24.1.5圆的对称性-圆弧的度数

合集下载

人教版九年级数学上第24章24.1圆的基本性质教案

人教版九年级数学上第24章24.1圆的基本性质教案

圆基本性质1、圆的定义(1)圆的定义点集定义:圆是平面内到定点的距离等于定长的点的集合.定点称为圆心,定长称为半径.(2)弦与直径①弦:连结圆上任意两点间的线段叫做弦.②直径:经过圆心弦,称为直径.(注意:直径是最长的弦,直径是弦,但弦不一定是直径.)(3)弧、优弧、劣弧、半圆①弧:圆上任意两点问的部分叫做圆弧,简称弧,用“⌒”表示.②半圆.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.③优弧、劣弧:大于半圆的弧叫做优弧;小于半圆的弧叫做劣弧.2、圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴.注意:圆有无数条直径,所以圆有无数条对称轴.3、垂径定理及推理定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于这条弦并且平分弦所对的两条弧.4、圆心角圆心角:顶点在圆心的角叫做圆心角.5、圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.推论:在同圆或等圆中,如果两个圆心角、两条弧或两条弦中有一组量相等,那么它们所对的其余各组量分别相等.注意:(1)在具体运用定理或推论解决问题时可根据需要,选择有关部分,比如“等弧所对圆心角相等”,“在同圆或等圆中,相等的圆心角所对的弧相等”等.(2)不能忽略“在同圆或等圆中”这个前提条件,若没有这一条件,虽然圆心角相等,但所对的弧、弦不一定相等.(3)结合图形深刻理解圆心角、弧、弦这几个概念与“所对”一词的含义.(4)若无特殊说明,定理推论中“弧”一般指劣弧.6、圆周角(1)圆周角:顶点在圆上,两边和圆相交的角叫做圆周角.(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.二、重难点知识归纳重点:垂径定理、三组量之间的关系、圆周角定理.难点:以上定理的综合应用.三、典例剖析例1、如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E.已知AB=2DE,∠E=18°.求∠AOC的度数.例2、如图,AB、CD是⊙O的弦,∠A=∠C.求证:AB=CD.例3、已知圆内接△ABC中,AB=AC,圆心O到BC距离为6cm,圆的半径为10cm.求腰AB的长.例4、要测量一个钢板上小孔的直径,通常采用间接的测量方法.如果用一个直径为10mm的标准钢珠放在小孔上,测得钢珠顶端与小孔平面的距离h=8mm(如图),求此小孔的直径d.例5、已知,如图,AD=BC.求证:AB=CD.例6、已知:如图,A点是半圆上一个三等份点,B点是的中点,P是直径MN上一动点,⊙O的半径为1,则AP+BP的最小值是多少?例7、如图,半圆O的直径是AB,CF⊥AB,弦AC的垂直平分线交CF于点D,连结AD并延长AD交半圆O于点E,相等吗?请证明你的结论.例8、如图,四边形ABCD的四个顶点在⊙O上,且对角线AC⊥BD,OE⊥BC于E.求证:.例9、如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,作∠BAC的外角平分线AE交⊙O于点E,连结DE.求证:DE=AB.课堂练习与作业:圆:1、已知,⊙O的半径为3cm,P是⊙O内一点,OP=1cm,则点P到⊙O上各点的最小距离是______cm,最大距离是_________cm.2、如图,已知OA、OB是圆的两条半径,∠OAB=45°,OA=8cm,则AB=__________.3、如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心,CB为半径的圆交AB于点D,则∠ACD=__________.4、如图,△ABC中,∠C=90°,AC=6cm,BC=8cm,分别以A、B为圆心,AC、BC为半径画弧,交斜边于E、F,则EF的长是__________.图2图3图4图65、平面直角坐标系中有一个点M(2,3),⊙M的半径为r,若⊙M上的点不全在第一象限内,则r的取值范围是()A.r=2 B.r=3 C.r≥2 D.r≥36、如图,点C在以AB为直径的半圆上,O是圆心,连接OC,则△ABC是()A.锐角三角形B.钝角三角形 C.直角三角形D.不能确定7、如图,点A、D、G、M在半圆O上,四边形ABOC,DEOF,HMNO为矩形,设BC=a,EF=b,NH=c,则下列各式正确的是()A.a>b>c B.a=b=c C.c>a>b D.b >c>a8、如图,BD、CE分别是△ABC的两条高,试说明点E、B、C、D四点在同一个圆上,并画出这个圆.9、如图所示,某部队在灯塔A的周围进行爆破作业,A的周围3千米内的水域为危险区域.有一渔船误入与A距离2千米的B处.为了尽快驶离危险区域,该船应怎样航行?并说明理由.