相似三角形的性质(经典全面)
相似三角形的性质
相似三角形的性质一、引言相似三角形是几何学中的重要概念,广泛运用于日常生活和科学技术领域。
相似三角形的性质揭示了三角形之间的一种特殊关系,即它们的形状相同但大小不同。
本文将对相似三角形的性质进行详细阐述,以便更好地理解这一几何概念。
二、相似三角形的定义1.∠A=∠D,∠B=∠E,∠C=∠F(对应角相等)2.AB/DE=BC/EF=AC/DF(对应边成比例)那么,三角形ABC与三角形DEF是相似的,记作△ABC≌△DEF。
三、相似三角形的性质1.对应角相等相似三角形的一个基本性质是对应角相等。
这意味着如果两个三角形相似,那么它们的每个角都对应相等。
例如,在△ABC与△DEF相似的情况下,有∠A=∠D,∠B=∠E,∠C=∠F。
2.对应边成比例相似三角形的另一个基本性质是对应边成比例。
这意味着相似三角形的每条边都与另一三角形的对应边成相同的比例。
例如,在△ABC与△DEF相似的情况下,有AB/DE=BC/EF=AC/DF。
3.对应高的比相等相似三角形的对应高(从顶点到对边的垂线)的比相等。
例如,在△ABC与△DEF相似的情况下,有h₁/h₂=k,其中h₁和h₂分别是△ABC和△DEF的对应高,k是相似比。
4.对应中线的比相等相似三角形的对应中线(连接顶点和对边中点的线段)的比相等。
例如,在△ABC与△DEF相似的情况下,有m₁/m₂=k,其中m₁和m₂分别是△ABC和△DEF的对应中线,k是相似比。
5.对应角平分线的比相等相似三角形的对应角平分线(将顶点角平分的线段)的比相等。
例如,在△ABC与△DEF相似的情况下,有s₁/s₂=k,其中s₁和s₂分别是△ABC和△DEF的对应角平分线,k是相似比。
6.面积比等于相似比的平方相似三角形的面积比等于相似比的平方。
例如,在△ABC与△DEF相似的情况下,有S₁/S₂=k²,其中S₁和S₂分别是△ABC和△DEF的面积,k是相似比。
四、相似三角形的判定方法1.AA(角角)相似判定法如果两个三角形有两个角分别相等,那么这两个三角形相似。
相似三角形的性质
相似三角形的性质相似三角形是几何学中一个重要的概念,它们具有一些独特的性质和特点。
在本篇文章中,我们将深入探讨相似三角形的性质,并介绍一些相关的定理和应用。
一、比例性质相似三角形的首要性质是比例性质。
两个三角形相似的条件之一是它们各个对应顶点的角度相等,另一个重要条件是它们对应的边长成比例。
具体而言,如果两个三角形的对应边长之比相等,那么它们就是相似三角形。
这一性质可以用以下比例关系表达:$$\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$$其中,AB、BC、AC分别是一个三角形的三边的长度,DE、EF、DF分别是另一个相似三角形的对应边的长度。
二、边长比例的重要性质边长比例是相似三角形中一个非常重要的性质,它具有一些独特的特点:1. 任意两边之比相等在相似三角形中,任意两边的长度比都是相等的。
例如,在三角形ABC和三角形DEF中,我们有以下关系:$$\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$$2. 任意一边与其他边的长度比相等对于相似三角形中的一条边,它与其他两条边之比都是相等的。
例如,在三角形ABC和三角形DEF中,我们有以下关系:$$\frac{AB}{BC} = \frac{DE}{EF} = \frac{DF}{AC}$$3. 相似三角形的边长比例唯一如果两个三角形的边长比例相等,那么它们一定是相似的。
这是因为边长比例包含了相似三角形的全部信息,只有这些比例相等,两个三角形的形状才会完全一致。
三、角度对应的性质除了边长比例之外,相似三角形还有一些角度对应的性质:1. 对应角相等在相似三角形中,对应的角是相等的。
例如,在三角形ABC和三角形DEF中,我们有以下关系:$$\angle A = \angle D, \angle B = \angle E, \angle C = \angle F$$2. 对角相等的必要条件如果两个三角形的对应角相等,那么它们一定是相似的。
相似三角形的性质和判定知识点
