .S 16 C .S 15或S 16D .S 17解∵a 1=29,S 10=S 20,∵10a 1+10×92d =20a 1+20×192d ,解得d =-2,∵S n =29n +nn -12×(-2)=-n 2+30n =-(n -15)2+225.∵当n =15时,S n 取得最大值. 规律方法 求等差数列前n 项和S n 的最值的常用方法:(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn (a ≠0),通过配方或借助图象求二次函数的最值.(2)利用等差数列的单调性,求出其正负转折项,进而求S n 的最值.①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m (当a m +1=0时,S m +1也为最大值);②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m (当a m +1=0时,S m +1也为最小值).【变式1】 等差数列{a n }的公差d ≠0,且a 3,a 5,a 15成等比数列,若a 5=5,S n 为数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为( )A.3B.3或4C.4或5D.5【变式2】已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________.解析 (1)由题意知⎩⎪⎨⎪⎧(a 1+2d )(a 1+14d )=25,a 1+4d =5,由d ≠0,解得a 1=-3,d =2,∴S nn =na 1+n (n -1)2dn=-3+n -1=n -4,则n -4≥0,得n ≥4,∴数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为3或4.(2)因为等差数列{a n }的首项a 1=20,公差d =-2,S n =na 1+n (n -1)2d =20n -n (n -1)2×2=-n 2+21n =-⎝⎛⎭⎫n -2122+⎝⎛⎭⎫2122,又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110.【变式3】在等差数列{}n a 中,10a >,若其前n 项和为n S ,且148S S =,那么当n S 取最大值时,n 的值为( )A. 8B. 9C. 10D. 11【变式4】在等差数列{}n a 中,10a >,054>+a a ,054<a a ,使前n 项和0n >S 成立的最大正整数n 的值为________3、从n S 的图像出发,由148S S =可得n S 图像中11n =是对称轴,再由10a >与148S S =可判断数列{}n a 的公差0d <,所以n S 为开口向下的抛物线,所以在11n =处n S 取得最大值,答案:D4、思路:0n >S 成立的最大正整数n ,即001<>+n n s s 且此时成立。
2011年三年级奥数春季班第一讲 等差数列基础
第一讲等差数列基础一、等差数列的相关概念定义:任意相邻两个数的差是相等的一列数项:首项、中项、末项项数:就是等差数列一共有多少个数公差:相邻两数之间的差通项:数列中每一项的通用表示二、基本公式1.通项公式:已知首项和公差,求第n项第n项=首项+(n-1)×公差辅助记忆:五指法(指头是项,空是公差,公差个数比项数少1,第2项是第1项加1个公差,第3项是第1项加2个公差,第5项是第一项加4个公差……)2.项数公式:已知首项、末项及公差,求项数项数=(末项-首项)÷公差+1辅助记忆:青蛙跳荷叶(荷叶数代表项数,青蛙从第一片荷叶开始跳,先算共跳了几次,在看跳到第几片荷叶上。
)【注】:此公式为求和公式的基础3.求和公式:任何等差数列求和和=(首项+末项)×项数÷2【注】:高斯求和,皮鞋定理4.中项定理:对于容易找到中项的等差数列求和较方便和=中间数×项数(1)求和公式和中项公式的联系:和=(首项+末项)×项数÷2=(首项+末项)÷2×项数= 中间数×项数【注】中间数为平均数(2)要熟悉运用逆向思维:已知等差数列的和,就能很方便求出中项(或假设的中项)如:一个等差数列共有5个数,和是100。
那么中项就是100÷5=205、等差数列中任意两项的差第n项-第m项=公差×(n-m)26.常用熟记公式: 从1开始连续奇数列求和=项数即:1+3+5+7+9+…+(2n-1)=n2图示:1 3 5 7 9二例题解析1、直接运用公式进行计算例1 1+2+3+……+1992+1993的和。
解析:题目告诉的是一个等差数列,那就看问的是什么,用相应的公式求解即可。
问上述等差数列的和,直接利用求和公式:原式=(1+1993)×1993÷2=1994÷2×1993=997×1993=1000×1993-3×1993=1993000-5979=1987021【注】:计算是基础,利用巧算方法更省力。
等差数列初步
等差数列【知识概要】1. 等差数列的定义一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示) 1)公差d 一定是由后项减前项所得,而不能用前项减后项来求;2)对于数列{n a },若n a -1-n a =d (与n 无关的数或字母),n ≥2,n ∈N +,则此数列是等差数列,d 为公差;3)常数d 可以等于0,此时等差数列为常数列.2. 等差中项若a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项1)不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项;2)A=2ba +是a, A,b 成等差数列的充要条件; 3)对任意两个实数的等差中项是唯一的.3. 