Effect of Dodecylbenzene Sulfonic Acid Used asAdditive on Residue Hydrotreating

合集下载

色谱法分类

色谱法分类

一、胶囊色谱(Micellar Chromatography,MC)又称拟相液相色谱或假相液相色谱(Pseudophase LC),是一种新型的液相色谱技术。

特点是应用含有高于临界胶囊浓度的表面活性剂溶液作为流动相。

所谓“胶囊”就是表面活性剂溶液的浓度超过其临界胶囊浓度(Critical MicelleConcentration,CMC)时形成的分子聚合体。

通常每只胶囊由n个(一般为25~160个)表面活性剂单体分子组成,其形状为球形或椭圆球形。

在CMC值以上的一个较大浓度范围内,胶囊溶液的某些物理性质(如表面张力、电导等等)以及胶囊本身的大小是不变的。

构成胶囊的分子单体与溶液中自由的表面活性剂的分子单体之间存在着迅速的动态平衡。

通常有正相与反相两种胶囊溶液。

前者是由表面活性剂溶于极性溶剂所形成的亲水端位于外侧而亲脂端位于内部的胶囊;后者是指表面活性剂溶于非极性溶剂所形成的亲水端位于核心而亲脂基位于外面的胶囊。

被分离组分与胶囊的相互作用和被分离组分与一般溶剂的作用方式不同,并且被分离组分和两种胶囊的作用也有差别。

改变胶囊的类型、浓度、电荷性质等对被分离组分的色谱行为、淋洗次序以及分离效果均有较大影响。

胶囊色谱就是充分运用了被分离组分和胶囊之间存在的静电作用、疏水作用、增溶作用和空间位阻作用以及其综合性的协同作用可获得一般液相色谱所不能达到的分离效果。

适用于化学结构类似、性质差别细微的组分的分离和分析,是一种安全、无毒、经济的优越技术。

(一)原理:胶囊溶液是一种微型非均相体系(Microheterogenous system)。

在胶囊色谱中,分离组分在固定相与水之间、胶囊与水相之间以及固定相与胶囊之间存在着分配平衡。

组分的洗脱得为取决于三相之间分配系数的综合作用;同时定量地指出分离组分的容量因子k’的倒数值与胶囊浓度成正比,一般增加胶囊浓度即可获得较佳的分离效果。

(二)方法特点:与传统液相色谱的最大区别在于胶囊色谱流动相是由胶囊及其周围溶剂介质组成的一种微型的非均相体系,而常规流动相是一种均相体系。

定量核磁共振波谱法快速测定灭火剂材料中全氟辛烷磺酰基化合物

定量核磁共振波谱法快速测定灭火剂材料中全氟辛烷磺酰基化合物

分析测试新成果 (33 ~ 38)定量核磁共振波谱法快速测定灭火剂材料中全氟辛烷磺酰基化合物李 杨1, 3 ,黄 卫1 ,王 畅1 ,李 洋2 ,花 磊1 ,田 颖3(1. 中国科学院大连化学物理研究所,辽宁 大连 116023;2. 吉林工商学院,吉林 长春 130507;3. 大连交通大学,辽宁 大连 116023)摘要:泡沫灭火剂中全氟辛烷磺酰基化合物(PFOS )的使用受到严格管控. 针对灭火剂中PFOS 快速测定的需求,建立了基于19F 的定量核磁共振波谱(qNMR )检测方法. 方法以全氟丁基磺酸钾为标准物质,通过计算全氟丁基磺酸钾的-CF 3在化学位移δ −78.94处19F 特征峰和PFOS 的-CF 2在化学位移δ −117.12处19F 特征峰的积分面积比值,进而实现PFOS 定量分析. 经测试,全氟丁基磺酸钾百分含量与定量峰面积线性相关系数为0.995 5,检出限为0.024%,定量限为0.080%. 8种灭火剂产品的定性测定结果与实际标注情况相吻合,其中4种泡沫灭火剂产品中PFOS 含量在0.106%~1.339%之间. 研究结果表明,方法受基质干扰小、检测速度快、灵敏度高,可为泡沫灭火剂中PFOS 的管控提供可靠的检测方法与数据支撑.关键词:全氟辛烷磺酰基化合物;泡沫灭火剂;定量核磁共振波谱法;全氟丁基磺酸钾中图分类号:O657. 61 文献标志码:B 文章编号:1006-3757(2024)01-0033-06DOI :10.16495/j.1006-3757.2024.01.006Rapid Determination of Perfluoroalkyl Sulfonyl Compounds in Foam Extinguishing Agents by Nuclear Magnetic Resonance SpectroscopyLI Yang 1, 3, HUANG Wei 1, WANG Chang 1, LI Yang 2, HUA Lei 1, TIAN Ying3(1. Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023, Liaoning China ;2. Jilin Business College , Changchun 130507, China ;3. Dalian Jiaotong University , Dalian 116023, Liaoning China )Abstract :The usage of perfluorooctane sulfonyl compounds (PFOS) in foam extinguishing agents is strictly regulated. A quantitative nuclear magnetic resonance spectroscopy (qNMR) detection method based on 19F was established for the rapid determination of PFOS in fire extinguishing agents. Using potassium perfluorobutylsulfonate as the standard substance, the quantitative analysis of PFOS could be realized by calculating the integral area ratio of the 19F characteristic peak of -CF 3 in potassium perfluorobutylsulfonate at chemical shift δ −78.94 and the 19F characteristic peak of -CF 2 in PFOS at chemical shift δ −117.12. The linear correlation coefficient between the percentage content of potassium收稿日期:2023−11−10; 修订日期:2024−01−04.基金项目:国家自然科学基金项目(22174142),大连化物所创新研究基金项目(DICP I202144),辽宁省中央引导地方科技发展资金(2023JH6/100100057) [Natural Science Foundation of China (22174142), Dalian Institute of Chemical Physics (DICP I202144), Central Guidance on Local Science and Technology Development Fund of Liaoning Province (2023JH6/100100057)]作者简介:李杨(1978−),女,高级工程师,从事催化、材料、食品等方面快速分析应用技术研究,E-mail :**************.cn 通信作者:花磊(1984−),男,研究员,《分析测试技术与仪器》青年编委,从事快速检测的谱学关键技术研究、仪器研制和应用开发,E-mail :************.cn ;田颖(1969−),女,教授,从事水处理技术与材料研究,E-mail :greenhusk@.第 30 卷第 1 期分析测试技术与仪器Volume 30 Number 12024年1月ANALYSIS AND TESTING TECHNOLOGY AND INSTRUMENTS Jan. 2024perfluorobutylsulfonate and the quantitative peak area was 0.995 5, the limit of detection was 0.024%, and the limit of quantitative was 0.080%. The qualitative determination results of 8 foam extinguishing agent products were consistent with the actual labeling, and the content of PFOS in 4 foam extinguishing agent products was 0.106%~1.339%. The research results showed that the method has the advantages of low matrix interference, fast detection speed, and high sensitivity, which could provide a reliable detection method and data support for the regulation of PFOS in foam extinguishing agents.Key words:perfluorooctane sulfonyl compounds;foam extinguishing agent;quantitative nuclear magnetic resonance spectroscopy;potassium perfluorobutylsulfonate以全氟辛烷磺酰基化合物(全氟辛烷磺酸、全氟辛烷磺酸盐及其衍生物的总称,以下简称PFOS)为代表的氟碳表面活性剂作为水成膜泡沫灭火剂(AFFF)的关键原材料,能够有效降低水溶液的表面张力,在可燃液体表面形成可以抑制燃料蒸发的水膜,隔绝液体燃料的挥发,具有良好的灭火性能. 添加PFOS的AFFF是目前扑灭液体火灾最为有效和常用的灭火剂,被广泛使用[1]. 但是PFOS性质稳定、难以降解,具有环境持久性、生物蓄积性和高毒性,在生物链中长期累积会造成严重的环境污染和健康问题[2]. 2009年,PFOS被正式列入《关于持久性有机污染物的斯德哥尔摩公约》[3],包括中国在内的全球160多个国家政府最终达成共识将限制使用PFOS系列化合物. 作为目前PFOS使用的最大领域,泡沫灭火剂的生产和使用受到持续广泛关注,因此建立一种准确、快速、简便的泡沫灭火剂中PFOS快速检测方法具有重要的现实意义.目前含氟化合物测试方法主要有氟离子选择电极法[4]、比色法[5]、离子色谱法[6]和高效液相色谱-串联质谱法[7]. 氟离子选择电极法不受色度干扰,但是存在溶液浑浊、电极响应慢、回收率低等问题. 比色法仪器简单,但是前处理繁琐导致检验周期太长,且重复性不好. 离子色谱法具有快速、灵敏、稳定性高、选择性好等突出优点,但是受样品基体效应影响较大、预处理条件要求高[8]. 高效液相色谱-串联质谱法是目前分析PFOS、全氟辛酸化合物(PFOA)等物质的首选方法,但是此方法样品前处理复杂、操作步骤繁琐、耗时长.定量核磁共振波谱(qNMR)法用于定量分析的基础是不同化学环境中的原子核共振吸收峰面积,只与它的原子数有关,而与它在分子中所处的化学环境无关,因此与传统的定值方法相比,qNMR具有极大的优势[9]. 比如,19F NMR吸收峰面积只与产生NMR信号的19F核数目有关,所以用作标准参考的峰强度,既可以属于未知化合物本身(分子内内标),也可以是加入另外一种物质的信号(分子间内标). 在待测样品中加入已知量的内标样品,通过计算内标化合物特征峰面积与样品中某一特征峰面积的比值,即可得到目标组分的浓度.近年来,qNMR方法被广泛用于药物研制[10-13]、中药质控[14-16]、聚合物分析[17-18]与代谢组学[19-20]等领域中的含氟化合物的定量分析[21-23].本研究采用基于19F的qNMR表征手段,以全氟丁基磺酸钾作为标准物质,建立了泡沫灭火剂中PFOS精准、快速的分析方法,评估了方法对PFOS 测定的重复性、线性关系及定量分析性能,并对8种灭火剂产品中含有PFOS的情况进行了快速鉴定和定量分析.1 试验部分1.1 仪器与试剂Spinsolve台式核磁共振仪(德国magritek公司);电子分析天平LE104E(梅特勒-托利多仪器(上海)有限公司);全氟丁基磺酸钾(98%,上海迈瑞尔化学技术有限公司);氘代水(99.9%,广州旭谱实验室设备有限公司);不含PFOS的泡沫灭火剂样品和含PFOS的泡沫灭火剂样品均由泡沫灭火剂生产厂商提供,产地分别为洛阳、江苏、上海、宁波;所用试剂均为分析纯.1.2 试验参数用探头为5 mm 19F检测信号,弛豫延迟时间为46.76 s;脉冲宽度为12 µs;氟核磁共振频率为58.67 MHz;带宽为20 000 Hz;采集点数为65 536点;试验时间(AQ)为6 min,扫描次数64次,样品体积约1 mL,试验均在22 ℃室温下进行.1.3 试验方法1.3.1 样品处理称取质量约500 mg(精确至0.1 mg)的泡沫灭34分析测试技术与仪器第 30 卷火剂样品直接加入核磁管,再加入质量为4.3~20.2 mg(精确至0.1 mg)的高纯全氟丁基磺酸钾作标准物质,超声处理至核磁管内样品和标准物质完全溶解后备用.1.3.2 定量核磁共振测定计算方法选择待测样品的19F NMR谱图中化学位移δ−117.12处的峰(-CF2)为PFOS定量峰,计算其积分面积,选取标准物质全氟丁基磺酸钾的19F NMR谱图中化学位移δ −78.94处的三重峰(-CF3)为定量峰,计算其积分面积. 通过如下公式计算得到待测样品中待测样品中PFOS的含量:式中:W t —泡沫灭火剂样品中全氟辛烷磺酸化合物的百分含量,%;F s —样品-CF2的19F积分面积;F i —标准物质-CF3的19F积分面积;m s —样品质量,mg;mi —标准物质质量,mg;Ms—样品分子量(此处以全氟辛基磺酸钾计,即538.22);M i —标准物质分子量(此处以全氟丁基磺酸钾计,即338.19);W r—标准物质质量百分含量,%;N s —样品分子中产生相应吸收峰的19F核数目;N i —标准物质分子中产生相应吸收峰的19F核数目.2 结果与讨论2.1 标准物质选择作为分子量最小的全氟烷基磺酸钾,全氟丁基磺酸钾价格低廉、易于获取,更重要的是全氟丁基磺酸钾的NMR特征峰与待测PFOS组分的NMR 特征峰,以及泡沫灭火剂样品基质组分的NMR谱峰有很好的分离,如图1所示. 因此,选择全氟丁基磺酸钾作为标准物质定量泡沫灭火剂中的PFOS. 2.2 定量峰选择对比不含PFOS泡沫灭火剂样品和含PFOS泡沫灭火剂样品的NMR谱图,如图1(a)(b)所示,可知:PFOS组分在化学位移δ −117.12和−79.87处的两个NMR谱峰分别对应于PFOS的-CF2和-CF3的特征峰,然而不含PFOS的泡沫灭火剂样品在化学位移δ −79.76处有一个较宽的背景干扰峰,与PFOS组分的化学位移δ −79.87谱峰相互重叠,产生干扰,因此选择PFOS的-CF2在化学位移δ −117.12处的峰为PFOS的定量峰,计算其积分面积. 同时,全氟丁基磺酸钾的19F NMR谱图中化学位移δ−78.94处-CF3的三重峰信号强度最高[图1(c)],且不受基质干扰,因此可选其作为标准物质全氟丁基磺酸钾的定量峰,计算其积分面积.2.3 NMR扫描次数影响在501.2 mg含PFOS的泡沫灭火剂样品中加入15.6 mg高纯全氟丁基磺酸钾标准物质,超声处理至核磁管内样品和标准物质完全溶解后用NMR 测试,NMR扫描次数分别设置为8、16、32、64、128、256次,得到样品的19F NMR谱图中化学位移δ −117.12处的特征峰相对定量峰面积结果如表1所列. 从测试结果可见,核磁扫描次数在32次以上信号强度趋于稳定,在兼顾信噪比情况下,本试验选择扫描次数64次为宜.2.4 方法验证2.4.1 样品中PFOS组分测定重复性试验分别称取(500±0.5) mg含PFOS的泡沫灭火剂样品,组成12组平行样,进行重复性试验,结果如图2所示. 连续进行12次重复性试验,测试发现样品的19F NMR谱图中化学位移δ −117.12处的特征−79.76−79.87−78.94−112.69−119.84−124.−117.12(a)(b)(c)−80−90−100−110−120−130−80−90−100−110−120−130−80−90−100δ/ppmδ/ppmδ/ppm−110−120−130图1 定量核磁测定结果对比谱图(a)不含PFOS泡沫灭火剂样品,(b)含PFOS泡沫灭火剂样品,(c)全氟丁基磺酸钾标准品Fig. 1 Comparison spectra of quantitative NMR results(a) sample of foam extinguishing agent without PFOS,(b) sample of foam extinguishing agent containing PFOS,(c) potassium perfluorobutylsulfonate第 1 期李杨,等:定量核磁共振波谱法快速测定灭火剂材料中全氟辛烷磺酰基化合物35峰相对定量峰面积平均值为3.01,相对标准偏差为3.75%.2.4.2 线性关系与定量分析性能称取标准物质全氟丁基磺酸钾1.5、3.1、6.1、12.1、20.1、37.2 mg 并分别溶解于0.5 mL 氘代水中,测试得到的标准物质全氟丁基磺酸钾对应定量峰面积和其质量浓度的标准曲线. 