相似三角形的性质和判定知识点相似三角形是初中数学中的重要概念,它在几何学中具有广泛的应用。
相似三角形的性质和判定是学习和解题的基础,本文将详细介绍相似三角形的性质和判定的知识点。
一、相似三角形的定义相似三角形是指具有相同形状但不同大小的三角形。
两个三角形相似的条件是它们对应角相等,即对应边的比例相等。
二、相似三角形的性质相似三角形有一些重要的性质,如下:1. 对应角相等性质:如果两个三角形相似,它们的对应角相等。
2. 对应边成比例性质:如果两个三角形相似,它们的对应边成比例,即对于第一个三角形的一条边与第二个三角形的相应边的比等于第一个三角形的另一条边与第二个三角形的相应边的比。
3. 半角性质:如果两个三角形相似,它们的角的一半也相等。
4. 高线成比例性质:如果两个三角形相似,它们的高线与底边之比等于相应边之比。
5. 中线成比例性质:如果两个三角形相似,它们的中线与底边之比等于相应边之比。
这些性质对于判断和解决相似三角形的问题非常有用。
三、相似三角形的判定判定两个三角形是否相似有几个常用的方法,如下:1. AAA相似判定:如果两个三角形的对应角相等,则它们相似。
2. AA相似判定:如果两个三角形的一个角相等,并且两个角分别对应两个角相等,则它们相似。
3. SSS相似判定:如果两个三角形的对应边成比例,则它们相似。
4. SAS相似判定:如果两个三角形的一个角相等,并且两个角的相邻边的比相等,则它们相似。
这些判定方法能够帮助我们快速确定两个三角形是否相似,从而解决相关问题。
四、相似三角形的实际应用相似三角形的概念和性质在几何学中有广泛的应用。
下面介绍一些实际应用的例子:1. 相似三角形的测量:通过测量一个三角形的边长和角度,可以利用相似三角形的性质计算出其他三角形的边长和角度。
2. 地图比例尺:地图上的比例尺是通过相似三角形的性质确定的。
通过观察地图上的两个相似三角形,可以计算出地图上的实际距离。
3. 光学测距:在实际测量中,通过利用相似三角形的性质可以测量较远距离的物体高度、距离等。
相似三角形的性质及判定方法
相似三角形的性质及判定方法相似三角形是指具有相同形状但可能不同大小的两个或多个三角形。
在几何学中,相似三角形具有一些特定的性质和判定方法。
本文将探讨相似三角形的性质以及如何判定两个三角形是否相似。
一、相似三角形的性质1. 对应角相等性质:如果两个三角形的对应角相等,那么它们是相似的。
具体而言,如果两个三角形的对应角分别相等,则它们是相似的。
记为AA相似性质。
2. 对应边的比例性质:如果两个三角形的两对对应边的比例相等,那么它们是相似的。
具体而言,如果两个三角形的对应边所对应的长度比例相等,则它们是相似的。
记为SSS相似性质。
3. 角和对边的比例性质:如果两个三角形的对应角相等且对应边的长度比例相等,那么它们是相似的。
具体而言,如果两个三角形的对应角相等且对应边的长度比例相等,则它们是相似的。
记为SAS相似性质。
二、相似三角形的判定方法1. AA判定法:如果两个三角形的两个角分别相等,则它们一定是相似的。
即,如果两个三角形的两个角分别相等,则它们的第三个角也必然相等,从而满足AA相似性质。
2. SSS判定法:如果两个三角形的三对对应边的长度比例相等,则它们一定是相似的。
即,如果两个三角形的三对对应边的长度比例相等,则它们满足SSS相似性质。
3. SAS判定法:如果两个三角形的一个对应角相等,且对应边的长度比例相等,则它们一定是相似的。
即,如果两个三角形的一个对应角相等,且对应边的长度比例相等,则它们满足SAS相似性质。
三、实例分析为了更好地理解相似三角形的判定方法,我们来看一个实例。
已知三角形ABC和三角形DEF,已知∠A=∠D,∠B=∠E,且AB/DE = BC/EF = CA/FD,我们需要判定这两个三角形是否相似。
根据给定条件可知,∠A=∠D,∠B=∠E,且BC/EF = CA/FD。
根据SAS判定法,如果对应角相等且对应边的长度比例相等,则两个三角形相似。
由此得出结论,三角形ABC和三角形DEF是相似的。
相似三角形的性质
相似三角形的性质相似三角形是指两个或更多个三角形的对应角相等,并且对应边的比值相等的情况。
