β-Catenin and NF-κB co-activation facilitates stem cell-like phenotypes in breast cancer
免疫反应在创面修复中的作用研究进展
免疫反应在创面修复中的作用研究进展葛斌;舒清峰;唐乾利【摘要】免疫反应在创面修复中具有双重作用,既可促进创面的再生修复,又会延迟创面的愈合.如创面修复的炎症反应期可见大量中性粒细胞、巨噬细胞、T淋巴细胞等聚集于创面,参与并启动机体局部和全身的免疫防御,诱导产生大量细胞生长因子,促进创面的再生愈合;创面持续的免疫反应又可诱发局部组织损伤,导致创面延迟愈合.遂本文对免疫反应在创面修复领域的研究进展进行了综述,旨在为创面修复的临床和基础研究提供思路与线索.【期刊名称】《中国烧伤创疡杂志》【年(卷),期】2018(030)003【总页数】4页(P153-156)【关键词】免疫反应;创面;修复;炎症反应;综述【作者】葛斌;舒清峰;唐乾利【作者单位】533000 广西百色,右江民族医学院/桂西高发病防治重点实验室;533000 广西百色,右江民族医学院/桂西高发病防治重点实验室;533000 广西百色,右江民族医学院/桂西高发病防治重点实验室【正文语种】中文创面修复是指局部组织通过再生、修复、重建修补组织缺损的一系列病理生理过程,其本质是机体对各种有害因素所致的组织细胞损伤的固有防御性适应性反应,大致可分为炎症反应期、肉芽组织形成期及组织重塑期三个阶段。
研究证实,免疫细胞在创面修复过程中发挥着启动和调控作用,遂笔者于本文中将免疫反应在创面修复中的作用研究进展进行了综述,以期为创面修复的临床和基础研究带来新的突破口。
1 创面修复与炎症反应炎症反应是创面修复的始动环节,创面形成后,暴露的胶原纤维吸引血小板聚集形成血凝块,抑制创面出血,继而淋巴细胞、巨噬细胞、中性粒细胞等按一定时相规律趋化至创面局部,参与并启动机体局部和全身的免疫防御,促进创面的细胞再生和组织重建[1],其中中性粒细胞、巨噬细胞及T淋巴细胞的作用举足轻重[2]。
1.1 中性粒细胞在创面修复中的作用中性粒细胞在创面修复过程中发挥着重要作用。
部分研究显示,中性粒细胞可通过脂质白三烯B4介导的细胞间信号转导协调其在创面组织中的聚集,为创面的修复创建基础[3];中性粒细胞、单核细胞、T淋巴细胞及抗菌肽(AMP)可相互作用,促进细胞生长因子的释放以及中和脂多糖(LPS),从而促进创面愈合,抑制创面细菌感染[4];中性粒细胞可通过CCN-1细胞因子调节创面的再生修复[5]。
发育生物学1—7章 课后习题答案
《发育生物学》课后习题答案绪论1、发育生物学的定义,研究对象和研究任务?答:定义:是应用现代生物学的技术研究生物发育机制的科学。
研究对象:主要研究多细胞生物体从生殖细胞的发生、受精、胚胎发育、生长到衰老死亡,即生物个体发育中生命现象发展的机制。
同时还研究生物种群系统发生的机制。
2、多细胞个体发育的两大功能?答:1.产生细胞多样性并使各种细胞在本世代有机体中有严格的时空特异性;2.保证世代交替和生命的连续。
3、书中所讲爪蟾个体发育中的一系列概念?答:受精:精子和卵子融合的过程称为受精。
卵裂:受精后受精卵立即开始一系列迅速的有丝分裂,分裂成许多小细胞即分裂球,这个过程称为卵裂。
囊胚:卵裂后期,由分裂球聚集构成的圆球形囊泡状胚胎称为囊胚。
图式形成:胚胎细胞形成不同组织,器官和构成有序空间结构的过程胚轴:指从胚胎前端到后端之间的前后轴和背侧到腹侧之间的背腹轴4、模式生物的共性特征?答:a.其生理特征能够代表生物界的某一大类群;b.容易获得并易于在实验室内饲养繁殖;c.容易进行试验操作,特别是遗传学分析。
5、所讲每种发育生物学模式生物的特点,优势及其应用?答:a.两粞类——非洲爪蟾取卵方便,可常年取卵,卵母细胞体积大、数量多,易于显微操作。
应用:最早使用的模式生物,卵子和胚胎对早期发育生物学的发展有举足轻重的作用。
b.鱼类——斑马鱼受精卵较大,发育前期无色素表达,性成熟周期短、遗传背景清楚。
优势:a,世代周期短;b,胚胎透明,易于观察。
应用:大规模遗传突变筛选。
c.鸟类——鸡胚胎发育过程与哺乳动物更加接近,且鸡胚在体外发育相对于哺乳动物更容易进行试验研究。
应用:研究肢、体节等器官发育机制。
d.哺乳动物——小鼠特点及优势:繁殖快、饲养管理费用低,胚胎发育过程与人接近,遗传学背景较清楚。
应用:作为很多人类疾病的动物模型。
e.无脊椎动物果蝇:繁殖迅速,染色体巨大且易于进行基因定位。
酵母:单细胞动物,容易控制其生长,能方便的控制单倍体和二倍体间的相互转换,与哺乳动物编码蛋白的基因有高度同源性。
大肠癌中βcatenin和Ecadherin的表达及其临床意义
大肠癌中β-catenin和E-cadherin的表达及其临床意义作者:戴文斌,任占平,陈蔚麟,杜娟,石吉吉,唐德艳【摘要】目的探讨β-catenin和E-cadherin在大肠癌发生、发展中的作用。
方法应用免疫组织化学方法检测30例正常大肠粘膜、30例大肠腺瘤、10例大肠腺瘤恶变及50例大肠癌组织中β-catenin 和E-cadherin蛋白的表达情况。
结果大肠癌、大肠腺瘤恶变和大肠腺瘤β-catenin胞浆和(或)胞核异位表达率显著高于正常大肠粘膜(P均<0.01),大肠癌β-catenin异位表达率显著高于大肠腺瘤(P<0.01)。
大肠癌中β-catenin、E-cadherin膜表达缺失率显著高于大肠腺瘤和正常大肠粘膜(P均<0.01),且与大肠癌组织分化程度、浸润深度、淋巴结转移、Dukes分期有关。
结论β-catenin 异位表达与大肠癌的发生有关,是大肠癌发生的早期事件;β-catenin、E-cadherin膜表达缺失与大肠癌的侵袭、转移有关。
【关键词】大肠;肿瘤;β-连接素;E-钙粘素;免疫组织化学Abstract:Objective To investigate the roles of beta-catenin and E-cadherin play in the carcinogenesis and progression of colorectal carcinoma. Methods The expression and beta-catenin and E-cadherin proteins were detected by immunohistochemistry in 30 cases of normal colorectal mucosa,30 cases of colorectal adenoma,10 cases of malignant colorectal adenoma and 50 cases of colorectal carcinoma tissues. Results The ectopic expression rates of beta-catenin and E-cadherin proteins in cell nucleus and cytoplasm of colorectal carcinoma,malignant colorectal adenoma and colorectal adenoma were all significantly higher than that of normal colorectal mucosa (P<0.01).The ectopic expression rate of beta-catenin in colorectal carcinoma was higher than the colorectal adenoma (P<0.01).Compared to colorectal adenoma and normal mucosa,loss of membranous beta-catenin,E-cadherin expression rate in colorectal carcinoma were higher,there was statistically significant difference (P<0.01),and the reduced membranous beta-catenin and E-cadherin expression were closely related with the differentiation degree,the invasive depth,the metastasis and Dukes stage in colorectal carcinoma tissues. Conclusion The cytoplasmic and nuclear beta-catenin expression may play a pivotal role in carcinogenesis and progression ofcolorectal carcinoma.Loss of membranous beta-catenin and E-cadherin expression may be related to the invasion and metastasis of colorectal carcinoma.Key words: large intestine;neoplasms;beta-catenin;E-cadherins;immunohistochemistry近年来,分子生物学研究发现Wnt信号传导通路成员各癌基因、抑癌基因的异常及细胞粘附分子异常与大肠癌的发生、发展密切相关[1]。
