单稳态触发器的应用——噪声消除电路.

合集下载

数字电子电路分析与应用)4-3单稳态触发器

数字电子电路分析与应用)4-3单稳态触发器
稳态
触发器在暂稳态结束后,会进入 一个稳定的状态,此时触发器的 输出状态保持不变。
触发器的波形变换功能
01
02
03
脉冲整形
利用触发器可以将不规则 的输入信号转换成具有特 定波形和频率的输出信号。
信号分离
可以将一个连续的输入信 号分离成多个脉冲信号, 实现信号的分离和整形。
信号分频
利用触发器可以将输入信 号的频率降低,实现信号 的分频。
输出脉冲宽度稳定,受电源电压和温度变化影响较小。
单稳态触发器的优势与不足
• 输出脉冲幅度大,驱动能力强。
单稳态触发器的优势与不足
不足
输出脉冲的上升沿和下降 沿不陡峭,可能会影响后 续电路的工作。
输出脉冲宽度固定,无法 调节。
电路的延迟时间受元件参 数影响较大,不易精确控 制。
单稳态触发器的发展趋势
恢复时间
指从输出状态改变后,输出回到稳定状态所需的时间。
影响因素
触发器的电路结构和参数,以及上一次触发后的余振影响。
选择依据
根据实际应用需求,选择具有较短恢复时间的单稳态触发器,以 提高工作效率。
重复频率
重复频率
指单位时间内触发器能够重复工 作的次数。
影响因素
触发器的电路结构和参数,以及 电源电压和环境温度等外部条件。
03 单稳态触发器的应用
定时器
定时器
单稳态触发器可以用于定时器电路, 通过设定输入脉冲的宽度和延迟时间 ,实现定时控制。
定时器应用
定时器在各种电子设备和系统中有着 广泛的应用,如微波炉、烤箱、洗衣 机等家电的计时功能,以及计算机和 通信设备的时钟信号等。
脉冲整形
脉冲整形
单稳态触发器可以对输入脉冲进行整形,通过调整输出脉冲的宽度和形状,以 满足特定电路的要求。

单稳态触发器

单稳态触发器
单元2 单稳态触发器
《数字电子技术》
2.1 微分型单稳态触发器 2.2 集成单稳态触发器 2.3 单稳态触发器的应用
单元2 单稳态触发器
引言
《数字电子技术》
单稳态触发器是输出有一个稳态和一个暂稳态的电路。 它不同于触发器的双稳态。单稳态触发器在无外加触发信 号时处于稳态。在外加触发信号的作用下,电路从稳态进 入到暂稳态,经过一段时间后,电路又会自动返回到稳态。 暂稳态维持时间的长短取决于电路本身的参数,与触发信 号无关。单稳态触发器在触发信号的作用下能产生一定宽 度的矩形脉冲,广泛用于数字系统中的整形、延时和定时。
单元2 单稳态触发器
2.1 微分型单稳态触发器
1、工作原理
《数字电子技术》
(1)稳态
在无触发信号(uI为高电平)且R< ROFF时,G2门关闭,uO2输出高电平;G1门 全1出0,uO1为低电平,电路处于稳态。
工作波形
单元2 单稳态触发器
2.1 微分型单稳态触发器
1、工作原理
《数字电子技术》
(2)暂稳态
tW ≈ 0.7RC 在应用微分型单稳态触发器时对触发信号uI的脉宽和
周期要有一定的限制。即要求脉宽要小于暂稳态时间,周 期要大于暂稳态加恢复过程时间,这样才能保证电路正常 工作。
单元2 单稳态触发器
2.2 集成单稳态触发器
《数字电子技术》
集成单稳态触发器根据工作状态的不同可分为不可重复触发和可重复
逻辑符号
引脚排列
单元2 单稳态触发器
2.2 集成单稳态触发器
《数字电子技术》
74LS121的 功能表
1、触发脉冲 74LSl21有两种触发方式,可以上升沿触发,也可下降沿触发。
(1)上升沿触发时,触发脉冲应从B端输入,且A1和A2中至少有一 个为低电平。此时,电路由稳态翻转W延时即可得一负脉冲 。因此利

单稳态触发器实验报告

单稳态触发器实验报告

单稳态触发器实验报告单稳态触发器实验报告引言单稳态触发器是一种重要的电子元件,广泛应用于数字电路和计算机科学领域。

本实验旨在通过实际操作和观察,深入理解单稳态触发器的工作原理和应用。

实验目的1. 学习单稳态触发器的基本原理;2. 掌握单稳态触发器的实际应用;3. 理解单稳态触发器在数字电路中的作用。

实验器材1. 单稳态触发器芯片;2. 电路板;3. 电源;4. 示波器;5. 电阻、电容等元件。

实验步骤1. 搭建单稳态触发器电路:将单稳态触发器芯片连接到电路板上,并根据电路图连接所需的电阻、电容等元件。

2. 接通电源:将电路板连接到电源上,并调节电源的电压和电流。

3. 示波器连接:将示波器的探头连接到电路板上,以便观察电路的波形。

4. 实验观察:通过改变电路中的元件数值和连接方式,观察单稳态触发器的工作状态和输出波形的变化。

5. 记录实验数据:记录每次实验的电路参数、观察到的波形和实验结果。

实验结果与分析在实验过程中,我们通过改变电容值和电阻值,观察到了单稳态触发器的工作状态和输出波形的变化。

当电容值较小或电阻值较大时,触发器的输出波形呈现较长的稳态,即保持在高电平或低电平的时间较长。

而当电容值较大或电阻值较小时,触发器的输出波形呈现较短的稳态,即保持在高电平或低电平的时间较短。

通过实验观察和数据记录,我们发现单稳态触发器在数字电路中具有重要的应用。

例如,在计算机的存储器中,单稳态触发器可以用于控制存储单元的写入和读取操作,确保数据的正确传输和存储。

此外,在通信系统中,单稳态触发器也被广泛应用于数据的解码和编码过程中,提高数据传输的可靠性和稳定性。

结论通过本次实验,我们深入了解了单稳态触发器的工作原理和应用。

实验结果表明,单稳态触发器的输出波形受电容和电阻的数值影响,可以根据实际需求进行调节和控制。

单稳态触发器在数字电路和计算机科学领域具有重要的作用,能够提高数据传输的可靠性和稳定性。

实验中我们还发现,单稳态触发器的稳态时间和触发时间与电容和电阻的数值相关,这为进一步的研究和应用提供了指导。

单稳态触发器 (2)