结果如图3所示,线性相关系数为0.995 5,可以作为定量测试泡沫灭火剂样品中PFOS 的定量依据. 本方法用所拥有的最低含PFOS 泡沫灭火剂样品进一步稀释后,按照3倍噪声计算得到样品检出限为0.024%,10倍噪声计算得到样品定量限为0.080%.2.4.3 实际样品分析采用本方法对共计8种实际泡沫灭火剂产品进行测试,图4为加入全氟丁基磺酸钾的含PFOS 泡沫灭火剂样品(1#)的NMR 谱图. 结果显示,对于样品是否含有PFOS ,采用本方法进行定性测定的结果与生产厂家标注的实际情况相吻合. 同时对4种含有PFOS 的样品进行了定量,结果如表2所列.4相对定量峰面积3212468重复次数1012图2 检测泡沫灭火剂样品中PFOS 的重复性考察Fig. 2 Repeatability test for detection of PFOS in foamextinguishing agent samples1.61.20.80.4123W r456H 0H 0=0.279 W rR 2=0.995 5图3 全氟丁基磺酸钾为标准物质测定PFOS 的标准曲线(H 0表示相对定量峰面积,W r 表示全氟丁基磺酸钾的质量分数)Fig. 3 Standard curve for determination of PFOS using potassium perfluorobutylsulfonate as the standardsubstance−80−90−100−110−120−130δ/ppm−78.94−112.69−117.12−119.84−124.00图4 加入全氟丁基磺酸钾的含PFOS 泡沫灭火剂样品(1#)的NMR 谱图Fig. 4 NMR spectrum of foam extinguishing agent product (1#) containing PFOS added with potassiumperfluorobutylsulfonate表 1 扫描次数对相对定量峰面积的影响Table 1 Effect of scanning times on relative quantitativepeak areas扫描次数相对定量峰面积信噪比8 2.45 5.2516 2.49 5.2232 2.84764 2.8412128 2.84122562.8412表 2 含有PFOS 泡沫灭火剂产品的实测定量结果Table 2 Quantitative measurement results of foam extinguishing agent products containing PFOS 样品编号实测PFOS 的质量分数/%1#0.1883# 1.3396#0.1068#0.11036分析测试技术与仪器第 30 卷3 结 论qNMR 法不依赖于被测物的高纯度标准品、不破坏样品,仅需样品组分有一个或一组互不干扰的特征NMR 峰,依据信号峰的面积正比于产生该共振峰的质子数,即可进行定量分析. 本文基于定量qNMR 技术,建立了以全氟丁基磺酸钾作为标准物质快速测量灭火剂中PFOS 的方法. 经系统测试,本方法重复性好、灵敏度高、准确可靠,对快速科学地掌握我国消防行业PFOS 的使用情况,加强PFOS 管控工作,减少进出口贸易摩擦具有重要的意义.参考文献:亓磊, 焦金庆, 熊靖, 等. 用于液体火灾的环保泡沫灭火剂研究现状[J ]. 材料导报,2022,36(20):29-35.[QI Lei, JIAO Jinqing, XIONG Jing, et al. Research status of environmental foam extinguishing agent for liquid fire [J ]. Materials Review ,2022,36 (20):29-35.][ 1 ]de S Furtado R X, Sabatini C A, Sakamoto I K, et al.Biodegradation mechanism of perfluorooctane sulfon-ic acid (PFOS) in domestic sewage: specific methano-genic activity, molecular biology, and ecotoxicologic-al aspects [J ]. Journal of Water Process Engineering ,2023,51 :103453.[ 2 ]韦锦萍, 夏俊, 王学军. 全氟化合物PFOA 和PFOS 检测标准分析[J ]. 有机氟工业,2014(1):38-42. [WEI Jinping, XIA Jun, WANG Xuejun. Analysis on de-termination standards of perfluorinated compounds PFOA and PFOS [J ]. Organo-Fluorine Industry ,2014(1):38-42.][ 3 ]郜守一, 邵传东, 张彦军, 等. 离子选择电极法测定氟离子方法的优化[J ]. 化工设计通讯,2021,47(3):63-63, 70. [GAO Shouyi, SHAO Chuandong, ZHANG Yanjun, et al. Optimization of ion-selective electrode method for determination of fluoride ion [J ]. Chemic-al Engineering Design Communications ,2021,47 (3):63-63, 70.][ 4 ]尚序东, 王昶, 喻靖源, 等. 基于氧化铈纳米棒-聚乙烯醇气凝胶的模拟酶比色法检测水中氟离子[J ].分析化学,2021,49(12):2023-2031. [SHANG Xu-dong, WANG Chang, YU Jingyuan, et al. Colorimet-ric detection of fluoride ion by oxidase mimics based oncericdioxidenanorods-polyvinylalcoholaerogel [J ]. Chinese Journal of Analytical Chemistry ,[ 5 ]2021,49 (12):2023-2031.]肖苏熠, 孙长恩, 洪华, 等. 气相色谱法分析氟丙菊酯[J ]. 江苏科技信息,2016(13):79-80. [XIAO Suyi, SUN Changen, HONG Hua, et al. Analysis on acrcnathrin by gas chromatogrphy [J ]. Jiangsu Sci-ence & Technology Information ,2016 (13):79-80.][ 6 ]郑丽利, 江敏, 吴昊, 等. 高效液相色谱-串联质谱法测定水中全氟辛烷磺酸含量[J ]. 上海海洋大学学报,2022,31(1):181-190. [ZHENG Lili, JIANG Min,WU Hao, et al. Determination of perfluorooctane sulf-onic acid in water by high performance liquid chroma-tography-tandem mass spectrometry [J ]. Journal of Shanghai Ocean University ,2022,31 (1):181-190.][ 7 ]车明秀, 泮秋立, 胡明燕, 等. 食品中氟检测分析的研究进展[J ]. 中国食品卫生杂志,2023,35(1):137-141. [CHE Mingxiu, PAN Qiuli, HU Mingyan, et al.Research progress on the fluoride detection and ana-lysis in different food samples [J ]. Chinese Journal of Food Hygiene ,2023,35 (1):137-141.][ 8 ]黄挺, 张伟, 全灿, 等. 定量核磁共振法研究进展[J ].化学试剂,2012,34(4):327-332, 341. [HUANG Ting, ZHANG Wei, QUAN Can, et al. Review on quantitative nuclear magnetic resonance [J ]. Chemical Reagents ,2012,34 (4):327-332, 341.][ 9 ]毛侦军. 二维核磁共振技术解析盐酸帕罗西汀[J ].分析测试技术与仪器,2022,28(1):31-36. [MAO Zhenjun. Analysis of paroxetine hydrochloride using 2D-nuclear magnetic resonance [J ]. Analysis and Test-ing Technology and Instruments ,2022,28 (1):31-36.][ 10 ]Liu X J, Kolpak M X, Wu J J, et al. Automatic analys-is of quantitative NMR data of pharmaceutical com-pound libraries [J ]. Analytical Chemistry ,2012,84(15):6914-6918.[ 11 ]吴波, 郄一奇, 杨乔, 等. 盐酸氟胺酮的结构确证和核磁共振定量分析[J ]. 刑事技术,2023(3):262-267.[WU Bo, QIE Yiqi, YANG Qiao, et al. Structural con-firmation and quantitative nuclear magnetic resonance analysis into 2-fluoro-deschloroketamine hydrochlor-ide [J ]. Forensic Science and Technology ,2023(3):262-267.][ 12 ]郑妩媚, 李晓蒙, 王姣姣. 核磁共振法定性和定量分析磷酸奥司他韦胶囊[J ]. 化学研究与应用,2022,34(11):2735-2739. [ZHENG Wumei, LI Xiaomeng,WANG Jiaojiao. Qualitative and quantitative analysis of oseltamivir phosphate capsules by nuclear magnetic resonance [J ]. Chemical Research and Application ,[ 13 ]第 1 期李杨,等:定量核磁共振波谱法快速测定灭火剂材料中全氟辛烷磺酰基化合物372022,34 (11):2735-2739.]陈燕燕, 李晓男, 王跃飞, 等. 解卷积定量核磁共振法测定黄芪注射液中8种初生代谢成分[J]. 分析化学,2015,43(8):1210-1217. [CHEN Yanyan, LI Xiao-nan, WANG Yuefei, et al. Quantificative determina-tion of 8 primary metabolites in Huangqi injectionby 1H NMR with deconvolution[J]. Chinese Journalof Analytical Chemistry,2015,43 (8):1210-1217.][ 14 ]Yang M H, Wang J S, Kong L Y. Quantitative analys-is of four major diterpenoids in Andrographis panicu-lata by 1H NMR and its application for quality controlof commercial preparations[J]. Journal of Pharma-ceutical and Biomedical Analysis,2012,70 :87-93.[ 15 ]Zhao F, Li W Z, Pan J Y, et al. A novel critical con-trol point and chemical marker identification methodfor the multi-step process control of herbal medicinesvia NMR spectroscopy and chemometrics[J]. RSCAdvances,2020,10 (40):23801-23812.[ 16 ]叶怀英, 孟庆文, 余国军, 等. 核磁共振技术在含氟聚合物定量分析中的应用[J]. 化工生产与技术,2022,29(5):29-32, I0004. [YE Huaiying, MENG Qingwen,YU Guojun, et al. Application of nuclear magnetic res-onance technology in quantitative analysis of fluoro-polymers[J]. Chemical Production and Technology,2022,29 (5):29-32, I0004.][ 17 ]Mazarin M, Viel S, Allard-Breton B, et al. Use ofpulsed gradient spin-echo NMR as a tool in MALDImethod development for polymer molecular weightdetermination[J]. Analytical Chemistry,2006,78 (8):2758-2764.[ 18 ]王峥, 黄慧英, 徐庆妍, 等. 对苯二甲酸二钠内标在定[ 19 ]量核磁共振代谢组学中的应用[J]. 厦门大学学报(自然科学版),2022,61(1):105-111. [WANGZheng, HUANG Huiying, XU Qingyan, et al. Applica-tion of disodium terephthalate as an internal standardin the quantitative NMR-based metabolomics[J].Journal of Xiamen University (Natural Science),2022,61 (1):105-111.]吴香玉, 李宁, 唐惠儒. 绿豆(Vigna Radiata)代谢物组成的核磁共振定量分析[J].波谱学杂志,2014,31(4):548-563. [WU Xiangyu, LI Ning, TANGHuiru. Quantitative analysis of metabolites in mung-bean (Vigna Radiata) extracts using NMRtechniques[J]. Chinese Journal of Magnetic Reson-ance,2014,31 (4):548-563.][ 20 ]He W Y, Du F P, Wu Y, et al. Quantitative 19F NMRmethod validation and application to the quantitativeanalysis of a fluoro-polyphosphates mixture[J]. Journ-al of Fluorine Chemistry,2006,127 (6):809-815.[ 21 ]于小波, 罗楚平, 卢爱民. 19F核磁共振定量波谱测定环吡氟草酮含量[J]. 农药,2018,57(9):645-646,674. [YU Xiaobo, LUO Chuping, LU Aimin. Determ-ination of huanbifucaotong by 19F quantitative nuclearmagnetic resonance[J]. Agrochemicals,2018,57 (9):645-646, 674.][ 22 ]华俊杰, 朱海菲, 李育. 19F核磁共振定量法测定含氟漱口液中氟化钠的含量[J]. 药学实践杂志,2019,37(6):518-520. [HUA Junjie, ZHU Haifei, LI Yu.Determination of sodium fluoride in fluoride-contain-ing mouthwash by 19F-NMR[J]. Journal of Pharma-ceutical Practice,2019,37 (6):518-520.][ 23 ]38分析测试技术与仪器第 30 卷。