垂径定理:1、如图,AB是⊙O的弦,圆心O到AB的距离OD=1,AB=4,则该圆的半径是__________.2、如图,水平铺设的圆柱形排水管的截面半径是0.5m,其中水面宽为AB=0.6m,则水的最大深度为_____m.3、如图,点A,B是⊙O上两点,AB=10,点P是⊙O上的动点(P与A,B不重合),连接AP、PB,过点O分别作OE⊥AP于E,OF⊥PB于F,则EF=__________.4、如图,已知AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP∶PB=1∶5,那么⊙O 的半径是()5、圆的半径为13cm,两弦AB∥CD,AB=24cm,CD=10cm,则两弦AB、CD的距离是()A.7cm B.17cm C.12cm D.7cm或17cm图1图2图3图4图65、圆的半径为13cm,两弦AB∥CD,AB=24cm,CD=10cm,则两弦AB、CD的距离是()A.7cm B.17cm C.12cm D.7cm或17cm6、如图所示,AB是⊙O的一条固定直径,它把⊙O分成上、下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A、B两点)移动时,点P()A.到CD的距离保持不变 B.位置不变 C.平分 D.随点C的移动而移动7、如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长.8、离疫点3千米范围内为扑杀区,所有禽类全部扑杀;离疫点3至5千米范围内为免疫区,所有禽类强制免疫;同时,对扑杀区和免疫区内的村庄,道路实行全封闭管理.现有一条笔直的公路AB通过禽流感疫区,如图所示,O为疫点,在扑杀区内的公路CD长为4千米.问这条公路在免疫区内有多少千米?9、如图,⊙O中的弦AB、CD互相垂直于E,AE=5cm,BE=13cm,O到AB的距离为.求⊙O的半径及O到CD的距离.10、如图,某地有一座圆弧形的拱桥,桥下水面宽为7.2m,拱顶高出水面2.4m,现有一艘宽3m,船舱顶部为正方形并高出水面2m的货船要经过这里,此时货船能顺利通过这座拱桥吗?请说明理由.弧、弦、圆心角:1、如果⊙O的半径为R,则⊙O中60°的圆心角所对的弦长为_______,90°的圆心角所对的弦长为_____.2、如图,AB、CD是⊙O的直径,弦DE∥AB,则AC与AE的大小关系是__________.3、如图,D、E分别是⊙O的半径OA、OB上的点,CD⊥OA,CE⊥OB,CD=CE.则的大小关系是________.4、如图,在半径为2cm的⊙O内有长为的弦AB,则此弦所对的圆心角∠AOB为()A.60°B.90° C.120° D.150°图2图3图4图55、如图,在⊙O中,,则下列结论正确的是()A.AB>2CD B.AB=2CD C.AB<2CD D.以上都不正确6、AD是⊙O的直径,弦AB、AC交于A点,且AD平分∠BOC,则下列结论不一定成立的是()A.AB=AC B. C.AD⊥BC D.AB=BC9、如图,以⊙O的直径BC为一边作等边△ABC,AB、AC交⊙O于D、E,求证:BD=DE=EC.10、已知:如图,P为直径AB上一点,EF、CD为过点P的两条弦且∠DPB=∠EPB,求证:(1)CD=EF;(2).圆周角:1、如图,A、B、C是⊙O上三点,∠ACB=40°,则∠ABO等于__________度.2、如图,△ABC的顶点都在⊙O上,∠C=30°,AB=2cm,则⊙O的半径为__________cm.3、如图,在平面直角坐标系中,P是经过O(0,0),A(0,2),B(2,0)的圆上的一个动点(P与O、A、B不重合),则∠OAB=__________,∠OPB=__________.4、如图,△ABC内接于⊙O,∠B=∠OAC,OA=8cm,则AC=__________cm.5、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则BC=__________.6、如图,BD是⊙O的直径,弦AC、BD相交于点E,则下列结论不成立的是()A.∠ABD=∠ACD B. C.∠BAE=∠BDC D.∠ABD=∠BDC图1图2图3图4图5图6图77、如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A.80°B.50° C.40°D.20°8、如图,AB为⊙O的直径,BD是⊙O的弦,延长到C,使BD=DC,连接AC交⊙O于点F,点F不与点A重合.(1)AB与AC的大小有什么关系?为什么?(2)按角的大小分类,请你判断△ABC属于哪一类三角形,并说明理由.9、如图,△ABC的三个顶点都在⊙O上,CN为⊙O的直径,CM⊥AB,交⊙O于M,点F 为的中点.求证:(1);(2)CF平分∠NCM.10、如图(1),已知△ABC是等边三角形,以BC为直径的⊙O交AB、AC于D、E.(1)求证:△DOE是等边三角形;(2)如图(2),若∠A=60°,AB≠AC,则(1)的结论是否成立?如果成立,请给出证明,如果不成立,请说明理由.。