单稳态触发器 (2)

单稳态触发器概述单稳态触发器(Monostable Multivibrator),又称单谐振触发器或单稳态多谐振器,是一种基本的数字电路元件。

它在输入触发信号的边沿出现时,会在一定的时间间隔内产生一个输出脉冲。

单稳态触发器有广泛的应用,特别是在数字电路中的计算机系统、通信系统和控制系统中,扮演着重要的角色。

工作原理单稳态触发器由一个RS触发器加上一个RC电路组成。

当输入端的触发信号进行边沿触发时,RS触发器的状态发生改变,导致输出信号产生脉冲。

而RC电路则决定了脉冲的宽度。

触发信号在上升沿或下降沿时,通过一个比较器来将信号转换为高电平或低电平。

触发信号的上升沿或下降沿引起比较器输出瞬时反转,导致RS触发器的状态发生改变。

RS触发器的状态改变会导致输出脉冲的产生。

在输出脉冲的持续时间方面,RC电路起到了关键的作用。

RC电路由一个电阻和一个电容组成,当输入端的触发信号引起RS触发器状态改变时,电容开始充电,通过选择合适的电阻和电容值,可以控制电容充电的时间,从而控制输出脉冲的持续时间。

应用单稳态触发器在数字电路中有着广泛的应用。

常见的应用包括: 1. 脉冲生成器:单稳态触发器能够生成一定宽度的脉冲信号,可以用于时序控制和时序检测。

2. 边沿检测器:单稳态触发器可以检测输入信号的边沿,用于时序检测。

3. 延时器:通过调整RC电路的参数,可以实现不同的延时效果,在单片机、微控制器等系统中常用于延时应用。

4. 脉宽测量器:利用单稳态触发器的特性,可以对输入信号的脉冲宽度进行测量。

优点和缺点单稳态触发器具有以下优点: - 可靠性高:由于是基于硅片制造的集成电路,因此具有高可靠性和稳定性。

- 可控性强:通过调整RC电路的参数,可以灵活控制输出脉冲的宽度和时间间隔。

- 适用范围广:可以应用于不同的数字电路设计中,满足不同的需求。

然而,单稳态触发器也存在一些缺点: - 成本较高:由于是集成电路,制造工艺复杂,因此成本相对较高。

单稳态触发器的应用

单稳态触发器的应用

单稳态触发器的应用1.定时由于单稳态触发器能产生肯定宽度tW的矩型输出脉冲,如利用这个矩形脉冲作为定时信号去掌握某电路,可使其在tW时间内动作或不动作。

例如,利用单稳态输出的矩形脉冲作为与门输入的掌握信号如图1,则只有这个矩形波的tW时间内,信号vA才有可能通过与门。

图1 单稳态触发器作定时电路的应用2.延时单稳态触发器的延时作用不难从图所示微分型单稳态触发器的工作波形看出。

图中输出端v01的上升沿相对输入信号vI的上升沿延迟了tW一段时间。

单稳态的延时作用常被应用于时序掌握。

3.多谐振荡器利用两个单稳态触发器可以构成多谐振荡器。

由两片74121集成单稳态触发器组成的多谐振荡器如图2所示,图中开关S为振荡器掌握开关。

合上电源时,开关S是合上的,电路处于Q1=0,Q2=0状态,将开关S打开,电路开头振荡,其工作过程如下:在起始时,单稳态触发器Ⅰ的A1为低电平,开关S打开瞬间,B端产生正跳变,单稳态Ⅰ被触发,Q1输出正脉冲,其脉冲宽度0.7R1C1,当单稳态Ⅰ暂稳态结束时,Q1的下跳沿触发单稳态Ⅰ,Q2端输出正脉冲,此后,Q2的下跳沿又触发单稳态Ⅰ,此后周而复始地产生振荡,其振荡周期为T =0.7( R1C1+R2C2)图2 由单稳态触发器构成的多谐振荡器4. 噪声消退电路利用单稳态触发器可构成噪声消退电路(或称脉冲鉴别电路)。