十二烷基苯磺酸钠

十二烷基苯磺酸钠

合成十二烷基苯磺酸钠的工作任务1.十二烷基苯磺酸钠概述十二烷基苯磺酸钠是阴离子型表面活性剂。

因生产成本低、性能好,因而用途广泛,是家用洗涤剂用量最大的合成表面活性剂。

在洗涤剂中使用的烷基苯磺酸钠有支链结构(ABS)和直链结构(LAS)两种,支链结构生物降解性小,会对环境造成污染,而直链结构易生物降解,生物降解性可大于90%,对环境污染程度小。

由于LAS具有良好的去污性能、价格便宜和易生物降解,被广泛应用于制造洗衣粉和洗涤剂。

直链烷基苯(LAB )是生产阴离子表面活性剂直链烷基苯磺酸钠(LAS)的主要原料,因而LAB的生产已成为表面活性剂行业的支柱,在工业和民用上都有广泛的用途。

2.十二烷基苯磺酸钠开发任务书十二烷基苯磺酸钠产品的《产品开发任务书》如表7-1。

表7-1 产品开发项目任务书编号:XXXXXX注:一式三联。

一联技术总监留存,一联交技术部经理,一联交项目负责人。

7.2 十二烷基苯磺酸钠合成任务分析7.2.1目标化合物分子结构的分析①十二烷基苯磺酸钠的分子式:C18H29SO3Na②十二烷基苯磺酸钠的分子结构式:不难看出,目标化合物基本结构为烷基苯的结构,在烷基的对位上接有磺酸基团。

(由于十二烷基为邻对位定位基且空间位阻效应的影响,磺酸基团一般处在烷基的对位)。

7.2.2合成法路线分析对于十二烷基苯磺酸钠而言,逆向合成步骤如下:C 12H 25SO 3NaC 12H 25 相应的合成路线如下:C 12H 25C 12H 25SO 3Na7.2.3 文献中常见的十二烷基苯磺酸钠合成方法目前文献资料所载十二烷基苯磺酸钠的合成路线与上面分析的合成路线基本相同,一条是以苯、液体石蜡(正构十二烷)为出发原料的路线。

另一条是以苯、1-十二烯为出发原料的生产路线,即路线分析的路线。

此路线中第一步是由苯与1-十二烯发生C-烷基化反应,第二步是十二烷基苯的磺化反应,最后磺化产物用碱中和即成目标化合物。

下面我们将从烯烃(α-十二烯的)合成路线出发,将合成过程中需要考虑的各种因素进行剖析,找出一条相对合适的合成方案,并按此方案进行合成来实际检验方案的可行性。

丁基甲氧基二苯甲酰基甲烷_稳定剂_解释说明

丁基甲氧基二苯甲酰基甲烷_稳定剂_解释说明

丁基甲氧基二苯甲酰基甲烷稳定剂解释说明1. 引言1.1 概述稳定剂是一种重要的化学品,它在各个领域中起着极其关键的作用。

稳定剂的主要功能是提高化学反应的稳定性和延长产品的寿命。

丁基甲氧基二苯甲酰基甲烷(简称BDFM)是一种常用于稳定剂中的成分。

本文将对丁基甲氧基二苯甲酰基甲烷及其在稳定剂中的作用进行详细说明。

1.2 文章结构本文将分为五个部分进行讨论。

第二部分将介绍稳定剂的定义、作用以及在化学工业中的应用。

第三部分将详细探讨丁基甲氧基二苯甲酰基甲烷的合成方法,包括材料、设备、步骤以及反应机理等方面内容。

第四部分将涉及到丁基甲氧基二苯甲酰基甲烷稳定剂性能评价方法,包括测试方法选择、评价结果分析以及影响因素探讨等方面内容。

最后,第五部分将总结全文,并展望丁基甲氧基二苯甲酰基甲烷稳定剂的潜在应用前景,并提出后续研究的方向建议。

1.3 目的本文旨在对丁基甲氧基二苯甲酰基甲烷稳定剂进行详细解释和说明。

首先介绍稳定剂概念,探讨其作用和在化学工业中的应用。

接着深入探讨丁基甲氧基二苯甲酰基甲烷的合成方法,包括材料、设备、步骤以及反应机理等方面内容。

然后介绍评价丁基甲氧基二苯甲酰基甲烷稳定剂性能的方法,并分析评价结果以及影响因素。

最后总结全文,并展望丁基甲氧基二苯甲酰基甲烷稳定剂的潜在应用前景,并提出后续研究的方向建议。

通过本文的阐述,读者将更加深入了解丁基甲氧基二苯甲酰基甲烷稳定剂及其在化学工业中的重要作用。

2. 稳定剂的定义与作用2.1 稳定剂的概念稳定剂是一种在化学反应或储存过程中添加的物质,其主要作用是提高物质的稳定性并延长其使用寿命。

稳定剂能够抑制或减少不必要的化学反应,从而防止物质发生分解、腐败、劣变等现象。

2.2 稳定剂在化学工业中的应用稳定剂广泛应用于化学工业中,特别是在聚合物材料生产和储存过程中的应用更为突出。

在聚合物材料加工过程中,会受到温度、光照、氧气等外界条件的影响,容易引起分子链断裂、交联和退色等问题。

十二烷基苯磺酸和十二烷基苯磺酸钠

十二烷基苯磺酸和十二烷基苯磺酸钠

十二烷基苯磺酸和十二烷基苯磺酸钠十二烷基苯磺酸和十二烷基苯磺酸钠是两种有机化合物,它们都具有十二烷基苯磺酸基团,区别在于一个是酸,一个是钠盐。

以下将通过介绍它们的结构、性质以及应用等方面来进行比较和阐述。

十二烷基苯磺酸(Dodecylbenzenesulfonic acid,简称DBSA)是一种有机酸。

它的化学式为C18H30O3S,其中十二烷基链是与苯环连接的部分,磺酸基则是取代苯环上的原子。

DBSA具有极亲水性,因为它的磺酸基上带有负电荷,使得它在水中能很好地溶解。

DBSA是无色或微黄色的油状液体,不挥发,具有很强的酸性,常用作表面活性剂、催化剂和染料等方面的中间体。

十二烷基苯磺酸钠(Sodium dodecylbenzenesulfonate,简称SDBS)则是DBSA的钠盐。

它的化学式为C18H29NaO3S,结构与DBSA相似,只是DBSA中的负电荷由H+转变为Na+。

SDBS是一种白色至黄色的粉末,可溶于水。

由于带有负电荷的磺酸基与钠离子的存在,SDBS具有良好的表面活性,能够在溶液中形成胶束结构。

这种胶束能够在各种条件下稳定存在,并具有良好的分散、乳化和清洁性能。

DBSA和SDBS在应用上也存在一些差异。

DBSA由于其强酸性和良好的亲水性,常用于洗涤剂、清洁剂、油墨和染料的制备中。

DBSA能够在溶液中有效地清除油脂和污垢,使其成为常见的清洁产品的重要组分。

此外,DBSA还用作有机合成中的催化剂,能够促使反应的进行和提高产率。

相比之下,SDBS主要应用于日化产品和化妆品领域。

在洗涤剂中,SDBS作为表面活性剂,能够增加洗涤液的起泡性能和清洁能力。

在化妆品中,SDBS可用于改善乳液和凝胶等产品的稳定性,增强涂层的附着力,并具有某种清洁和杀菌的作用。

DBSA和SDBS在环境和健康安全方面也存在一些差异。

由于DBSA是强酸,具有腐蚀性和刺激性,对人体和环境都具有一定的风险。

而SDBS则相对安全一些,不具有强酸性。

膨胀石墨和碳黑综述

膨胀石墨和碳黑综述

碳系电磁屏蔽材料——膨胀石墨和碳黑的发展及其应用在当今这样一个科技文明飞速发展的时代,各式各样的电子设备层出不穷,给人们的生活带来极大的便利和快乐,但是,与此同时,随着电子产品的普及,其隐藏的危害也日益凸显,而电磁污染便是其中的典型代表。