等差数列的通项公式及递推公式 1)等差数列的通项公式①d n a a n )1(1-+= ; ②=n a d m n a m )(-+ 注:d m a a m )1(1-+= ,即:d m a a m )1(1--=则:=n a d n a )1(1-+=d m n a d n d m a m m )()1()1(-+=-+-- 即的第二通项公式 : =n a d m n a m )(-+ ∴ d=nm a a nm --2)等差数列的递推公式*11()n n a a d n N a a +⎧-=∈⎨=⎩3)等差数列的单调性① {}0;n a d ↑⇔> ② {}0;n a d ↓⇔<4. 等差数列前n 项和公式 1)公式1:2)(1n n a a n S +=公式2:2)1(1dn n na S n -+=注:公式1 n n n a a a a a S +++++=-1321 ① 1221a a a a a S n n n n +++++=-- ②①+②:)()()()(223121n n n n n n a a a a a a a a S ++++++++=-- ∵ =+=+=+--23121n n n a a a a a a ∴)(21n n a a n S += 由此得:2)(1n n a a n S +=公式2 用上述公式要求n S 必须具备三个条件:n a a n ,,1 但d n a a n )1(1-+= 代入公式1即得: 2)1(1dn n na S n -+= 此公式要求n S 必须已知三个条件:d a n ,,1 (有时比较有用)2)数列的通项公式n a 与n S 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩5. 等差数列前n 项和公式n S 的性质 1)项数(下标)的“等和性”:2)(1n n a a n S +=1()2m n m n a a -++=2)项的个数的奇偶性:等差数列{}n a 中,公差为d ,则有① 若共有2n 项,则211();;:.n n n n n S n a a S S nd S S a a -+=+-==偶奇偶奇: ② 若共有21n +项,则2111(21);;:(1).n n n S n a S S a S S n n +++=+-=-=+偶奇偶奇: 3)“片段和性质”:依次取出等差数列的连续几项的和也构成一个等差数列。
第一讲 等差数列
第一讲等差数列1、已知{a n}为等差数列,a15 =8,a60 =20,求a75 。
2、设数列{a n}的前n项和为Sn=na+n(n-1)b(n=1,2,3,…),a,b是常数,且b≠0。
证明{a n}是等差数列。
3、在等差数列{a n}中,公差为1/2,且a1+a3+a5+…+a99=60,则a2+a4+a6+…+a100=_______。
4、等差数列{a n}中,a1=-5,前11项的算术平均值为5,若从中抽去一项,余下的10项的算术平均值为4,则抽取的是第几项?5、成等差数列的四个数之和为26,第二个数与第三个数的积为40,求这四个数。
6、三个数成等差数列,其和为15,其平方和为83,求此三个数。
7、已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是()8、已知等差数列{a n}的前n项和为Sn,若S12 =21,则a2+a5+a8+a11=________。
9、已知{a n}是等差数列,a4+a6=6,其前5项和Sn=10,则其公差d=_________。
10、设{an}是公差为正数的等差数列,若a1+a2+a3=15,a1a2a3=80,则a11+a12+a13=_____。
11、在等差数列{a n}中,a1+a2=100,a3+a4=80,那么a5+a6的值是()12、设{a n}是递增的等差数列,前三项的和为12,前三项的积为48,则它的首项为()13、在等差数列{a n}中,a12=23,a42=143,且a n=263,则n的值为()14、若x是a,b的等差中项,x2是a2,-b2的等差中项,则a,b的关系为()15、在等差数列{a n}中,若a3+a5+a7+a9+a11=100,则3a9-a13的值为___________。
16、已知正项等差数列{a n}的前n项和为S n,其中a1≠a2,a m,a k,a h都是数列{a n}中满足a h-a k=a k-a m的任意项。
等差数列讲义 (1)
12、(2008 宁夏理)已知数列 {an } 是一个等差数列,且 a2 1, a5 5 . (1)求 {an } 的通项 an ; (2)求 {an } 前 n 项和 Sn 的最大值.
S 13、 (2010 全国)设 a n 为等差数列, S n 为数列 a n 的前 n 项和,已知 S7 7 , S15 75 ,T n 为数列 n n
2ap .
a2 an1 a3 an2
(1)若 an 、 bn 为等差数列,则 an b, 1an 2bn 都为等差数列。 (2)若{ an }是等差数列,则 Sn , S2n Sn , S3n S2n ,„也成等差数列。 (3)数列 {an } 为等差数列,每隔 k (k N ) 项取出一项 (am , amk , am2k , am3k , ) 仍为等差数列。
n a1 an n n 1 d. ;② Sn na1 2 2
a1 a2 an ).
5、等差数列的通项公式与前 n 项的和的关系
s1 , n 1 an ( sn sn1 , n 2
二、等差数列的性质 1、等差数列与函数的关系 当公差 d 0 时,
4
等差数列前 n 项和的最值问题 4. 已知等差数列 an ,且满足 an 40 4n ,前多少项的和最大,最大值为多少
课堂总结
课后作业 1、(2007 安徽)等差数列 an 的前 n 项和为 S n ,若 a2 1, a3 3, 则S 4=( A.12 B.10 C.8 D.6 )
*
5、前 n 项和的性质 设数列 an 是等差数列, d 为公差, S 奇 是奇数项的和, S 偶 是偶数项项的和, S n 是前 n 项的和. ①当项数为偶数 2n 时,则
高考数学:专题三 第一讲 等差数列与等比数列课件
题型与方法
例 1
第一讲
已知等差数列{an}中,a3a7=-16,a4+a6=0,求{an}
的前 n 项和 Sn.
