七年级数学《代数式》知识点复习
七年级上册代数式知识点
七年级上册代数式知识点代数式是高中数学中非常重要的一个知识点,也是中学数学的一个重要基础。
在七年级上册学习代数式时,我们主要学习了以下内容:一、代数式的基本概念代数式是由数字、字母、加减乘除符号等运算符号组成的式子,例如2x+3、(a+b)(a-b)等。
二、代数式的简化和展开1、代数式的简化简化代数式是指将具有相同变量的项合并为一个同类项,并通过移项、分配律、合并同类项等方法,将代数式化为规范形式,例如:2x+3x-5x=0 => 0=0-x2、代数式的展开展开代数式是指根据分配律,将代数式拆分成多个项的和的形式,例如:(a+b)(a-b)=a^2-b^2三、一元一次方程一元一次方程是一种形如ax+b=0的方程,其中a、b为常数,x为未知数。
在解一元一次方程时,我们需要通过移项、合并同类项、化简等步骤,求出未知数的值。
四、二元一次方程组二元一次方程组是由两个一元一次方程构成的方程组,形如:ax+by=cdx+ey=f在解二元一次方程组时,我们可以通过消元、代入等方法求出未知数的值。
五、乘法公式和因式分解1、乘法公式乘法公式指的是两个或两个以上代数式相乘所得到的代数式,例如:(a+b)(a-b)=a^2-b^2(ab)^2=a^2b^22、因式分解因式分解指的是将一个代数式分解成若干个因式的积的形式,例如:x^2-4=(x+2)(x-2)a^2+2ab+b^2=(a+b)^2以上是七年级上册代数式的主要知识点,掌握了这些知识,同学们就能够顺利地进行代数式的运算和解方程,也为将来的高中数学打下了坚实的基础。
七年级代数式知识点及例题
七年级代数式知识点及例题代数式在初中数学中占有重要地位,是进一步学习高中数学和其他科学学科的基础。
本文将为大家介绍七年级代数式的知识点,并通过例题让大家更好地掌握这些知识点。
一、代数式的概念代数式指用数字和字母以及运算符号组成的式子,例如:2x+3y或a²-b²等。
其中数字和字母都被称为代数项,符号+、-、×和÷被称为代数式的运算符号。
二、代数式的基本运算1. 合并同类项合并同类项是代数式基本原则之一。
同类项有相同的字母部分,其指数可以不同,例如:3x、5x和-2x就是同类项。
将同类项相加或相减得到的结果称为合并同类项。
例如:2x²+3x²=5x²,6xy-2xy=4xy。
2. 去括号一般情况下,可以使用分配律去掉括号,从而简化代数式。
例如:3(x+2)=3x+6。
3. 移项移项是指将代数式中的各个式子移到等式两边,通过加、减或乘、除等运算来求解。
三、代数式的解题方法1. 代入法代入法是求解代数式的一种简单方法。
将给定的数值代入代数式中,然后通过基本运算得出最终结果。
例如:已知x=2,求2x+3,将x=2代入得:2*2+3=7。
2. 整理法整理法是指通过基本运算对代数式进行化简,化简后的代数式更符合求解要求,从而实现对代数式求解的目的。
例如:已知3x+2=8,将式子化简为3x=6,然后得出x=2的解。
四、常见的七年级代数式例题1. 合并同类项:将3x+5x+2y-7y合并同类项,并化简为最简代数式。
解:同类项3x和5x的和是8x,同类项2y和-7y的和是-5y,因此合并同类项后得到8x-5y。
2. 去括号:化简3(x+2)+2(x-1),并将其化简为最简代数式。
解:根据分配律,展开式子3(x+2)+2(x-1)得到3x+6+2x-2。
将同类项3x和2x合并,同类项6和-2合并,得到最简代数式5x+4。
3. 求解未知数:已知3x+2=8,求x的值。
七年级代数式考点及知识点
七年级代数式考点及知识点代数式是代数学中的一个重要概念,它是数与字母的组合,可以用来表达一些运算关系或者数学方程式。
在初中数学中,代数式也是一个重要的考点,而且在七年级中就已经涉及到了一些基本的知识和技能。
本文将从以下几个方面对七年级代数式的考点和知识点进行讲解。
一、代数式的定义和表示代数式是由数字、字母和运算符号组合而成的表达式,它可以用一组数或者字母的值来代替其中的变量。
代数式可以表示数学中的各种运算关系,比如加减乘除、指数、根式等等。
在代数式中,一般会用字母表示未知量或者变量,而数字则表示已知量或者常数。
代数式的表示方式有两种,一种是算式的形式,另一种则是一般式的形式。
二、代数式的基本性质代数式具有许多基本的性质,例如:1. 代数式可以进行加减乘除和指数运算,满足运算法则和运算律;2. 代数式中的运算符号可以改变位置,但结果不变;3. 代数式中的因式可以提取出来,从而简化表达式;4. 代数式中的括号可以展开或者合并,但结果不变;5. 代数式可以进行分式拆分或者合并,以简化表达式。
三、代数式的含义和应用代数式在数学中的应用非常广泛,可以用于解方程、求解未知量、分析数据等等。
在初中数学中,常见的应用场景如下:1. 根据实际问题建立代数式,分析问题的特征和规律;2. 判断代数式中的常数和变量,求解未知量的值;3. 应用代数式进行数据分析和统计,得出结论和规律。
四、七年级代数式的考点和知识点在七年级数学中,涉及到代数式的考点和知识点主要有以下几个方面:1. 代数式的基本概念和性质:理解代数式的定义和表示,掌握代数式的基本性质和运算法则;2. 一元一次方程与简单的代数式:理解一元一次方程的概念和求解方法,掌握简单的代数式的表达和分析;3. 代数式和图象:掌握代数式和图象的关系,了解一些基本的代数图形;4. 代数式的应用:掌握代数式在实际问题中的应用场景,了解代数式在数学中的传统应用和新兴应用。
五、总结代数式是初中数学中一个重要的概念和考点,掌握代数式的基本概念和性质,理解代数式的应用场景,可以提高解题的效率和准确性。
七年级上册代数式的知识点
七年级上册代数式的知识点代数式是代数学中最基础和重要的概念之一,是初中数学的重要基础。
作为代数学中最基础的概念,学生必须深入了解和掌握代数式的知识点,以便能更好地应对高年级的代数学习。
本文将介绍七年级上册代数式的知识点。
一、代数式的概念代数式是用代数符号表示的运算式,其中包含被求值的未知数和已知数、加减乘除符号等运算符号。
代数式可以根据它是否具有值进行区别。
如果一个代数式中所有字母均已知,那么可以通过代数式计算得到代数式的值。
反之,如果代数式中存在未知数,那么暂时还无法求出它的值。
二、代数式的基本性质1.相同的代数式可互相代替,即两个式子相等。
2.在代数式中,加减法与乘法满足分配律。
3.在代数式中,异号相乘为负,同号相乘为正。
三、代数式的合并同类项代数式中,如果含有同类项,可以通过合并同类项简化式子。
同类项是指指数相同并且变量相同的项。
比如:2x + 3y - 2x + 4z = 3y + 4z此时,2x和-2x相抵消了,剩余的项变成了3y和4z,即合并了同类项。
四、代数式的分配原理代数式的分配原理是指在代数式中,括号中的系数和被加减数均应与括号外的系数相乘。
也就是说,对于代数式a(b + c),应先将括号内的式子乘以a,再将其分别加起来。