电磁污染是指天然和人为的各种电磁波的干扰及有害的电磁辐射,其造成的危害是不容低估的。

在现代家庭中,电磁波在为人们造福的同时,也随着“电子烟雾”的作用,直接或间接地危害人体健康。

据美国权威的华盛顿技术评定处报告,家用电器和各种接线产生的电磁波对人体组织细胞有害。

例如长时间使用电热毯睡觉的女性,可使月经周期发生明显改变;孕妇若频繁使用电炉,可增加出生后小儿癌症的发病率。

近10年来,关于电磁波对人体损害的报告接连不断。

据美国科罗拉多州大学研究人员调查,电磁污染较严重的丹佛地区儿童死于白血病者是其它地区的两倍以上。

瑞典学者托梅尼奥在研究中发现,生活在电磁污染严重地区的儿童,患神经系统肿瘤的人数大量增加。

为了减少这一危害,各国的学者致力于研究各种电磁屏蔽材料来完成这一工作。

木质电磁屏蔽材料则是当今这一领域研究的热点之一,我们将探究如何利用碳系材料与木材结合到达预定的电磁屏蔽效果,目前碳系电磁屏蔽材料的研究集中于石墨,碳黑和碳纤维这三大类,我们拟定将膨胀石墨和碳黑作为我们可能将要选用的材料。

1、膨胀石墨石墨是碳的一种同素异形体,每个碳原子周边链接另外三个碳元素。

构成蜂窝状的六边形,以共价键结合的共价分子。

由于每个碳原子都会产生一个自由移动的电子,因此石墨属于导电体,其导电性强于普通碳元素。

对电磁波具有一定吸收作用。

因此将其作为电磁屏蔽材料有一定的可行性。

而膨胀石墨是一种较为新型的碳素材料,在19世纪60年代初,由Brodie将天然石墨与硫酸和硝酸等化学试剂作用后加热首次制得。

其原理是在一定条件下使酸、碱、卤素的原子或单个分子进入石墨的层间空隙,从而形成具有插层化合物的石墨,即所谓膨胀石墨。

巴斯夫用于乳液聚合的表面活性剂

巴斯夫用于乳液聚合的表面活性剂
表面凝聚,和搅拌不充分形成的
9
Application Areas for EP- Surfactants
Type of latex
纯丙烯酸 Pure Acrylic Latex
乳液
苯乙烯丙 Styrene Acrylic Latex
烯酸乳胶
醋酸乙烯/ Vinyl Acetate/Acrylic 丙烯酸胶乳Latex
Film quality
成膜性
Water resistance 拒水性
Foam behaviour 泡沫
Emulsion Polymerisation (Basics)
3,5 nm
micelle
monomer solubilisation in the micelle
M
5 nm
.
I+
swollen micelle
应用于:
Binders for : Paper 造纸 Paints 油漆 Adhesives 胶粘剂 Textile 纺织 Construction 建筑
INTERN
Latex properties directly
influenced by 表面活性剂直接影响
乳液的以下性能:
the emulsifiers used :
INTERN
C-链越短趋势,以提供更高的CMC (更大/更广泛的颗粒大小,稳定性较差,泡沫少的趋势) 。
Alkylbenzene sulfonates 烷基苯磺酸盐
C12H25 -
SO3 Na
Product Name Disponil LDBS 19 Disponil LDBS 25 T
Alkyl Chain n - Dodecyl n - Dodecyl

3,3-二乙氧基丙酸乙酯 合成

3,3-二乙氧基丙酸乙酯 合成

3,3-二乙氧基丙酸乙酯(DEEGE)是一种重要的有机合成中间体,广泛应用于医药、农药和化工等领域。

本文将介绍3,3-二乙氧基丙酸乙酯的合成方法及其反应机理。

一、合成方法1. 羧酸酯化反应将3,3-二乙氧基丙酸与乙醇在酸性条件下进行酯化反应,得到3,3-二乙氧基丙酸乙酯。

该反应是一种常用的合成方法,操作简便,反应条件温和,产率较高。

2. 通过亲核加成反应合成将3-乙氧基丙酸在碱性条件下与溴乙烷反应,然后进行饱和水解得到3,3-二乙氧基丙酸,最后再进行酯化反应得到3,3-二乙氧基丙酸乙酯。

3. 其他合成方法除了上述两种合成方法外,还可以采用氯化酰基亲核取代反应、无水条件下醚化反应等方法进行3,3-二乙氧基丙酸乙酯的合成。

二、反应机理从以上合成方法中可以看出,3,3-二乙氧基丙酸乙酯的合成主要涉及羧酸酯化反应和亲核取代反应。

在酸性条件下,羧酸和醇经历酯化反应生成酯。

而在碱性条件下,羧酸与溴乙烷发生亲核取代反应形成3,3-二乙氧基丙酸。

三、应用领域1. 医药领域3,3-二乙氧基丙酸乙酯作为抗癌药物的中间体,在医药领域有着重要的应用。

其可以被用于合成抗癌药物,对于肿瘤治疗具有一定的意义。

2. 农药领域DEEGE也可以作为农药的原料中间体,用于合成杀菌剂、杀虫剂等农药,对提高农作物的产量和质量起着重要作用。

3. 化工领域在化工领域,DEEGE可用作有机合成中间体,用于制备各种有机化合物,广泛应用于有机合成反应中。

四、总结3,3-二乙氧基丙酸乙酯是一种重要的有机合成中间体,其合成方法多样,反应机理清晰,应用领域广泛。

本文对其合成方法及反应机理做了简要介绍,希望对相关领域的研究工作者有所帮助。

3,3-二乙氧基丙酸乙酯(DEEGE)是一种重要的化学物质,具有广泛的应用价值。

本文将继续对3,3-二乙氧基丙酸乙酯的合成方法、反应机理以及应用领域进行扩展和探讨。

一、合成方法4. 氯化酰基亲核取代反应氯化酰基亲核取代反应是另一种合成3,3-二乙氧基丙酸乙酯的方法。

十二烷基苯磺酸

十二烷基苯磺酸

Name:Dodecylbenzene sulfonic acid 97% mixture of isomersSynonym:Laurylbenzenesulfonic acidCAS:27176-87-0Section 1 - Chemical ProductMSDS Name:Dodecylbenzene sulfonic acid 97% mixture of isomersSynonym:Laurylbenzenesulfonic acidSection 2 - COMPOSITION, INFORMATION ON INGREDIENTSCAS# Chemical Name emsds EINECS#27176-87-0 Dodecylbenzenesulfonic acid 97 248-289-4 Hazard Symbols: CRisk Phrases: 22 34Section 3 - HAZARDS IDENTIFICATIONEyes: In case of contact, immediately flush eyes with plenty of water for at least 15 minutes. Ge t medical aid immediately.Skin:In case of contact, immediately flush skin with plenty of water for at least 15 minutes while remo ving contaminated clothing and shoes.Get medical aid immediately. Wash clothing before reuse.Ingestion:If swallowed, do NOT induce vomiting. Get medical aid immediately.If victim is fully conscious, give a cupful of water. Never give anything by mouth to an unconscio us person.Inhalation:If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, gi ve oxygen. Get medical aid.Notes to Physician:Section 4 - FIRST AID MEASURESEyes: In case of contact, immediately flush eyes with plenty of water for at least 15 minutes. Ge t medical aid immediately.Skin:In case of contact, immediately flush skin with plenty of water for at least 15 minutes while remo ving contaminated clothing and shoes.Get medical aid immediately. Wash clothing before reuse.Ingestion:If swallowed, do NOT induce vomiting. Get medical aid immediately.If victim is fully conscious, give a cupful of water. Never give anything by mouth to an unconscioInhalation:If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, gi ve oxygen. Get medical aid.Notes to Physician:Section 5 - FIRE FIGHTING MEASURESGeneral Information:As in any fire, wear a self-contained breathing apparatus in pressure-demand, MSHA/NIOSH (app roved or equivalent), and full protective gear. During a fire, irritating and highly toxic gases may be generated by thermal decomposition or combustion.Extinguishing Media:Use extinguishing media most appropriate for the surrounding fire.Section 6 - ACCIDENTAL RELEASE MEASURESGeneral Information: Use proper personal protective equipment as indicated in Section 8.Spills/Leaks:Absorb spill with inert material (e.g. vermiculite, sand or earth), then place in suitable container. Avoid runoff into storm sewers and ditches which lead to waterways. Provide ventilation. Section 7 - HANDLING and STORAGEHandling:Wash thoroughly after handling. Remove contaminated clothing and wash before reuse. Use with adequate ventilation. Do not get in eyes, on skin, or on clothing. Keep container tightly closed. D o not ingest or inhale. Do not breathe spray or mist.Storage:Store in a cool, dry place. Keep container closed when not in use.Keep from contact with oxidizing materials. Keep away from metals.Corrosives area. Do not store near alkaline substances.Section 8 - EXPOSURE CONTROLS, PERSONAL PROTECTIONEngineering Controls:Facilities storing or utilizing this material should be equipped with an eyewash facility and a safet y shower. Use process enclosure, local exhaust ventilation, or other engineering controls to contr ol airborne levels.Exposure Limits CAS# 27176-87-0: Personal Protective Equipment Eyes: Wear chemical splash g oggles.Skin:Wear appropriate gloves to prevent skin exposure.Wear appropriate protective clothing to prevent skin exposure.Respirators:A respiratory protection program that meets OSHAs 29 CFR 1910.134 and ANSI Z88.2 requireme nts or European Standard EN 149 must be followed whenever workplace conditions warrant respi rator use.Section 9 - PHYSICAL AND CHEMICAL PROPERTIESPhysical State: Viscous liquidColor: brownOdor: sulfur dioxide odorpH: Not available.Vapor Pressure: Not available.Viscosity: Not available.Boiling Point: 315 deg C @ 760 mmHgFreezing/Melting Point: 10 deg CAutoignition Temperature: Not available.Flash Point: > 200 deg C (> 392.00 deg F)Explosion Limits, lower: Not available.Explosion Limits, upper: Not available.Decomposition Temperature: Not available.Solubility in water: Soluble.Specific Gravity/Density: 1.2000Molecular Formula: C18H30O3SMolecular Weight: 322.00Section 10 - STABILITY AND REACTIVITYChemical Stability:Stable under normal temperatures and pressures.Conditions to Avoid:Excess heat.Incompatibilities with Other Materials:Strong oxidizing agents, strong bases, metals, Corrosive to steel and aluminum..Hazardous Decomposition Products:Carbon monoxide, oxides of sulfur, carbon dioxide.Hazardous Polymerization: Will not occur.RTECS#:CAS# 27176-87-0: DB6600000 LD50/LC50:CAS# 27176-87-0: Oral, rat: LD50 = 650 mg/kg.Carcinogenicity:Dodecylbenzenesulfonic acid - Not listed by ACGIH, IARC, or NTP.Other:See actual entry in RTECS for complete information.Section 12 - ECOLOGICAL INFORMATIONEcotoxicity:Fish: Rainbow trout: LC50 = 10.8 mg/L; 96 Hr.; Static conditionsWater flea Daphnia: EC50 = 11-23 mg/L; 48 Hr.; UnspecifiedSection 13 - DISPOSAL CONSIDERATIONSDispose of in a manner consistent with federal, state, and local regulations.Section 14 - TRANSPORT INFORMATIONIATAShipping Name: ARYLSULPHONIC ACIDS, LIQUID WITH 5% OR LESS FREE SULPHURIC ACIDHazard Class: 8UN Number: 2586Packing Group: IIIIMOShipping Name: ARYLSULPHONIC ACIDS, LIQUID, CONTAINING NOT MORE THAN 5% F REE SULPHURIC ACIDHazard Class: 8UN Number: 2586Packing Group: IIIRID/ADRShipping Name: ARYLSULPHONIC ACID, WITH NOT MORE THAN 5% FREE SULPHURIC AC IDHazard Class: 8UN Number: 2586Packing group: IIIUSA RQ: CAS# 27176-87-0: 1000 lb final RQ; 454 kg final RQEuropean/International RegulationsEuropean Labeling in Accordance with EC DirectivesHazard Symbols: CRisk Phrases:R 22 Harmful if swallowed.R 34 Causes burns.Safety Phrases:S 26 In case of contact with eyes, rinse immediatelywith plenty of water and seek medical advice.S 28A After contact with skin, wash immediately withplenty of water.S 36/37/39 Wear suitable protective clothing, glovesand eye/face protection.WGK (Water Danger/Protection)CAS# 27176-87-0: No information available.CanadaCAS# 27176-87-0 is listed on Canadas DSL List.CAS# 27176-87-0 is listed on Canadas Ingredient Disclosure List. US FEDERALTSCACAS# 27176-87-0 is listed on the TSCA inventory.。