通常噪声多表现为尖脉冲,宽度较窄,而有用的信号都具有肯定宽度。

利用单稳态电路,将输出脉宽调整到大于噪声宽度而小于信号脉宽,即可消退噪声。

由单稳态触发器组成的噪声消退电路及波形如图3所示。

图3(a) 噪声消退电路规律图图3(b) 噪声消退电路波形图图中,输入信号接至单稳态触发器的输入端和D触发器的数据输入端及直接置0端。

由于有用的信号大于单稳态输出脉宽,因此单稳态Q 输出上升沿使D触发器至1,而当信号消逝后,D触发器被清0。

若输入中含有噪声,其噪声前沿使单稳态触发翻转,但由于单稳态输出脉宽大于噪声宽度,故单稳态Q输出上升沿时,噪声已消逝,从而在输出信号中消退了噪声成分。

单稳态触发器特点及应用

单稳态触发器特点及应用

单稳态触发器特点及应用单稳态触发器是一种基本的数字逻辑电路元件。

它有着独特的特点和广泛的应用。

单稳态触发器有两个稳定的状态,分别被称为"稳定1态"和"稳定0态"。

当输入信号发生边沿变化时,触发器会产生一次性的输出脉冲,将自己的状态从一个稳定状态转换至另一个稳定状态,然后再次保持在此状态,直到下一个输入信号的到来。

单稳态触发器有以下特点:1. 基本功能:单稳态触发器可以将一个瞬时的输入信号转换为一个确定的固定时间宽度的输出脉冲。

这个输出脉冲的时间宽度由触发器内部的电路元件和外部的电容、电阻等元件决定。

2. 稳定的状态:单稳态触发器有稳定1态和稳定0态两种状态,这两种状态之间可以通过输入信号触发器的边沿变化来转换。

3. 输出脉冲:在输入信号变化时,单稳态触发器会产生一次性的输出脉冲。

这个脉冲的宽度是固定的,不受输入信号变化的时间长短影响。

4. 延迟时间:单稳态触发器具有一个延迟时间,即输入信号发生变化到输出脉冲出现的时间间隔。

这个延迟时间是固定的,不受输入信号的频率和幅度的影响。

单稳态触发器有广泛的应用:1. 脉冲生成:单稳态触发器可以将一个瞬态输入信号转换为一个固定宽度的脉冲。

这个功能在很多电子设备中都有应用,例如数字逻辑电路中的时序控制、计数器的启动、断电、复位等。

2. 时序控制:单稳态触发器可以用来实现时序控制。

通过控制输入信号的变化时间和触发器自身的延迟时间,可以实现对电路的时序控制,例如在特定时间间隔内产生脉冲或者使特定电路模块按照固定的顺序工作。

3. 双稳态触发:单稳态触发器可以用来实现双稳态触发器。

通过将两个单稳态触发器串联,可以构建一个双稳态触发器。

在数字电路中,双稳态触发器用来存储和传输数字信号。

4. 电路保护:单稳态触发器可以用于电路保护。

当输入信号超过设定的阈值电平时,触发器会产生输出脉冲作为保护信号,告知其他电路模块需要停止工作或者采取其他保护措施。

单稳态触发器课程设计

单稳态触发器课程设计

单稳态触发器 课程设计一、课程目标知识目标:1. 学生能理解单稳态触发器的基本概念,掌握其工作原理;2. 学生能描述单稳态触发器的电路结构,解释其触发方式及输出特性;3. 学生能运用所学知识分析实际电路中单稳态触发器的应用。

技能目标:1. 学生能通过实验操作,熟练使用示波器、信号发生器等仪器观察单稳态触发器的工作状态;2. 学生能运用Multisim等软件进行单稳态触发器电路的设计与仿真;3. 学生能运用所学知识解决实际问题,具备一定的创新能力和动手能力。

情感态度价值观目标:1. 学生通过学习单稳态触发器,培养对电子技术的兴趣,提高学习积极性;2. 学生能认识到单稳态触发器在现实生活中的应用价值,增强理论联系实际的能力;3. 学生在学习过程中,培养团队合作精神,养成良好的学习习惯。

课程性质:本课程为电子技术基础课程,旨在让学生掌握单稳态触发器的基本原理和实际应用。

学生特点:初三学生,具有一定的物理基础和电子技术知识,对实验操作感兴趣,但需加强理论知识与实践能力的结合。

教学要求:结合课程性质和学生特点,注重理论与实践相结合,提高学生的实际操作能力和创新能力。

在教学过程中,关注学生的个体差异,因材施教,使学生在掌握基本知识的基础上,提高综合运用能力。

通过课程目标的分解,为后续教学设计和评估提供明确依据。

二、教学内容1. 单稳态触发器的基本概念与工作原理- 引导学生理解单稳态触发器的定义及其在数字电路中的应用;- 讲解单稳态触发器的工作原理,包括触发方式、稳态维持、输出特性等。

2. 单稳态触发器的电路结构与触发方式- 介绍常见的单稳态触发器电路结构,如RC电路、时钟控制等;- 分析各种触发方式的优缺点及适用场景。

3. 单稳态触发器的应用案例分析- 结合实际电路,讲解单稳态触发器在脉冲信号生成、整形、定时等方面的应用;- 分析单稳态触发器在实际应用中可能出现的问题及解决方法。

4. 实验操作与仿真- 安排学生进行单稳态触发器电路的搭建与调试;- 引导学生运用Multisim软件进行单稳态触发器电路的设计与仿真。

单稳态触发器与施密特触发器原理及应用

单稳态触发器与施密特触发器原理及应用

单稳态触发器与施密特触发器原理及应用1.单稳态触发器的原理:单稳态触发器,也称为单稳多谐振荡器,是一个能够在输入信号发生变化时,产生一个固定时间的输出脉冲的元件。