例:3(x + 4) = 3x + 122(y - 5) = 2y - 10五、代数式的化简代数式化简是指将代数式转化为等效的简化形式,化简目的是便于后续的运算。
例:3x + 5x - 2x = 6x3(a - 2) + 2(3 - a) = -1a + 9六、代数式的因式分解代数式的因式分解是将代数式分解成一个或多个因式相乘的形式。
因式分解是代数式的重要基础,通过因式分解可以大大简化式子,易于后续的计算。
代数式的因式分解需要掌握一些基本技巧,如公因式法、配方法、分组法等。
例:1.2x² + 6xy = 2x(2x + 3y)2.6x² - 3x = 3x(2x - 1)七、代数式的求值代数式的求值是指根据代数式中字母的具体取值,求出代数式的值。
数学七年级上《代数式》复习(附答案)
数学七年级上《代数式》复习一、知识回顾1.像0.8a+0.9b,2a, 15×1.5%m ,πR+πr,52,abc 等式子都是___________ 注意:(1) 单独一个___________或___________也是代数式 (2)代数式中不含_______________________________2.像2a ,0.8a 和abc 等都是数与字母的 ,这样的代数式叫 。
3.单项式中的 叫做它的系数。
单项式中 叫做它的次数。
如22xy 的系数是 ,次数是 ;abc 的系数是 ,次数是 。
4.几个单项式的和叫做 。
多项式中,每个单项式叫做多项式的一个项;多项式里___________________叫做这个多项式的次数.,如-π,它的次数是 。
5.单项式和多项式统称 。
二、知识讲解与练习 (一)选择题1、下列各式符合代数式书写规范的是( )2、下列说法正确的是( )3、下列各式中,A 3个B 4个C 6个D 7个4、“x 与3差的两倍”用代数式表示为( )5、对下列代数式解释不正确的是()6、某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是()7、今年某种药品单价比去年便宜了10%,如果今年的单价为a元,则去年的单价是()8.(二)填空题:1.某商品的进价为x元,售价为120元,则该商品的利润率可表示为__________。
2.张老师带领x名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y元,则y=__________。
3.某人上山速度为m千米/时,下山速度为n千米/时,则此人上山下山的平均速度是________。
4.某音像公司对外出租光盘的收费标准是:每张光盘出租后的前3天每天收费0.5元,以后每天收费0.3元,那么一张光盘在出租后第n天(n>3且为整数)应收费_________元。5.一台电视机的原价为a元,降价4%后的价格为_________________元。
七年级代数式知识点总结
七年级代数式知识点总结在七年级数学中,代数式是一个非常重要的知识点。
代数式是用字母和数的运算符号组合而成的式子。
通过代数式可以简化运算,得到较为简洁的结果。
下面对七年级代数式的知识点进行总结。
一、代数式的概念代数式是由数字和字母等符号组成的符号语言,用于表示和计算数值。
例如,2x+y-1是一个代数式,其中的2、1、y是数字,而x是字母。
二、代数式的基本性质1、可加性:代数式可以加上或减去同类的代数式。
2、可乘性:代数式可以相乘或除以同类的代数式。
3、分配律:乘法可以分配到加法或减法上。
4、合并同类项:将多项式中相同的项合并在一起,系数相加。
三、一元一次方程式一元一次方程式是形如ax + b = 0的代数式,其中a和b是已知的数,x是未知数。
解一元一次方程式的步骤:1、去括号:将方程式中的括号去掉。
2、合并同类项:将所有的x合并在一起,将常数项合并在一起。
3、移项:将常数项移到等号的另一边,将x移动到等号的另一边。
4、化简:将式子化简,将x单独一边,求出x的值。
四、方程式的应用在实际问题中,方程式经常被用来解决各种问题。
例如,在一场足球比赛中,一支队伍得到了x个进球,另一支队伍得到了3个进球。
已知这场比赛共有5个进球,求x的值。
解题思路:设该队伍得到了x个进球,另一队得到了3个进球。
根据已知条件,可以列出方程式:x + 3 = 5将3移到等号的另一边,可以得到:x = 5 - 3x = 2因此,该队伍得到了2个进球。
五、代数式的图像代数式可以表示函数的图像。
例如,y = 2x + 1是一条直线的方程式。
其斜率是2,截距是1。
将这个方程式画在坐标系上,可以得到一条直线。
六、代数式的应用代数式在各个领域都有着广泛的应用。
例如,在物理学中,通过代数式可以计算速度、加速度、力等物理量。
在工程学中,代数式可以用来描述各种结构的形状和大小。
在经济学中,代数式可以用来描述价格变化、生产成本等。
总之,代数式是数学的重要组成部分,理解和掌握代数式的基本概念和性质对于学习数学和应用数学都非常重要。
七年级代数式知识点归纳总结
七年级代数式知识点归纳总结金子塔七年级数学上册第二章代数式知识点归纳一、代数式代数式是由数、字母和运算符号(加、减、乘、除、乘方、开方等)连接而成的式子,用字母表示数,可以使问题变得准确又简单。
一个单独的数或字母也可以是代数式。
需要注意的是,代数式中可以含有括号,但不能含有“=。
<、≠”等符号。
在等式和不等式中,等号和不等号两边的式子一般都是代数式。
字母所表示的数必须符合实际问题的意义,才能使代数式有意义。
代数式的书写格式:在代数式中出现乘号时,通常省略不写,数字与字母相乘时,数字应写在字母前面。
带分数与字母相乘时,应先把带分数化成假分数。
数字与数字相乘时,一般仍用“×”号,即“×”号不省略。
在代数式中出现除法运算时,一般写成分数的形式,分数线具有“÷”号和括号的双重作用。
如果表示和(或)差的代数式后有单位名称,则必须把代数式括起来,再将单位名称写在式子的后面。
列代数式的步骤:抓住表示数量关系的关键词语,弄清运算顺序,用运算符号把数与表示数的字母连接。
代数式的值代数式的值是指把代数式里的字母用数代入,计算后得出的结果。
求代数式的值的步骤有两个:用数值代替代数式里的字母,简称“代入”;按照代数式指定的运算关系计算出结果,简称“计算”。
在代入时,将相应的字母换成指定的数,运算符号、原来的数及运算顺序都不能改变。
在代入时,需要恢复必要的运算符号,如省略的乘号要还原。
当字母取值为负数时,代入时要注意将该数添加括号。
二、整式由数与字母的积组成的代数式叫做单项式,也称为整式。
数字因数叫做这个单项式的系数;所有字母的指数之和叫做这个单项式的次数。
例如,a3b的次数是4.单项式是代数式中的一种,指只含有一个项的代数式。
单项式可以是一个数、一个字母或数与字母的乘积,其中字母可以有指数。
当单项式的系数为1或-1时,这个“1”应省略不写,如-ab的系数是-1,a3b的系数是1.多项式是由几个单项式相加或相减得到的代数式。
七年级下册代数式知识点
七年级下册代数式知识点代数式在数学中扮演着重要的角色。
在初中阶段,学生需要掌握一些基本的代数式知识。