脊椎动物胚轴形成
Chordin mRNA在组织者区的定位
A: 原肠作用开始前位于背唇; B: 随着原肠作用开始,位于背唇; C:原肠作用后期,位于组织者。
组织者区蛋白质因子的相互作用。
3. 组织者第二类扩散性蛋白:WNT抑制因子
n 咽部的内胚层和头部中胚层形成的中内胚 层组织构成胚孔背唇的前缘。这些细胞不 仅能诱导最前端的头部结构,而且还能够 阻滞WNT信号途径以及BMP4。
课本p70 图
1. 组织者
在早期胚胎发育中的重要功能: n 组织者能够启动原肠作用; n 组织者细胞有能力发育成背部中胚层包括索前
板,脊索中胚层等; n 组织者能够诱导外胚层背部化形成神经板,并
使后者发育为神经管。 n 组织者能够诱导其周围的中胚层背部化,分化
为侧板中胚层,而不是腹侧中胚层。
n 爪蟾和其他脊椎动物胚胎前-后轴的形成在 背-腹轴形成之后,胚胎的背部一旦建立随 即开始中胚层细胞的内卷运动,并建立前后轴。
织的不同机制
Figure 10.37. Hypothetical pathways differentiating ectoderm into epidermis or neural ectoderm. In the presence of BMP signaling, epidermalizing transcription factors are generated, leading to the activation of the pathway enabling the cell to become an epidermal keratinocyte. In the absence of BMP signaling, neuralizing transcription factors are produced. These factors activate the gene for neurogenin. Neurogenin acts as a transcription factor to activate the NeuroD gene, and NeuroD acts as a transcription factor to cause the differentiation of the cell into a neuron.
发育复习题 老师给的重点
5. 经典Wnt信号通路及在发育中的作用Wnt是一类分泌型糖蛋白,通过自分泌或旁分泌发挥作用。
该途径参与了脊椎动物胚胎体轴的建立与分化、果蝇的分节等发育过程。
Wnt的主要受体是Frizzled(Fz)家族受体,属于7次跨膜蛋白,在结构上与G-蛋白偶联受体类似。
Wnt/β-catenin信号的活化还需要另一个Wnt辅助受体LRP5/6 (果蝇中的同源蛋白称为Arrow)。
β-catenin (果蝇中称为Armadillo)是经典wnt信号通路中的效应因子。
β-catenin具有两种功能:一方面它可与钙黏蛋白及肌动蛋白结合,从而将细胞粘连复合体与细胞骨架相连,对于细胞粘连具有重要作用;另一方面,存在于细胞之中的可溶性β-catenin参与了Wnt信号的传导。
在Wnt信号未激活,β-catenin与多种蛋白形成一个复合体并被GSK3磷酸化,然后通过泛素-蛋白酶体途径被迅速降解。
GSK-3β:是一种蛋白激酶(糖原合成激酶-3β),能将磷酸基团加到β-catenin氨基端的丝氨酸/苏氨酸残基上。
当Wnt配体与Fz/LRP6结合时.会诱导Axin与LRP6膜内部分结合,使得原蛋白复合体解聚。
同时fz可通过Dsh 抑制GSK3的活性。
β-catenin不能再被降解而在细胞质内积累,并进入细胞核内,与T-细胞因子(T cell factor,TCF)家族的转录因子一起激活靶基因(如xnr3、,siamois)的转录。
Wnt信号途径可概括为:Wnt→Frz→Dsh→β-catenin的降解复合体解散→β-catenin积累,进入细胞核→TCF/LEF→基因转录(如xnr3、,siamois )。
6. TGFβ信号通路及在发育中的作用。
转化生长因子β是一类分泌性的信号分子超家族,包括30多个成员,可分为TGFβ、BMP(骨形态发生蛋白)、Activin 等亚类。
TGFβ类分子以前体形式合成,需要经过加工才能成为有活性的成熟形式,其成熟单体之间通过二硫键形成二聚体。
WNT/β-catenin信号通路与miRNA在原发性肺癌中的研究进展
癌症是目前危害人类健康的主要问题之一,而肺癌就是其中最具威胁性的一类。
虽然对肺癌的诊疗方法在不断发展,但肺癌患者的生存状况并未得到显著的改善。
已有研究发现,WNT 信号通路在原发性肺癌的增殖、分化、转移及肿瘤干细胞自我更新等方面起着重要的调控作 用[1-2]。
当WNT 信号通路功能异常,失去对肿瘤抑制基因的正常调控是多种肿瘤的始发因素 之一[1]。
《中国癌症杂志》2017年第27卷第2期 CHINA ONCOLOGY 2017 Vol.27 No.2151WNT/β-catenin信号通路与miRNA在原发性肺癌中的研究进展陆周一1,陈晓峰21.同济大学附属上海市肺科医院胸外科,上海 200092;2.复旦大学附属华山医院胸心外科,上海 200040 [摘要] WNT/β-catenin信号通路在细胞增殖、分化和器官发育中起着重要作用。
WNT/β-catenin信号通路的异常活化及与该信号通路相关的miRNA异常调节与原发性肺癌的发生、发展有着密切联系。
因此深入研究肺癌中WNT/β-catenin信号通路的调控机制,阐明miRNA与该通路成分间的相互作用可能为发现新的肺癌药物治疗靶点提供思路。
本文就原发性肺癌中的WNT/β-catenin信号通路和miRNA及以两者为靶点的肺癌治疗研究进行综述。
[关键词] 肺癌;WNT/β-catenin信号通路;miRNA DOI: 10.19401/ki.1007-3639.2017.02.012 中图分类号:R734.2 文献标志码:A 文章编号:1007-3639(2017)02-0151-05Research progress on WNT/β-catenin signaling pathway and miRNA in primary lung cancer LU Zhouyi 1, CHEN Xiaofeng 2 (1. Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai 200092, China; 2. Department of Cardio-thoracic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China)Correspondence to: CHEN Xiaofeng E-mail: cxf3166@ [Abstract ] The WNT/β-catenin signaling pathway plays a critical role in cellular proliferation, differentiation and organogenesis. Aberration activation of WNT/β-catenin pathway and dysregulation of miRNA related with this pathway are involved in oncogenesis and tumor progression in primary lung cancer. Understanding the mechanism of the WNT/β-catenin signaling pathway and illuminating the interaction between miRNA and the members of this pathway may improve the perspectives of using these molecules as potential therapeutic targets for primary lung cancer. This review focused on the participation of the WNT/β-catenin signaling pathway and miRNA in lung cancer and discussion of potential targets for this malignancy therapy in the future. [Key words ] Lung cancer; WNT/β-catenin signaling pathway; miRNA通信作者:陈晓峰 E-mail: cxf3166@ miRNA 是生物体内广泛存在并行使调控功能的一类非编码RNA ,它的异常表达被认为与肿瘤的发生、发展有着密切的联系。
干细胞标志物SOX-2、β-catenin 表达与胃癌术后复发转移关系
干细胞标志物SOX-2、β-catenin 表达与胃癌术后复发转移关系张燕平;罗素霞;李宁;邓文英;韩黎丽;田沛琦;许勇飞;杨姣;申威;魏辰【摘要】Background and purpose:The recurrence and metastasis of gastric cancer seriously affect survival in patients.SOX gene as a regulatory factor of the classical Wnt pathway, may play an important role in the process. This study was to explore the expression of stem cell marker SOX-2 and β-catenin in gastric cancer and to analyze the relationship with recurrence and metastasis after operation.Methods:Immunohistochemistry was used to detect the expression of SOX-2 and β-catenin in 71 tumor samples from 71 cases after surgery for gastric cancer. The correlation between SOX-2 and β-catenin expression and the clinicopathological characteristics of gastric cancer and disease-free survival was analyzed.Results:The SOX-2 protein expression was associated with metastasis, lymph node inifltration or differentiation (P=0.011,P=0.036,P=0.034) in the 71 gastric cancer, but not with gender, age or T stage. β-catenin expression was correlated with metastasis, lymph node invasion or T stage (P=0.025,P=0.014,P=0.026), but was not related to differentiation, gender or age. The survival analysis showed that SOX-2 and β-catenin expression was closely associated with prognosis of patients, and metastatic rate in positive expression was higher than that in negative expression.Conclusion:The expression of SOX-2 and β-catenin is associated with the development, recurrence, metastasis of gastric cancer and may be used as a useful prognostic parameter topredict overall survival.%背景与目的:胃癌术后复发转移严重影响患者生存情况,SOX基因是经典Wnt信号通路的调控因子,其在胃癌术后复发及转移过程中可能发挥重要作用。
胚胎诱导
组织者:能够诱导外胚层形成神经系统,并能和 其他组织一起调整成为中轴器官的胚孔背唇部分。
二、初级胚胎诱导各阶段细胞间相互作用
初级胚胎诱导=神经诱导(neural induction)?
初级诱导的三个阶段(爪蟾为例)
(一)中胚层的形成和分区(卵裂期)
(二)神经诱导--脊索诱导背部外胚层形成神经外胚 层并进一步分化
(三)中枢神经系统的区域化
Figure 10.20. Organization of a secondary axis by dorsal blastopore lip tissue. (A) Dorsal lip tissue from an early gastrula is transplanted into another early gastrula in the region that normally becomes ventral epidermis. (B) The donor tissue invaginates and forms a second archenteron, and then a second embryonic axis. Both donor and host tissues are seen in the new neural tube, notochord, and somites. (C) Eventually, a second embryo forms that is joined to the host. (D) Structure of the dorsal blastopore lip region in an early Xenopus gastrula. (A-C after Hamburger 1988; D after Winklbauer and Schürfeld 1999 and Arendt and Nü blerJung 1999.)
DANCR在人胚胎干细胞向内胚层分化中的调控功能
第 45卷第1期2024 年1月Vol.45 No.1January 2024中山大学学报(医学科学版)JOURNAL OF SUN YAT⁃SEN UNIVERSITY(MEDICAL SCIENCES)DANCR在人胚胎干细胞向内胚层分化中的调控功能邓家成,彭丽妹,石颖鹏,钟小敏(中山大学中山医学院干细胞与组织工程研究中心,广东广州 510080)摘要:【目的】 探讨DANCR在人胚胎干细胞(hESC)向内胚层(DE)分化中的作用。