在几何学中,相似三角形具有一些重要的性质和定理。
本文将介绍相似三角形的性质,并探讨与之相关的定理。
一、1. 对应角相等:当两个三角形的对应角分别相等时,它们是相似三角形。
对应角是指在两个三角形中,两个相对的角。
2. 对应边比值相等:相似三角形的边长之比等于它们的对应边长之比。
即若两个三角形ABC和DEF是相似三角形,那么有AB/DE=BC/EF=AC/DF。
3. 角相等:若两个三角形的一个角分别相等,并且两个边的比值相等,那么这两个三角形也是相似三角形。
4. 边长比值:在相似三角形中,对应边的比值等于任意两边的比值。
例如,在相似三角形ABC和DEF中,有AB/DE=BC/EF=AC/DF,同时也有AB/BC=DE/EF=AC/DF。
二、相似三角形的重要定理1. AA相似定理:如果两个三角形的两个角分别相等,那么这两个三角形是相似的。
具体而言,如果∠A=∠D,且∠B=∠E,则三角形ABC与三角形DEF是相似的。
2. SAS相似定理:如果两个三角形的一对对边成比例,且这两条对边之间的夹角相等,则这两个三角形是相似的。
具体而言,如果AB/DE=BC/EF且∠B=∠E,则三角形ABC与三角形DEF是相似的。
3. SSS相似定理:如果两个三角形的对边比值相等,则这两个三角形是相似的。
具体而言,如果AB/DE=BC/EF=AC/DF,则三角形ABC 与三角形DEF是相似的。
三、使用相似三角形的方法和应用1. 比例求解:根据相似三角形的性质,我们可以利用已知条件和未知数来求解未知边的长度或者未知角的度数。
通过建立各边之间的比例关系,可以使用正比例求解法来解决各种几何问题。
2. 测量不可达距离:在实际应用中,有时我们无法直接测量两点之间的距离,但可以利用相似三角形的性质来间接求解。
通过测量一个已知距离和相关角度,可以建立相似三角形的比例关系,从而求解不可达距离。
初中数学知识归纳相似三角形的性质
初中数学知识归纳相似三角形的性质相似三角形是初中数学中重要的概念之一,它在几何学和应用数学中都具有广泛的应用。
相似三角形是指具有相同形状但大小不同的两个三角形。
在本文中,我们将归纳相似三角形的性质,全面了解相似三角形的特点和应用。
一、相似三角形的定义相似三角形的定义是指两个三角形的对应角相等,对应边成比例。
具体表达为:若ΔABC∽ΔA'B'C',则有∠A=∠A',∠B=∠B',∠C=∠C',且AB/A'B' = BC/B'C' = AC/A'C'。
二、相似三角形的性质1. 对应角相等性质:相似三角形的对应角相等,即∠A=∠A',∠B=∠B',∠C=∠C'。
2. 对应边成比例性质:相似三角形的对应边成比例,即AB/A'B' = BC/B'C' = AC/A'C'。
3. 相似三角形的边比例性质:在相似三角形中,各边之间的比值相等。
例如,若ΔABC∽ΔA'B'C',则有AB/BC = A'B'/B'C' = AC/BC =A'C'/B'C'。
三、相似三角形的判定1. AA判定法:若两个三角形的两个角分别相等,则这两个三角形相似。
即若∠A=∠A',∠B=∠B',则ΔABC∽ΔA'B'C'。
2. SAS判定法:若两个三角形的一个角相等,且两个角的对边成比例,则这两个三角形相似。
即若∠A=∠A',AB/A'B' = AC/A'C',则ΔABC∽ΔA'B'C'。
3. SSS判定法:若两个三角形的三边成比例,则这两个三角形相似。
即若AB/A'B' = BC/B'C' = AC/A'C',则ΔABC∽ΔA'B'C'。
相似三角形及其性质
相似三角形及其性质相似三角形是指具有相同形状但大小不同的三角形。
在这篇文章中,我们将讨论相似三角形的性质以及与它们相关的一些重要定理和公式。
一、相似三角形的定义相似三角形是指两个三角形的对应角相等,且对应边成比例。
用数学语言描述就是:如果∠A = ∠D,∠B = ∠E,∠C = ∠F,并且AB/DE = AC/DF = BC/EF,则三角形ABC和DEF是相似的。
二、相似三角形的性质1. 相似三角形的边比例关系:假设三角形ABC和DEF相似,边长比例的关系可以表示为AB/DE = AC/DF = BC/EF。
这意味着相似三角形的任意两条边之比都相等。