本文将介绍七年级下册代数式的相关知识点,涵盖的内容包括:代数式的概念、代数式的运算、代数式的展开、代数式的因式分解、代数式的抽象和应用。
一、代数式的概念代数式是一类数学式子,其中包含一个或多个未知数,以及加、减、乘、除、幂等运算符号。
比如:3x+1、a^2+2ab+b^2等。
二、代数式的运算代数式可以进行加、减、乘、除、幂等运算。
其中,加、减、乘、除运算法则与常数的运算法则相同。
比如:加法运算:(a+b)+c=a+(b+c)乘法运算:a*(b*c)=(a*b)*c幂运算:a^m*a^n=a^(m+n)而除法运算中需要注意,我们不能除以0。
比如:a/0不存在定义在代数式的运算中,有时候需要用到运算律、分配律、结合律、交换律等常用代数定律进行运算。
比如:交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)分配律:a*(b+c)=a*b+a*c三、代数式的展开代数式的展开是指化简代数式的过程,把代数式拆分为一个或多个项,使其更加简洁明了。
在展开代数式时,我们可以使用乘法分配律和幂运算的性质。
比如:(a+b)^2=a^2+2ab+b^2(2x+3)^2=4x^2+12x+9四、代数式的因式分解代数式的因式分解是指把代数式分解成多个乘积的形式,其中每个乘积都是代数式的因式。
在因式分解时,我们需要用到分配律、差平方公式、和平方公式、公因式提取法等知识。
比如:x^2+5x+6=(x+2)*(x+3)x^2-5x+6=(x-2)*(x-3)a^2-b^2=(a-b)*(a+b)五、代数式的抽象代数式在数学中也有一定的抽象性质。
我们可以把代数式抽象成一个式子或者一个问题,使得这个式子或问题成为代数式的对应量或者解。
比如:x+2=5,把这个式子抽象成代数式:x=3一个无限等比数列的前10项之和为1023,把这个问题抽象成代数式:a1(1-q^10)/(1-q)=1023六、代数式的应用代数式在实际生活中也有广泛的应用。
七年级代数式所有知识点
七年级代数式所有知识点代数式是指由数字、字母和运算符号构成的式子,它是代数学中最基本的概念之一。
在七年级代数课程中,代数式是一个很重要的部分。
在本文中,我们将探讨七年级代数式的所有知识点。
一、代数式的定义代数式可以用字母或符号来代替某些数,其中的符号可以是加号、减号、乘号、除号以及其他一些数学符号。
代数式通常用来表示某些计算或者某些关系式。
举例来说, 3x+5 就是一个代数式。
二、代数式的种类在七年级代数中,代数式主要可分为以下几种:1. 单项式:只含有一个变量的代数式,如2x、3y、4z等等。
2. 多项式:含有多项变量或者常数项的代数式,如3x+4y、2x²+3x+1、3x²+5x+7等等。
3. 基本代数式:就是由运算符和数字组合形成的简单代数式,如 3+5=8。
4. 存在量:代表某个未知变量或者数量的代数式,如x+10=20。
5. 等式:代表两个代数式等于的关系式,如 3x+2=14。
6. 不等式:代表两个代数式不等于的关系式,如x+2≤5。
三、代数式的基本性质在七年级的代数课程中,有以下几个代数式的基本性质:1. 同类项可以相加,但不同类项不能相加。
例如,2x和3x是同类项,可以相加;但是2x和3y就不是同类项,不能相加。
2. 代数式可以进行等式的变形。
例如,将等式3x+2=14变形成3x=12。
3. 代数式的反运算。
例如,将3x+2=14的等式反过来写成3x=12,再进行反运算得出x=4。
4. 代数式的合并和分解。
例如,将 3x²+5x+2 这个代数式从高到低依次分解可以得到3x²+(2x+3x)+2。
4. 代数式的化简。
例如,化简 3x+2x+5y-4x+3 的代数式得到 5x+5y+3。
四、代数式的解法七年级代数的课程中,代数式的解法主要分为以下几种:1. 把含有未知量的代数式转化为等式,并进行等式运算。
例如,把 2x+5=15 的代数式转化为 2x=10,再进行反运算得到x=5。
七年级代数式知识点梳理
七年级代数式知识点梳理
在初中数学中,代数式是重要的基础知识之一。
在七年级中,学生们首次接触代数式,并开始深入了解其基本概念和应用。
本文将对七年级代数式知识点进行梳理和总结,以帮助学生更好地掌握和应用这一基础知识。
1. 代数式的概念
代数式是由数、字母和运算符组成的式子,其中字母表示未知数或变量。
代数式可以表示数学模型,用于解决实际问题。
2. 代数式的分类
代数式可以分为一次式、二次式、多项式等,根据字母的最高次数来区分。
一次式:最高次数为1的代数式,形如ax+b,其中a、b为已知数,x为未知数。
二次式:最高次数为2的代数式,形如ax²+bx+c,其中a、b、
c为已知数,x为未知数。
多项式:最高次数大于2的代数式,形如a1xⁿ+a2xⁿ⁻¹+...+an,
其中a1、a2、...、an为已知数,x为未知数。
3. 代数式的化简
代数式的化简是指将一个复杂的代数式简化为一个更简单的代
数式。
常见的化简方法有合并同类项、因式分解、提取公因数等。
4. 代数式的求值
代数式的求值是指将代数式中的字母替换为已知数,并进行计
算得出结果。
例如,求出3x+4在x=5时的值,将x替换为5,得
到3×5+4=19。
5. 代数式的应用
代数式在数学中有广泛的应用,如解方程、解不等式、求极值等。
代数式也常用于物理、化学等领域的数学模型中。
总之,在初中学习代数式是十分重要的,正确的掌握代数式的概念、分类、化简和求值方法,能够帮助学生更好地理解数学知识,丰富数学思维,为后续学习打下坚实的基础。
初一数学《代数式》知识点精讲
初一数学《代数式》知识点精讲知识点总结一、代数式的定义:用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
注意:(1)单个数字与字母也是代数式;(2)代数式与公式、等式的区别是代数式中不含等号,而公式和等式中都含有等号;(3)代数式可按运算关系和运算结果两种情况理解。
三、整式:单项式与多项式统称为整式。
1.单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中所有字母的指数的和叫做单项式的次数。
特别地,单独一个数或者一个字母也是单项式。
2.多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数最高项的次数就是这个多项式的次数。
四、升(降)幂排列:把一个多项式按某一个字母的指数从小到大(或从大到小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。