【方法】 建立体外诱导hESC向DE分化的体系,检测DANCR的表达水平与DE分化的相关性;利用慢病毒体系敲低hESC的DANCR表达水平,将敲低DANCR的hESC进行DE分化;用qPCR和Western blot方法检测DE分子标志物SOX17和FOXA2,以及原条分子标志物Brachyury (T),EOMES,MIXL1和GSC的表达水平;用Dual luciferase reporter assay和qPCR证明在DE分化过程中DANCR与WNT通路的相互作用。
【结果】 体外诱导hESC向DE分化的体系能够有效模拟体内DE分化,DANCR的表达水平随DE分化进程逐渐下降。
建立敲低DANCR的hESC细胞株,DANCR表达水平相比对照组显著降低(P < 0.001)。
干扰DANCR表达使分化早期的原条分子标志物Brachyury (T),EOMES,MIXL1和GSC,以及分化后期的DE分子标志物 SOX17和FOXA2 的mRNA表达水平相比对照组显著降低(全部P < 0.05)。
并且,在DE分化过程中,敲低DANCR组的WNT通路的转录活性相比对照组显著降低(P < 0.05),表现为WNT通路下游基因FZD5,FZD8,SFRP1,FRZB和ANKRD6 mRNA表达水平明显减少(P < 0.05)。
然而,敲低DANCR对TGFβ通路的SMAD2/3和p-SMAD2 蛋白表达水平没有显著影响(P > 0.05)。
2013医教研表彰
课
题
名
称
科室 风湿免疫科 风湿免疫科 妇产科 骨 科
课题 负责人 侯传云 王 涛
奖励 金额(元) 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500
RNA干扰沉默血凝素样氧化低密度脂蛋白受体 -1基因及骨桥蛋白基因对类风湿关节炎的作用 研究 TLR/MyD88/IRF7信号途径调控pDC分泌IFNα在SLE发病中的作用 Wnt/β-catenin信号途径对小鼠子宫内膜干细胞损伤修复的调控 髋关节旋转中心重建定位方法的基础和临床研究 DJ-1蛋白对败血症的调节作用及其机制研究 家族性正常血钾型周期性麻痹的致病基因筛选及其功能研究 ECM-受体相互作用通路在垂体GH 腺瘤中的作用及其机制研究 MUC1胞质尾区磷酸化经由PI3K通路致胃癌细胞曲妥珠单抗耐药的机制研究 线粒体乙醛脱氢酶 2对 Wnt/β-catenin和 Notch信号通路的调控在糖尿病大鼠心肌损伤中的作 用及机制研究 UPR信号通路激活联合自噬体形成对紫绀型先心病心肌慢性缺氧适应调控机制的研究 基于药代动力学方法及LC-MS/MS技术研究肝脏P450酶调控异甘草酸镁解毒的分子机制 NF-κB对细胞缝隙连接的调控作用及其机理研究 miR-21调控TGF-β通道在增生性瘢痕形成中的作用机制 内皮祖细胞携带KiSS-1基因对鼻咽癌作用的实验研究 索拉非尼通过调节肝癌细胞缝隙连接功能增强多柔比星抗肿瘤活性研究 调控MDM2增加奥沙利铂在肝细胞癌中化疗敏感性的机制研究 基于肿瘤干细胞理论探讨蟾酥作用于胆囊癌的细胞生物学机制 合计
泌尿外科
30000
药剂科 药剂科
20000 10000
脉冲式动静脉气压治疗仪
Wnt/β—catenin调控骨形成分子机制的研究进展
Wnt/β—catenin调控骨形成分子机制的研究进展OP的病理机制主要与成骨分化能力减弱、成脂分化能力增强,骨组织微循环血供减少有关[1-2]。
BMSCs(Bone mesenchymal stem cells,BMSCs)是成骨细胞的起源。
在老龄OP患者中,BMSCs的含量不仅显著减少,分化能力明显减弱,且增殖缓慢,移植过程病毒感染风险大,免疫原性与成本也较高。
人脐血间充质干细胞(Human umbilical cord blood mesenchymal stem cells,hUCB-MSCs)在体外诱导条件下具有向成骨细胞定向分化的巨大潜能[3],来源更丰富,临床取材方便,分离纯度更高,具有强大的增殖与自我更新能力,免疫原性较低,能耐受更大程度的HLA配型不符,蕴藏着比BMSCs更加优越的临床应用价值[4]。
因此,通过持续激活Wnt/β-catenin信号通路,启动与增强hUCB-MSCs的自身成骨分化能力,为临床OP的干细胞治疗提供新的策略。
1 Wnt/β-catenin调控骨形成的分子机制Wnt/β-catenin信号通路对成骨分化的调控主要表现在控制MSCs的分化方向和早期分化潜能。
Wnt蛋白和卷曲蛋白FZD(Frizzled)以及低密度脂蛋白受体LRPs(LDL-rececptor related proteins)结合激发了细胞内信号转导,使GSK-3β磷酸化而失活,从而维持β-catenin的稳定。
稳定的β-catenin在细胞质内聚集,转移到细胞核内,后与转录因子TCF/LEF结合,启动细胞靶基因Runx-2、DKx-5,Osterix等的转录,调控MSCs的生长(图1示)。
Wnt/β-catenin的激活不仅可促进MSCs向成骨细胞分化,通过上调成骨相关基因直接促进骨形成,而且可通过抑制成脂关键因子PPARγ-2等的表达来调控前体细胞定向成骨分化。
图11.1激活Wnt/β-catenin信号通路调控MSCs成骨分化Wnt/β-catenin信号通路通过调控BMSCs的分化方向和早期分化潜能来调节成骨分化能力[5]。
WNT/β-catenin 信号通路在皮肤衰老中作用的研究进展
WNT/β-catenin 信号通路在皮肤衰老中作用的研究进展熊正国;彭慧巧;张长城;顿耀艳【摘要】随着人口老龄化速度日趋加快,衰老研究已然成为生命科学领域的热门课题,皮肤衰老是机体衰老最直接的外在表现,但是皮肤衰老的机制尚未阐明。
大量研究资料显示皮肤衰老与基因组不稳定、表观遗传异常等多种因素密切相关,后者是由关键细胞信号通路改变引起的。
最近发现,WNT/β-catenin信号通路相关蛋白在衰老皮肤中表达异常,其在皮肤衰老中发挥重要作用。
【期刊名称】《山东医药》【年(卷),期】2016(056)029【总页数】3页(P105-107)【关键词】皮肤衰老;WNT/β-catenin信号通路;基因【作者】熊正国;彭慧巧;张长城;顿耀艳【作者单位】三峡大学医学院,湖北宜昌443002;三峡大学科技学院;三峡大学医学院,湖北宜昌443002;三峡大学医学院,湖北宜昌443002【正文语种】中文【中图分类】R714.14由于社会经济的发展和生活条件的改善,人口老龄化趋势越来越明显。
皮肤是机体最外在的器官,皮肤衰老能反映机体的健康状况、衰老状态。
皮肤衰老是渐进的过程,是多因素综合的病理生理结果。
新近研究发现,信号传导通路改变在皮肤衰老过程中发挥着关键作用。
WNT/β-catenin信号通路变化是人体衰老的重要因素,可通过调节基因组稳定性、干细胞的功能等途径诱导机体衰老。
本文就WNT/β-catenin信号通路与皮肤衰老关系的研究进展作以下综述。
WNTs是一类广泛存在的分泌型糖蛋白。
无WNT信号时,胞质中的β-catenin和多种蛋白,如酪蛋白激酶(CK)1a、糖原合成激酶(GSK)-3β等形成多蛋白复合物。
GSK-3β对β-catenin进行磷酸化后,CK1磷酸化β-catenin,继而启动了泛素化依赖的蛋白降解过程,将β-catenin降解。
WNT蛋白与跨膜受体卷曲蛋白及共受体LRP5/6结合激活WNT通路后,抑制胞质中β-catenin多蛋白复合物的形成,降低GSK-3β的活性,抑制β-catenin磷酸化,从而稳定β-catenin。
激活树突状细胞β—catenin能调控肠道免疫耐受
[2 张桂梅 , 1] 冯作化 , 郝天玲 , 大蒜素对 T细胞激活 的影 等. 响[ ] 中药药理与临床 ,19 ,1 1 :6— 7 J. 9 5 1 ( )2 2 .
I L一 1 n u e I N — g mma p o u t n b u n N 2 id c F a r d c i y h ma K o
td p o tt a c r a d p l n r tsa i mu t l i e rsae c n e n u mo ay me a tss l pi t i cy
[0 张 1]
燕, 沈成义. 大蒜 素抗肝癌的免疫机制研究[ ] 中 J.
i T AM ieJ .C ne e , 0 86 (2 :5 3— n R Pm c[ ] acr s 20 ,8 2 ) 90 R
95ቤተ መጻሕፍቲ ባይዱ . 1
国病理生理杂志 ,09 2 2 :9 3 5 20 , 5( ) 32— 9 .