它有两个稳态,一个是触发态,另一个是稳定态。

在触发态时,输出保持一个较低的电平;在稳定态时,输出保持一个较高的电平。

当输入信号发生变化时,触发器进入触发态并产生一个固定宽度的输出脉冲,然后返回稳定态。

单稳态触发器的原理是通过RC电路的充放电过程实现的。

当输入信号变为高电平时,电容开始充电,直到电压达到了触发器的门限电压。

这时,触发器进入稳定态。

而当输入信号变为低电平时,电容开始放电,直到电压降到触发器的触发电平。

这时,触发器进入触发态并产生一个固定宽度的输出脉冲。

2.单稳态触发器的应用:-消抖器:将机械开关产生的抖动信号转换为一个稳定的输出信号。

-一次性多谐振荡器:使用单稳态触发器的稳定脉冲输出来控制多谐振荡器的频率,实现一个稳定的脉冲输出。

-电平传递:将一个短时脉冲信号转换为一个稳定的电平信号输出。

3.施密特触发器的原理:施密特触发器,又称为滞回比较器,是一种具有正反馈的比较器。

它的输入信号必须经过两个不同的阈值电平才能改变输出状态。

施密特触发器有两个稳态,一个是高稳态,另一个是低稳态。

当输入信号超过上阈值电平时,触发器从低稳态切换到高稳态;当输入信号低于下阈值电平时,触发器从高稳态切换到低稳态。

施密特触发器的原理是利用正反馈产生滞回特性。

当输入信号超过上阈值电平时,正反馈会加强这个变化,使得输出电平更快地从低电平切换到高电平。

而当输入信号降低到下阈值电平时,正反馈会加强这个变化,使得输出电平更快地从高电平切换到低电平。

4.施密特触发器的应用:施密特触发器常用于数字信号处理中的滤波和门控电路等应用。

具体应用包括:-模数转换器:将模拟信号转换为数字信号时,需要滤除输入信号中的噪声和抖动。

施密特触发器可以用来实现这个滤波功能。

-数字信号选择器:当多个数字信号输入时,施密特触发器可以用来实现对一些信号的优先级选择。

单稳态触发器电路图大全(555LM324晶体管时基电路)

单稳态触发器电路图大全(555LM324晶体管时基电路)

单稳态触发器电路图大全(555LM324晶体管时基电路)单稳态触发器电路图(一)由RC电路构成的单稳态触发器中,稳态到暂稳态需要输入触发脉冲,暂稳态的持续时间即脉冲宽度是由电路的阻容元件RC决定的,与输入信号无关。

单稳态触发器可以用于产生固定宽度的脉冲信号,主要用于定时、延时与整形、消除噪声等。

典型电路图:可产生如下图所示波形:单稳态触发器电路图(二)LM324组成的单稳态触发器见附图1。

此电路可用在一些自动控制系统中。

电阻R1、R2组成分压电路,为运放A1负输入端提供偏置电压U1,作为比较电压基准。

静态时,电容C1充电完毕,运放A1正输入端电压U2等于电源电压V+,故A1输出高电平。

当输入电压Ui变为低电平时,二极管D1导通,电容C1通过D1迅速放电,使U2突然降至地电平,此时因为U1》U2,故运放A1输出低电平。

当输入电压变高时,二极管D1截止,电源电压R3给电容C1充电,当C1上充电电压大于U1时,既U2》U1,A1输出又变为高电平,从而结束了一次单稳触发。

显然,提高U1或增大R2、C1的数值,都会使单稳延时时间增长,反之则缩短。

lm324中文资料下载pdf。

图2如果将二极管D1去掉,则此电路具有加电延时功能。

刚加电时,U1》U2,运放A1输出低电平,随着电容C1不断充电,U2不断升高,当U2》U1时,A1输出才变为高电平。

参考图2。

单稳态触发器电路图(三)下图所示为晶体管单稳态触发器电路它是由VT1,VT2两个晶体管交叉耦合组成,单稳态触发器VT1集电极与VT2基极之间由电容C1耦合,正是由于电容的耦合作用,使电路具有了单稳态的特性。

R4,R3是VT1的基极偏置电阻,R2是VT2的基极偏置电阻,R1,R5分别是两管的集电极电阻。

微分电路C2,R6和隔离二极管VD组成触发电路。

输出信号可以从两个晶体管的集电极取出,两管输出信号相反。

1、稳定状态单稳态触发器处于稳定状态时的情况如下图所示。

电源+VCC经R2为VT2提供基极偏流,VT2导通,其集电极电压为0V,VT1因无基极偏压而截至,其集电极电压为+VCC,电源+VCC经R1,VT2基极-发射极向电容C1充电,C1上的电压为左正右负,大小等于电源电压+VCC。

单稳态触发器的应用

单稳态触发器的应用

单稳态触发器的应用单稳态触发器顾名思义,单稳态触发器只有一个稳定状态,一个暂态。

没有触发脉冲时,触发器输出端可以保持的状态,就是稳态。

在触发脉冲作用下,单稳态触发器由稳态翻转到暂态,暂态保持一段时间后,将自动变回稳态,暂态维持的时间就是单稳态触发器的输出脉宽。

以双单稳态触发器CD4098为例:●CD4098是双单稳态触发器。

●外接电阻接在Rxcx(2脚)和Vdd之间●外接电容接在Cx1(1脚)和Rxcx(2脚)之间●+TR(4脚)和-TR(5脚)均是触发输入。

+TR表示前沿触发,-TR后沿触发。

用+TR输入时-TR接VDD 。

用-TR输入时候,+TR接0。

●RESET是复位引脚,RESET==0时,将Q1清零。

●Q1和/Q1是互补输出引脚,Q1的稳态为0,/Q1的稳态为1。

●当CX >=.01µF时候, TX =1/2RXCX●电阻RX最小为是5kΩ。

电容最大价是100µF.CD4098有两种触发模式,不可重复模式和可重复模式。

如果想触发器工作在在不可重复模式,输入为+TR时,将/Q连接到-TR。

如果输入为-TR,将Q连接到+TR。

工作原理:输入信号的正触发脉冲(或负触发脉冲)让触发器由稳态变成暂态,当输入脉冲的周期(τT)大于单稳态脉冲周期(τm),则触发器输出脉冲宽度为τm,周期为τT的PWM波。