五、代数式书写要求:1.代数式中出现的乘号通常用“·”表示或者省略不写;数与字母相乘时,数应写在字母前面;数与数相乘时,仍用“×”号;2.数字与字母相乘、单项式与多项式相乘时,一般按照先写数字,再写单项式,最后写多项式的书写顺序.如式子(a+b)·2·a应写成2a(a+b);3.带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;4.在代数式中出现除法运算时,按分数的写法来写;5.在一些实际问题中,有时表示数量的代数式有单位名称,如果代数式是积或商的形式,则单位直接写在式子后面;如果代数式是和或差的形式,则必须先把代数式用括号括起来,再将单位名称写在式子的后面,如2a 米,(2a-b)kg。
六、系数与次数单项式的系数和次数,多项式的项数和次数。
1.单项式的系数:单项式中的数字因数叫做单项式的系数。
注意:(1)单项式的系数包括它前面的符号;(2)若单项式的系数是"1”或-1“时,"1"通常省略不写,但“-”号不能省略。
七年级数学 第三四章知识点代数式整式知识点
七年级数学第三四章知识点(一)一、知识点:考点一代数式1.代数式:用连接组成的式子叫做代数式,单独的一个或也叫代数式.2.代数式的书写规范:二、完成项目:(一)代数式1.下列式子中代数式的个数有()﹣2a﹣5,﹣3,2a+1=4,3x3+2x2y4,﹣b.A.2个B.3个C.4个D.5个2.下列各式符合代数式书写规范的是()A.B.a×3 C.2m﹣1个D.1m3.代数式a2﹣的正确解释是()A.a与b的倒数是差的平方B.a与b的差是平方的倒数C.a的平方与b的差的倒数D.a的平方与b的倒数的差4.用代数式表示“x的两倍与y的和的平方”,是5.两位数,十位数字是x,个位数字比十位数字的2倍少3,这个两位数是()A.x(2x﹣3)B.x(2x+3)C.12x+3 D.12x﹣36.全班同学排成长方形长队,每排的同学数为a,排数比每排同学数的3倍还多2,那么全班同学数是()A.a•3a+2 B.3a(a+2)C.a+3a+2 D.a(3a+2)7.a个学生按每8个人一组分成若干组,其中有一组少3人,共分成()A.组B.组C.组D.组8.某服装店新开张,第一天销售服装a件,第二天比第一天多销售12件,第三天的销售量是第二天的2倍少10件,则第三天销售了件9.某粮食公司2018年生产大米总量为a万吨,比2017年大米生产总量增加了10%,那么2017年大米生产总量为()A.a(1+10%)万吨B.万吨C.a(1﹣10%)万吨D.万吨10.某食堂有煤m吨,计划每天用煤n吨,实际每天节约用煤b吨,节约后可多用的天数为( )A.m mn b n-+B.m mn n b--C.m mn n b-+D.m mn b n--11.一种商品的售价为20元,每个月可卖出110件;如果每件商品的售价每降价1元,则每月多卖5件.设每件商品的售价为a元时,每月的销售量是件.12.某商品的进价是a元,商场标出的售价比进价提高30%,后又按标价的九折出售,现在这种商品售价为_________元,每件商品盈利___________元.13.一个正方形和四个全等的小正方形按图①②两种方式摆放,若把图②中未被小正方形覆盖部分(图②中的阴影部分)折成一个无盖的长方体盒子,则此长方体盒子的体积为()A.B.C.D.14.用黑白两种颜色的地板砖按如图所示的规律,拼成若干个图案.第n个图形中有白色地板砖块15.如图,图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依次规律,图⑩中黑色正方形的个数是()A.32 B.29 C.28 D.2616.下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A .21B .24C .27D .3017.在数学活动课上,同学们利用如图的程序进行计算,发现无论x 取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( )A .4,2,1 B .2,1,4 C .1,4,2 D .2,4,1第17题18. 下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为( ) A .135 B .170 C .209D .252考点二 整式的有关概念1.单项式:由 组成的式子叫做单项式;单项式中的 叫做单项式的系数;单项式中 叫做单项式的次数.2.多项式:几个单项式的 叫做多项式;多项式中,每一个单项式叫做多项式的 ,其中不含字母的项叫做 ;多项式中 就是这个多项式的次数.3.整式: 与 统称为整式.(二)整式1.-5x ,-a ,13+m ,x -2xy ,23n m -,x 1,0,212x -,3ab ,21+a b单项式集合:{ …} 多项式集合:{ …}2.单项式522bca π-的系数是 ,次数是 .3. 若n mx y -是关于x y ,的一个单项式,且系数为3,次数为5,则m =_____,n =_____. 4.多项式123243-+-x x x 有___ 项,其中次数最高的项是____ _ . 5.下列说法正确的是( )A .232xy 的次数是6B .单项式a 的系数为1,次数是0.C . 733yzx π单项式的系数是73, D .数字0是单项式6.关于x 的多项式1)2(5)1(3236+---++x n x x m x 不含x 的二次项和三次项,则m = , n = . 7.(1)观察下列关于x 的单项式:⋅⋅⋅6543211,9,7,5,3,x x x x x x ,按此规律写出第2018个单项式是_________.(2)观察下列关于x 的单项式:0, 3x 2, 8x 3, 15x 4, 24x 5,…,按此规律写出第13个单项式是______;(3)观察下列关于x 的单项式: x ,-2x 2 , 4x 3 ,-8x 4,....根据发现的规律,写出第n 个式子是__________;七年级数学 第三四章知识点(二)考点三 整式的加减一、知识点:1.同类项:所含 相同,并且 指数也相同的单项式.同类项与项的系数无关,与项中字母的排列顺序无关,如xy 2与-y 2x 也是同类项;几个常数项都是同类项.2.合并同类项:把多项式中的同类项合并成一项。
第三章代数式复习课件人教版数学七年级上册
巩固练习4.代数式的值及应用
3
2.已知a=12,b=-18,求下表中代数式的值:
代数式
a+b
a-b
ab
代数式的值 -6
30
-216
巩固练习4.代数式的值及应用
3.已知方程x-2y=5,则整式x-2y-1的值为 4 .
解:∵x-2y=5, ∴x-2y-1=5-1=4.
4.已知x2-2x-1=0,则代数式2x2-4x+3的值是 5 . 解:∵x2-2x-1=0, ∴x2-2x=1, ∴2x2-4x+3=2(x2-2x)+3=2×1+3=5.
代数式的意义 列代数式 代数式的值
48a+48×6=(48a+288)元
巩固练习2.列代数式表示数量关系
4.用代数式表示: (1)棱长为a的正方体的表面积. 棱长为a的正方体的表面积为6a2. (2)位于江苏省常州市金坛区的华罗庚纪念馆目前累计接待中外参观 者a万人,预计今后每年平均接待参观者6万人,c年后累计接待的 总人数为多少万人? c年后累计接待的总人数为(a+6c)万人.