人教版数学九年级上册《24.1.1圆》说课稿2

人教版数学九年级上册《24.1.1圆》说课稿2

人教版数学九年级上册《24.1.1圆》说课稿2一. 教材分析人教版数学九年级上册《24.1.1圆》是本册教材中的一个重要内容,它主要包括圆的定义、圆的性质、圆的标准方程以及圆的一般方程等内容。

这些内容不仅在理论上有重要意义,而且在实际生活和工作中也有着广泛的应用。

例如,在建筑设计、机械制造、地图绘制等领域都需要运用到圆的相关知识。

二. 学情分析九年级的学生已经具备了一定的几何基础,对图形的认知和理解能力有了进一步的提升。

但是,对于圆这一概念,学生可能还存在着一些模糊的认识,需要通过实例和练习来加深理解。

此外,由于圆的知识点较为抽象,学生可能在学习过程中感到困难,因此需要教师耐心引导,帮助学生建立正确的概念。

三. 说教学目标1.知识与技能:通过学习,使学生掌握圆的定义、性质和方程,能够运用圆的知识解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的问题解决能力和合作精神。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的抽象思维能力和创新意识。

四. 说教学重难点1.重点:圆的定义、性质和方程的掌握。

2.难点:圆的方程的推导和应用。

五. 说教学方法与手段1.教学方法:采用启发式教学法、讨论式教学法和案例教学法等,引导学生主动探究,培养学生的思维能力。

2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学,使抽象的知识形象化、具体化。

六. 说教学过程1.导入:通过展示生活中的圆形物体,如硬币、车轮等,引导学生思考圆的特点,从而引出圆的定义。

2.新课导入:介绍圆的性质,如圆的对称性、圆的周长和面积公式等。

3.知识拓展:讲解圆的标准方程和一般方程,并通过实例让学生理解方程的含义。

4.课堂练习:布置一些相关的练习题,让学生巩固所学知识。

5.总结:对本节课的内容进行总结,强调圆的重要性质和方程的应用。

七. 说板书设计板书设计要简洁明了,能够突出本节课的重点内容。

可以设计如下板书:圆的定义:平面上到定点距离等于定长的点的集合。

24.1.5 圆周角与直径的关系

24.1.5  圆周角与直径的关系

在 Rt△ABC 中,
A
O
B
BC= AB2 AC 2 = 102 62 =8(cm)
D
例5.如图,⊙O 的直径 AB 为 10 cm,弦 AC 为 6 cm, ACB 的平分线交⊙O 于点 D,求 BC,AD,BD 的长.
∵ CD 平分ACB,
C
∴ ACD=BCD,
∴ AOD=BOD .
概念:
多边形的所有顶点都在同一个圆上的多边形叫做圆 内接多边形,这个圆叫做多边形的外接圆.
探究:
如图,四边形ABCD为⊙O的内接四边形. (1)劣弧DB和优弧BCD所对的圆心角之和等于多少度? (2)∠BAD和∠BCD之间具有怎样的关系?
推论3:圆内接四边形的对角互补.
例3.如图,若∠A=70°,则∠C=________; 若∠BOD=130°,则∠A=_____,∠C=_____; 若∠ABC=80°,则∠ADE=________.
2.如图,点A、B、C、D都在⊙O上,O点在∠D的内部,四 边形OABC为平行四边形,则∠OAD+∠OCD=_________.
巩固练习2:
3.如图,过O、M (2,2)的动圆⊙O1与y轴、x轴分别交 于A、B两点,求OA+OB的值.
例1.已知:如图,AB是⊙O的直径,D是圆上任意一点 (不与A,B重合),连接BD并延长到点C,使BD=DC, 连接AC,试判断△ABC的形状
解:△ABC是等腰三角形,理由如下: 如图,连接AD. ∵AB是直径, ∴∠ADB=90°, ∴AD⊥BC. ∵BD=DC,∴AB=AC, ∴△ABC是等腰三角形.
巩固练习:
3.如图,△ABC内接于⊙O,BO的延长线交AC于E,若∠BAC =50°,∠ABC=60°,则∠AEB= .

人教版九年级上册数学-第二十四章-圆--圆的有关性质--圆周角

人教版九年级上册数学-第二十四章-圆--圆的有关性质--圆周角

O
∴∠ACB=90°
∴∠ABC=180°-∠A-∠ACB
B
=180°-90°-80°=10°.
巩固练习
如图,AB是⊙O的直径,∠A=10°, 则∠ABC=____8_0_°.
C
A
O
B
探究新知
例2 如图,分别求出图中∠x的大小.
C A
x
60°
x
60°
D
20° B Dx
E 30°
A
B
FC
解:(1)∵同弧所对圆周角相等,∴∠x=60°.
E,若∠AOD=60°,则∠DBC的度数为(
A.30°
B.40°
) A
C.50°
D.60°
课堂检测
4.如图,四边形ABCD内接于⊙O,如∠BOD=130°则
∠BCD的度数是( A. 115°
)C B. 130°
C. 65°
D. 50°
C
O
B
D
A
课堂检测
能力提升题
如图,OA,OB,OC都是⊙O的半径,∠AOB=
推论:圆内接四边形的对角互补.
探究新知
想一想:图中∠A与∠DCE的大小有何关系?
∵ 弧BCD和弧BAD所对的圆心角的和是周角,
∴∠A+∠C=180°, 同理∠B+∠D=180°, ∵∠BCD+∠DCE=180°. ∴∠A=∠DCE.
D
A O
B
CE
探究新知
推论:圆的内接四边形的任何一个 外角都等于它的内对角.
2∠BOC. 求证:∠ACB=2∠BAC.
证明:∵ ACB 1 AOB, 2
BAC 1 BOC, 2
∠AOB=2∠BOC,
∴∠ACB=2∠BAC.

人教版九年级数学上第24章圆24.1圆的有关性质弧、弦、圆心角讲义

人教版九年级数学上第24章圆24.1圆的有关性质弧、弦、圆心角讲义

合作探究探究点1 圆的定义情景激疑在准备好的一张纸上以点〇为圆心、3 cm为半径画一个圆,观察画图过程.由此你会得出什么结论?知识讲解定义1:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的圆形叫做圆.其固定的端点O叫做圆心,线段OA叫倣半径.以O点为圆心的圆,记作O,读作“圆O〞.定义2:圆心为O、半径为r的圆可以看成是所有到定点O的间隔等于定长r的点的集合.注意〔1)圆心确定圆的位置,半径确定圆的大小.(2) 确定一个圆首先确定圆心,再确定半径,二者缺一不可.(3) 定点是圆心,定长是半径.(4) “圆〞指的是“圆周〞,而不是“圆平面〞.典例剖析例1 以下说法错误的有 ( )(1) 经过P点的圆有无数个;(2) 以P点为圆心的圆有无数个;(3) 半径为3cm且经过P点的圆有无数个。

(4) 以P点为圆心、3cm为半径的圆有无数个.A. 1个B. 2个C. 3个D. 4个解析确定一个圆必须满足两个条件,即圆心和半径,只满足一个条件或不满足任何一个条件的圆都有无数个,故(1)(2)正确,(3)虽然半径,但P点不是圆心,实际上也只是一个条件,能作无数个圆,故(3)正确;(4)满足两个条件,只能作一个圆,所以(4)错误.综上所述,错误的说法有1个,应选A答案 A错因分析导致此题错误的主要原因是对于确定一个圆的两个要素(圆心和半径)理解不够准确。

类题打破1 以O点为圆心画圆,可以画______ 个圆;以4 cm为半径画圆.可以面_____个圆.答案无数无数点拨确定圆的条件:一是圆心,二是半径.探究点2 与圆有关的概念知识讲解连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径。