乙酰丙酸-十二烷基硫酸钠对结核分枝杆菌的杀灭作用及其安全性毒理学评价

乙酰丙酸-十二烷基硫酸钠对结核分枝杆菌的杀灭作用及其安全性毒理学评价

结核病与胸部肿瘤2019年第2期Tuber&Thor Tumor,June2019,No.2•121•乙酰丙酸-十二烷基硫酸钠对结核分枝杆菌的杀灭作用及其安全性毒理学评价吕霞丽李自慧潘丽萍贾红彦张宗德刘洋【摘要】目的研究消毒剂乙酰丙酸一十二烷基硫酸钠(levulinic acid plus sodium dodecyl sulfate,LVA-SDS)对结核分枝杆菌标准株H37Rv、耐多药结核分枝杆菌临床分离株的杀灭作用;并对LVA-SDS进行安全性毒理学评价。

方法按照2002年版卫生部《消毒技术规范》要求,采用悬液定量杀菌试验和动物实验方法,分别评估LVA-SDS对结核分枝杆菌标准株H37Rv、耐多药结核分枝杆菌临床分离株菌悬液的杀灭作用以及LVA-SDS实际使用时的安全性。

结果20%(体积分数)LVA+2%(质量分数)SDS消毒剂与1mg/mL的菌悬液作用30min,对菌悬液内结核分枝杆菌标准株H37Rv或耐多药结核分枝杆菌临床分离株的平均杀灭对数值均>5.00。

小鼠急性经口毒性试验结果为半数致死量(median lethal dose,LDs°)>5000mg/kg,蓄积系数K>5,皮肤刺激反应无红斑和水肿形成,皮肤刺激指数<0.5。

结论LVA-SDS对结核分枝杆菌标准株H37Rv、耐多药结核分枝杆菌临床分离株均有较好的杀灭作用;LVA-SDS属实际无毒级、轻度蓄积毒性作用且对皮肤无刺激性。

因此,LVA-SDS是一种安全的、对结核分枝杆菌杀灭作用较好的消毒剂,具有较强的实际应用价值。

【关键词】结核分枝杆菌;乙酰丙酸(LVA);平均杀灭对数值;安全性Evaluation of Disinfection Efficacy of Levulinic Acid plus Sodium Dodecyl Sulfate for Mycobacterium Tuberculosis and Safety Assessment in ToxicologyLyu Xiali,Li Zihui,Pan Liping,Jia Hongyan,Zhang Zongde,Liu YangBeijing Chest Hospital,Capital Medical University,Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Key Laboratory for Drug Resistant Tuberculosis Research,Beijing101149,China[Abstract]Objective To investigate the germicidal efficacy of levulinic acid plus sodium dodecyl sulfate(LVA-SDS)for H37Rv strain and multidrug-resistant Mycobacterium tuberculosis clinical isolates and to assess the toxicologic safety of LVA-SDS in practical application.Methods According to the2002edition of the Technical Specification for Disinfection,suspension quantitative germicidal test and animal experiment methods were respectively used to evaluate the germicidal efficacy of LVA-SDS for H37Rv and multidrug-resistant Mycobacterium tuberculosis isolates and the toxicologic safety of LVA-SDS.Results The average killing logarithm values of20%LVA+2%SDS for H37Rv or multidrug-resistant Mycobacterium tuberculosis isolates were respectively>5.00.The maximum of the inactivation of the disinfectant on the acute toxicity test was LD5O>5000mg•kg1. Cumulative coefficient K>5.No erythema and edema were found in skin irritation,and the skin irritation index was<0.5.Conclusion LVA-SDS has high efficacy for killing H37Rv and multidrug-resistant Mycobacterium tuberculosis isolates with actually non-toxic grade,and no cumulative toxicity and no skin stimulation.Therefore,LVA-SDS is a safe disinfectant for Mycobacterium tuberculosisand has strong practical application value.[Key words]Mycobacterium tuberculosis;levulinic acid(LVA);average killing logarithm values;safety结核分枝杆菌是引起结核病的病原菌,严重威胁着人类的健康,切断结核分枝杆菌传播途径是控制结核病传播的重要措施之一。

去环氧基催化活性多肽用于呕吐毒素解毒的用途[发明专利]

去环氧基催化活性多肽用于呕吐毒素解毒的用途[发明专利]

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 202010146399.X(22)申请日 2020.03.05(71)申请人 山东农业大学地址 271018 山东省泰安市岱宗大街61号(72)发明人 孔令让 王宏伟 孙思龙 侯冰倩 (74)专利代理机构 北京北汇律师事务所 11711代理人 高元吉(51)Int.Cl.A23L 5/20(2016.01)A23L 2/84(2006.01)C12N 9/50(2006.01)(54)发明名称去环氧基催化活性多肽用于呕吐毒素解毒的用途(57)摘要本发明公开去环氧基催化活性多肽用于呕吐毒素解毒的用途。

本发明的多肽能够在缓和的条件下催化呕吐毒素与谷胱甘肽反应去除环氧基,并产生无毒无害的谷胱甘肽化衍生物,从而实现呕吐毒素的解毒和脱毒。

该多肽在农业、食品、饲料和医药等领域具有广泛用途。

权利要求书1页 说明书8页序列表2页 附图4页CN 111418757 A 2020.07.17C N 111418757A1.去环氧基催化活性多肽用于呕吐毒素解毒的用途,其特征在于,所述活性多肽具有SEQ ID No:1所示的氨基酸序列。

2.根据权利要求1所述的用途,其特征在于,所述活性多肽能够使呕吐毒素中的环氧基与谷胱甘肽催化反应生成谷胱甘肽化衍生物。

3.去环氧基催化活性多肽用于样品脱毒的用途,其特征在于,所述活性多肽具有SEQ ID No:1所示的氨基酸序列,所述样品为呕吐毒素污染的样品。

4.根据权利要求3所述的用途,其特征在于,所述样品为食品、饲料或饮料。

5.根据权利要求3所述的用途,其特征在于,所述样品包含谷胱甘肽,或向所述样品加入谷胱甘肽。

6.根据权利要求3所述的用途,其特征在于,所述样品来源于镰刀菌属、头孢菌属、漆班菌属和木霉属的细菌侵染的植物。

7.根据权利要求6所述的用途,其特征在于,所述镰刀菌属细菌选自禾谷镰刀菌、尖孢镰刀菌、串珠镰刀菌、拟枝孢镰刀菌、粉红镰刀菌、黄色镰刀菌和雪腐镰刀菌。

十二烷基苯酸封闭型酸催化剂

十二烷基苯酸封闭型酸催化剂

十二烷基苯酸封闭型酸催化剂English Answer:Encapsulated Acid Catalysts of Dodecylbenzene Sulfonic Acid.Encapsulated acid catalysts (EACs) are a type of catalyst in which the active catalytic species is confined within a protective shell or matrix. EACs offer several advantages over traditional homogeneous catalysts,including improved stability, selectivity, and recyclability.One of the most important applications of EACs is in the field of acid catalysis. Acid catalysts are used in a wide variety of industrial processes, such as petroleum refining, chemical synthesis, and food processing. However, traditional homogeneous acid catalysts often suffer from poor stability and can be easily deactivated by impurities or side reactions.Dodecylbenzene sulfonic acid (DBSA) is a strong organic acid that has been widely used as an acid catalyst in various industrial applications. However, DBSA is also susceptible to deactivation by impurities and side reactions. To overcome this problem, researchers have developed encapsulated DBSA catalysts that can provide improved stability and recyclability.Encapsulated DBSA catalysts can be prepared by avariety of methods, including sol-gel encapsulation, microencapsulation, and layer-by-layer assembly. In general, these methods involve creating a protective shell or matrix around the DBSA molecules, which prevents them from coming into direct contact with impurities or side reactions.The protective shell or matrix can be made from avariety of materials, such as silica, alumina, or polymers. The choice of material depends on the desired properties of the EAC, such as its stability, selectivity, and recyclability.Encapsulated DBSA catalysts have been shown to exhibit improved stability and recyclability in a variety of acid-catalyzed reactions. For example, encapsulated DBSA catalysts have been used to catalyze the esterification of fatty acids, the alkylation of aromatics, and the polymerization of olefins.In addition to their improved stability and recyclability, encapsulated DBSA catalysts also offer several other advantages over traditional homogeneous acid catalysts. For example, encapsulated DBSA catalysts can be designed to have specific pore sizes and shapes, which can be used to control the selectivity of the catalyst. Additionally, encapsulated DBSA catalysts can be easily modified with other functional groups or materials, which can further improve their performance.Overall, encapsulated DBSA catalysts are a promising new type of acid catalyst that offers several advantages over traditional homogeneous catalysts. These catalysts have the potential to improve the efficiency and sustainability of a wide range of industrial processes.中文回答:十二烷基苯磺酸封闭型酸催化剂。