巩固练习3.列代数式表示反比例关系
2.下列几个关系中,成反比例关系的是( C ) A.正三角形的面积与周长 B.人的身高与年龄 C.三角形面积一定时,一边与这边上的高 D.矩形的长与宽 A.正三角形的面积与其周长不成比例,故A不符合题意; B.人的身高与年龄不成比例,故B不符合题意; C.三角形面积一定时,一边与这边上的高成反比例,故C符合题意; D.矩形的长与宽不成比例,故D不符合题意;
知识点3.列代数式表示反比例关系
正比例关系:
两个相关联的量,一个量变化,另一个量也随着变化,且这两 个量的比值或商一定,所以它们是成正比例的量,它们的关系是成 正比例关系.
七年级数学下册第一章《代数式》知识点整理
七年级数学下册第一章《代数式》知识点整理七年级数学下册第一章《代数式》知识点整理第二章代数式★重点★代数式的有关概念及性质,代数式的运算☆内容提要☆一、初中数学复习提纲重要概念分类:代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3.单项式与多项式没有加减运算的整式叫做单项式。
(数字与字母的积—包括单独的一个数或字母)几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。
②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。
划分代数式类别时,是从外形来看。
如,初中数学复习提纲 =x, 初中数学复习提纲=│x│等。
4.系数与指数区别与联系:①从位置上看;②从表示的意义上看5.同类项及其合并条件:①字母相同;②相同字母的指数相同合并依据:乘法分配律6.根式表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别:初中数学复习提纲、初中数学复习提纲是根式,但不是无理式(是无理数)。
7.算术平方根⑴正数a的正的平方根(初中数学复习提纲[a≥0—与“平方根”的区别]);⑵算术平方根与绝对值① 联系:都是非负数,初中数学复习提纲=│a│②区别:│a│中,a为一切实数; 初中数学复习提纲中,a为非负数。
8.同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。
把分母中的根号划去叫做分母有理化。
初中数学复习提纲9.指数⑴ ( 初中数学复习提纲—幂,乘方运算)① a>0时,初中数学复习提纲>0;②a<0时,初中数学复习提纲>0(n是偶数),初中数学复习提纲<0(n是奇数)⑵零指数:初中数学复习提纲 =1(a≠0)负整指数:初中数学复习提纲 =1/ 初中数学复习提纲(a≠0,p是正整数)二、运算定律、性质、法则1.分式的加、减、乘、除、乘方、开方法则2.分式的性质⑴基本性质:初中数学复习提纲 = 初中数学复习提纲(m≠0)⑵符号法则:初中数学复习提纲⑶繁分式:①定义;②化简方法(两种)3.整式运算法则(去括号、添括号法则)4.幂的运算性质:① 初中数学复习提纲· 初中数学复习提纲 = 初中数学复习提纲;② 初中数学复习提纲÷ 初中数学复习提纲 = 初中数学复习提纲;③ 初中数学复习提纲 = 初中数学复习提纲;④ 初中数学复习提纲 = 初中数学复习提纲初中数学复习提纲;⑤ 初中数学复习提纲技巧:初中数学复习提纲5.乘法法则:⑴单×单;⑵单×多;⑶多×多。
第4章 代数式 知识梳理-浙教版七年级数学上册章节复习(word版)
代数式知识梳理一、代数式基础1.用字母表示数用字母表示数,可以简明地表达一些一般的数量和数量关系,即把问题中与数量有关的语句,用含数、字母和运算符号的式子表示出来.2.代数式用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接所成的式子,叫做代数式,单独的一个数或一个字母也是代数式.【注】代数式中不含“=”、“>”、“<”、“≠”等符号,如33x =,33x >,33x ≠等都不是代数式.3.列代数式在解决实际问题时,常常先把问题中与数量有关的词语用代数式表示出来,即列出代数式,使问题变得简洁,更具一般性.【注1】代数式的书写规范:(1)字母与数字或字母与字母相乘时,通常把乘号写成“· ”或省略不写;(2)除法运算一般写成分数的形式;(3)字母与数字相乘时,通常把数字写在字母的前面;(4)字母前面的数字是分数的,如果既能写成带分数又能写成假分数,一般写成假分数的形式;(5)如果字母前面的数字是1或-1,“1”通常省略不写,如1×ab 写作ab ,-1×ab 写作-ab ;(6)相同字母的积用乘方表示;(7)在实际问题需要用单位时,如果代数式中含加、减运算,则要把整个式子用括号括起来再写单位,否则可直接写单位.【注2】列代数式的步骤(1)读懂题意,弄清其中的数量关系,抓住题目中表示运算关系的关键词,如和、差、积、商、比、倍、分、大、小、增加了、增加到、减少、几分之几等.(2)分清运算顺序,注意关键性的断句及括号的恰当使用.4.代数式的值一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值.【注】求代数式的值的方法和一般步骤方法:一是直接代入法,二是整体代入法.步骤:(1)代入;用数值代替代数式里的字母;(2)计算:按照代数式指明的运算,计算结果.二、整式1.单项式(1)单项式的概念:表示数与字母或字母与字母的积式子叫单项式,特别地,单独的一个数或一个字母也是单项式.巧记:单项式中“只含乘或乘方,不含加减”.(2)单项式的系数:单项式中的数字因数叫做这个单项式的系数.【注】①单项式的系数包括符号;②当单项式的系数是1或-1时,“1”通常省略不写;当单项式的系数是带分数时,通常化成假分数;③圆周率π是常数,单项式中出现π时应看作系数.(3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数.【注】单项式的次数是指单项式中所有字母的指数和,不包括系数的指数,单独一个非零的数是零次单项式.2.多项式(1)多项式的概念:几个单项式的和叫做多项式.(2)多项式的项:多项式中的每个单项式叫做多项式的项,不含字母的项叫做常数项.【注】①一个多项式含有几项,就叫几项式,如:2627x x --是一个三项式.②多项式的每一项都包括它前面的符号.(3)多项式的次数:多项式中次数最高项的次数,叫做这个多项式的次数.(4)升幂排列与降幂排列:为便于多项式的运算,可以用加法交换律将多项式中各项按照某个字母的指数的大小顺序重新排列;降幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来;升幂排列:按某一个字母的指数从小到大的顺序排列起来.如:多项式2x 3y 2-xy 3+21x 2y 4-5x 4-6是六次五项式,按x 的降幂排列为-5x 4+2x 3y 2+21x 2y 4-xy 3-6,在这里只考虑x 的指数,而不考虑其它字母;按y 的升幂排列为-6-5x 4+2x 3y 2-xy 3+21x 2y 4. 【注】①将多项式各项重新排列后还是多项式的形式,各项的位置发生变化,其他都不变; ②各项移动时要连同它前面的符号一起移动;③某项前的符号是“+”,它在第一项位置时,“+”可省略,在其他位置时不能省略.3.整式:单项式与多项式统称为整式.【注】所有的整式的分母中不含字母.三、整式的加减运算1.同类项:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项.【注】①判断几个项是否是同类项有两个条件:①所含字母相同;②相同字母的指数分别相等.同时具备这两个条件的项是同类项,二者缺一不可.②同类项与系数无关,与字母的排列顺序无关.2.合并同类项(1)概念:把多项式中的同类项合并成一项,叫做合并同类项.(2)法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变.(3)步骤:合并同类项的依据是乘法的分配律逆用,一般步骤如下:①准确找出同类项;②利用法则,系数跟系数相加,字母和字母的指数不变;③写出结果,不要漏项.【注】如果两个同类项的系数互为相反数,合并同类项后,结果为0;3.去括号(1)去括号法则括号前面是“+”,把括号和它前面的“+”去掉,括号内各项都不改变符号;括号前面是“-”,把括号和它前面的“-”去掉,括号内各项都改变符号.(2)添括号法则所添括号前面是“+”,括到括号里的各项都不改变符号;所添括号前面是“-”,括到括号里的各项都改变符号.4.整式的加减(1)步骤:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.(2)结果要求:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.。