圆上任意两点间的局部AB.读作“圆弧AB〞或“弧AB〞,圆的任意一条直径的两个端点把图分成两条弧,每一条弧都叫做半圆。

注意 (1)弦和弧是有区别的,弦是线段,而弧是曲线。

(2)直径是圆中最长的弦,而弦不都是直径。

人教版九年级上册数学试题:24.1--24.4章节课时练含答案不全

人教版九年级上册数学试题:24.1--24.4章节课时练含答案不全

24.1圆的有关性质一、复习(一)圆及垂径定理1.圆:把平面内到距离等于的点的集合称为圆;我们把称为圆心,把称为半径。

2.我们把连接圆上任意的称为弦,经过的弦称为直径;圆上的部分称为弧。

3.圆的对称性:圆既是图形也是图形,对称轴是,有条;对称中心是。

4.在同一平面内,不在直线上的点确定一个圆。

5.垂径定理:垂直于弦的平分弦,并且平分弦所对的弧。

6.垂径定理推论:平分弦(非直径)的直径弦,并且平分弦所对的两条弧。

(二)圆心角、圆周角1.圆心角:我们把在圆心的角称为圆心角.2.弧、弦、圆心角之间的关系:在同圆或等圆中,相等的圆心角所对的弧,所对的弦。

3.圆周角:在圆周上,并且都和圆相交的角叫做圆周角;在同圆或等圆中,圆周角度数等于它所对的弧上的圆心角度数。

4.相关推论:①半圆或直径所对的圆周角都是_____,都等于_____度;②90°的圆周角所对的弦是;5.在同圆或等圆中,同弧或等弧所对的圆周角_____,相等的圆周角所对的____和____都相等。

二、引领学习(一)命题判断题1.下列说法正确的是()A.长度相等的弧是等弧;B.两个半圆是等弧;C.半径相等的弧是等弧;D.直径是圆中最长的弦;2. 以下说法正确的是:()①圆既是轴对称图形,又是中心对称图形;②垂直于弦的直径平分这条弦;③相等圆心角所对的弧相等。

A. ①②B. ②③C. ①③D. ①②③ 3. 下列语句中,正确的有( )①相等的圆心角所对的弧也相等;②顶点在圆周上的角是圆周角; ③长度相等的两条弧是等弧;④经过圆心的每一条直线都是圆的对称轴。

A.1个 B.2个 C.3个 D.4个 4.下列命题中是真命题的为( )A.三点确定一个圆B.任何一个三角形有且只有一个外接圆C .任何一个四边形都有一个外接圆 D.等腰三角形的外心一定在它的外部 5.下列说法正确的是 ( )A.相等的圆心角所对的弧相等B.过圆心的线段是直径C. 半圆是弧D.弦是直径 (二)多解题 1.已知⊙O 的半径为5.(1)弦AB=8cm,弦CD=6cm,且AB ∥CD ,则这两条弦之间的距离为 cm. (2)弦AB=8cm,则该弦所对的弧的中点到弦AB 的距离为 cm. (3)AB 是⊙O 的一条弦,点P 在直线AB 上,PB=3,AB=8,则=PQOQ. 2.点A 、B 、C 是⊙O 上不同的三个点,∠AOB=100°,则∠ACB= °. (变式):△ABC 是⊙O 的内接三角形,∠AOB=100°,则∠ACB= °. 3.在△ABC 中,AB=AC=5,S ABC ∆=12,则△ABC 外接圆的半径为 。

人教版九年级上24.1.1圆(教案)

人教版九年级上24.1.1圆(教案)
首先,对于圆的方程部分,我可能需要更多地结合实际例子来讲解,让学生明白方程背后的几何意义。例如,可以拿一个圆形的物体,如硬币或圆盘,通过测量半径和直径,引导学生推导出圆的方程。这样,学生们能够更直观地理解方程与实际物体之间的关系。
其次,在讲解切线和割线时,我发现学生们对这两个概念容易混淆。为了帮助学生区分,我计划在下节课中增加一些图示和实物操作,比如用绳子模拟切线和割线,让学生亲自感受两者的不同。通过这样的实践活动,我相信学生们能够更清晰地理解这些几何关系。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了圆的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对圆的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现学生们对圆的概念和性质掌握得还不错,但在圆的方程和切线割线的理解上存在一些困难。这让我意识到,需要从以下几个方面进行反思和调整。
我还注意到,在小组讨论环节,有些学生参与度不高,可能是由于主题不够吸引他们或者他们对自己的观点不够自信。为了提高学生的参与度,我打算在下次讨论前,先给学生提供一些背景资料和思考问题,激发他们的兴趣,并在讨论过程中给予更多的鼓励和支持。
另外,实践活动虽然能够帮助学生加深对圆的理解,但我也发现有些学生在操作过程中关注了操作本身,却忽略了背后的数学原理。因此,我计划在下次实践活动中,增加一些引导性的问题和任务,让学生在动手操作的同时,思考这些操作与圆的性质和公式之间的联系。
-圆的面积与周长计算:掌握面积和周长的公式,是实际应用中必不可少的技能。
举例:圆以及如何根据实际问题的条件建立圆的方程。
2.教学难点
-圆的方程理解:学生需要理解方程背后的几何意义,以及如何将实际问题转化为方程求解。

最新人教版初中数学九年级上册《24.1.1 圆》精品教学课件

最新人教版初中数学九年级上册《24.1.1 圆》精品教学课件
“等弧”要区别于“长度相等的弧”
D BC
【结论】等弧仅仅存在于同圆或者等圆中.
探究新知
(
(
( (
( ( (( ((
素养考点 1 圆的有关概念的识别 例1 如图. (1)请写出以点A为端点的优弧及劣弧;
劣弧:AF, AD, AC, AE.
D
B
优弧:AFE,AFC, ADE, ADC.
F
O
E
(2)请写出以点A为端点的弦及直径;
分析:作辅助线构造△OCE和△ODF,然后证明两 三角形全等,最后根据全等的性质得出结论. 解:连接OC,OD,∵OC=OD,∴∠C=∠D,
∵CE=DF. ∴△OCE≌△ODF(SAS), ∴OE=OF, ∴△OEF是等腰三角形.
探究新知
知识点 2 圆的有关概念
弦:
A
连接圆上任意两点的线段(如图中的AC)叫做弦.
探究新知
素养考点 2 圆的有关概念的应用
例2 如图,MN是半圆O的直径,正方形ABCD的顶点A、D
在半圆上,顶点B、C在直径MN上.(1)求证:OB=OC.
(2)设⊙O的半径为10,则正方形ABCD的边长为 4 5 .
A
D