本 讲 栏 目 开 关
解 设{an}的首项为 a1,公差为 d, a +2da +6d=-16, 1 1 则 a1+3d+a1+5d=0,
a2+8da +12d2=-16, 1 1 即 a1=-4d, a =-8 a =8, 1 1 解得 或 d=2 d=-2,
第一讲
本 讲 栏 目 开 关
c1 而当 n=1 时, =a2,∴c1=3. b1 3,n=1, ∴cn= - 2×3n 1,n≥2.
∴c1+c2+…+c2 011=3+2×31+2×32+…+2×32 010 6-6×32 010 =3+ =3-3+32 011=32 011. 1-3
即 2a1+d=a1+2d, 1 又 a1=2,
1 所以 d=2,
故 a2=a1+d=1.
答案 1
题型与方法
第一讲
本 讲 栏 目 开 关
题型一 题型概述
等差数列的有关问题 等差数列是一个重要的数列类型, 高考命题主要考
查等差数列的概念、 基本量的运算及由概念推导出的一些重 要性质,灵活运用这些性质解题,可达到避繁就简的目的.
则 c5=2c3-c1=2×21-7=35.
答案 35
考点与考题
第一讲
1 5.(2012· 北京)已知{an}为等差数列, n 为其前 n 项和.若 a1= , S 2 S2=a3,则 a2=________.
本 讲 栏 目 开 关
解析
设{an}的公差为 d,
由 S2=a3 知,a1+a2=a3,
故 a7=0.
等差数列的概念
等差数列的概念等差数列是数学中常见的一种数列,它的概念以及相关性质在数学领域中有着重要的地位。
本文将对等差数列进行详细的介绍和讨论。
一、等差数列的定义等差数列是指数列中相邻两项之间的差值保持不变。
也就是说,如果一个数列满足每一项与其后一项之间的差值都为同一个常数d,那么这个数列就是等差数列。
常数d称为等差数列的公差,用字母d表示。
例如:1, 3, 5, 7, 9, 11, ...这个数列中相邻两项之间的差值都是2,所以它是一个公差为2的等差数列。
二、等差数列的通项公式等差数列可以用一个通项公式来表示,通项公式可以根据等差数列的首项和公差来确定。
通项公式:an = a1 + (n-1)d其中,an表示等差数列的第n项,a1是第一项,d是公差。
通过这个公式,我们可以直接求出等差数列的任意一项。
三、等差数列的性质1. 等差数列的前n项和公式等差数列的前n项和可以通过以下公式来计算:Sn = n/2 * (a1 + an)其中,Sn表示前n项和,a1是第一项,an是第n项,n为项数。
这个公式可以用来计算等差数列的前n项和,方便进行数值计算。
2. 等差数列的性质(1)等差数列的项数奇偶性对于一个等差数列,如果首项、公差和末项已知,我们可以根据等差数列的性质来判断该数列的项数是奇数还是偶数。
- 当末项an已知时,如果公差d为正数,则an > a1,项数n为奇数;如果公差d为负数,则an < a1,项数n为偶数。
- 当末项an已知时,如果公差d为正数,则an < a1,项数n为偶数;如果公差d为负数,则an > a1,项数n为奇数。
(2)等差数列的中项对于一个项数为奇数的等差数列,我们可以根据等差数列的性质求出它的中项。
中项可以通过以下公式计算:中项 = (首项 + 末项) / 2四、等差数列的应用等差数列在数学中有着广泛的应用。
它不仅在数学领域中有重要作用,也在其他学科和实践中得到广泛的应用。
等差数列的讲义
麟子教育一、等差数列的相关概念 1、等差数列的概念如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数, 则这个 数列称为等差数列,这个常数称为等差数列的公差•通常用字母 d 表示。
2、等差中项如果a ,A ,b 成等差数列,那么 A 叫做a 与b 的等差中项.即:A 晋 或2A a b 推广:2a n 乳 a n i (n 2) 2a “ 1 a “ a “ 23、等差数列通项公式若等差数列 a n 的首项是a i ,公差是d ,则耳6 n 1 d . 推广:a n a m (n m)d ,从而d 4、等差数列的前n 项和公式5、等差数列的通项公式与前 n 项的和的关系环 n 1a n(数列{a n }的前n 项的和为S n 印a ? L a n ).$需川2二、等差数列的性质 1、 等差数列的增减性若公差d 0,则为递增等差数列,若公差d 0,则为递减等差数列, 若公差d 0,则为常数列。
2、 通项的关系当 m n p q 时,则有 a m a “ a p a q , 特别地,当m n 2p 时,则有a m On 2a p .注:a 1 a n a 2 a n 1 a 3 a n 2三、等差数列的判定与证明 1、等差数列的判定方法:(1)定义法:若a n a n 1 d 或a n 1 a n d (常数n N ) a n 是等差数列;a n a mn m等差数列的前n 项和的公式:①5n s i a n2n n 1② 5 g 丁 d .(2)等差中项:数列a n是等差数列2a n a^ a n1(n 2) 2a n1 a n a n 2 :练习、选择题1、等差数列a n中,S0 120,那么aA. 12B.24C. 362、已知等差数列a n1的公差d ,a22A. 80 B . 120 C . 1353、已知等差数列a n 中,a2a5a9A. 390B. 195 c.1804、在等差数列a n 中,a2 6 ,a81 a io ( )D. 48a4 a ioo 80,那么S ioo D. 160.a i2 60 ,那么S13D. 1206,若数列a n的前n项和为S n ,则( )A. S4S5B.S4S5二.填空题1、等差数列a n中,若a62、等差数列a n中,若S n c.S6 S5 D.S6 S5 a3a8 ,则S q3n22n,则公差d3、已知等差数列{a n}的公差是正整数,且a3 a712,a4 a64,则前10项的和S10= 三•解答题1、在等差数列a n中,a4 0.8,an 2.2,求a51 a52 L a8°.2、设等差数列a n的前n项和为S n,已知a3 12,S2>0, Sn<0,①求公差d的取值范围;②S,S2丄,S2中哪一个值最大?并说明理由.3、设等差数列{a n}的前n项的和为S n ,且S 4 = —62, S 6 = —75,求:(1) {a.}的通项公式 a n 及前n 项的和S n ; (2) |a 1 |+|a 2 |+|a 3 |+ ……+|a 14 |.。