2. 相似三角形的角度关系:相似三角形的对应角相等,即∠A = ∠D,∠B = ∠E,∠C = ∠F。
这是相似三角形的重要性质之一。
3. 相似三角形的周长比例关系:相似三角形的周长比例等于它们任意两条边比值的比例。
假设三角形ABC和DEF相似,则AB+BC+AC/DE+EF+DF = AB/DE = AC/DF = BC/EF。
4. 相似三角形的面积比例关系:相似三角形的面积比例等于它们任意两条边长度平方的比例。
假设三角形ABC和DEF相似,则三角形ABC的面积与三角形DEF的面积的比值等于AB²/DE² = AC²/DF² = BC²/EF²。
三、相似三角形的重要定理1. AA相似定理(角-角相似定理):如果两个三角形的两个角分别相等,则这两个三角形相似。
例如,如果∠A = ∠D,∠B = ∠E,则三角形ABC与DEF相似。
2. SSS相似定理(边-边-边相似定理):如果两个三角形的对应边成比例,且对应边的比例相等,则这两个三角形相似。
例如,如果AB/DE = AC/DF = BC/EF,则三角形ABC与DEF相似。
3. SAS相似定理(边-角-边相似定理):如果两个三角形的一个内角相等,且两边分别成比例,则这两个三角形相似。
相似三角形的性质(经典全面)
一、相似的有关概念1.相似形具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不一定相同.相似图形之间的互相变换称为相似变换. 2.相似图形的特性两个相似图形的对应边成比例,对应角相等. 3.相似比两个相似图形的对应角相等,对应边成比例.二、相似三角形的概念1.相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形.如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于”.A 'B 'C 'CB A2.相似比相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”.三、相似三角形的性质1.相似三角形的对应角相等如图,ABC △与A B C '''△相似,则有A A B B C C '''∠=∠∠=∠∠=∠,,.A 'B 'C 'CB A2.相似三角形的对应边成比例 如图,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比). 相似三角形的性质及判定A 'B 'C 'CB A3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比.如图1,ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的中线,则有AB BC AC AMk A B B C A C A M ====''''''''(k 为相似比). M 'MA 'B 'C 'C BA图1如图2,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比). H 'H AB C C 'B 'A '图2如图3,ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分线,则有AB BC AC ADk A B B C A C A D ====''''''''(k 为相似比).D 'D A 'B C 'C B A图34.相似三角形周长的比等于相似比. 如图4,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比).应用比例的等比性质有AB BC AC AB BC ACk A B B C A C A B B C A C ++====''''''''''''++.A 'B 'C 'CB A图45.相似三角形面积的比等于相似比的平方.如图5,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).