2x 10 ?
M
xB O
C
N
图4
连OA,OD即可,
同圆的半径相等.
解:(1)连接OA,OD, 证明Rt∆ABO≌Rt∆DCO.
例 矩形ABCD的对角线AC,BD相交于点O. 求证:A,B,C,D四个点在以点O为圆心的同一个圆上.
证明:∵四边形ABCD是矩形,
∴AO=OC,OB=OD.
A
D
O
又∵AC=BD,
B
C

圆心角,弦,弧的关系

圆心角,弦,弧的关系

③AB=A′B′
• 在同圆或等圆中,如果轮换下面三组条件: • ①两个圆心角,②两条弧,③两条弦,你能得出
什么结论?与同伴交流你的想法和理由.
A
A
B
●O
B
●O
●O′
A′
B′
⌒⌒
如由条件: ②AB=A′B′
可推出
A′
B′
①∠AOB=∠A′O′B′
③AB=A′B′
推论
• 在同圆或等圆中,如果①两个圆心角,② 两条弧,③两条弦中,有一组量相等,那么 它们所对应的其余各组量都分别相等.
7个金蛋你可以任选一个,如果出现“恭喜你”的字样, 你将直接过关;否则将有考验你的数学问题,当然你可以 自己作答,也可以求助你周围的老师或同学.
3
5
7
1
2
4
6
判断:
1、等弦所对的弧相等。 (× )
2、等弧所对的弦相等。 (√ )
3、圆心角相等,所对的弦相等。( )
× 4、弦相等,所对的圆心角相等。( )
合,B与∴A⌒BB′重与合A⌒.'B' 重合,AB与A′B′重合.
AB A'B', ABA'B'.
三、定理
弧、弦与圆心角的关系定理
在同圆或等圆中,相等的圆心角所对的弧相等, 所对的弦也相等.
在同圆或等圆中,相等的弧所对的圆心角 _相__等__, 所对的弦___相_等____;
在同圆或等圆中,相等的弦所对的圆心角 __相__等__,所对的弧___相__等____.
A
A
B
●O
B
●O
●O′
A′
B′
如由条件: ③AB=A′B′

最新人教版初中数学九年级上册《24.1.3 弧、弦、圆心角》精品教学课件

最新人教版初中数学九年级上册《24.1.3 弧、弦、圆心角》精品教学课件

弦相等
弧相等
探究新知
素养考点 1 利用弧、弦、圆心角的关系求角度
例1 如图,AB是⊙O 的直径,B⌒C=C⌒D=D⌒E.
∠COD=35°,求∠AOE 的度数.
E D C 解:∵B⌒C=C⌒D=D⌒E
BOC COD DOE=35 ,
A
· O
B
75 .
巩固练习
判断正误.
× (1)等弦所对的弧相等. ( ) × (2)等弧所对的弦相等. ( ) × (3)圆心角相等,所对的弦相等. ( )
探究新知
【想一想】定理“在同圆或等圆中,相等的圆心 角所对的弧相等,所对的弦也相等.”中,可否把条 件“在同圆或等圆中”去掉?为什么?
不可以,如图.
B D OC A
探究新知
题设
结论
在 同
如果圆心角相等 那么 圆心角所对的弧相等 圆心角所对的弦相等

或 等
如果弧相等

那么
弧所对的圆心角相等 弧所对的弦相等
人教版 数学 九年级 上册
24.1 圆的有关性质
24.1.3 弧、弦、圆心角
导入新知
熊宝宝要过生日了!要把蛋糕平均分成四块, 你会分吗?分成八块呢?
素养目标
3. 理解圆心角、弧、弦之间关系定理中的 “在同圆或等圆”条件的意义.
2. 探索圆心角、弧、弦之间关系定理并利用其 解决相关问题.
1. 理解圆心角的概念,掌握圆的中心对称性和 旋转不变性.
由题意可得:EO=
1 2
BO,AB∥DC,
可得∠EBO=30°,
故∠BOD=30°,则∠BOC=150°.
课堂检测
基础巩固题
1.如果两个圆心角相等,那么 ( D ) A.这两个圆心角所对的弦相等 B.这两个圆心角所对的弧相等 C.这两个圆心角所对的弦的弦心距相等 D.以上说法都不对

九年级数学 第二十四章 圆 24.1圆 垂径定理 圆心角 圆周角(1)24.1.2垂径定理教学

九年级数学 第二十四章 圆 24.1圆 垂径定理 圆心角 圆周角(1)24.1.2垂径定理教学
且∠APC=45°,AP=5,PB=1
求CD的长
C
E
A
B
P
D
12/10/2021
4.已知:如图,在同心圆O中,大⊙O的弦AB 交小⊙O于C,D两点 求证:AC=DB
12/10/2021
O
A C
E
D
B
4.已知:如图△ABC的三个顶点都在⊙O 上,AD⊥BC,E为BC 的中点
求证:∠EAD=∠OAE
可以发现:
圆是轴对称图形,任何一条直径所在直线都是它 的对称轴.
12/10/2021
●O
判断对错并说明理由
圆是轴对称图形,它有无数条对称轴,它的对称轴是它的直径


12/10/2021
活动二
如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂足为E. (1)这个图形是轴对称图形吗?如果是,它的对称轴是什么? (2)你能发现图中有那些相等的线段和弧?为什么?
O
A
E
D
2.被平分的弦是直径
12/10/2021
CD是直径
AE=BE AB不是直径
B
可推得
C B
O
A D
CD⊥AB,
⌒⌒
AC=BC,
⌒⌒
AD=BD.
几何语言表达



MB

垂径定理:
CD是直径 CD⊥AB
可推得
垂径定理的推论:
CD是直径 AM=BM AB不是直径
可推得
12/10/2021
AM=BM,
A
B
12/10/2021
O

D
C
E
5.已知:如图,⊙O中AB和AC的中点分别是点F和点E,EF分别交 AC和AB于P,Q两点,判断△APQ是什么三角形?