当输入脉冲的周期(τT)小于或等于单稳态脉冲周期(τm)。

则触发器还没由暂态变回稳态时又被触发了,则触发器一直处于暂态,则输出一直为暂态电平(CD4098为高电平)带通滤波器:该带通滤波器由两个单稳态触发器和一个与门构成,单稳态触发器A输出脉宽等于输入频率上限的周期,单稳态触发器B的输出脉宽等于输入信号频率下限的周期,当输入信号频率高于上限是,A的反向输出/Q1==0,与门关闭。

当输入信号频率低于下限时候,B触发器的输出Q2=0,关闭与门。

当信号频率在所限定的频率范围内的时候,/Q1==1,Q2==1。

单稳态触发器的典型应用

单稳态触发器的典型应用

9.4.3 单稳态触发器的典型应用单稳态触发器广泛用于脉冲的产生、整形、定时、延时等场合。

一.脉冲的整形实际的数字系统中,脉冲的来源不同,其波形各异,例如,从传感器等检测设备上输出的脉冲信号,其波形本来就不整齐;信号在传输过程中如果受到外界干扰,会因干扰信号的叠加而变得不整齐;数字测量中,得到的脉冲信号也多种多样,等等。

而单稳态触发器能够把这种不规则的输入脉冲信号,整形为幅度和宽度都相同的矩形脉冲信号,其输出信号幅度 只由输出的高低电平决定,而脉冲宽度 只与 的大小有关,如图9.4.7所示。

图9.4.7 单稳态触发器的整形作用二.脉冲的延时数字系统中,有时需要将一个脉冲信号延迟一段时间后,再向后级电路发出滞后的脉冲信号,图9.4.8(a )所示电路,就是用不可重复触发型单稳态触发器74121实现的脉冲延时电路。

图9.4.8(b )为对应的工作波形。

图9.4.8 74121实现的脉冲延时电路(a )电路结构 (b )工作波形图9.4.8(a )所示电路中,初始脉冲信号为正向脉冲信号,两级74121均使用外接电阻,且第一级设置为上升沿触发,第二级设置为下降沿触发。

具体工作分析:根据第一级74121所外接 的大小,可得其输出脉冲 的脉冲宽度为W t C R 、m U I u 11 C R 、将作为第二级74121的下降沿触发信号输入,则当 的暂稳态1结束,回到稳态0时,触发第二级74121工作,以正向脉冲输出端作为输出端,则输出脉冲与原输入脉冲 一样,也是正向脉冲。

根据第二级74121所外接 的大小,可得其输出脉冲 的脉冲宽度为 对比电路的输入、输出脉冲可发现,两者虽然脉宽不同,但均为正向脉冲,且输出脉冲滞后时间就等于第一级74121的脉冲宽度,即三.脉冲的定时因为单稳态触发器能够输出一定宽度的矩形脉冲,如果利用此脉冲去控制一个后级电路,使之在有效脉冲期间工作,就等于对该电路起到了定时的作用。

图9.4.9 用555定时器构成的单稳态触发器实现的定时电路(a )电路结构 (b )工作波形=t R C 0.7W111Q 1Q 1Q u I u O ==t t R C 0.7d W111、R C 22=t R C 0.7W 222u O 采用555定时器实现单稳态触发器,脉冲定时电路的典型电路及工作波形如图9.4.9所示。

单稳态触发器工作原理

单稳态触发器工作原理

单稳态触发器工作原理
单稳态触发器是一种具有稳态和非稳态两种工作状态的数字逻辑电路。

在非稳态时,输入引发了一次输出。

在稳态时,输入不会引发输出,除非在输入发生变化时。

单稳态触发器可以用于生成延时脉冲、消除毛刺、处理不稳定的输入信号等应用。

单稳态触发器通常由两个互补的非门(也称为反相器)组成。

一个非门的输出连接到另一个非门的输入,并将该输入与一个稳态输入连接在一起。

这个稳态输入决定了单稳态触发器的状态,称为置位状态或复位状态。

在置位状态下,第一个非门的输出为高电平,将第二个非门的输入拉低。

这将导致第二个非门的输出保持在低电平,触发器处于非稳态。

只要输入保持稳定,触发器将保持在非稳态,不产生输出。

当稳态输入发生变化,例如由低电平变为高电平时,第一个非门的输出将变为低电平。

这将导致第二个非门的输入变为高电平,从而使第二个非门的输出在一个特定的时间间隔内保持在高电平。

这个时间间隔称为单稳态脉冲宽度,可以通过选择适当的电阻和电容值来控制。

一旦单稳态脉冲宽度过去,第二个非门的输出将返回到低电平,触发器重新进入稳态。

只有当稳态输入再次变化时,才会重新触发单稳态脉冲。

通过这种方式,单稳态触发器可以在非稳态时对输入信号进行
处理,生成一个确定宽度的输出脉冲,然后返回稳态状态以等待下一次输入变化。

这种功能使得单稳态触发器在数字电路中非常有用。

单稳态触发器与施密特触发器原理及应用

单稳态触发器与施密特触发器原理及应用

单稳态触发器与施密特触发器原理及应用单稳态触发器(Monostable Multivibrator)是一种具有两个稳态(稳态1和稳态2)的触发器,但在激励条件改变后,只能保持一种稳态的触发器。