高考数学二轮复习 专题3 数列 第一讲 等差数列与等比数列 理
高考数学二轮复习 专题3 数列 第一讲 等差数列与等比数列 理第一讲 等差数列与等比数列1.等差数列的定义.数列{a n }满足a n +1-a n =d (其中n∈N *,d 为与n 值无关的常数)⇔{a n }是等差数列. 2.等差数列的通项公式.若等差数列的首项为a 1,公差为d ,则a n =a 1+(n -1)d =a m +(n -m )d (n ,m ∈N *). 3.等差中项.若x ,A ,y 成等差数列,则A =x +y2,其中A 为x ,y 的等差中项.4.等差数列的前n 项和公式.若等差数列首项为a 1,公差为d ,则其前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d2.1.等比数列的定义. 数列{a n }满足a n +1a n=q (其中a n ≠0,q 是与n 值无关且不为零的常数,n ∈N *)⇔{a n }为等比数列.2.等比数列的通项公式.若等比数列的首项为a 1,公比为q ,则a n =a 1·q n -1=a m ·qn -m(n ,m ∈N *).3.等比中项.若x ,G ,y 成等比数列,则G 2=xy ,其中G 为x ,y 的等比中项,G 值有两个. 4.等比数列的前n 项和公式.设等比数列的首项为a 1,公比为q ,则S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q ,q ≠1.判断下面结论是否正确(请在括号中打“√”或“×”).(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.(×)(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.(√) (3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.(×) (4)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.(×) (5)G 为a ,b 的等比中项⇔G 2=ab .(×) (6)1+b +b 2+b 3+b 4+b 5=1-b51-b.(×)1.在等差数列{a n }中,a 2=1,a 4=5,则数列{a n }的前5项和S 5=(B ) A .7 B .15 C .20 D .25解析:2d =a 4-a 2=5-1=4⇒d =2,a 1=a 2-d =1-2=-1,a 5=a 2+3d =1+6=7,故S 5=(a 1+a 5)×52=6×52=15.2. (2015·北京卷)设{a n }是等差数列,下列结论中正确的是(C ) A .若a 1+a 2>0,则a 2+a 3>0 B .若a 1+a 3<0,则a 1+a 2<0 C .若0<a 1<a 2,则a 2>a 1a 3 D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0解析:设等差数列{a n}的公差为d,若a1+a2>0,a2+a3=a1+d+a2+d=(a1+a2)+2d,由于d正负不确定,因而a2+a3符号不确定,故选项A错;若a1+a3<0,a1+a2=a1+a3-d=(a1+a3)-d,由于d正负不确定,因而a1+a2符号不确定,故选项B错;若0<a1<a2,可知a1>0,d>0,a2>0,a3>0,∴a22-a1a3=(a1+d)2-a1(a1+2d)=d2>0,∴a2>a1a3,故选项C正确;若a1<0,则(a2-a1)(a2-a3)=d·(-d)=-d2≤0,故选项D错.3.(2015·新课标Ⅱ卷)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=(B)A.21 B.42C.63 D.84解析:∵ a1=3,a1+a3+a5=21,∴ 3+3q2+3q4=21.∴ 1+q2+q4=7.解得q2=2或q2=-3(舍去).∴a3+a5+a7=q2(a1+a3+a5)=2×21=42.故选B.4.等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是(B)A.90 B.100C.145 D.190解析:设公差为d,则(1+d)2=1·(1+4d).∵d≠0,解得d=2,∴S10=100.一、选择题1.已知等差数列{a n}中,前n项和为S n,若a3+a9=6,则S11=(B)A.12 B.33 C.66 D.99解析:∵{a n}为等差数列且a3+a9=6,∴a 6+a 6=a 3+a 9=6. ∴a 6=3. ∴S 11=a 1+a 112×11=a 6+a 62×11=11a 6=11×3=33.2.在等比数列{a n }中,若a 1+a 2=20,a 3+a 4=40,则数列{a n }的前6项和S 6=(B ) A .120 B .140 C .160 D .180 解析:∵{a n }为等比数列,∴a 1+a 2,a 3+a 4,a 5+a 6为等比数列. ∴(a 3+a 4)2=(a 1+a 2)(a 5+a 6). 即a 5+a 6=(a 3+a 4)2a 1+a 2=40220=80.∴S 6=a 1+a 2+a 3+a 4+a 5+a 6=20+40+80=140.3.已知数列{a n }的前n 项和S n =n 2-2n -1,则a 3+a 17=(C ) A .15 B .17 C .34 D .398 解析:∵S n =n 2-2n -1, ∴a 1=S 1=12-2-1=-2. 