七年级数学上册代数式知识点复习及练习
七年级数学上册代数式知识点复习及练习知识点1代数式 1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
2、代数式求值的一般步骤:(1)代数式化简(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
知识点2、单项式的概念式子x 3,m t xy a ---,6.2,,32它们都是数或字母的积,象这样的式子叫做单项式, 单独的一个数或一个字母也是单项式。
注意:单项式是一种特殊的式子,它包含一种运算、三种类型。
一种运算是指数与字母、字母与字母之间只能是乘法的一种运算,不能有加、减、除等运算符号;三种类型是指:一是数字与字母相乘组成的式子,如ab 2;二是字母与字母组成的式子,如3xy ;三是单独的一个数或字母,如m a ,2-,。
知识点3、单项式的系数单项式中的数字因数叫做这个单项式的系数。
注意:(1)单项式的系数可以是整数,也可能是分数或小数。
如42x 的系数是2;3ab 的系数是31,2.7m 的系数是2.7。
(2)单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号, 如-()xy 2的系数是-2(3)对于只含有字母因素的单项式,其系数是1或-1,不能认为是0,如-2xy 的系数是-1;2xy 的系数是1。
(4)表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。
如2πxy 的系数就是2π知识点4、单项式的次数一个单项式中,所有字母的指数和叫做这个单项式的次数。
注意:(1)计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况。
如单项式z y x 342的次数是字母z y x ,,的指数和,即4+3+1=8,而不是7次,应注意字母Z 的指数是1而不是0.(2)单项式是一个单独字母时,它的指数是1,如单项式m 的指数是1,单项式是单独的一个常数时,一般不讨论它的次数。
初中数学代数式知识点总复习含答案解析
初中数学代数式知识点总复习含答案解析一、选择题1.下列说法正确的是()A .若 A 、B 表示两个不同的整式,则A B 一定是分式 B .()2442a a a ÷=C .若将分式xy x y+中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍 D .若35,34m n ==则2532m n -= 【答案】C【解析】【分析】根据分式的定义、幂的乘方、同底数幂相除、分式的基本性质解答即可.【详解】A. 若 A 、B 表示两个不同的整式,如果B 中含有字母,那么称A B 是分式.故此选项错误. B. ()244844a a a a a ÷=÷=,故故此选项错误.C. 若将分式xy x y+中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍,故此选项正确. D. 若35,34m n ==则()22253332544m n m n -=÷=÷=,故此选项错误. 故选:C【点睛】本题考查的是分式的定义、幂的乘方、同底数幂相除、分式的基本性质,熟练掌握各定义、性质及运算法则是关键.2.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;已知按一定规律排列的一组数:250、251、252、、299、2100,若250=a ,用含a 的式子表示这组数的和是( )A .2a 2-2aB .2a 2-2a -2C .2a 2-aD .2a 2+a【答案】C【解析】【分析】由等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,得出规律:2+22+23+…+2n =2n+1-2,那么250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249),将规律代入计算即可.【详解】解:∵2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…∴2+22+23+…+2n=2n+1-2,∴250+251+252+…+299+2100=(2+22+23+...+2100)-(2+22+23+ (249)=(2101-2)-(250-2)=2101-250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2-a.故选:C.【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1-2.3.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(ab)2=ab2【答案】C【解析】试题解析:A.a2与a3不是同类项,故A错误;B.原式=a5,故B错误;D.原式=a2b2,故D错误;故选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.4.如果多项式4x4+ 4x2+A是一个完全平方式,那么A不可能是().A.1 B.4 C.x6D.8x3【答案】B【解析】【分析】根据完全平方式的定义,逐一判断各个选项,即可得到答案.【详解】∵4x4+ 4x2+1=(2x+1)2,∴A=1,不符合题意,∵4x4+ 4x2+ 4不是完全平方式,∴A=4,符合题意,∵4x4+ 4x2+x6=(2x+x3)2,∴A= x 6,不符合题意,∵4x 4+ 4x 2+8x 3=(2x 2+2x )2,∴A=8x 3,不符合题意.故选B .【点睛】本题主要考查完全平方式的定义,熟练掌握完全平方公式,是解题的关键.5.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )A .20B .27C .35D .40【答案】B【解析】 试题解析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n 个图形中面积为1的正方形有2+3+4+…+(n+1)=(3)2n n +个, 则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选B .考点:规律型:图形变化类.6.下列运算正确的是()A .336a a a +=B .632a a a ÷=C .()235a a a -⋅=-D .()336a a = 【答案】C【解析】【分析】分别求出每个式子的值,3332a a a +=,633a a a ÷=,()235a a a -⋅=-,()339a a =再进行判断即可.解:A: 3332a a a +=,故选项A 错;B :633a a a ÷=,故选项B 错;C :()235aa a -⋅=-,故本选项正确; D.:()339a a =,故选项D 错误.故答案为C.【点睛】本题考查了同底数幂的乘除,合并同类项,幂的乘方和积的乘方的应用;掌握乘方的概念,即求n 个相同因数的乘积的运算叫乘方,乘方的结果叫做幂;分清()22n n a a -=,()2121n n a a ++-=-.7.(x 2﹣mx +6)(3x ﹣2)的积中不含x 的二次项,则m 的值是( )A .0B .23C .﹣23D .﹣32 【答案】C【解析】试题解析:(x 2﹣mx+6)(3x ﹣2)=3x 3﹣(2+3m )x 2+(2m+18)x ﹣12,∵(x 2﹣mx+6)(3x ﹣2)的积中不含x 的二次项,∴2+3m=0,解得,m=23-, 故选C .8.下列运算正确的是( )A .2235a a a +=B .22224a b a b +=+()C .236a a a ⋅=D .2336()ab a b -=- 【答案】D【解析】【分析】根据合并同类项法则、完全平方公式、同底数幂乘法法则、积的乘方法则逐一进行计算即可得.【详解】A. 235a a a +=,故A 选项错误;B. 222244a b a ab b +=++(),故B 选项错误;C. 235a a a ⋅=,故C 选项错误;D. 2336()ab a b -=-,正确,【点睛】本题考查了整式的运算,涉及了合并同类项、完全平方公式、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.9.在长方形内,若两张边长分别为和()的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形总未被这两张正方形纸片覆盖的部分用阴影表示,若图1中阴影部分的面积为,图2中阴影部分的面积和为,则关于,的大小关系表述正确的是( )A .B .C .D .