[ 1 B tM , ut T, u S e a G l : a r po 1 ] ut S Sl nM B tM , t . a i n t e r- a t rc 1 u
t tnaa s p yioi lt et J .Ci R vFo ei gi t h s l c h a co n o g a r s[ ] r e od t
s p rs in o c b c ei m u ru o i 8 B mR n u p e s f my o a tr o u t b c lss 5 NA i e Sn h S P w ly AA, tn S e 1 G r c c n t u n i g V, o on S a D, ta . a l o si e t i t
抑制Wntβ-catenin信号和NOX4表达阻碍二氧化硅诱导肺上皮细胞损伤的修复
132细胞与分子免疫学杂志(Chin J Cell M ol Immunol)2021 , 37(2)•论著.文章编号:1007-8738(2021 )02七13248抑制Wnt/p-catenin信号和NOX4表达阻碍二氧化硅诱导肺上皮细胞损 伤的修复马佳li2,杨丹丹u2,杨佳丽“2,刘晓明K2!k,蔡倩r宁夏大学生命科学学院,2西部特色生物资源保护与利用教育部 重点实验室,宁夏银川750021; 3宁夏医科大学公共卫生学院环境因素与慢性病控制重点实验室,宁夏银川750004)[摘要]目的探究Wnt/p联蛋白(p-catenin)信号和还原型烟酰胺腺嘌呤二核苷酸磷酸氧化酶4 (N0X4)相互作用对二氧化 硅(Si02)诱导的肺脏上皮细胞增殖的影响。
方法采用二氧化硅气道滴灌C57BIV6小鼠制备小鼠矽肺模型,免疫组织化学染 色法检测矽肺模型小鼠肺组织N0X4的表达;二氧化硅刺激BEAS-2B人肺上皮细胞制备上皮细胞氧化损伤细胞模型,W m信号 活化的条件培养基(Wnt3a-CM)及W m信号抑制剂XAV939改变W n t信号活性,表达N0X4短发夹RNA(N0X4 shRNA)的腺病 毒感染人肺上皮细胞敲低细胞N0X4水平。
Western b lo t法检测肺组织和人肺上皮细胞Wnt3a、活化p联蛋白(ABC)、转录因子 4(TCF4)、N0X4和细胞周期蛋白D l(C ydin D1)的蛋白表达;CCK-8法检测不同剂量二氧化硅刺激人肺上皮细胞24 h和48 h 对细胞存活率及敲低N0X4的表达对细胞增殖的影响;CellROX®荧光探针负载法检测二氧化硅作用下人肺上皮细胞活性氧 (R0S)的水平。
结果成功制备小鼠矽肺模型和氧化损伤细胞模型。
二氧化硅刺激肺脏上皮细胞可显著激活Wnt/p-catenin信 号和诱导N0X4表达,使R0S大量释放,而R0S清除剂N-乙酰-L-半胱氨酸(NAC)与二氧化硅共同作用可抑制R0S的释放,进 而抑制Wnt/p-catenin信号A B C蛋白表达;Wnt3a-C M诱导的W n t信号激活可上调N0X4的表达;反之,W n t信号抑制剂 XAV939则抑制N0X4的表达;而敲低NOX4表达后,可显著抑制Wnt/p-catenin信号A BC蛋白和c y c lin D l的表达,抑制细胞增 殖。
G-17在消化道恶性肿瘤中的研究进展
G-17在消化道恶性肿瘤中的研究进展[摘要]消化道恶性肿瘤是全球主要的恶性肿瘤类型,其发病率和转移率较高,但5年生存率较低,因此早期诊断就尤为重要,胃泌素是一种肽类激素,胃泌素以胃泌素-17(gastrin -17 G-17)为主,国内外较多研究表明,G-17升高与消化道肿瘤患病率呈正相关,并且可促进胃肠道肿瘤的转移。
本综述主要讨论G-17对消化道恶性肿瘤的影响,尝试用G-17作为肿瘤标志物,早期诊断消化道恶性肿瘤,展望G-17抑制靶点可作为新的肿瘤靶点治疗消化道恶性肿瘤。
[关键词]胃泌素-17;食管癌;胃癌;结直肠癌前言消化道恶性肿瘤严重威胁人类身体健康,因此早期诊断尤为重要,对于胃镜侵入性检查,选取有意义的消化道肿瘤标志物做无侵入的检查患者更易接受。
有研究表明,胃泌素在体内多种细胞中表达和分泌,其中包括小肠和大肠(十二指肠、空肠、回肠和结肠粘膜)、胰腺、神经内分泌组织(垂体和下丘脑、小脑、迷走神经和肾上腺髓质)、生殖器和呼吸道,在这些细胞中,胃泌素发挥多种作用[1],在正常生理条件下,胃泌素-17和胃泌素-34为主要的分泌形式,分别占胃总产量的80-90%和5-10%。
胃泌素-17是餐后胃窦和血液中最常见的胃泌素形式,也是胃泌素的主要功能形式。
胃泌素可以通过内分泌和旁分泌信号通路调节上皮细胞和内分泌细胞的增殖和迁移,从而可能推动组织的增生或瘤变[2]。
消化道恶性肿瘤是最常见的癌症之一,大多数患者往往因肿瘤转移而死亡,而胃泌素与胃癌转移密切相关。
1.G-17表达对食管癌的影响食管癌是常见的消化道恶性肿瘤之一,而胃食管反流病是食管癌最常见的诱发疾病,胃食管反流病的诊断方法主要是:多通道腔内阻抗和ph监测(MII-pH),G-17由于酸和激素之间的负反馈,被认为是胃食管反流病的非侵入性标记物,可以通过G-17水平可以识别胃酸反流和非胃酸反流患者[3],且是非侵入性检查,患者更易接受,从而达到早诊断的目的,做好胃食管反流病及食管癌的一级预防。
TREM2介导小胶质细胞吞噬功能在神经退行性疾病中的作用
TREM2介导小胶质细胞吞噬功能在神经退行性疾病中的作用①韩雪夏天娇②刘斌文顾小萍(南京大学医学院附属鼓楼医院麻醉科,南京210008)中图分类号R392.2文献标志码A文章编号1000-484X(2022)11-1388-07[摘要]以阿尔茨海默病(AD)为代表的多种慢性神经退行性疾病发病机制尚未明确。
近年研究发现神经退行性疾病发生与错误折叠的蛋白质、淀粉样蛋白(Aβ)、死亡神经元和受损髓鞘吞噬清除障碍有关,而完整的小胶质细胞吞噬功能是维持中枢神经系统稳态的重要原因。
小胶质细胞表面吞噬受体髓样细胞触发受体2(TREM2)表达改变可调节小胶质细胞吞噬效率,负性调节TLR诱导的炎症反应,促进M2小胶质细胞表型表达,发挥神经保护作用。
此外,TREM2功能突变对小胶质细胞吞噬功能的影响与AD、帕金森病等神经退行性疾病风险增加相关。
因此,了解TREM2介导的小胶质细胞吞噬清除功能在不同神经退行性疾病中的作用对于探索神经退行性疾病新的治疗方向具有重要意义。
[关键词]TREM2;TREM2变体;小胶质细胞;吞噬;神经退行性疾病Role of TREM2-mediated microglial phagocytosis in neurodegenerative diseases HAN Xue,XIA Tianjiao,LIU Binwen,GU Xiaoping.Department of Anesthesiology,Affiliated Drum Tower Hospital of Medical School of Nanjing University,Nanjing210008,China[Abstract]Pathogenesis of many chronic neurodegenerative diseases represented by Alzheimer's disease(AD)is not yet clear.In recent years,numerous studies have found that occurrence of neurodegenerative diseases is related to damaged phagocytic clearance of misfolded proteins,β-amyloid protein(Aβ),dead neurons and impaired myelin,while intact phagocytic function of microglia is an important reason for maintaining homeostasis of central nervous system.Changes in expression of phagocytic receptor TREM2on surface of microglia can regulate phagocytic efficiency of microglia,negatively regulate TLR-induced inflammatory response,promote expression of M2microglia phenotype,and play a neuroprotective effects.Impact of TREM2functional mutations on microglial phagocytosis is associated with an increased risk of neurodegenerative diseases such as AD and Parkinson's disease. Therefore,understanding the role of TREM2-mediated phagocytic clearance of microglia in different neurodegenerative diseases is of great significance for exploring new therapeutic directions for neurodegenerative diseases.