当n ≥2时,a n =S n -S n -1=n 2-2n -1-[(n -1)2-2(n -1)-1] =n 2-(n -1)2+2(n -1)-2n -1+1 =n 2-n 2+2n -1+2n -2-2n =2n -3.∴a n =⎩⎪⎨⎪⎧-2,n =1,2n -3,n ≥2.∴a 3+a 17=(2×3-3)+(2×17-3)=3+31=34. 4.(2014·陕西卷)原命题为“若a n +a n +12<a n ,n ∈N *,则{a n }为递减数列”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是(A )A .真,真,真B .假,假,真C .真,真,假D .假,假,假 解析:由a n +a n +12<a n ⇒a n +1<a n ⇒{a n }为递减数列,所以原命题为真命题;逆命题:若{a n }为递减数列,则a n +a n +12<a n ,n ∈N +;若{a n }为递减数列,则a n +1<a n ,即a n +a n +12<a n ,所以逆命题为真;否命题:若a n +a n +12≥a n ,n ∈N +,则{a n }不为递减数列;由a n +a n +12≥a n ⇒a n ≤a n +1⇒{a n }不为递减数列,所以否命题为真;因为逆否命题的真假为原命题的真假相同,所以逆否命题也为真命题. 故选A.5.某棵果树前n 年的总产量S n 与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为(C )A .5B .7C .9D .11解析:由图可知6,7,8,9这几年增长最快,超过平均值,所以应该加入m =9,因此选C.二、填空题6.(2015·安徽卷)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于27.解析:由a 1=1,a n =a n -1+12(n ≥2),可知数列{a n }是首项为1,公差为12的等差数列,故S 9=9a 1+9×(9-1)2×12=9+18=27.7.设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则q =32. 解析:将S 2=3a 2+2,S 4=3a 4+2两个式子全部转化成用a 1,q 表示的式子,即⎩⎪⎨⎪⎧a 1+a 1q =3a 1q +2,a 1+a 1q +a 1q 2+a 1q 3=3a 1q 3+2,两式作差得:a 1q 2+a 1q 3=3a 1q (q 2-1),即:2q 2-q -3=0,解得q =32或q =-1(舍去).8.(2014·广东卷)等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=5.解析:由题意知a 1a 5=a 23=4,且数列{a n }的各项均为正数,所以a 3=2, ∴a 1a 2a 3a 4a 5=(a 1a 5)·(a 2a 4)·a 3=(a 23)2·a 3=a 53=25,∴log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2(a 1a 2a 3a 4a 5)=log 225=5. 三、解答题9.已知数列{a n }满足,a 1=1,a 2=2,a n +2 =a n +a n +12,n ∈N *.(1)令b n =a n +1-a n ,证明:{b n }是等比数列; (2)求{a n }的通项公式. 解析:(1)b 1=a 2-a 1=1, 当n ≥2时,b n =a n +1-a n =a n -1+a n2-a n =-12(a n -a n -1)=-12b n -1,所以{b n }是以1为首项,-12为公比的等比数列.(2)由(1)知b n =a n +1-a n =⎝ ⎛⎭⎪⎫-12n -1,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+1+⎝ ⎛⎭⎪⎫-12+…+⎝ ⎛⎭⎪⎫-12n -2=1+1-⎝ ⎛⎭⎪⎫-12n -11-⎝ ⎛⎭⎪⎫-12=1+23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n -1=53-23⎝ ⎛⎭⎪⎫-12n -1, 当n =1时,53-23⎝ ⎛⎭⎪⎫-121-1=1=a 1.所以a n =53-23⎝ ⎛⎭⎪⎫-12n -1(n ∈N *).10.(2015·安徽卷)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式; (2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n . 解析:(1)由题设知a 1·a 4=a 2·a 3=8,又a 1+a 4=9,可解得⎩⎪⎨⎪⎧a 1=1,a 4=8或⎩⎪⎨⎪⎧a 1=8,a 4=1(舍去). 由a 4=a 1q 3得公比q =2,故a n =a 1qn -1=2n -1.(2)S n =a 1(1-q n )1-q=2n-1.又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1, 所以T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1S 1-1S 2+⎝ ⎛⎭⎪⎫1S 2-1S 3+…+⎝ ⎛⎭⎪⎫1S n -1S n +1=1S 1-1S n +1=1-12n +1-1.。
专题三 第1讲 等差数列、等比数列
核心提炼
等差数列、等比数列的基本公式(n∈N*) (1)等差数列的通项公式:an=a1+(n-1)d. (2)等比数列的通项公式:an=a1qn-1. (3)等差数列的求和公式: Sn=na1+ 2 an=na1+nn- 2 1d.