十二烷基苯磺酸别名

十二烷基苯磺酸别名

十二烷基苯磺酸别名1.引言1.1 概述概述部分主要介绍十二烷基苯磺酸的基本概念和背景信息。

下面是概述的内容:概述:十二烷基苯磺酸(DBSA)是一种有机化合物,属于烷基苯磺酸类化合物。

它是由十二烷基苯与硫酸反应得到的产物。

在化学结构中,DBSA 主要由一个苯环和一个十二烷基链组成,磺酸基(-SO3H)连接在苯环上。

DBSA作为一种表面活性剂,具有良好的渗透、分散和乳化性能,广泛应用于许多工业领域。

它在油墨、涂料、染料、清洁剂等行业中起着重要作用。

同时,DBSA也可以用作硫化剂、催化剂和酸催化剂等。

十二烷基苯磺酸具有诸多优越性质,例如高稳定性、低毒性、高表面活性等,使得其在工业生产与科研领域得到了广泛应用。

随着科学技术的不断发展和新材料的涌现,对DBSA的研究和应用也在不断深入。

本文将详细介绍十二烷基苯磺酸的定义和性质,以及它在各个领域的应用。

同时,也对其重要性进行总结,并对未来十二烷基苯磺酸的发展进行展望。

通过本文的阐述,相信读者能够对十二烷基苯磺酸有更加深入的了解,并意识到它的重要性和潜在的发展前景。

1.2 文章结构文章结构部分的内容如下:文章结构部分旨在介绍整篇文章的结构和各个部分的内容。

本文共包括引言、正文和结论三个主要部分。

引言部分主要包括概述、文章结构和目的三个小节。

首先,在概述部分主要对十二烷基苯磺酸进行简要介绍,包括其基本概念和特征。

接着,在文章结构中将详细说明本文的组织结构,包括引言、正文和结论三个部分的安排。

最后,在目的部分明确指出本文的目的,即介绍和探讨十二烷基苯磺酸的别名、定义、性质、应用领域和未来发展等方面的内容。

正文部分主要包括十二烷基苯磺酸的定义和性质以及其应用领域两个小节。

首先,在十二烷基苯磺酸的定义和性质部分,将详细介绍该化合物的化学结构及其物理和化学性质,并讨论其在化工领域的重要作用。

然后,在应用领域部分将探讨十二烷基苯磺酸在不同领域的应用情况,如洗涤剂、润滑油、染料等行业。

卫生部办公厅关于印发《食品用消毒剂原料(成份)名单(2009版)》的通知

卫生部办公厅关于印发《食品用消毒剂原料(成份)名单(2009版)》的通知

卫生部办公厅关于印发《食品用消毒剂原料(成份)名
单(2009版)》的通知
文章属性
•【制定机关】卫生部(已撤销)
•【公布日期】2010.01.30
•【文号】卫办监督发[2010]17号
•【施行日期】2010.01.30
•【效力等级】部门规范性文件
•【时效性】现行有效
•【主题分类】食品安全
正文
卫生部办公厅关于印发《食品用消毒剂原料(成份)名单
(2009版)》的通知
(卫办监督发〔2010〕17号)
各省、自治区、直辖市卫生厅局,新疆生产建设兵团卫生局,中国疾病预防控制中心,卫生部卫生监督中心:
根据《食品安全法》及其实施条例的有关规定,我部组织制定了《食品用消毒剂原料(成份)名单(2009版)》。

现印发给你们,请遵照执行。

生产食品消毒剂应当符合《传染病防治法》等法律法规、标准和技术规范的要求,不得使用名单之外的原料。

在我部食品相关产品新品种行政许可规定公布实施前,如需使用名单之外原料,应当按照《消毒管理办法》及《健康相关产品卫生行政许可程序》申报消毒剂新产品。

附件:《食品用消毒剂原料(成分)名单(2009版)》
二○一○年一月三十日
附件:
食品用消毒剂1原料(成份)名单(2009版)
辅助成份4
注:1. 食品用消毒剂指直接用于消毒食品、餐饮具以及直接接触食品的工具、设备或者食品包装材料和容器的物质。

2. 臭氧及臭氧水、酸性氧化电位水是由发生器或生成器产生,可直接使用。

3. 二氧化氯或次氯酸钠可通过二氧化氯或次氯酸钠发生器产生。

4. 列入GB2760-2007《食品添加剂使用卫生标准》的食品添加剂,可作为食品用消毒剂的辅助成份。

十二烷基苯磺酸

十二烷基苯磺酸

十二烷基苯磺酸1. 概述十二烷基苯磺酸(Dodecylbenzenesulfonic acid,简称DBSA)是一种常用的有机酸,属于磺酸类化合物。

它是以十二烷基苯为基础合成,具有较强的表面活性和良好的清洗能力。

因此,它在各种领域,包括洗涤剂、表面活性剂、油漆、胶黏剂等工业中广泛应用。

本文将介绍十二烷基苯磺酸的物理性质、化学性质、应用领域以及安全注意事项。

2. 物理性质十二烷基苯磺酸是一种白色结晶或粉末状固体,具有特殊的芳香味道。

它难溶于水,溶于有机溶剂如醇和醚。

在常温下,它的熔点约为88-93摄氏度,沸点约为315-320摄氏度。

3. 化学性质3.1 酸性十二烷基苯磺酸是一种有机酸,具有较强的酸性。

它可与碱反应生成相应的十二烷基苯磺酸盐,并释放出氢气。

3.2 表面活性由于十二烷基苯磺酸分子结构中的磺酸基团和烃基团的存在,它具有较强的表面活性。

在溶液中,它能够有效地降低液体的表面张力,使溶液具有良好的润湿性和乳化性。

3.3 氧化性十二烷基苯磺酸在高温、氧气存在的条件下,会发生氧化反应,产生有害物质。

因此,在使用、储存时,应避免其接触到氧气或高温环境。

4. 应用领域4.1 洗涤剂和表面活性剂十二烷基苯磺酸广泛应用于制备洗涤剂和表面活性剂。

它具有良好的去污和乳化性能,被用于制造家庭清洁剂、洗衣粉、洗洁精和洗发水等产品。

4.2 油漆和胶黏剂十二烷基苯磺酸可以用作油漆的乳化剂,能够使油漆的颜料均匀分散,并提升油漆的附着力。

此外,它还可以用于制造各种类型的胶黏剂,如胶水、胶带等。

4.3 其他应用领域除了上述领域外,十二烷基苯磺酸还被广泛应用于纺织、造纸、冶金、电子等行业。

它可以用作纺织品的染料助剂,提高染料的显色性和均匀度;在造纸工业中,它可以用作湿强剂,增加纸张的强度和耐久性;在冶金和电子行业中,它被用于清洁金属表面和制造电子组件。

5. 安全注意事项5.1 防护措施在操作过程中,应佩戴防护手套、眼镜和防护服,避免接触到十二烷基苯磺酸。

十二烷基苯磺酸的特点

十二烷基苯磺酸的特点

十二烷基苯磺酸的特点
十二烷基苯磺酸(Dodecylbenzenesulfonic acid,简称DBSA)是一种有机化合物,属于磺酸类化合物。

它由苯环和十二烷基链组成,具有以下几个特点:
1. 高效的表面活性剂:DBSA是一种阴离子表面活性剂,具有优异的表面活性和分散性能。

它能够降低液体的表面张力,使其更容易湿润和渗透其他物质。

因此,DBSA广泛用于清洁剂、洗涤剂、乳化剂等日常用品中,能够有效去除污垢和油脂。

2. 强酸性:DBSA是一种强酸,其酸性比一般的有机酸强得多。

酸性指的是物质在水中能够释放出H+离子的能力。

DBSA在水溶液中能够完全离解,产生大量的H+离子,使溶液呈酸性。

因此,DBSA 常被用作催化剂和反应活化剂,能够促进一些酸催化的化学反应。

3. 热稳定性:DBSA具有较好的热稳定性,能够在高温环境下保持其化学性质的稳定。

这使得DBSA在一些高温条件下的工业生产中得到广泛应用,如聚合反应、催化裂化等。

4. 生物降解性:DBSA是一种可生物降解的化合物,能够被微生物分解代谢。

这使得DBSA在环境友好型产品中得到广泛应用,如生态清洁剂、生物农药等。

5. 毒性较低:DBSA在适当使用条件下,对人体和环境的毒性较低。

具有一定的刺激性,但经过适当稀释和处理后,可以安全使用。

十二烷基苯磺酸具有高效的表面活性剂特性、强酸性、热稳定性、生物降解性和较低的毒性。

这使得它在各个领域得到广泛应用,包括清洁剂、乳化剂、催化剂等。

在未来,随着人们对环境友好型产品的需求增加,DBSA的应用前景将更加广阔。

表面活性剂与极性有机物对化学镀铜的影响_刘少友

表面活性剂与极性有机物对化学镀铜的影响_刘少友
Abstract: The absorption spectrum and copper deposition rate of a given chemical copper plat ing solution affected by different surfactants and polar organics were investigated. The internal relations and mutual act ions among the surfactants, the absorpt ion spectrum curve and copper deposition rate were studied. Results showed that, the addition of cationic surfactant, cetyltrimethylammonium bromide ( CTAB) that causes the red shift of the absorpt ion spectrum will accelerate the copper deposition rate. At the dosage of CTAB of 4 mg/ L, the copper deposition rate can achieve 6137 Lm/ h. However, nevertheless the anionic surfactants sodium dodecyl benzene sulfonate ( SDBS) and sodium dodecyl sulfate ( SDS) as well as polar organics methyl sulfonic acid ( MSA) and sodium benzene sulfonate ( SBS) will cause the red shift of the absorption spectrum too, the addition of any one of them will hinder the copper deposition. The copper deposit ion rate performs as SBS< SDBS< SDS< MSA. The addition of polar organic 2- butyne- 1, 4- diol will cause the blue shift of the absorpt ion spectrum and will generally accelerate the copper deposition rate, but the effect of the magnitude of its concentration on the copper deposition rate is not significant . Key words: surfactant ; polar organics; absorpt ion spectrum; deposition rate; mechanism

雷扎芬净合成方法

雷扎芬净合成方法

雷扎芬净合成方法
雷扎芬(Leflunomide)是一种广谱的免疫调节剂,它广泛用于关节炎、类风湿性关节炎等疾病的治疗。

现在,雷扎芬的合成方法已经被广泛研究和掌握,主要是通过雷扎芬净合成方法来实现的。

雷扎芬净合成方法(Leflunomide Synthetic Method)是利用丙酮镁和磺酰氯合成乙烯基羧酸酰胺,进而与三甲基乙酰胺和硝基苯甲酸脱水缩合,实现雷扎芬的合成。