单稳态触发器在输入信号由低电平(稳态1)变为高电平时,输出会产生一个固定的时间延迟脉冲,然后返回到低电平(稳态2)。

在没有输入信号的情况下,输出稳定在稳态2的低电平状态。

单稳态触发器的原理是基于RC(电阻-电容)延迟时间。

输出状态由电容器充电和放电的时间决定。

当输入信号由低电平变为高电平时,电容器开始充电。

当输入信号保持高电平时,电容器继续充电,直到达到一些阈值电压。

到达该阈值电压后,输出状态发生翻转,输出低电平脉冲。

然后电容器通过放电电阻放电,直到电容器完全放电,输出回到稳态2单稳态触发器的应用很广泛。

其中一个常见的应用是产生固定宽度的脉冲。

例如,当需要在输入信号上产生一个固定时间的脉冲来控制其他电路的操作时,可以使用单稳态触发器。

另一个应用是作为计时电路中的一部分,例如倒计时器或延时器。

施密特触发器(Schmitt Trigger)是一种具有两个稳态的触发器,反馈电路具有正反馈特性。

在输入信号的幅值超过一定阈值电压时,输出发生翻转。

施密特触发器可以解决输入信号噪声问题,而单稳态触发器则没有这种功能。

施密特触发器的原理是基于反馈电路,此电路具有两个阈值电压:上阈值电压(Vth)和下阈值电压(Vtl)。

当输入信号的幅值大于上阈值电压时,输出状态翻转为高电平;当输入信号的幅值小于下阈值电压时,输出状态翻转为低电平。

输入信号的变化必须超过上阈值电压或下阈值电压的差值才能引起输出状态的改变。

施密特触发器的应用也很广泛。

一个常见的应用是用于数字信号处理中的信号整形。

施密特触发器可以将不稳定的输入信号转换为稳态的输出信号。

另一个应用是在电路中消除噪声,例如用于消除开关接点引起的抖动。

综上所述,单稳态触发器和施密特触发器都是常见的触发器类型。

单稳态触发器工作过程

单稳态触发器工作过程

单稳态触发器工作过程单稳态触发器是数字电路中常见的一种触发器,也被称为单稳态多谐振荡器。

它在应用中具有重要的作用,可以用于信号的延时、脉冲的整形、频率的分频等。

本文将详细介绍单稳态触发器的工作过程及其应用。

一、单稳态触发器的基本概念单稳态触发器是一种具有两个稳定状态的触发器,其中一个稳定状态为触发状态(也称为非稳态),另一个稳定状态为稳态。

在触发状态下,当输入信号满足特定条件时,触发器会自动切换到稳态,并在一定时间后恢复到触发状态。

这种触发器的工作过程可以用一个简单的模型来描述。

二、单稳态触发器的工作原理单稳态触发器通常由两个互补的非门和一个RC电路组成。

当输入信号触发器为高电平时,称为触发状态;当输入信号为低电平时,称为稳态。

在触发状态下,输出信号为高电平;在稳态下,输出信号为低电平。

当触发状态下输入信号发生改变时,触发器会进入稳态,并在一定时间后返回触发状态。

三、单稳态触发器的工作过程单稳态触发器的工作过程可以分为触发过程和稳态过程两个阶段。

1. 触发过程当输入信号从低电平变为高电平时,触发器进入触发状态。

在这个阶段,输出信号保持高电平,RC电路开始充电。

触发器的稳态过程的持续时间由RC电路的参数决定,可以通过改变RC电路的电阻和电容值来控制。

2. 稳态过程当RC电路充电到一定程度后,触发器会自动从触发状态切换到稳态。

在稳态下,输出信号保持低电平,RC电路继续充电直到充满。

稳态过程的持续时间由RC电路的参数决定,可以通过改变RC电路的电阻和电容值来控制。

四、单稳态触发器的应用单稳态触发器在数字电路中有广泛的应用。

以下是一些常见的应用场景:1. 脉冲整形:单稳态触发器可以将输入信号的突变部分整形为规整的脉冲信号,用于数字电路的输入或输出。

2. 信号延时:通过调整RC电路的参数,可以实现对输入信号的延时。

这在某些特定的应用中非常有用,例如在数据传输中,可以利用单稳态触发器对信号进行同步。

3. 频率分频:通过将单稳态触发器与计数器等组合使用,可以实现对输入信号频率的分频,用于时钟信号的处理。

单稳态触发器课件

单稳态触发器课件

脉冲整形
总结词
单稳态触发器可以对输入的脉冲信号 进行整形,改变其脉冲宽度或脉冲周 期。
详细描述
利用单稳态触发器的暂态保持功能, 可以对输入的脉冲信号进行整形,改 变其脉冲宽度或脉冲周期,以满足不 同电路对脉冲信号的要求。
信号分离
总结词
单稳态触发器可以对复杂的信号进行分离,提取出所需的单个信号。
详细描述
输出信号的特性
输出信号的稳定性
单稳态触发器的输出信号应该是稳定 的,即在触发器触发后,输出信号应 该保持在一个恒定的状态,直到下一 次触发。
输出信号的延迟时间
单稳态触发器有一个延迟时间,即从 输入信号触发到输出信号稳定所需的 时间。延迟时间的长短会影响触发器 的性能,需要根据实际需求进行优化 。
电路参数的设计
分类与比较
分类
根据电路结构和工作原理,单稳 态触发器可分为施密特触发器和 多谐振荡器等类型。
比较
施密特触发器主要用于信号整形 和阈值检测,而多谐振荡器主要 用于产生脉冲信号。
02
单稳态触发器的应用
定时器
总结词
单稳态触发器可以用于产生精确的时间延迟,具有定时功能 。
详细描述
在电路中,单稳态触发器可以在输入信号的作用下,从稳态 翻转到暂态,并在一定时间后自动返回到稳态。这段时间即 为单稳态触发器的定时时间,可以用来实现精确的时间延迟 和定时操作。
特点
单稳态触发器具有暂态和稳态两个工作状态,当输入信号触发时,电路进入暂 态,经过一定时间后自动返回稳态。
工作原理
01
02
03
输入信号触发
当输入信号达到一定幅度 时,单稳态触发器由稳态 转换为暂态。
暂态过程
在暂态过程中,电路输出 信号的幅度和时间由电路 的RC时间常数决定。

实验十四 集成单稳态触发器及应用_电工与电子技术基础实验_[共3页]