(4)等比数列的求和公式: Sn=a111--qqn=a11--aqnq,q≠1,
1 2 3 4 5 6 7 8 9 10 11 12 13 14
2.(2022·济宁模拟)在等比数列{an}中,a1+a3=1,a6+a8=-32,则aa105+ +aa172
等于
A.-8
B.16
C.32
√D.-32
设等比数列{an}的公比为q, 则a6+a8=(a1+a3)q5=1×q5=-32,所以q5=-32, 故aa105+ +aa172=aa5+5+aa77q5=q5=-32.
∴S14=14a12+a14=14a42+a11>0, S15=15a12+a15=15×2 2a8<0,
∴当Sn>0时,n的最大值为14,D正确.
考点三
等差数列、等比数列的判断
核心提炼
定义法 通项法 中项法
等差数列 an+1-an=d an=a1+(n-1)d 2an=an-1+an+1(n≥2)
是圆形的天心石,围绕天心石的是9圈扇环形的石板,从内到外各圈的
石板数依次为a1,a2,a3,…,a9,设数列{an}为等差数列,它的前n项
1=6
√B.{an}的公差为9
C.a6=3a3
√D.S9=405
设{an}的公差为d.由a4+a6=90, 得a5=45,又a2=18, 联立方程组aa11++d4=d=184,5, 解得ad1==99,, 故 A 错误,B 正确;
完整版)等差数列知识点总结
完整版)等差数列知识点总结等差数列是一种数列,如果从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示。
可以用递推公式表示为an - an-1 = d(d为常数)(n≥2)。
等差数列的通项公式为an = a1 + (n-1)d = dn + a1 - d(首项为a1,公差为d,末项为an)。
另外,等差数列还有等差中项,即an - am / (n-m)。
如果a、A、b成等差数列,那么A 叫做a与b的等差中项,即A = (a+b) / 2 或 2A = a + b。
等差数列的前n项和公式为Sn = n(a1 + an) / 2 = n / 2 (2a1 + (n-1)d) = (2a1 + (n-1)d)n / 2.等差数列的证明方法有定义法、等差中项法、通项公式法和前n项和公式法。
等差数列的通项公式及前n和公式中,涉及到5个元素:a1、d、n、an及Sn,其中a1、d称作为基本元素。
只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2.为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为a-2d,a-d,a,a+d,a+2d…(公差为d);偶数个数成等差,可设为a-3d,a-d,a+d,a+3d…(公差为2d)。
等差数列的性质有:当公差d≠0时,等差数列的通项公式an = a1 + (n-1)d = dn + a1 - d是关于n的一次函数,且斜率为公差d;前n项和Sn = n(a1 + an) / 2 = n / 2 (2a1 + (n-1)d) = (2a1 + (n-1)d)n / 2是关于n的二次函数且常数项为a1.的通项公式和第一项。
根据已知条件,可以列出以下方程组:a1d a2110d33解得:d3,a18所以,{an的通项公式为an83(n1),第一项为a18.2.若等差数列{an的前6项依次为2,5,8,11,14,17,求该数列的通项公式和第100项。
等差数列知识总结(基础)
等差数列知识总结
1、定义
1(2)n n a a d n --=≥ 1(1)n n a a d n +-=≥
注意:
①数列{}n a ,{}n b 是等差数列,数列{}n n ma kb +也是等差数列 ②若0d >,数列{}n a 为递增数列,若0d <,数列{}n a 为递减数列,若0d =,数列{}n a 为常数列
2、等差中项
若,,a A b 成等差数列,则2a b A +=;
若112(2)n n n a a a n -+=+≥,数列{}n a 是等差数列.
3、等差数列的通项公式
1(1)n a a n d =+-
①推导方法:归纳法、累加法
②公式的变形:()n m a a m n d -=-
③公式的形式(可以用来判断等差数列):n a pn q =+(,p q 为常数) ④若p q s t +=+,则p q s t a a a a +=+
4、等差数列的前n 项和
1(+)2n n n a a S =,1(1)2
n n n S na d -=+ 注意:
①推导方法:倒序相加法
②“片段和”性质:数列{}n a 是等差数列,则232,,m m m m m S S S S S --也是等差数列
③公式的形式(可以用来判断等差数列):2n S An Bn =+(,A B 为常数)
④n S 的最值问题
⑤数列{||}n a 的求和问题。
知识点什么是等差数列
知识点什么是等差数列知识点:什么是等差数列等差数列是数学中常见的一种数列,其中每个相邻的数字之间的差值都是相等的。
在等差数列中,一个数字称为首项,差值称为公差。
等差数列可用于解决各种实际问题,也在数学推理中扮演重要角色。
本文将介绍等差数列的定义、性质和应用。
一、等差数列定义及基本性质等差数列的定义是:如果一个数列满足每个相邻的数字之间的差值都相等,则称该数列为等差数列。
等差数列一般用字母a、d和n来表示,其中a表示首项,d表示公差,n表示数列的项数。
等差数列的基本性质包括:1. 公差性质:等差数列中,任意两个相邻数字的差值是相等的。
2. 通项公式:等差数列的通项公式可由首项和公差推导得出。