人教版九年级数学上册教案:24.1 圆的有关性质

人教版九年级数学上册教案:24.1 圆的有关性质

数学教学设计人教版九年级数学第二十四章《圆》——24.1圆的有关性质(一)课题:圆圆一、教学设计思想本节课是九年义务制教育九年级上册第二十四章第一节的内容,选用的是人民教育出版社教材。

圆是初中几何中重要的内容之一。

本节通过第一课时建立圆的概念,认识圆的轴对称性与中心对称性。

讲解时将观察与思考、操作与实践等活动贯穿于教学全过程,使学生积累一定的数学活动经验。

《新课程标准》提出“使数学教育面向全体学生,实现人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展。

”本节课在遵循这一基本理念下,尽量实现几何课程的教育价值。

数学源于生活,又服务于生活,最终要解决生活中的问题。

利用现代多媒体帮助学生理解和学习数学,探索与分析,讨论与归纳等数学活动是学习的主要方式。

形成应用数学意识和创新思维,进而使学生获得对数学知识理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。

二、教学背景分析(一)教学内容分析圆是继三角形、四边形等基本图形后的又一个重要内容。

圆的知识在科学技术和日常生活中有广泛应用。

圆是平面几何中最基本的图形之一,它在几何中有重要的地位。

圆的有关概念是圆这一章的起始课,在本节课之前学生小学已经学习了圆的初步知识,联系学生实际,整合课外资源来充实课堂教学内容。

圆的有关概念是中学阶段应用圆知识解决实际问题的开端,也是为今后学习圆的知识奠定基础.通过对实际问题的探索让学生初步感受从实际问题中抽象出数学问题的过程,培养学生的数学价值观,增强学数学、用数学的意识。

(二)学生情况分析初三年级的学生是初中阶段的高年级的学生,课堂中的学习行为趋于理性化,思维的成熟度,内心深处探求真理的欲望比初二年级高,因此要引导轻松和谐的课堂气氛,充分激活学生的创造欲望,让学生在教师创设的情境中充满好奇心的学,留给学生充分的自主活动和相互交往的空间,在观察中不断地发现数学问题,在实践中日益领悟数学思想,在评价中逐步形成数学价值观。

24.弧、弦、圆心角课件

24.弧、弦、圆心角课件

原图形重合吗?由此你得到什么结论呢?
180° A
重合,
圆是中心对称图形
24.1.3 弧、弦、圆心角
2. 把圆绕圆心旋转任意一个角度呢?仍与本来的圆重合吗?
·
α
O
重合.圆是旋转对称图形,具有旋转不变性
24.1.3 弧、弦、圆心角
在同圆中探究
问题1 在⊙O 中,如果圆心角∠AOB =∠COD,那么CD与 AB,
24.1.3 弧、弦、圆心角 情境引入
飞镖靶、闹钟以及被均分的蛋糕等圆形中,都存在着角, 那么这些角有什么共同的特征呢?
24.1.3 弧、弦、圆心角
讲授新课
圆的对称性
用准备好的两个透明等圆探究实验:
问题1 在同一个圆中,将圆心角∠AOB绕圆心O旋转
到∠A′OB′的位置,你能发现哪些等量关系?
为什么?
的等量关系是否依然成立?
A
B
C
D
归纳 通过平移和
旋转将两个等圆变
成同一个圆,我们
·
发现:如果∠AOB
O·′
=∠CO′D,那么
O
,弦 AB = 弦 CD.
AB CD
24.1.3 弧、弦、圆心角
弧、弦与圆心角的关系定理
在同圆或等圆中,相等的圆心角所对的弧相等,
所对的弦也相等.
CB
D
O
A ①∠AOB = ∠COD
两条弧,由弦相等得到 弧相等时需要区分优弧 和劣弧.
24.1.3 弧、弦、圆心角
想一想:定理“在同圆或等圆中,相等的圆心角所对的弧
相等,所对的弦也相等”中,可否把条件“在同圆或等圆中”
去掉?为什么?
不可以,如图.
B D
OCA

人民教育出版社九年级数学上册第二十四章24.1.4圆周角教学设计

人民教育出版社九年级数学上册第二十四章24.1.4圆周角教学设计
4.各小组汇报讨论成果,教师进行点评和总结。
(四)课堂练习
1.教师设计具有梯度、层次的练习题,让学生独立解答,巩固所学知识。
2.练习题包括以下类型:
a.基础题:直接应用圆周角定理求解;
b.提高题:涉及圆周角定理推论的应用;
c.拓展题:综合运用圆周角定理及相关知识解决问题。
3.教师针对学生的答题情况,进行个别辅导,解答学生的疑问。
3.部分学生对数学学科存在恐惧心理,对几何知识的学习兴趣不高。教师应关注这部分学生的情感态度,通过设计生动有趣的教学活动和实例,激发他们的学习兴趣。
4.学生的自主学习能力和探究精神有待提高。教师应鼓励学生在课堂上积极思考、提问,培养他们独立解决问题的能力。
针对以上学情,教师在教学过程中应采取有针对性的教学策略,关注学生的个体差异,激发学生的学习兴趣,提高他们的几何素养。
(五)总结归纳
1.教师带领学生回顾本节课所学内容,总结圆周角定理及其推论。
2.学生分享自己在学习过程中的收获和感悟,教师给予肯定和鼓励。
3.教师强调本节课的重点和难点,提醒学生加强课后练习和巩固。
4.教师布置课后作业,要求学生独立完成,固学生对圆周角知识的掌握,提高他们的几何素养,特布置以下作业:
3.教师在批改作业时,及时给予评价和反馈,指导学生改进学习方法,提高学习效果。
1.基础知识巩固:
完成课本练习题24.1.4中的1-6题,要求学生熟练掌握圆周角定理及其推论,并能运用相关知识解决简单问题。
2.提高题训练:
完成课本练习题24.1.4中的7-10题,这部分题目涉及圆周角定理的灵活运用,旨在培养学生分析问题和解决问题的能力。
3.拓展题挑战:
完成课本练习题24.1.4中的11-15题,这部分题目具有一定的难度,要求学生综合运用所学知识,提高逻辑思维和空间想象力。