进而可得21212ABC A B C BC AH S BC AH k S B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△.H 'H AB C C 'B 'A '图5四、相似三角形的判定1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两个三角形相似.3.如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.4.如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:三边对应成比例,两个三角形相似.5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.6.直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明)7.如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如果它们的腰和底对应成比例,那么这两个等腰三角形也相似.五、相似证明中的比例式或等积式、比例中项式、倒数式、复合式证明比例式或等积式的主要方法有“三点定形法”. 1.横向定型法欲证AB BCBE BF=,横向观察,比例式中的分子的两条线段是AB 和BC ,三个字母A B C ,,恰为ABC △的顶点;分母的两条线段是BE 和BF ,三个字母B E F ,,恰为BEF △的三个顶点.因此只需证2.纵向定型法欲证AB DEBC EF=,纵向观察,比例式左边的比AB 和BC 中的三个字母A B C ,,恰为ABC △的顶点;右边的比两条线段是DE 和EF 中的三个字母D E F ,,恰为D E F △的三个顶点.因此只需证ABC DEF △∽△. 3.中间比法由于运用三点定形法时常会碰到三点共线或四点中没有相同点的情况,此时可考虑运用等线,等比或等积进行变换后,再考虑运用三点定形法寻找相似三角形.这种方法就是等量代换法.在证明比例式时,常用到中间比.比例中项式的证明,通常涉及到与公共边有关的相似问题。
相似三角形的性质
相似三角形的性质相似三角形是初中数学重要的概念之一,它们有着特定的性质和应用。
在本文中,我们将探讨相似三角形的定义、性质以及应用。
一、相似三角形的定义相似三角形指的是具有相同形状但大小不同的三角形。
两个三角形相似的条件是:它们对应角度相等,或者它们的对应边比例相等。
基于这个定义,我们可以得出以下相似三角形的性质和定理。
二、相似三角形的性质1. AA相似定理:如果两个三角形的对应角度相等,那么它们是相似的。
2. SSS相似定理:如果两个三角形的对应边比例相等,那么它们是相似的。
3. SAS相似定理:如果两个三角形的一个内角相等,且对应边比例相等,那么它们是相似的。
4. 相似三角形中,对应边的比例关系是恒定的,我们可以表示为a/b = c/d = e/f。
其中,a、b、c、d、e、f分别表示两个相似三角形的对应边。
5. 相似三角形的高、中线和角平分线也成比例。
三、相似三角形的应用1. 测量无法直接获得的长度:我们可以利用相似三角形的性质,通过已知长度和已知角度的三角形推导出其他长度的值。
例如,可以利用相似三角形的边比例关系来测量高楼的高度。
2. 解决间接测量问题:相似三角形的性质也可以应用于间接测量问题。
例如,当我们无法直接测量河流宽度时,可以通过测量自己位置与河对岸某一点之间的距离及角度,运用相似三角形的理论来计算出河流的宽度。
3. 几何证明:相似三角形的性质在几何证明中也起到重要的作用。
通过利用相似三角形的角等性质和边比例关系,可以简化、解决一些几何问题。
4. 模型建立:相似三角形的性质也可以应用于模型建立。
例如,制作比例模型时,可以根据相似三角形的比例关系来设计模型的尺寸。
四、相似三角形的推论基于相似三角形的性质和定理,我们还可以得出一些推论。
1. 正弦定理的推论:当两个角相等时,一般使用正弦定理来求解三角形的边长。
但是,当角等于30°、60°或90°时,我们可以运用相似三角形的性质,通过已知边长求解其他边长。
相似三角形的性质
相似三角形的性质相似三角形是指两个三角形的对应角度相等,并且对应边的比例相等的三角形。