通项公式通常表示为an = a + (n - 1)d,其中an表示数列的第n项,a表示首项,d表示公差。
3. 求和公式:等差数列的前n项和可以通过求和公式Sn = (n/2)(2a+ (n - 1)d)来计算,其中n表示项数,a表示首项,d表示公差。
二、等差数列的应用等差数列在数学中的应用非常广泛,以下介绍几个常见的应用情况。
1. 数学问题:等差数列可用于解决各种数学问题,如求和、找规律、推测等。
通过等差数列的性质和通项公式,可以轻松计算数列的各项数值、求和以及验证数列中的规律。
2. 数字序列:在实际问题中,常会遇到一组数字按照一定规律排列的情况。
如果这组数字满足相邻数字之差相等,那么可以认定它们构成了一个等差数列。
通过识别等差数列,我们可以更好地理解和解决实际问题。
3. 金融领域:等差数列在金融领域的应用十分广泛。
例如银行的利率、投资计划的收益等都可能涉及等差数列。
通过等差数列的性质,我们可以对这些金融问题进行分析和计算。
4. 物理学问题:在物理学中,等差数列可以用于描述一些连续变化或周期性变化的现象。
例如,匀速运动中的位移、速度和加速度等都可以通过等差数列来表示和计算。
三、等差数列的例题解析为了更好地理解等差数列的应用,我们来看一个例题:例题:一个等差数列的首项是3,公差为4,求前10项的和。
《等差数列的概念》课件
实例分析
1
应用等差数列的概念解决实际问题
通过实际案例,展示如何使用等差数列的概念解决实际问题。
2
求解等差数列中的未知数
根据已知条件和等差数列的特性,推导计算出未知数的值。
3
计算等差数列的前n项和
利用等差数列的求和公式,计算前n项的总和。
总结
等差数列的概念和特 征
2 应用
求和公式可以帮助我们快速计算等差数列的 前n项和,从而解决实际问题。
等差数列的常见问题解答
1 如何判断一个数列是否为等差数列?
通过计算数列中相邻项的差值,若差值相等,则为等差数列。
2 如何求等差数列中的未知数?
利用等差数列的公式和已知条件,可从中解出未知数。
3 等差数列中的前n项和如何求解?
等差数列求和公式及 应用
等差数列常见问题的 解答
练习题
等差数列练习题1
计算等差数列的第n项。
等差数列练习题2
找出等差数列中的错误项。
等差数列练习题3
计算等差数列的前n项和。
更多资源
参考书籍
推荐一些关于
介绍一些可以在线学习等差数列的优秀平台。
等差数列的概念
本节课我们将学习等差数列的基本概念,包括定义、特征、求和公式以及常 见问题的解答,以及实际问题的应用。
什么是等差数列
定义
等差数列是指数列中任意两个相邻项之差都相 等的数列。
特征
等差数列具有固定的公差,并且每一项与它的 前一项之差都相等。
等差数列的求和公式
1 推导过程
通过对等差数列进行变形和求和,可推导出 等差数列的求和公式。
等差数列基础 第1讲
第一讲等差数列基础关于第一讲等差数列,是中年级学习的一个重点。
高年级的很多题虽不是直接考察等差数列,但往往中间的某一步需要用到等差数列的知识。
等差数列这讲公式繁多,但希望孩子们千万不要死记硬背这些公式,一定要理解着记忆。
死记硬背公式不易记牢,往往容易出错,考试中一旦出现,背错公式,分数就得不到了;在在我总结的知识点解析里每个公式,我都讲了理解的方法。
可以在做题时反复理解几次,就不容易出错了。
关于计算这里,再啰嗦几句。
很多孩子的计算基本功不过关,所以往往上课时算式列出来了,但不会算,算得慢或算不准,这样就太可惜了。
所以希望孩子们能够每天坚持练几道大数乘除法。
乘法可以按照三位数×一位数,两位数×两位数,三位数×两位数,四位数×两位数,三位数×三位数,四位数×三位数。
除法可以从三位数÷一位数,四位数÷一位数,三位数÷两位数,四位数÷一位数,五位数÷一位数,五位数÷三位数等等这样的顺序练起。
一、通项公式知识点解析:⒈第n项=首项+(n-1)×公差理解方法:可以对比植树问题来理解等差数列,第二项比第一项多一个公差,第三项比第一项多两个公差,……第n项比第一项多(n-1)个公差。
辅助练习:等差数列5、8、11……求这个数列的第2011项是多少?答:5+(2011-1)×3=6035这个公式含有四个量首项,第n项,项数n,公差,这四个其实是知三求一的。
⒉首项=第n项-(n-1)×公差理解方法:同1,第n项比第一项多(n-1)个公差,用第n项剪去多出的即可。
辅助练习:等差数列……91,95,99共17项,求第一项是多少?分析:已知第17项是99,项数n为17,公差95-91=4答:99-(17-1)×4=35(此公式本讲没有涉及)⒊项数n=(第n项-首项)÷公差+1理解方法:对比植树问题,第n个数与第一个数之间共差了第n项-首项,那么间隔数应为(第n项-首项)÷公差,项数n应该比间隔数多1,所以,项数n=(第n项-首项)÷公差+1此公式为求和公式的基础,往往一道题第一步需要孩子判断一下共有多少项,第二步利用求和公式求和。
等差数列
等差数列
一、知识点精讲
(一)等差数列概念
1.等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
这个常数叫做等差数列的公差,公差通常用字母d 表示。
d a a n n =--1(n ≥2) d m n a a m n )(-+=
2.等差中项:a, b, c 成等差数列,那么b 叫做a 和c 的等差中项。
2b=a+c
m+n=p+q 则q p n m a a a a +=+ 特别地,若m+n=2p, 则a m +a n =2a p
(二)等差数列的通项公式
d n a a n )1(1-+= (n ≥1)
(三)等差数列前n 项和公式
1.等差数列前n 项和:123n n S a a a a =++++ .