北师大版九年级数学上册 专题3.3 圆的对称性(知识讲解)

北师大版九年级数学上册 专题3.3 圆的对称性(知识讲解)

专题3.3 圆的对称性(知识讲解)【学习目标】1.了解圆及其有关概念,理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,理解概念之间的区别和联系;2.理解圆的对称性;【要点梳理】知识点一、与圆有关的概念1.弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.特别说明:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.2.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.3.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.特别说明:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.知识点二、圆心角和弧、弦的关系性质一:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;性质二:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等知识点三、圆的对称性圆是轴对称图形,其对称轴是任意一条通过圆心的直线。

圆也是中心对称图形,其对称中心是圆心。

【典型例题】类型一、与圆有关概念的识别1.下列说法中,正确的是()A.弦是直径B.半圆是弧C.过圆心的线段是直径D.圆心相同半径相同的两个圆是同心圆【答案】B解答:过圆心的弦是直径,不是所有的弦都是直径,故A选项错误;圆上任意两点间的部分是弧,故半圆是弧,故B正确;过圆心的弦是直径,故C选项错误;圆心相同,半径不等的两个圆是同心圆,故D错误,所以本题选B.考点:圆的有关定义.举一反三:【变式1】下列说法中,不正确的是()A.圆既是轴对称图形又是旋转对称图形B.一个圆的直径的长是它半径的2倍C.圆的每一条直径都是它的对称轴D.直径是圆的弦,但半径不是弦【答案】C【分析】根据圆的特征,轴对称图形的定义,弦的定义逐项进行分析即可.解析A、因为圆旋转任意一个角度都能够与自身重合,所以圆不仅是中心对称图形,也是旋转对称图形,该选项正确;B、一个圆的直径的长是它半径的2倍,该选项正确;C、圆的每一条直径所在的直线都是它的对称轴,该选项错误;D. 直径是圆的弦,但半径不是弦,该选项正确;故选:C.【点拨】本题主要考查了圆中的有关概念和性质,熟记性质是解本题的关键.【变式2】下列说法正确的是()A.长度相等的弧叫做等弧B.半圆不是弧C.过圆心的线段是直径D.直径是弦【答案】D【分析】连接圆上任意两点的线段叫弦,经过圆心的弦叫直径,圆上任意两点间的部分叫圆弧,简称弧,圆的任意一条直径的两个端点把圆分成两条弧,每条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.解:A、长度相等的弧不一定是等弧,故错误,不符合题意;B、半圆是弧,故错误,不符合题意;C、过圆心的弦是直径,故错误,不符合题意;D、直径是弦,正确,符合题意,故选:D.【点拨】本题考查了圆的认识,解题的关键是牢记等弧的定义、直径的定义、弦的定义,难度不大.【变式3】下列4个说法中:①直径是弦;①弦是直径;①任何一条直径所在的直线都是圆的对称轴;①弧是半圆;正确的有()A.1个B.2个C.3个D.4个【答案】B【分析】根据弧的分类、圆的性质逐一判断即可.解:①直径是最长的弦,故正确;①最长的弦才是直径,故错误;①过圆心的任一直线都是圆的对称轴,故正确;①半圆是弧,但弧不一定是半圆,故错误,正确的有两个,故选B.【点拨】本题考查了对圆的认识,熟知弦的定义、弧的分类是本题的关键.类型二、圆心角、弧、弦的关系2.如图所示,在①O中,AC、BC是弦,根据条件填空:(1)若AC=BC,则________________;(2)若AC BC=,则______________;(3)若①AOC=①BOC,则______________.【答案】(1) AC BC=,①AOC=①BOC;(2) AC=BC,①AOC=①BOC;(3) =,AC=BC.AC BC【解析】本题利用“在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.”来解决.解:本题中AC所对的弦是AC,所对的圆心角是①AOC;BC所对的弦是BC,所对的圆心角是①BOC.(1)若AC=BC,则AC=BC,①AOC=①BOC;(2)若AC=BC,则AC=BC,①AOC=①BOC;(3)若①AOC=①BOC,则AC=BC,AC=BC.举一反三:【变式1】如图,在①O中,AC BD,若①AOB=40°,则①COD=____.【答案】40°【解析】由“在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.”得①AOC=①BOD,再得出①AOB=①COD.解:①在①O中,AC=BD,①①AOC=①BOD,①①AOC-①BOC=①BOD-①BOC,①①AOB=①COD=40°.故答案为40°.【变式2】如图,A、D是①O上的两点,BC是直径,若①D=32°,则①OAC=_______度.【答案】58【分析】根据①D的度数,可以得到①ABC的度数,然后根据BC是直径,从而可以得到①BAC的度数,然后可以得到①OCA的度数,再根据OA=OC,从而可以得到①OAC的度数.解:①①D=32°,①D=①ABC①①ABC=32°①BC是直径①①BAC=90°①①BCA=90°-①ABC=90°-32°=58°①①OCA=58°①OA=OC①①OAC=①OCA①①OAC=58°故答案为58.【点拨】本题考查了圆周角定理,圆心角、弧、弦的关系.解题的关键是明确题意,利用数形结合的思想解答.【变式3】一条弦把圆分成5:1两部分,若圆的半径为2cm,此弦长为_____.【答案】2cm【分析】如图所示:首先作辅助线连接OA,OB,过O作OD①AB.根据特殊角的三角函数值求得AD的长度;然后由垂径定理求得AB的长度.解:连接OA,OB,过O作OD①AB.①一条弦把圆分成5:1两部分,①①AOB=60°,①①2=①1=30°;又①OD①AB,OA=2cm,①AD=12OA=1cm,①AB=2AD=2cm.故答案是:2cm.【点拨】本题综合考查了等边三角形的判定与性质,圆心角、弧、弦间的关系.本题利用了一个周角是360°求得所求弦所对的圆心角的度数.类型三、圆的对称性综合3.已知:A 、B 、C 、D 是①O 上的四个点,且BC AD =,求证:AC =BD .【答案】详见解析【分析】先根据BC AD =可得AC BD =,再根据同圆中等弧所对的弦相等即得. 证明:①BC AD =①AC BD =①AC BD =【点拨】本题考查圆心角定理推论,解题关键是熟知同圆或等圆中,等弧所对的弦相等. 举一反三:【变式1】如图,AB 是O 的直径,//OD AC .CD 与BD 的大小有什么关系?为什么?【答案】CD BD =,理由见解析【分析】连接CO ,根据平行线的性质可得2,1A C ∠=∠∠=∠,根据圆的半径相等,可得A C ∠=∠,等量代换可得12∠=∠,进而可得CD BD =.解:CD BD =,理由如下,如图,连接CO ,//OD AC ,2,1A C ∴∠=∠∠=∠,OA OC =,A C ∴∠=∠,12∠∠∴=,∴CD BD =.【点拨】本题考查了圆的性质,弧长与圆心角之间的关系,掌握弧和圆心角之间的关系是解题的关键.【变式2】如图,AB ,DE 是O 的直径,C 是O 上的一点,且AD CE =.BE 与CE 的大小有什么关系?为什么?【答案】BE CE =,理由见解析【分析】根据对顶角相等得到AOD BOE ∠=∠,再根据圆心角、弧、弦的关系得AD BE ,再结合AD CE =,即可得到BE CE =,再根据圆心角、弧、弦的关系得即可证得BE CE =.解:BE CE =,理由如下:①AOD BOE ∠=∠,①AD BE .又①AD CE =,①BE CE =.①BE CE =.【点拨】本题考查了圆心角、弧、弦的关系:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,熟练掌握了圆心角、弧、弦的关系是解决本题的关键.。