[Key words]TREM2;TREM2variant;Microglia;Phagocytosis;Neurodegenerative disease常见的神经退行性疾病有阿尔茨海默病(Alzheimer's disease,AD)、帕金森病(Parkinson'sdisease,PD)、额颞叶变性(Frontotemporal dementia,FTD)、Nasu-Hakola病[(Nasu-Hakola disease,NHD),也称多囊脂膜骨发育不良伴硬化性白质脑病(poly‐cystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy,PLOSL)]等,具有共同病理机制,最明显共同点是由错误折叠的蛋白形成的不溶性沉积物,这些蛋白通常在受影响的细胞或中枢神经系统(central nervous system,CNS)受影响的区域中表达增加[1]。
骨代谢信号通路
在 FGF 信 号 通 路 中,FGF 和FGFR可调节成软骨细胞活性,促进骨细胞增殖。
2021/3/11
6
低氧 / 低氧诱导因子( hypoxia-inducible factor,HIF)-la通路 低氧/低氧诱导因子 HIF-la 通路对成骨细胞与破骨细胞耦联作用及其发生机制日益 受到关注。
HIF-la 是组织细胞在低氧状态下由激活基因编码的转录因子,在常氧条件下其氧感 应元件 HIF-1a 上的氧依赖降解结构域 ( ODD) 被活性脯氨酰羟化酶( PHD) 羟化,然 后结合 VHL 蛋白进入蛋白酶体被降解,而在低氧或缺氧环境中PHD活性消失或降 低,导致 HIF-1a 聚积并转运至细胞与 β 亚基结合,激活HIF敏感的靶基因如 VEGF 而发挥作用。
β-catenin 作为 FOXO的辅助因子,近来被用作防御 Oxidative Stress 的主要因子 Wnt 信号通路中几个Wnt 家族成员可以在脂肪形成的早期阶段发生抑制作用, 减少人类间充质干细胞分化成前脂肪细胞。
Wnt10b 是骨形成中 canonical WNT 配合体表达物,对于 BMSCs 的活动是独特的
骨代谢信号通路
2021/3/11
1
BMP/Smads Wnt/β-catenin OPG / RANKL / RANK
2021/3/11
2Leabharlann BMP+II型二聚体受体→I型受体磷酸化→Smads-1,5,8磷酸化 Smads 蛋白再进一步转位至细胞核内充当转录增强子,与相关转录因子核心 结合蛋白( Cbfα1 /Runx2) 和 Osterix相互作用,调节骨代谢。 Cbfα1 在前脂肪细胞中过表达,诱导脂肪细胞向成骨细胞方向转变 Osterix :cbfαl/Run X2 的下游基因,使成骨前体细胞转化为成骨细胞,并负向 调控 Sox9和Sox5表达,阻止骨祖细胞向软骨细胞分化 一 是 促 使Wnt抗 体DKK1 表达,抑制成骨细胞增殖; 二是抑制 β-catenin1/ TCF 信号通路,从而抑制 Wnt信号通路,减少成骨细胞增殖
Wnt信号通路
• Nearly 50% of cellular protein is found in the cytosolic fraction. As commonly observed for subcellular fractionations of other mammalian cells [22], the plasma membraneenriched fraction displayed ~30% and nuclear-enriched fraction 12-13% of the cellular protein. The sum of mitochondria-enriched fraction and of high-speed, supernatant “microsomal” fraction, together representing ~10% of the cellular protein and essentially devoid of markers for plasma membrane, cytoplasm, or nucleus, were not further probed in these studies. The amount of the marker proteins and signaling elements established empirically in the plasma membrane + cytoplasm + mitochondria + microsomes + nuclear-enriched fractions was set to 100% for all derivative calculations of signaling element distribution (Table 1).
宫颈鳞癌组织中β-catenin、E-cadherin、PTEN蛋白表达变化及其意义
宫颈鳞癌组织中β-catenin、E-cadherin、PTEN蛋白表达变化及其意义杨冬梅;黄利红;夏琼;刘佩佩【摘要】目的观察宫颈鳞癌组织中β-连环蛋白(β-catenin)、E-钙黏蛋白(E-cadherin)、磷酸酶及张力蛋白同源(PTEN)蛋白的表达变化,并探讨其临床意义.方法 82例份宫颈鳞癌组织标本为观察组,32例份宫颈上皮内瘤变(CIN)组织标本为CIN组,30例份正常宫颈组织标本为正常组.采用免疫组化SP法进行检测各组β-catenin、E-cadherin及PTEN蛋白,表达与宫颈癌临床病理参数的关系,分析β-catenin、E-cadherin及PTEN蛋白的相关性,采用ROC曲线判断β-catenin、E-cadherin及PTEN蛋白在宫颈癌诊断中的灵敏度及特异度.结果观察组β-catenin 阳性表达率高于CIN组和对照组,E-cadherin、PTEN蛋白阳性表达率均低于CIN 组和对照组(P均<0.05).CIN组β-catenin阳性表达率高于对照组,E-cadherin、PTEN蛋白阳性表达率均低于对照组(P均<0.05).β-catenin表达与宫颈鳞癌组织学分级、临床分期及淋巴结转移相关(P均<0.05);E-cadherin、PTEN蛋白表达与宫颈鳞癌组织学分级、临床分期、浸润深度与淋巴结转移相关(P均<0.05).β-catenin诊断宫颈鳞癌的灵敏度、特异度分别为89.02%、87.10%,E-cadherin诊断宫颈鳞癌的灵敏度、特异度分别为85.37%、83.87%,PTEN蛋白诊断宫颈鳞癌的灵敏度、特异度分别为84.15%、85.48%.宫颈鳞癌组织中β-catenin表达与E-cadherin、PTEN呈负相关(r分别为-0.736,-0.702;P<0.05),E-cadherin表达与PTEN蛋白表达呈正相关(r=0.694,P<0.05).结论宫颈鳞癌组织中β-catenin高表达,E-cadherin、PTEN蛋白低表达.β-catenin、E-cadherin及PTEN蛋白诊断宫颈鳞癌的敏感度和特异度均较高.β-catenin、E-cadherin及PTEN在宫颈鳞癌的发生发展中可能存在相互作用.【期刊名称】《山东医药》【年(卷),期】2017(057)019【总页数】3页(P54-56)【关键词】宫颈肿瘤;宫颈癌;宫颈鳞癌;β-连环蛋白;E-钙黏蛋白;磷酸酶及张力蛋白同源【作者】杨冬梅;黄利红;夏琼;刘佩佩【作者单位】华中科技大学同济医学院附属普爱医院,武汉430033;华中科技大学同济医学院附属普爱医院,武汉430033;华中科技大学同济医学院附属普爱医院,武汉430033;华中科技大学同济医学院附属普爱医院,武汉430033【正文语种】中文【中图分类】R711宫颈癌是女性生殖系统的常见的恶性肿瘤之一,发病率居妇科恶性肿瘤的第二位,且呈年轻化趋势[1]。
nbt1118-1028-Wnt...