实验十四 集成单稳态触发器及应用_电工与电子技术基础实验_[共3页]

124电工与电子技术基础实验实验十四集成单稳态触发器及应用一、实验目的1.掌握集成单稳态触发器74LS121的使用方法。

2.掌握脉冲展宽、变窄、延时等脉冲变换电路。

3.设计频率计的测量显示电路。

二、预习要求1.了解单稳态触发器74LS121的工作原理,查阅其外引线排列图和功能表。

2.画出实验内容2的实验电路图。

三、实验原理1.单稳态触发器。

单稳态触发器有一个稳态和一个暂稳态。

在无外来触发脉冲作用时,长期保持稳态不变。

在确定的外来触发脉冲的作用下,输出一个脉宽和幅值恒定的矩形脉冲。

单稳态触发器分为非重复触发和可重复触发两种。

非重复触发单稳态触发器一经触发就输出一个脉宽确定的定时脉冲,不管在此期间输入量有什么变化,定时脉冲的脉宽仅取决于单稳态电路的定时电阻R和定时电容C。

可重复触发单稳态触发器,若输入一系列触发信号,且各触发信号相距的时间小于定时脉冲的脉宽,则输出脉冲由第一次触发开始,直到最后一次触发,再延续一个定时脉冲才结束。

调节单稳态触发器输出脉宽的方法有3个:第一,调整定时电阻和定时电容;第二,用重复触发将它延长;第三,用清零端将其缩短。

单稳态触发电路可用门电路或集成单稳态触发器或集成定时器(555电路)构成,常用于脉冲的整形、延时和定时。

TTL集成单稳态触发器的型号有:单稳态触发器74LS121、双单稳态触发器74LS221、可重复触发单稳态触发器74LS122、双可重复触发单稳态触发器74LS123等。

CMOS集成单稳态触发器的型号有:双单稳态触发器CC4098和CC14528(非重复触发和可重复触发)。

本实验所用的非重复触发单稳态触发器74LS121的外引线排列图和功能表如图6.47所示。

触发器内部的定时电阻R int=2kΩ,因其温度系数较大,一般不使用,而是采用外接定时电阻R ext,R ext接在11脚和14脚之间,R ext的取值范围为2~30kΩ。

外接电容C ext的取值范围为10pF~1000μF,最佳取值范围为10pF~10μF。

数字电路单稳态触发器

数字电路单稳态触发器

0
迅速使 o1 = 0 o =1
电路进入暂稳态 电容充电 I2
t
0
t
vO1 G1
vO 1 D v v I2 C R C
1
1
vd Rd
G2
t
vI
Cd
t1
t2
t
VDD
c)电容充电,
vI
I2
vO1
t
I2 =VTH 产生如下正反馈过程:
vI2 vO vO1
vR
0 vd
vO G1 ≥1
vI
1 C RLeabharlann G2VDCd
Rd VDD
8.1.2 集成单稳态触发器
没有被重复触发
不可重复触发
vI
tw
vO
(a)
tw
被重复触发 可重复触发
vI
tw
vO
(b)
tw
8.1.1 tpi为3 μ s,Cd=50pF,Rd=10kΩ,C=0.01μF,R= 10kΩ 试画出v1,vd,vo1,vR,vo2,vo的波形,并求出输出脉冲宽度 VDD
vO
1
CMOS或非门构成的微分型 单稳态触发器
稳态为0
vO1 vO 1 D v I2 v C R VDD C G2
vO 1 D vI2 R
G1 & vI Cd vd Rd
C vC
G2
vI
G1 1 Cd vd Rd
正脉冲触发
负脉冲触发
工作原理:
设定CMOS反相器的阈值电压 a)没有触发信号时, I=0 电路处于一种稳态:
G6 1
G7 1 G8 1 G9 1
A1 A2
Q
1 0

单稳态触发器的工作过程

单稳态触发器的工作过程

单稳态触发器的工作过程单稳态触发器是数字电路中常用的一种触发器,其工作过程具有一定的特点和规律。

本文将以单稳态触发器的工作过程为标题,详细介绍其工作原理和应用。

一、单稳态触发器的定义和分类单稳态触发器是一种具有两个稳态的触发器,常用的有基础电路单稳态触发器和改进型电路单稳态触发器。

基础电路单稳态触发器由两个互补稳态组成,其中一个是稳定的,在输入信号发生变化后,输出保持不变;另一个是不稳定的,在输入信号发生变化后,输出经过一段时间后才恢复到原来的稳态。

基础电路单稳态触发器由一个门电路和一个RC电路组成。

在工作过程中,输入信号通过门电路传递到RC电路,产生一个时间延迟的脉冲信号。

当输入信号发生变化时,门电路的输出会迅速变化,使RC电路充电或放电,从而改变输出信号的状态。

具体来说,当输入信号由低电平变为高电平时,门电路的输出由高电平变为低电平,使RC电路开始充电。

充电过程中,输出信号保持低电平状态。

当RC电路充电至一定电压水平时,门电路的输出会恢复为高电平,使输出信号也由低电平变为高电平。

这个过程的时间间隔称为单稳态时间,可以通过调整RC电路的参数来控制。

当输入信号由高电平变为低电平时,门电路的输出由低电平变为高电平,使RC电路开始放电。

放电过程中,输出信号保持高电平状态。

当RC电路放电至一定电压水平时,门电路的输出会恢复为低电平,使输出信号也由高电平变为低电平。

这个过程的时间间隔同样可以通过调整RC电路的参数来控制。

三、改进型电路单稳态触发器的工作过程改进型电路单稳态触发器是对基础电路单稳态触发器的改进,通过添加电路元件来提高其性能。

改进型电路单稳态触发器的工作过程与基础电路单稳态触发器类似,但具有更高的稳定性和可靠性。

在改进型电路单稳态触发器中,门电路和RC电路的结构和连接方式都有所改变。

通过改变门电路的类型和RC电路的参数,可以实现更加精确的单稳态时间控制。

此外,改进型电路单稳态触发器还可以添加其他电路元件,如二极管、电容器等,以进一步优化性能。

门电路构成的单稳态触发器及典型应用分析

门电路构成的单稳态触发器及典型应用分析

门电路构成的单稳态触发器及典型应用分析单稳态触发器有一个稳定状态和一个暂稳态。

当外加触发信号时,单稳态触发器从稳定状态转换到暂稳态,在暂稳态维持一段时间后,由于电路中所包含的电容元件的充放电作用,电路自动返回到稳定状态,因此这种电路称为“单稳”。