数学弧度制

数学弧度制

数学弧度制弧度是一个重要的角度度量单位,它在数学和物理学中被广泛应用。

弧度制是一种用弧长比来度量角度的方法,相对于传统的角度度量制度,弧度制更加精确和方便。

本文将介绍弧度的定义、性质、应用以及与角度的转换关系。

一、弧度的定义和性质弧度的定义是通过弧长比来度量角度。

当一个圆的半径为r时,一条弧长等于半径长度的弧对应的角度就是1弧度。

换句话说,若弧长为l,半径为r,则弧度数为l/r。

弧度的优点在于它可以精确地度量角度大小,并且不受圆的尺寸的限制。

因为弧度是通过弧长比来度量的,所以它与圆的半径无关,只与弧长有关。

这使得弧度制度量角度更加精确和一致。

弧度的取值范围是连续的实数集,可以表示从0到无穷大的任意角度。

而传统的角度制度量角度的范围是0到360度之间。

所以,在某些数学和物理问题中,弧度制更加方便和自然。

二、弧度与角度的转换关系弧度和角度之间存在着一个简单的转换关系。

由于一个圆的周长等于2πr,其中r是圆的半径,根据弧度的定义,整个圆对应的弧度数是2π。

这意味着1度等于π/180弧度。

通过这个转换关系,我们可以方便地将角度转换为弧度,或者将弧度转换为角度。

例如,如果要将45度转换为弧度,可以使用以下公式:45度× π/180 = π/4弧度。

同样地,如果要将π/3弧度转换为角度,可以使用以下公式:π/3 × 180/π = 60度。

三、弧度的应用弧度制在数学和物理学中有广泛的应用。

它在解析几何、微积分、三角函数以及力学等领域中扮演着重要的角色。

在解析几何中,弧度制可以用来度量两条曲线之间的夹角。

通过计算两条曲线的弧长,可以得到它们之间的弧度数,从而确定夹角的大小。

在微积分中,弧度制可以简化很多计算。

例如,当使用极坐标系描述曲线时,弧度制可以使得极坐标下的导数和积分运算更加简洁和方便。

在三角函数中,弧度制也被广泛使用。

三角函数的定义中涉及到圆的弧长,因此弧度制可以使得三角函数的计算更加直观和准确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

归纳:弧的度数和它所对圆心角的度数相等.圆可以看 作360°的弧.
1.已知弧AB和弧CD分别是圆O1和圆O2的弧,判断: ⑴若弧AB的度数=弧CD的度数,则∠AO1B= ∠CO2D ⑵若弧AB的度数=弧CD的度数,则弧AB=弧CD ⑶若弧AB=弧CD,则弧AB的度数=弧CD的度数 2.如图,AB、CD是⊙O的直径,弦CE//AB,弧CE的度 数为40°.则∠AOC的度数为 . 3.如图,在△ABC中,∠C=90°,∠B=28°,以C为圆 心,CA为半径的圆交AB于点D,交BC于点E.求弧AD 、 弧DE的度数.
1.如图,AB是⊙O的直径,五条弦AC=CD=DE=EF= FB,则∠AOC= ,∠COF= . 2.圆中等于半径的弦把圆分成的两条弧的度数之比为 . 3.在圆中,垂直平分半径的弦分圆周所得到的两条弧的度 数分别为 . 4.已知⊙O半径为1,弦AB把圆周分成1:2的两部分,则 AB= . 5.已知点C是⊙O的直径AB上的一点,过点C作弦DE,使 CD=CO.若弧AD的度数为40°,求弧BE的度数.
24.1.5 圆弧的度数
如图,在⊙O中,如果∠AOB=2∠COD,那么弧AB= 2弧CD吗?弦AB=2弦CD吗? 如果∠AOB=n∠COD,那么弧AB=n弧CD吗?
C B O D A
把圆心角等分成360份,则每一份的圆心角是1º;同时 整个圆也被等分成了360份.则每一份这样的弧叫做1º的 弧.这样: 1º的圆心角对着1º的弧,1º的弧对着1º的圆心角; …… nº的圆心角对着nº的弧,nº的弧对着nº的圆心角.
相关文档
最新文档