Wnt is back in drugmakers’ sights, but is it druggable?A pathway largely abandoned by industry was recently thrust back into the limelight when Samumed raised $440 million in a private fund-ing round to progress a clinical pipeline of Wnt signaling modulators across several indications. It’s the most optimistic sign yet that address-ing Wnt biology could still unlock therapeutic benefits for patients, despite a lengthy catalog of failures over the past decade. For competi-tive reasons, Samumed has yet to disclose the precise identity of the targets with which it is working, but it plans to do so over the next 12 to 18 months as its development programs mature and its need to educate the medical and scientific community increases. “We are hopefully two to three years away from our first set of approvals,”says company founder and CEO Osman Kibar. It would not be the first biotech firm to make such a claim. But Samumed’s confidence is backed by a reported $12 billion valuation. There is a lot riding on its success, therefore—and a failure could have a chilling effect on further invest-ment into Wnt-directed drug discovery. Despite the lack of clear-cut success in the clinic to date, academic interest in Wnt signal-ing has remained high since Harold Varmus and Roland Nusse identified the first mam-malian Wnt proto-oncogene in 1982 (EMBO J.31, 2670–2684, 2012). It is a key develop-mental pathway during embryogenesis, and it plays a central role in regulating the growth and maintenance of myriad tissues thereafter. Wnt signaling, which is highly conserved in the animal kingdom, is extraordinarily complex. It is mediated through nineteen different secreted Wnt proteins, which interact with ten different Frizzled (FZD) cell-membrane receptors that resemble—but behave differently from—classi-cal G-protein-coupled receptors. “In some ways it defies simple description,” says Michael Kahn, professor of molecular medicine at Beckman Research Institute at City of Hope. “It controls stem cell biology in every tissue from head to toe throughout the lifespan of the organism.”Wnt signals through several pathways, but mainly through the Wnt–β-catenin or ‘canoni-cal’ pathway. Wnt activation of a FZD results in the migration of β-catenin from the cytoplasm to the nucleus, where it triggers the transcrip-tion of a set of genes involved in cell growth and differentiation. In the absence of Wnt, β-catenin is normally held in check within a ‘destruction complex’, a multi-protein complex that orches-trates its breakdown by proteasomal degra-dation. Wnt also signals through alternative pathways that do not involve β-catenin. These act through a different set of co-receptors, such as receptor tyrosine kinase–like orphan recep-in a wide range of diseases, including cancer,bone disorders, inflammation, fibrosis andAlzheimer’s disease. As a result, drugging Wnthas attracted many contenders over the years(Table 1), but, with some exceptions, industryinterest has tended to be sporadic rather thansustained. “The primary problem has beenidentifying good targets that do not causebroad side effects,” says Michael Boutros, headof the signaling and functional genomics divi-sion at the German Cancer Research Centerin Heidelberg. “Up to now safety and efficacyhave been mutually exclusive,” Kibar says.Samumed’s efforts to drug the Wnt path-way began a decade ago, when the company,originally called Wintherix, entered a joint ven-ture with Pfizer. It screened the big pharma’scompound library against a proprietary high-throughput phenotypic screening assay devel-oped by company cofounder Dennis Carsonof the University of California, San Diego. Thecompany identified two promising targets ini-tially, which prompted a further screen in thepublished literature. “We were able to connectthe dots—and we had that ‘aha’ moment,” saysKibar. The company is now working with eightmodulate.” The targets are already known, hencethe company’s reticence about disclosing detailsat this point. “It’s just that nobody has connectedthem to Wnt—nobody has connected them tothe biology we are pursuing with our programs.”To minimize any potential toxicity, Samumedhas focused, where possible, on local ratherthan systemic delivery. For example, SM04690,in development for osteoarthritis, is deliveredby intra-articular injection to the affected joint,and the alopecia drug SM04554 is applied to thescalp in a topical formulation. “I think they’vetaken a pretty smart strategy,” says Kahn. Forits two oncology programs, Samumed employssystemic delivery, however. “In both cases we dotake a hit in terms of safety,” Kibar says, addingthat their safety profiles are within acceptablelimits for cancer. Samumed’s most advancedmolecule, SM04690, failed to reach the primaryendpoint of a phase 2 trial in 455 patients withosteoarthritis, but Kibar attributes the miss tothe company’s development strategy. “Whenwe design a phase 2 protocol, we always cast aswide a net as we can,” he says. A more narrowlydefined patient population might deliver a bet-ter result, but the broader approach providesN E W S1028 VOLUME 36 NUMBER 11 NOVEMBER 2018 NATURE BIOTECHNOLOGYmore information about the drug, he says. As Nature Biotechnology went to press, the com-pany was preparing to report phase 2b data at the American College of Rheumatology meet-ing due to be held in Chicago. “We hit statistical significance in pain, function and patient global assessment,” Kibar says.The universe of potential targets that can influence Wnt biology is wide. Wnt signaling can be modulated at the level of Wnt secretion, Wnt recognition of FZD receptors, and their co-receptors LRP5/6. Targets further down the signal cascade include Dishevelled, a protein that transmits a Wnt activation signal from FZD to the β-catenin destruction complex, and transcriptional coactivators of β-catenin within the nucleus.Porcupine inhibitors block Wnt secretion and lead to the complete shutdown of all forms of Wnt signaling. “Effectively, you’re prevent-ing release of all 19 Wnt ligands,” says Richard Armer, chief scientific officer of Macclesfield, UK-based Redx Pharma. “It’s well tolerated if you go with the right doses.” Redx’s phase 1/2a trial in advanced cancer was suspended, how-ever, after the first patient to receive its Porcupine inhibitor, RXC004, experienced bone-related and gastrointestinal side effects. The company attributed the problem to a longer-than-expected half-life, resulting from an unanticipated phar-macokinetic profile. “It’s biphasic elimination, which wasn’t predicted in the preclinical mod-els,” he says. The company has, he says, reached agreement in principle with the UK’s Medical Products Health Regulatory Agency to reintro-duce the drug at a much lower dose.In addition to targeting aberrant Wnt sig-naling directly, drug developers are also latch-ing onto the influence of Wnt on immunesystem functioning. Thomas Gajewski of theUniversity of Chicago and colleagues werefirst to demonstrate that activation of theWnt–β-catenin pathway is immunosuppres-sive. Melanoma patients with active β-catenin-dependent Wnt signaling in their cancer cellshad low levels of T-cell infiltration, whereasthe reverse was the case for those without Wntpathway activation (Nature523, 231–235,2015). Some drug developers are exploringthis concept in prospective clinical trials, inthe hope that it could improve responses toimmune checkpoint inhibitor therapy.Leap Therapeutics is extending Wnt’s immu-nomodulatory potential to the innate immunesystem. The company selected Dickkopf-related protein 1 (DKK1) as the target of itsinvestigational antibody DKN-01 because highDKK1 expression is correlated with poor sur-vival in many cancers. DKK1 downregulatesβ-catenin Wnt signaling by inhibiting LRP5/6,but the effect of DKN-01 on Wnt signaling isnot fully clear. “We may be modulating Wntsignaling in such a way we’re bringing it backfrom a more oncogenic combination of signal-ing pathways to a more nonmalignant [state],”Leap CEO Chris Mirabelli says. More recently,DKK1 has been identified as participating intumor immune evasion by directly preventingnatural killer cell recruitment to the tumor.Blocking DKK1, therefore, has an extra effectbeyond its direct impact on Wnt. “We see anenhancement of natural killer cell activity,”Mirabelli says. The company is in a clini-cal collaboration with Merck to investigate acombination of DKN-01 and the PD-1 blockerKeytruda (pembrolizumab).Practically all Wnt-targeting drug devel-opment programs—at least those that havebeen publicly disclosed—address β-catenin-dependent Wnt signaling in one way oranother. Malmö, Sweden-based WntResearchhas taken a different tack, switching onβ-catenin-independent Wnt signaling incertain types of cancer where it is protective.Wnt5a, an inducer of β-catenin-independentWnt signaling, prevents tumor cell migra-tion by maintaining cell adherence to thebasal membrane and to neighboring cells.