暂稳态维持的时间取决于电路本身的参数,而与外触发信号的宽度无关。

根据单稳态触发器的这些特点,数字系统常用它构成整形、脉冲展宽、延时和定时(产生一定宽度的方波)等电路。

【项目任务】一、门电路构成的单稳态触发器 1.电路结构由门电路和RC 元件组成的单稳态触发器电路形式较多。

一个电阻和一个电容元件可以组成积分电路或者微分电路,因此,由门电路和RC 元件可组成积分型单稳态触发器和微分型单稳态触发器。

图9.10所示电路就是微分型单稳态触发器的电路形式之一。

电路中电阻R 的值小于门电路的关门电阻值,即R<R OFF 。

图9.10 微分型单稳态触发器2.工作原理定性分析分析单稳态触发器的工作原理,就是分析如何在外触发信号的作用下,电路由稳态进入暂稳态,然后又如何在电容充放电的作用下,自动返回到稳定状态。

(1)在图9.10所示电路中,输入信号u I 在稳态下为高电平。

考虑到R<R OFF ,所以稳态时u I2为低电平,则u o 为高电平。

与非门G 1的两个输入端均为高电平,所以,u o1为低电平,电容C 两端的电压近似为0V 。

只要输入信号保持高电平不变,电路就维持在u o1为低电平,u o 为高电平这一稳定状态。

(2)假设在t 1时刻,输入端有一负脉冲信号出现,即外加触发信号开始作用,则与非门G 1的输出u o1变为高电平。

由于电容C 两端的电压不能突变,故u I2随u o1跳变为高电平,u ou o 跳变为低电平。

该低电平反馈到G 1的输入端,使u o1仍维持在高电平。

电路处于u o1为高电平、u o 为低电平的暂稳状态。

在暂稳态期间,经电容C 和电阻R 到地形成充电回路,电容C 开始充电,随着充电过程的进行,u I2逐渐下降。

单稳态触发器与施密特触发器原理及应用

单稳态触发器与施密特触发器原理及应用

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载单稳态触发器与施密特触发器原理及应用地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容CD4047BE单稳态触发器原理及应用多谐振荡器是一种自激振荡电路。

因为没有稳定的工作状态,多谐振荡器也称为无稳态电路。

具体地说,如果一开始多谐振荡器处于0状态,那么它在0状态停留一段时间后将自动转入1状态,在1状态停留一段时间后又将自动转入0状态,如此周而复始,输出矩形波。

图6.4.1 对称式多谐振荡器电路对称式多谐振荡器是一个正反馈振荡电路[图6.4.1,]。

和是两个反相器,和是两个耦合电容,和是两个反馈电阻。

只要恰当地选取反馈电阻的阻值,就可以使反相器的静态工作点位于电压传输特性的转折区。

上电时,电容器两端的电压和均为0。

假设某种扰动使有微小的正跳变,那么经过一个正反馈过程,迅速跳变为,迅速跳变为,迅速跳变为,迅速跳变为,电路进入第一个暂稳态。

电容和开始充电。

的充电电流方向与参考方向相同,正向增加;的充电电流方向与参考方向相反,负向增加。

随着的正向增加,从逐渐上升;随着的负向增加,从逐渐下降。

因为经和两条支路充电而经一条支路充电,所以充电速度较快,上升到时还没有下降到。

上升到使跳变为。

理论上,向下跳变,也将向下跳变。

考虑到输入端钳位二极管的影响,最多跳变到。

下降到使跳变为,这又使从向上跳变,即变成,电路进入第二个暂稳态。

经一条支路反向充电(实际上先放电再反向充电),逐渐下降。

经和两条支路反向充电(实际上先放电再反向充电),逐渐上升。

的上升速度大于的下降速度。

当上升到时,电路又进入第一个暂稳态。

此后,电路将在两个暂稳态之间来回振荡。

非对称式多谐振荡器是对称式多谐振荡器的简化形式[图6.4.6]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单稳态触发器的应用——噪声消除电路
利用单稳态触发器可构成噪声消除电路(或称脉冲鉴别电路)。

通常噪声多表现为尖脉冲,宽度较窄,而有用的信号都具有一定宽度。

利用单稳态电路,将输出脉宽调节到大于噪声宽度而小于信号脉宽,即可消除噪声。

由单稳态触发器组成的噪声消除电路及波形如图3所示。

图3(a) 噪声消除电路逻辑图
图.3(b) 噪声消除电路波形图
图中,输入信号接至单稳态触发器的输入端和D触发器的数据输入端及直接置0端。

由于有用的信号大于单稳态输出脉宽,因此单稳态Q输出上升沿使D触发器至1,而当信号消失后,D触发器被清0。

若输入中含有噪声,其噪声前沿使单稳态触发翻转,但由于单稳态输出脉宽大于噪声宽度,故单稳态Q输出上升沿时,噪声已消失,从而在输出信号中消除了噪声成分。

相关文档
最新文档