无法确定 【答案】A【解析】【分析】 利用面积的和差分别表示出,,利用整式的混合运算计算他们的差即可比较.【详解】 =(AB-a )·a+(CD-b )(AD-a )=(AB-a )·a+(AD-a )(AB-b )=(AB-a )(AD-b )+(CD-b )(AD-a )=(AB-a )(AD-b )+(AB-b )(AD-a ) ∴-=(AB-a )(AD-b )+(AB-b )(AD-a )-(AB-a )·a-(AD-a )(AB-b )=(AB-a )(AD-a-b)∵AD <a+b , ∴-<0, 故选A.【点睛】此题主要考查此题主要考查整式的运算,解题的关键是熟知整式的乘法法则.10.已知a +b +c =1,22223+-+=a b c c ,则ab 的值为( ).A .1B .-1C .2D .-2【解析】【分析】将a +b +c =1变形为a +b =1- c ,将22223+-+=a b c c 变形为222221+=+--a b c c ,然后利用完全平方公式将两个式子联立即可求解.【详解】∵22223+-+=a b c c∴()222221=12+=--+-a b c c c∵a +b +c =1∴1+=-a b c∴()()221+=-a b c∴()2222+=+-a b a b展开得222222++=+-a b ab a b∴1ab =-故选B .【点睛】本题考查完全平方公式的应用,根据等式特点构造完全平方式是解题的关键.11.下列运算正确的是( )A .426x x x +=B .236x x x ⋅=C .236()x x =D .222()x y x y -=-【答案】C【解析】试题分析:4x 与2x 不是同类项,不能合并,A 错误; 235x x x ⋅=,B 错误;236()x x =,C 正确;22()()x y x y x y -=+-,D 错误.故选C .考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;因式分解-运用公式法.12.多项式2a 2b ﹣ab 2﹣ab 的项数及次数分别是( )A .2,3B .2,2C .3,3D .3,2【答案】C【解析】【分析】多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.2a 2b ﹣ab 2﹣ab 是三次三项式,故次数是3,项数是3.故选:C.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.13.已知单项式2m 13a b -与n 7a b -互为同类项,则m n +为( )A .1B .2C .3D .4【答案】D【解析】【分析】根据同类项的概念求解.【详解】解:Q 单项式2m 13a b -与7a b n -互为同类项, n 2∴=,m 11-=,n 2∴=,m 2=.则m n 4+=.故选D .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.14.将(mx +3)(2﹣3x )展开后,结果不含x 的一次项,则m 的值为( ) A .0B .92C .﹣92D .32 【答案】B【解析】【分析】根据多项式乘以多项式的法则即可求出m 的值.【详解】解:(mx +3)(2-3x )=2mx -3mx 2+6-9x=-3mx 2+(2m -9)x +6由题意可知:2m -9=0,∴m =92故选:B .【点睛】本题考查多项式乘以多项式,解题的关键是熟练运用整式的运算法则,本题属于基础题型.15.下列运算正确的是( )A .2352x x x +=B .()-=g 23524x x xC .()222x y x y +=-D .3223x y x y xy ÷=【答案】B【解析】【分析】A 不是同类项,不能合并,B 、D 运用单项式之间的乘法和除法计算即可,C 运用了完全平方公式.【详解】A 、应为x 2+x 3=(1+x )x 2;B 、(-2x )2•x 3=4x 5,正确;C 、应为(x+y )2= x 2+2xy+y 2;D 、应为x 3y 2÷x 2y 3=xy -1.故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,完全平方公式,单项式除单项式,熟练掌握运算法则和性质是解题的关键.16.下列运算正确的是( )A .236a a a ⋅=B .222()ab a b =C .()325a a =D .224a a a += 【答案】B【解析】【分析】根据积的乘方运算法则和同底数幂的运算法则分别计算即可解答.【详解】解:A. 235a a a ⋅=,故A 错误;B. 222()ab a b =,正确;C. ()326a a =,故C 错误;D. 2222a a a +=,故D 错误.故答案为B .【点睛】本题主要考查了积的乘方和同底数幂的运算运算法则,掌握并灵活运用相关运算法则是解答本题的关键.17.图(1)是一个长为2a ,宽为2()b a b >的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .abB .2()a b +C .2()a b -D .22a b -【答案】C【解析】【分析】 图(2)的中间部分是正方形,边长为a-b ,根据图形列面积关系式子即可得到答案.【详解】中间部分的四边形是正方形,边长为:a+b-2b=a-b ,∴面积是2()a b -,故选:C.【点睛】此题考查完全平方公式的几何背景,观察图形得到线段之间的关系是解题的关键.18.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1【答案】B【解析】【详解】 ∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,,…,, 下边三角形的数字规律为:1+2,,…,, ∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.19.计算(-2)2009+(-2)2010的结果是()A.22019 B.22009 C.-2 D.-22010【答案】B【解析】(-2)2009+(-2)2010=(-2)2009+(-2)2009+1=(-2)2009+(-2)2009×(-2)=(-2)2009×[1+(-2)]=-22009×(-1)=22009,故选B.20.如图,两个连接在一起的菱形的边长都是1cm,一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2014cm时停下,则它停的位置是()A.点F B.点E C.点A D.点C【答案】A【解析】分析:利用菱形的性质,电子甲虫从出发到第1次回到点A共爬行了8cm(称第1回合),而2014÷8=251……6,即电子甲虫要爬行251个回合,再爬行6cm,所以它停的位置是F点.详解:一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,从出发到第1次回到点A共爬行了8cm,而2014÷8=251……6,所以当电子甲虫爬行2014cm时停下,它停的位置是F点.故选A.点睛:本题考查了规律型:图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B、3x+2y=5xy
C、7x 2- 3x2 =4
D、 9a2b- 9ba2= 0
8、下面合并同类项正确的是(
) A.3x+2x 2=5x 3;
B.2a 2 b-a 2b=1; C.-ab-ab=0; D.-x
2y+x 2y=0
9、下列各组式中 , 为同类项的是 ( )A.5x 2y 与 -2x y2 B.4x
A. 与字母 a、 b 都有关 B. 只与 a 有关 C. 只与 b 有关
D.
2、当 k=________时 , 代数式 x6-5 kx4y 3- 4x6+ 1 x4y3+10 中不含 x4y3 项 . 5
与字母 a、b 都无关
2 . 1当 k=________ 时 , 代数式 x 2-8+ 1 xy-3y 2+5kxy 中不含 xy 项 . 5
3、观察下列算式: 21= 2、 22= 4、 23= 8、 24= 16、 55= 32、 26= 64、 27= 128、 28= 256,, 。观察后,用你所发现的
规律写出 223 的末位数字是
。
(二)、式的规律 1、百货大楼进了一批花布 , 出售时要在进价 ( 进货价格 ) 的基础上加一定的利润 , 其数量 x 与售价 y 如下表 :
x
3、如图所示 , 根据图中标明的尺寸 ,? 写出求图中阴影部分的面积 S的公式 , 并求当 x=3 时 , 阴影部分的面积 ( 取 3.14).