“Patients with breast, prostate or colon cancerwho have a poor prognosis, in the majorityof cases they have very low Wnt5a expression,and sometimes they don’t have anything,”says WntResearch chief scientific officerTommy Andersson, who is also professor ofexperimental pathology at Lund University inSweden. The company has developed a modi-fied peptide, Foxy-5, that mimics the actionof Wnt5a. It appears, so far at least, to be safe:a phase 1 study in patients with advancedmetastatic cancer failed to uncover any dose-limiting toxicity.Although dissecting Wnt signal pathwaysover the past 35 years has greatly increased ourunderstanding of many fundamental biologi-cal processes, converting that knowledge intouseful therapies remains a work in progress.Advances in structural biology, in particular,will help to improve understanding of how Wntsignaling drives specific pathophysiologicalmechanisms. Mirabelli remains optimistic Wntresearch will yield dividends. “I’m convincedit’s going to end up being a fairly rich area fordrug discovery and development.”Cormac Sheridan Dublin, IrelandTable 1 Selected Wnt-pathway-targeting drugs in developmentDevelopers Molecule Mechanism Indications Clinical stageAmgen, UCB (Brussels)Romosozumab Upregulates Wnt signaling bytargeting sclerostin, an inhibitorof LRP5/6Osteoporosis FDA issued a complete response letter inJuly 2017; EMA accepted application forreview in January 2018Samumed SM04690Wnt pathway inhibitor Osteoarthritis, degenerative discdisease Phase 2b (osteoarthritis), phase 1 (degen-erative disc disease)Samumed SM04554Wnt pathway inhibitor Androgenetic alopecia Phase 2 Samumed, United Therapeutics SM04646Wnt pathway inhibitor Idiopathic pulmonary fibrosis Phase 1Samumed SM04755Wnt pathway inhibitor Psoriasis, tendinopathy Phase 1Samumed SM08502Wnt pathway inhibitor Oncology Phase 1Novartis, Array Biopharma WNT974Porcupine inhibitor Wnt-ligand-dependent cancers Phase 1JW Pharmaceutical (Seoul)CWP232291Wnt pathway inhibitor Leukemia, myeloma Phase 1Redx Pharma RXC004Porcupine inhibitor Advanced cancer Phase 1/2a (suspended) A*Star Institute (Singapore)ETC-1922159Porcupine inhibitor Advanced solid tumors Phase 1Leap Therapeutics DKN-01(humanized IgG4antibody)Dickkopf-related protein 1(DKK1) inhibitorOvarian cancer; esophagogastriccancersPhase 2 study in combination with paclitaxel;phase 1 combination study with paclitaxel orKeytruda (pembrolizumab)Curegenix (Guangzhou, China)CGX1321Porcupine inhibitor Gastrointestinal tumors Phase 1 study in combination with Keytruda WntResearch Foxy-5Wnt-5 mimic Breast, colon and prostate cancer Phase 1Oncternal Therapeutics Cirmtuzumab Receptor tyrosine kinase–likeorphan receptor 1 (ROR1) inhibitorChronic lymphocytic leukemia Phase 1Sources: , PubMed, company websitesN E W SNATURE BIOTECHNOLOGY VOLUME 36 NUMBER 11 NOVEMBER 2018 1029。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H8M5; 2Life Science College of Northwest A&F University, Yangling, Shaanxi 712100, China; 3Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China; 4Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; 5Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada; 6Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada and 7Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada *Corresponding author: L Wang, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H8M5. Tel: þ 613 562 5624; Fax: þ 613 562 5452; E-mail: lwang@uottawa.ca Abbreviations: CSCs, cancer stem cells; FBS, fetal bovine serum; FACS, flow cytometry; 7-AAD, 7-aminoactinomycin D; qPCR, quantitative PCR; TLRs, toll-like receptors; TLR3, toll-like receptor 3; dsRNA, double-stranded RNA; poly(I:C), polyinosinic-polycytidylic acid; i.p., intraperitoneally; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5diphenyl tetrazolium bromide; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; Cyto, cytoplasmic; Nu, nuclei; Cardamonin, 2,4-dihydroxy-6-methoxychalcone; eGFP, enhanced green-fluorescent protein Received 28.1.14; revised 26.6.14; accepted 4.8.14; Edited by JP Medema
Toll-like receptors (TLRs) are a key family of microbial sensors in the host innate and adaptive immunity as well as in tissue repair and regeneration. They are also involved in the inflammatory signaling triggered by endogenous macromolecules released by injured tissue.14,15 Ten TLRs are encoded by the human genome. TLRs detecting nucleic acids (TLR3, TLR7, TLR8, and TLR9) are localized in the endosomal compartment in nearly all cell types, while TLRs mainly detecting proteolipidic structures (TLR1, TLR2, TLR4, TLR5, TLR6, and TLR10) are exposed on the cell surface.14,16 In cancer, TLRs have emerged as important participants in tumorigenesis. TLR3, 4, 7, and 9 were overexpressed in 70, 72, 67, and 78% of patients with esophageal cancer.17 The -196 to -174del/del genotype of TLR2 may increase the risk of gastric cancer,18 and TLR4+896A4G polymorphism is a risk factor for non-cardia gastric carcinoma.19 Functions of epithelial-expressed TLR2 and 5 in promoting epithelial cell survival, proliferation, migration,20 and angiogenesis (TLR2 only)21 may be usurped by tumor cells to facilitate progression and metastasis. Although TLR3, 5, 7, 8, and 9 may achieve antitumor effects by converting immune tolerance into antitumor immunity,14 considerable discrepancies have been reported. For instance, high TLR3 expression in esophageal cancer cells was significantly associated with a higher
OPEN
Cell Death and Differentiation (2014), 1 – 13 & 2014 Macmillan Publishers Limited All rights reserved 1350-9047/14
/cdd
β-Catenin and NF-κB co-activation triggered by TLR3 stimulation facilitates stem cell-like phenotypes in breast cancer
Despite incessant efforts to combat cancer over decades, breast cancer is still the second leading cause of death in women, remaining high with over 39 000 deaths in 2012 in the United States alone.1 Conventional interventions, such as radiation or chemotherapy, may eliminate the bulk of the tumor but spare rare aggressive cancer cells that have an exceptional capacity to survive, self-renew, and advance the malignancy. These residual tumor cells have recently been found to possess key stem-like properties and have thus been termed ‘cancer stem cells (CSCs)’.2–5 Breast CSCs, characterized by expression of CD44high/CD24 − /low surface markers, are proposed to be largely responsible for cancer progression and metastasis.3,6,7 These CD44high/CD24 − /low cells possess stem cell-like properties and tumor-initiating capacity. Furthermore, these cells resist standard therapies3,6,8,9 and can be converted from non-CSC cells under certain conditions.10,11 Therefore, specific targeting of CSCs within a tumor will be imperative to prevent disease progression and recurrence.5 However, the conditions and mechanisms underlying CSC formation remain poorly understood. Although the majority of cancers arise from de novo oncogenic and epigenetic alterations, most tumors display signals of unremitting inflammatory activity,12 which occurs even in the absence of infection or autoimmunity.13