这种方法省去了传统合成方法需要分离、纯化、结晶的步骤,从而缩短了合成时间,提高了合成效率,降低了成本。

该方法的研究使得雷扎芬的合成变得简单,其中的步骤和原料较为简单,而且反应过程较为高效,具有重要的工业应用价值。

该合成方法的具体步骤如下:首先,将苯甲酰氯和乙烯基羧酸酰胺在丙酮镁存在下反应,形成苯甲酰基乙烯基羧酸酰胺;接着,将苯甲酰基乙烯基羧酸酰胺与三甲基乙酰胺、硝基苯甲酸在少量催化剂存在下进行脱水缩合反应(更确切的说法是加成反应),形成雷扎芬。

该方法的优点主要在于它可以直接合成出雷扎芬,从而减少了反应中间体的制备和清洗的过程,可大大降低反应的成本和时间。

此外,该方法在反应条件和工艺研究等
方面都具有实用性和技术优势。

值得一提的是,该方法在药物工业上有着极高的实用价值,因为它能够实现雷扎芬的大规模合成,提高了药物的治疗效果,降低了药物的生产成本,从而大大方便了患者的用药。

总之,雷扎芬净合成方法是现代化学工业技术研究的重要突破,它为雷扎芬的大规模生产和使用提供了很好的技术支持,同时也为开发和合成其他新型免疫调节剂提供了新的方法和思路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