2.等差数列前n 项和公式:2
)(1n n a a n S +=或2)1(1d n n na S n -+=. 3.等差数列前n 项和的最值问题:
结论:等差数列前项和的最值问题有两种方法:
(1) 当n a >0,d<0,前n 项和有最大值可由n a ≥0,且1+n a ≤0,求得n 的值;
当n a <0,d>0,前n 项和有最小值可由n a ≤0,且1+n a ≥0,求得n 的值.
(2)由n )2
d a (n 2d S 12n -+=利用二次函数配方法求得最值时n 的值.
(四)判断等差数列的常用方法
定义法,中项法,通项公式法
(五)等差数列与等差数列各项的和有关的性质
二、考点分析
考点一(等差数列及其性质)
考点二(等差数列前n项和最值问题的解法)。
第一讲(等差数列基础)学而思
第一讲:等差数列基础一、 等差数列的相关概念1、 判断等差数列⑴ 数列同向变化(越来越大,或越来越小)⑵ 每相邻两项之间的差都相等2、基本概念项:通项、首项、中项、末项项数(n):就是等差数列一共有多少个数公差(d):相邻两数之间的差二、基本公式1、通项公式:什么时候用?——知道首项和公差,求某一项第n 项=首项+公差×(n-1)a n =a 1+d(n-1)辅助记忆:小白兔跳远:第n 个脚印也是从第一个脚印一步一步跳过去的。
问第7个脚印,那是从第1个脚印开始,连跳了6步到达的。
所以a 7= a 1+d (7-1)=2+3×6=202、项数公式:什么时候用?——知道首项、末项及公差,求项数项数=(末项-首项)÷公差 + 1n=(a n -a 1)÷d + 1辅助记忆:五指法(指头是项,空是公差,项数比公差个数多1)小兔子一共跳了多少米?23-2=21(米)小兔子一共跳了多少步?21÷3=7(步)脚印比步数多1:7+1=8(个)综合算式:n=(23-2)÷3+1=83、求和公式(1)高斯公式:什么时候用?——任何一个等差数列求和和=(首项+末项)×项数÷22 5 8 11 23 …一共有几个脚印呢? 2 5 8 11 ?(2)中项公式:什么时候用?——对于容易找到中项的等差数列求和和 = 中项×项数注:中项就是该数列的平均数注意:(1)对于项数为奇数的等差数列,很好用如:2 + 4 + 6 + 8 + 10 + 12 + 14 = 8×7 = 56(2)对于项数为偶数的等差数列,可以假设出一个中间数如:2 + 4 + 6 + 8 + 10 + 12 + 14 + 16 = 9×8 = 72假设出中间数是(8+10)÷2= 9(3)要熟悉运用逆向思维:已知等差数列的和,就能很方便求出中项(或假设的中项) 如:一个等差数列共有5个数,和是100。
课件9:§2.2 等差数列 第1课时 等差数列的概念与通项公式
探究二 等差中项及其应用 [典例 2] (1)在-1 与 7 之间顺次插入三个数 a,b,c 使这五个数成 等差数列,求此数列. (2)已知数列{xn}的首项 x1=3,通项 xn=2np+nq(n∈N*,p,q 为常数), 且 x1、x4、x5 成等差数列,求:p,q 的值.
解 (1)法一:设 a1=-1,a5=7. ∴7=-1+(5-1)d⇒d=2. ∴所求的数列为-1,1,3,5,7. 法二:∵-1,a,b,c,7 成等差数列, ∴b 是-1 与 7 的等差中项. ∴b=-12+7=3. 又 a 是-1 与 3 的等差中项,∴a=-12+3=1.
探究三 等差数列的判定与证明 [典例 3] (1)已知等差数列{an}的公差为 d,数列{bn}中,bn=3an+4, 试判断{bn}是否为等差数列?并说明理由. (2)已知数列{an}满足 a1=4,an=4-an4-1(n>1),记 bn=an-1 2.求证: 数列{bn}是等差数列.
解 (1){bn}是等差数列,理由如下: 因为{an}是公差为 d 的等差数列, 所以 an+1-an=d(n∈N*), 又 bn=3an+4,所以 bn+1=3an+1+4, 则 bn+1-bn=(3an+1+4)-(3an+4) =3(an+1-an)=3d(常数)(n∈N*). 由等差数列的定义知,数列{bn}是等差数列.
【解析】由等差中项的定义知:x=a+2 b, x2=a2-2 b2, ∴a2-2 b2=a+2 b2,即 a2-2ab-3b2=0. 故 a=-b 或 a=3b. 【答案】C
4.已知(1,1),(3,5)是等差数列{an}图象上的两点,则 an=________. 【解析】根据等差数列与一次函数的关系可知,公差 d=k=53--11=2. 又知 a1=1,所以 an=2n-1. 【答案】2n-1