3 / 10
当 x= 1 时,(2x 2 - x - 1) - (x 2 - x - 1) (3x 2 - 3 1)
2
3
3
m-[ n-2m-(m-n)]
2 (1 5) 5 1 2 3 4 5 15
2
,,
123
n
。
并求 1 2 3
1000 的结果。
5、某市出租车收费标准是:起步价 10 元,可乘 3 千米; 3 千米到 5 千米,每千米价 1.3 元;超过 5 千米,每千米价
2.4 元。 (1)若某人乘坐了 x(x> 5)千米的路程,则他应支付的费用是多少? (2)若他支付了 15 元车费,你能算出他乘坐的
或 4 D.2
3. 若 - 3xm -1y4 与 1 x2y n+2 是类项 , 则 m=________;n=_______. 3
4. 已知 2axbn-1 与同 3a2 b2m(m 为正整数 ) 是同类项 , 那么 (2m-n) x=________.
R 与 2R
D.35 与 53
1 / 10
5. 当
2
2
x= 1 , y= 2
知识点五: 综合应用:
2 / 10
1、已知 2x2+xy=10,3y2+2xy=6, 求 4x2+8xy+9y2 的值 .
1.1已知 a2+2ab=-10, b2+2ab=16, 则 a2+4ab+b2=________,a 2-b 2=_______. 2、当 2a+3b=1 时, 8-4a-6b=_________
路程吗?
6、 A、 B 两家公司都准备向社会招聘人才,两家公司条件基本相同,只有工资待遇有如下差异:
A 公司年薪两万元,
每年加工龄工资 400 元, B 公司半年薪一万元,每半年加工龄工资 100 元,求 A、 B 两家公司,第 n 年的年薪分别是多
少,从经济角度考虑,选择哪家公司有利?
8 / 10
6、对代数式 a2+b2 的意义表达不确切的是(
)
A、 a、 b 的平方和 ;
B、 a 与 b 的平方的和 ;
C、 a2 与 b2 的和 ;
D、 a 的平方与 b 的平方的和
7、矩形的一边长为 a-2b ,另一边比第一边大 2a+b,则矩形的周长为 __________.
8、下列代数式的意义是 a,b 的平方和的是 ( ) A.(a+b) 2
, ,? 这些等式反映出自然数间某种规律 , 设 n 表示自然
4、观察下列各式 , 你会发现什么规律 : 3 × 5=15, 而 15=42-1 5 × 7=35, 而 35=62-1
,, 11 × 13=143, 而 143=122-1
,,
将你观察到的规律用只含一个字母的式子表示出来
__________.
1.2一根弹簧原来的长度是 10 厘米,当弹簧受到拉力 F 千克( F 在一定范围内)时,弹簧的长度用
关数据如下表:
拉力 F( kg ) 弹簧长度 l ( cm)
1
10+0.5
2
10+1
3
10+1.5
4
10+2
l 表示,测得有
思考:( 1)写出当 F=7 kg 时,弹簧的长度 l 为多少厘米 ?(2)写出拉力为 F 时,弹簧长度 l 与 F 的关系式 . ( 3)计算 当拉力 F=100 kg 时弹簧的长度 l 为多少厘米 ?
数量 x(m) 1
2
3
4
,,
售价 y( 元 ) 8+0.3 16+0.6 24+0.9 32+1.2 +,, 下列用数量 x 表示售价 y 的关系中 , 正确的是 ( )
1.1小明坐计程车,发现:请用 x 表示 y. 路程 x( km) 费用 y 元
2
5
6 / 10
2.5
5+1
3
5+2
3.5
5+3
2(5 a2-7ab+9 b2)-3(14
a2-2ab+3b 2),其中
3 a= , b
2 -
4
3
求 2x 2 - 0.75 1 x与-10- x 2 3x 的差 2
2(x 2-xy)-3(2x 2-3xy)-2 [ x2-(2x 2-xy+y 2) ] .
3a2b-[4ab 2-5(ab 2+ 5 a2b)- 3 ab2]-a 2b
第三章知识点复习
知识点一:代数式
1、下列说法中错误的是 ( ) A 、 x 与 y 平方的差是 x2-y 2 B. x C 、x 减去 y 的 2 倍所得的差是 x-2y
加上 y 除以 x 的商是 x+ y x
D 、x 与 y 和的平方的
2 倍是 2(x+y )2
2、 y 与 10 的积的平方,用代数式表示为 ________
m- { 3n-4m+[ m-5(m-n)+m ]}
4 / 10
已知 A=x3-5 x2,B=x2–11x+6 ,求⑴ A+2B; ⑵当 x=-1 时,求 A+5B的值。
(2a2-1+2a)-3(a-1+a2)
已知 A=4a2+ 5b,B=-3 a2- 2b,求 2A- B 的值,其中 a=- 2, b= 1.
2、研究下列算式 , 你可以发现一定的规律 : 1 × 3+1=4=22,2 × 4+1=9=3,33 × 5+1=16=2,44 × 6+1=25=2?5,, 请你将找出的规律用代数式表示出来
:___________.
3、观察下列等式 :9-1=8,16-4=12,25-9=16,36-16=20,49-25=24 数 , 用关于 n 的等式表示出来 __________.
D.a 2+b2
除以 a 的商与 2 的差 x2-y 2 D. 2x-y 2
知识点二:整式单项式:源自,系数:,次数:,
多项式:
,项:
,次数:
,常数项:
,
1、下列说法正确的是(
)
A. 1 π x 2 的系数为
1
;
3
3
2、代数式 6 x3 xy 5
知识点三: 同类项
B. 1 xy 2 的系数为
1
x
2
2
y 2 中共有
K=______时 ,3 Hx2y 与
2
k
x y 是同类项
, 它们合并结果为
_________.
5
6、已知 m是绝对值最小的有理数
,
且 -2
am+
y+1
b
与
3axb3 是同类项
,? 试求多项式
2x3-3xy+6y 2-3mx3+mxy-9my2 的值 .
7、下列合并同类项正确的有(
)A、2x+4x=8x2
3
2
5xy2-{2x 2y-[3x y2-(4xy 2-2xy 2)]} 其中 x=2,y=-1.
2( x2 y xy) 3( x2 y xy) 4x2 y其中 x 1, y 1
已知 (a-2) 2+(b+1)2=0, 求代数式 3a2b+ab2-3 a2b+5ab+ab2-4ab+ 1 a 2b . 2
4 . 1研究下列等式,你会发现什么规律? 1× 3+1=4=22
2
2× 4+1=9=3
7 / 10
3× 5+1=16=42 4× 6+1=25=52
,
设 n 为正整数,请用 n 表示出规律性的公式来 .
4.2观察下列等式,并回答问题:
(1 3) 3 123 6
2 (1 4) 4 1 2 3 4 10
3、两堆棋子, 将第一堆的 3 个棋子移动到第二堆去之后,第二堆的棋子数就成为第一堆棋子的
3 倍,设第一堆原有 P
个棋子,第二堆原有的棋子为 ________
3
4、一本书有 m页,第一天读了全书的