March 31, 20151 IntroductionAsphaltene is the most complex and the largest molecule in crude oil. It consists of condensed polyaromatic nuclei carrying alkyl groups and alicyclic systems, and also con-tains various heteroatoms. Asphaltene transformation is a difficult task and may lead to negative impacts on residue hydrotreating [1-3]. For example, asphaltene is prone to deposition as coke on catalysts via dehydrogenation caus-ing the blockage of catalyst pores, thereby decreasing the catalytic activity and reducing the operating cycle. In the process of coking, asphaltene aggregates from the col-loid system of the residue to form the second liquid phase firstly, and then form coke through dehydrogenation [4]. In general, the second liquid phase is considered to be the coke precursor during residue processing, therefore, the key to inhibit coke formation is to prevent the colloid sys-tem of residue from destruction and then precipitation in the second liquid phase.Surfactant can reduce the surface tension of the system through the adsorption of head groups in the surface of asphaltene micelle and the formation of a stable tridi-mensional alkyl-layer by the terminal groups, which can peptize the asphaltenes in residue better to increase theReceived date: 2014-06-20; Accepted date: 2014-11-29.Corresponding Author: Sun Yudong, Telephone: +86-532-86984702; E-mail: ydsun@.stability of the colloid system. Therefore, theoretically, the surfactant added into the residue can delay the ag-gregation and coke formation of asphaltene, promote the transformation of heavy oil to light oil, and play an im-portant role in inhibiting coke formation during residue hydrotreating. In addition, the additives are also able to disperse the formed soluble coke in residue and prevent coke from coagulation.The asphaltene structure could be changed during the residue hydrotreating process [5]. It is of significance to thoroughly understand the mechanisms and the role of ad-ditives in asphaltene hydrotreating reaction by research-ing the asphaltene structure before and after hydrotreating with or without addition of the additives. Moreover, the coke yield is directly related to the structural composition of asphaltene in residue hydrotreating. The influence of additives on residue hydrotreating process through re-searching the coke formation, the catalyst properties and the structure changes of asphaltene with or without using additives was mainly explored in this paper.Effect of Dodecylbenzene Sulfonic Acid Used asAdditive on Residue HydrotreatingSun Yudong; Yang Chaohe(College of Chemical Engineering, China University of Petroleum, Qingdao 266580)Abstract: The effect of additive—dodecylbenzene sulfonic acid (DBSA)—on residue hydrotreating was studied in the au-toclave. The results showed that the additive improved stabilization of the colloid system of residue, which could delay the aggregation and coke formation from asphaltenes on the catalyst, and make heavy components transformed into light oil. The residue conversion in the presence of this additive increased by 1.94%, and the yield of light oil increased by 1.53% when the reaction time was 90 min. The surface properties of the catalyst in the presence of this additive were better than that of the blank test within a very short time (30 min) and deteriorated rapidly after a longer reaction time due to higher conversion and coke deposition. Compared with the blank test, the case using the said additive had shown that the structure of hydrotreated asphaltene units was smaller and the condensation degrees were higher. The test results indicated that the additive could improve the hydrotreating reactivity of residue via permeation and depolymerization, the heavier components could be transformed into light oil more easily, and the light oil yield and residue conversion were higher for the case using the said additive in residue hydrotreating process.Key words: residue hydrotreating; dodecylbenzene sulfonic acid; product distribution; catalyst properties; asphaltenes structureProcess ResearchChina Petroleum Processing and Petrochemical Technology2015, V ol. 17, No. 1, pp 82-882 Experimental2.1 Feedstock and catalystThe feedstock was atmospheric residue derived from the Suizhong 36-1 crude (SZAR)[6]. The catalyst used in the experiments was FZC-41A, which was produced by the SINOPEC Fushun Petrochemical Research Institute. FZC-41A was a catalyst designed for hydrodecarbon-ation/hydrodenitrogenation reactions, with its properties shown in Table 1.Table 1 Properties of the FZC-41A catalystItem DataSurface area,m2/g245.3Pore volume,mL/g0.38 Average pore diameter,nm20.24 Supportγ-Al2O3Active components Mo, Ni, Co2.2 Analytical methods(1) Carbon, hydrogen, sulfur and nitrogen contents of as-phaltenes were determined by a V ario EL III C, N, H, S/O elemental analyzer.(2) The structural parameters of asphaltenes were cal-culated by the improved Brown-Ladner (B-L) method[7] according to the data of Proton Nuclear Magnetic Reso-nance (1H-NMR). 1H-NMR data were analyzed by the AV500 NMR spectrometer using CDCl3 as the solvent at a resonance frequency SF of 500.13 MHz, a sampling interval D1 of 2s, a sampling time AQ of 1.6 s and a 90o pulse power P1 of 13.50 μs.(3) The surface properties of catalyst before and after hy-drotreating were analyzed by the ASAP2020 micropore physisorption analyzer.2.3 Experimental procedureThe coke yield and the changes in catalyst properties and asphaltene structures were studied at different reaction times in an autoclave with or without using additive. With the reaction time equating to 0, 10, 20, 30, 45, 60, 90, 120 and 180 minutes, respectively, the hydrotreating reactions were investigated at a reaction temperature of 400 ℃, an initial hydrogen pressure of 8.0 MPa, and a catalyst to oil ratio of 1:10. The additive used in the reaction was DBSA at a dosage of 700 μg/g on the basis of our previous research[8]. It was impossible to obtain samples in the process of re-action because the residue hydrotreating reaction was car-ried out at high temperature and high pressure in a sealed autoclave. Thus, the experiments at each reaction time point were carried out independently and samples were collected at the end of each experiment. It was difficult to determine the precise starting time of the reaction due to the long heating-up procedure of the experiment. The time reached for the given reaction temperature was con-sidered to be the initial point, and was marked as 0 min which actually could commence the reaction. The reac-tion time of 0 min needed a further study.3 Results and Discussion3.1 Product distributionThe product distribution of residue hydrotreating reaction with or without using additive, respectively, is listed in Table 2. It can be seen from Table 2 that coke had already formed at the reaction time of 0 min. On one hand, the reac-tion had begun before reaching the reaction temperature during the heating process. On the other hand, the as-phaltenes could be partially adsorbed on the catalyst sur-face during the heating process, and they could hardly be desorbed during the catalyst extraction process due to the strong interaction between asphaltenes and catalyst. The coke yield increased with an increasing reaction time. Compared with the coke yield of blank tests, that set of tests using the additive initially (within 0.5 h) showed lower trends, and later showed higher trends. Additives were able to improve the stability of the resi-due’s colloid system by increasing the level of asphaltene solubility. They may also depolymerize macromolecules of asphaltenes to smaller molecules and preventing as-phaltenes from aggregating and forming coke too fast during residue hydrotreating. The prerequisite of residue hydrotreating was that the feedstock first diffused into the catalyst pores, and then was adsorbed on the hydrogena-tion centers of the catalyst to take part in the reaction. The aggregation of heavier components did not favor the diffusion of reactants into the catalyst pores, and it was also beneficial to form coke which could deposit on the catalyst, thereby decreasing the activity of the catalyst. Therefore, the light oil yield was increased to a certaindegree by the addition of additives in feedstock due to the fact that additives prevented asphaltenes from aggregating and caused heavier components to decompose to light oil. Light components obtaining hydrogen atoms from heavy components were continuously coupled with some heavy components that were transformed to light components, and the heavy components which had lost hydrogen atoms gradually became heavier and aggregated, which meant that the heavy components became heavier and increased in amount while light oil was increasing. Although the hydrogen-rich environment and the increased stability of system by using the additive may restrain coke formation to a certain extent, the light oil yield was increased to-gether with the inevitable increase in the yields of heavy components and coke deposits due to the fact that the re-action depth of all components was increased at the same time. This was the main reason why the yield of light oil and coke increased together in the presence of additives during residue hydrotreating. However, with the increase in the reaction time, the non-hydrocarbon additive was gradually hydrogenated and the effect of the additive be-came almost negligible, causing the reaction results with or without using additives to be similar.3.2 Analysis of catalyst propertiesThe catalyst is able to markedly influence the results of residue hydrotreating reaction. In the course of residue hydrotreating, the feedstock must diffuse into the catalyst pores and be adsorbed on the hydrogenation centers of the catalyst prior to taking part in the reaction. During this process, various factors may lead to catalyst deactiva-tion and affect hydotreating process. It was shown[9] that the deactivation of the residue hydrotreating catalysts was mainly caused by coke deposition. Coke can greatly re-duce catalyst activity by depositing on pore walls, block-ing pores and reducing the surface area of catalyst.The catalysts before and after hydrotreating reaction were analyzed by BET. The pore size distribution of selected catalysts in different states is shown in Figure 1. Changes in pore size, pore volume and surface area with and with-out the addition of additive were analyzed for comparison (see Table 3).It can be seen from Fig. 1 that large differences exist be-tween the pore size distribution of catalysts before and af-ter reaction. The pore sizes of fresh catalysts were mainly distributed between 8 nm and 2 nm, however, after hy-drotreating reaction the number of 8-nm pores decreased and that of 4-nm pores increased greatly. The differences between pore size distributions were quite small at the re-action times of 1 h and 3 h, which was applicable to both cases with or without addition of additives. This phe-nomenon was further verified through the conclusion that coking and deactivating of catalysts occurred at the initial reaction stage of the residue hydrotreating process [10-13]. The coke was formed on the catalyst surface at the initial reaction stage due to the strong adsorption of asphaltenesTable 2 Product distribution of residue hydrotreating with and without additiveReaction time, minResidueconversion1), %Product distribution, %Coke Gas<200℃200—350℃350—500℃>500℃None Withadditive NoneWithadditive NoneWithadditive NoneWithadditive e NoneWithadditive NoneWithadditive NoneWithadditive0 2.23 2.370.450.320.230.250.230.41 1.32 1.3968.1263.1529.6534.4810 2.96 3.210.530.450.360.410.420.59 1.65 1.7669.3363.1127.7133.6820 5.14 5.800.780.810.76 1.070.86 1.01 2.74 2.9167.3460.1527.5234.0530 6.118.250.910.85 1.09 1.78 1.05 2.37 3.06 3.2561.1761.6732.7230.08457.769.430.97 1.01 1.34 1.81 1.56 2.40 3.89 4.2160.3260.2331.9230.34 609.4711.17 1.11 1.13 1.64 2.07 1.78 2.37 4.95 5.6060.7560.7429.7728.09 9011.2613.20 1.33 1.42 1.72 2.04 2.54 2.61 5.677.1360.1361.2328.6125.57 12014.9616.50 1.47 1.52 1.88 2.03 3.65 3.647.969.3164.0364.5321.0118.97 18016.8717.51 1.61 1.63 2.44 2.46 3.56 3.419.2610.0164.2064.4118.9318.08 1) Residue conversion=coke yield + gas yield + <200 ℃ liquid yield + 200—350 ℃ liquid yield.on the catalyst. Meanwhile, it may be concluded that catalyst pore blocking was the main reason leading to catalytic activity loss after residue hydrotreating reaction. Pore structures showed clear changes at the reaction time of 0 min (see Table 3), and the surface area, pore volume and pore size decreased significantly at reaction times between 30 min and 60 min. Subsequently, the pore struc-tures showed no significant change with the increase of reaction time. The surface area, pore volume and pore size decreased rapidly with the deposition of heavy com-ponents (e.g. asphaltenes) and the formation of coke on the catalyst during residue hydrotreating. Even at the reac-tion time of 0 min, the pore structure changed remarkably due to the strong adsorption of heavy components on the catalyst during the heating process. When the hydrotreat-ing reaction continued to a certain extent, the coke on the catalysts reached a stable level [14-15]and the pore structure changed slightly.Compared to the blank test, the pore structure of the cata-lyst in the presence of additives performed slightly bet-ter within a short reaction time (0-30 min), and became worse with a longer reaction time. Therefore, the role ofFigure 1 Pore size distribution for different catalystsTable 3 Surface properties of catalyst before and after hydrotreating with and without addition of additive Reactiontime, minSurface area, m2/g Pore volume, mL/g Average pore size, nmNoneWithadditiveNoneWithadditiveNoneWithadditiveFresh catalyst245.370.3810.12 0130.23142.120.270.318.318.8130113.29111.210.230.277.317.6160111.32109.210.220.277.347.42120108.03105.620.210.217.327.35180103.14101.310.230.22 6.81 6.71 additive for the catalyst stabilization and coke inhibition only took effect at the initial stage of residue hydrotreat-ing. It is consistent with the above conclusion.3.3 The effect of additive on asphaltene structure Asphaltenes in the feedstock and hydrotreated residues were separated by the classic liquid chromatography. The obtained asphaltenes were measured by molecular weight determination, elemental analysis, 1H-NMR, and other means. The structural parameters of asphaltenes were calculated by the improved B-L method and the structures of asphaltene units were simulated by ChemOffice Ultra 2008 based on the analytical data obtained thereby.The following calculation and simulation results under the reaction conditions were discussed in an example reaction carried out at a temperature of 400 ℃, an initial hydrogen pressure of 8.0 MPa, a reaction time of 2 h, and a catalyst to oil ratio of 1:10.The structural parameters of asphaltenes in the feedstock and the hydrotreated residue with or without addition of additives are listed in Table 4. The schematic diagrams ofthe asphaltene units are shown in Figure 2.It can be seen from Table 4 and Figure 2 that there was a significant difference between the respective structures of asphaltenes before and after hydrotreating reaction. Com-pared with the feedstock, it was clear that the molecular weight and structure units of hydrotreated asphaltenes were smaller, but their condensation degree was slightly higher. This observation showed that asphaltene may be transformed into light components through cracking (e.g. chain breaking and naphthenic ring opening, and even unit removing). Furthermore, the condensed ring structureFigure 2 Schematic diagram of asphaltene unitsof asphaltenes may polymerize mutually during the pro-cess of residue hydrotreating. Chain breaking and polym-erization were both capable of increasing the condensa-tion degree of hydrotreated asphaltenes.The structure difference between asphaltenes hydrotreated with or without the addition of additive was miniscule. Hydrotreated asphaltene obtained with the addition of additive had slightly smaller structural units, and slightlyhigher ring numbers and condensation degree. The re-sults indicated that asphaltenes reduced the condensation degree through permeation and depolymerization by the action of additives in the feedstock. Permeation and depo-lymerization are capable of transforming large asphaltene micellae into smaller structural units and promoting the diffusion of asphaltenes into catalyst pores. Along these pathways, the conversion of asphaltenes (including crack-ing and condensing, especially removal of peripheral alkyl side chains and naphthenic rings) was more com-plete. So, the light oil yield and conversion rate of residue hydrotreating in the presence of additive were higher than those of the blank tests.A preliminary study on the effect of additive on residue hydrotreating process was carried out in this paper. The process was studied in an autoclave, and there were someTable 4 Structural parameters of asphaltenesItemFeedstock Blank testReaction with additive Asphaltene Unit Asphaltene Unit Asphaltene Unit Molecular weight M , g/mol 5 268.0 1 756.03 120.0 1 031.43 035.0937.2Number of unit (n )3.013.033.24Element composition (number of atoms)C 384.30128.10225.6074.58220.0967.97H 429.87143.29213.9070.81204.7663.23N5.43 1.81 4.64 1.48 4.47 1.39Ratio of hydrogen to carbon (H/C) 1.121.120.950.950.930.93Atomic type of hydrogen (number of atoms)H γ61.2020.4045.8015.1438.8111.98H β229.1876.3787.5128.9393.2428.79H α99.6333.2257.0618.8648.1414.87H A40.0113.3123.537.7824.577.59Atomic type of carbon f A 0.490.490.630.630.620.62f N 0.220.220.030.030.070.07f P0.290.290.340.340.300.30Total rings (R T )73.6124.4548.6216.0749.9515.42Aromatic rings (R A )43.4914.4546.0215.2144.5113.74Naphthenic rings (R N )27.129.00 2.600.86 5.44 1.68Substitution rate of the peripheral hydrogen of aro-matic structure (σ)0.550.550.520.520.500.50Parameter of aromatic structure condensation (H AU /C A )0.470.470.370.370.380.38Note: H A -hydrogen on aromatic ring; H α-hydrogen on α-carbon; H β-hydrogen on β–carbon; H γ-hydrogen on γ–carbon.differences in product distribution, reaction conditions and reaction state as compared to that of an industrial unit. More researches had to be done before the commer-cial application of this technology, which included the op-timization of additives, the effect of additive on product quality, the structure and the composition of coke to meet the requirements for the continuous reactor in a real resi-due hydrotreating process.4 ConclusionsThe research on the effect of dodecylbenzene sulfonic acid on residue hydrotreating reaction was carried out in this pa-per and the conclusions were summarized as follows:(1) The additive might improve the colloid stability of residue by changing the existing state of asphaltenes. Itwas also capable of delaying aggregation and coke forma-tion of heavy components in hydrotreating reaction, and transforming heavy components into light oil. The addi-tive could improve light oil yield in the process of residue hydrotreating.(2) The pore structure of the catalysts changed obviously within a short reaction time during the reaction of residue hydrotreating. The surface area, pore volume and pore size of the catalyst were reduced evidently. The surface properties dropped to low levels at reaction times ranging between 30 min and 60 min, and then remained relatively stable in the long period. Compared with a series of blank tests, the surface properties of the catalysts in the pres-ence of the additive were slightly better in shorter reaction time (0—30 min), but became a little worse in a longer reaction time.(3) There was a significant difference in asphaltene struc-ture before and after hydrotreating. The hydrotreated asphaltene units were smaller than those of protogenous asphaltene, and the hydrotreated asphaltene formed in the reaction with addition of additive showed slightly smaller units and slightly higher condensation degree than those obtained in blank tests. The macromolecules can be easily transformed into light components under the action of additive. In the presence of additive, the light oil yield and residue conversion were higher as compared to the case of residue hydrotreating without addition of additive.Acknowledgment: Thanks to the financial support provided by the National Natural Science Foundation of China (Grant No. 21376266), the PetroChina Innovation Foundation (Grant No. 2011D-5006-0405) and the Fundamental Research Funds for the Central Universities (Grant No. 27R1104049A).References[1] Gawel I, Bociarska D, Biskupski P. Effect of asphaltenes onhydroprocessing of heavy oils and residua[J]. Applied Ca-talysis A: General, 2005, 295: 89-94[2] Ancheyta J, Centeno G, Trejo F, et al. Changes in asphal-tene properties during hydrotreating of heavy crudes[J].Energy & Fuels, 2003, 17:1233-1238[3] Li Dadong. Processes & Engineering of Hydrotreating[M].Beijing: China Petrochemical Press, 2004: 1133-1175 (in Chinese)[4] Xu C M, Yang C H. Petroleum Refining Engineering[M].4th Ed. Beijing: Petroleum Industry Press, 2009: 275 [5] Sun Y D, Yang C H, Shan H H, et al. Structure changes ofasphaltene in residue hydrotreating[J]. Journal of Petro-chemical Universities, 2010, 23(4): 5-9 (in Chinese) [6] Sun Yudong, Zhang Qiang, Shan Honghong, et al. Effectsof ultrasonic treatment on residue properties[J]. China Pe-troleum Processing and Petrochemical Technology, 2013, 15(4): 14-19[7] Chen Xiaobo, Li Teng, Liu Yibin, et al. Characterization ofnitrogen compounds in vacuum residue and their structure comparison with coker gas oil[J]. China Petroleum Process-ing and Petrochemical Technology, 2014, 16(3): 33-41 [8] Zhu K. Study on the Effect and Mechanism of Additives inResidue Hydroprocessing[D]. Qingdao: China University of Petroleum, 2011: 22-41 (in Chinese)[9] Seki Hi, Yoshimoto M. Deactivation of HDS catalyst intwo-stage RDS process. II. Effect of crude oil and deactiva-tion mechanism[J]. Fuel Processing Technology, 2001, 69: 229-238[10] Callejas M A, Martinez M T, Blasco T, et al. Coke charac-terisation in aged residue hydrotreating catalysts by solid-state 13C-NMR spectroscopy and temperature-programmed oxidation[J]. Appl Catal A, 2001, 218(1-2): 181-188 [11] Fonseca A, Zeuthen P, Nagy J B. Assignment of an averagechemical structure to catalyst carbon deposits on the basis of quantitative 13C-NMR spectra[J]. Fuel, 1996, 75(12): 1413-1423[12] Matsushita K, Hauser A, Marafi A, et al. Initial coke depo-sition on hydrotreating catalysts. Part 1: Changes in coke properties as a function of time on stream[J]. Fuel, 2004, 83(7/8): 1031-1038[13] Marafi M, Stanislaus A. Effect of initial coking on hy-drotreating catalyst functionalities and properties[J]. Appl Catal A, 1997, 159(1/2): 259-267[14] Kam E K T, Al-Shimali M, Juraidan M, et al. A hydropro-cessing multicatalyst deactivation and reactor performance model-pilot-plant life test applications[J]. Energy & Fuels, 2005, 19(3): 753-764[15] Marafi A, Hauser H, Stanislaus A. Deactivation patternsof Mo/Al2O3, Ni-Mo/Al2O3 and Ni-MoP/Al2O3 catalyst in atmospheric hydrodesulphurization[J]. Catal Today, 2007, 125(3/4): 192-202。

相关文档
最新文档