在几何学中,相似三角形具有一些重要的性质和特点,本文将对相似三角形的性质进行详细解析。
在讨论相似三角形的性质之前,首先需要明确相似三角形的定义和判定条件。
一、相似三角形的定义相似三角形的定义是指两个三角形的对应角度相等,并且对应边的比例相等。
对于两个三角形ABC和DEF来说,若满足以下条件,则称两个三角形相似:1. ∠A = ∠D,∠B = ∠E,∠C = ∠F;2. |\frac{AB}{DE}| = |\frac{BC}{EF}| = |\frac{AC}{DF}|。
二、相似三角形的判定条件判定两个三角形是否相似有以下几种方法:1. AA相似判定法:如果两个三角形的两个角分别相等,则两个三角形相似。
即若∠A = ∠D,∠B = ∠E 或∠A = ∠E,∠B = ∠D,或者∠B = ∠D,∠C = ∠E 或∠B = ∠E,∠C = ∠D,则两个三角形相似。
2. AAA相似判定法:如果两个三角形的三个角分别相等,则两个三角形相似。
即若∠A = ∠D,∠B = ∠E,∠C = ∠F,则两个三角形相似。
3. 相似比例判定法:如果两个三角形的对应边的比例相等,则两个三角形相似。
即|\frac{AB}{DE}| = |\frac{BC}{EF}| = |\frac{AC}{DF}|。
三、相似三角形性质1. 对应角度相等:相似三角形的对应角度相等,即∠A = ∠D,∠B = ∠E,∠C = ∠F。
这是相似三角形的基本性质,也是相似三角形的判定条件之一。
2. 对应边比例相等:相似三角形的对应边的比例相等,即|\frac{AB}{DE}| = |\frac{BC}{EF}| = |\frac{AC}{DF}|。
这是相似三角形的另一个基本性质,也是相似三角形的判定条件之一。
3. 边对边既比例又平行:相似三角形的对应边不仅比例相等,还平行。
相似三角形的性质
相似三角形的性质相似三角形是指对应角相等且对应边成比例的两个三角形。
在几何学中,相似三角形有一些重要的性质。
本文将详细介绍相似三角形的性质,包括比例关系、角度关系以及面积关系。
一、比例关系1. 边比例关系:设两个相似三角形分别为△ABC和△DEF,若它们的对应边AB、BC、AC和DE、EF、DF满足比例关系:AB/DE = BC/EF = AC/DF = k (k为常数)则称两个三角形的边为成比例边,比例因子为k。
这表明两个相似三角形的对应边长度之比是相等的。
2. 角度比例关系:两个相似三角形的对应角度相等。
设∠A = ∠D,∠B = ∠E,∠C = ∠F,则称△ABC与△DEF为相似三角形。
根据角度对应的边比例关系,我们可以得到以下重要的比例关系: AB/DE = BC/EF = AC/DF = k (边比例关系)∠A/∠D = ∠B/∠E = ∠C/∠F (角度比例关系)二、角度关系1. 对应角相等:已知两个相似三角形△ABC和△DEF,它们的对应角分别为∠A、∠B、∠C和∠D、∠E、∠F。
根据相似三角形的定义,我们可以得到∠A = ∠D∠B = ∠E∠C = ∠F这意味着两个相似三角形的对应角是相等的。
2. 内角之和:两个相似三角形的内角之和相等。
设∠A + ∠B + ∠C = ∠D + ∠E + ∠F = 180°,这意味着两个相似三角形的内角之和相等,都等于180°。
三、面积关系1. 面积比例关系:设两个相似三角形的比例因子为k,那么它们的面积之比等于边长之比的平方,即面积(△ABC)/面积(△DEF) = (AB/DE)^2 = (BC/EF)^2 = (AC/DF)^2 = k^2这意味着两个相似三角形的面积之比等于边长之比的平方。
2. 高比例关系:两个相似三角形的相应高之比等于边长之比,即高(△ABC)/高(△DEF) = AB/DE = BC/EF = AC/DF这表明两个相似三角形的相应高之比等于边长之比。
几何中的相似三角形及其性质
几何中的相似三角形及其性质相似三角形是几何学中重要的概念,它们具有特殊的性质和应用。
在本文中,我们将详细介绍相似三角形的定义以及相关的性质和定理。
一、相似三角形的定义相似三角形是指具有相同形状但大小不同的三角形。
当两个三角形的对应角度相等时,它们就是相似三角形。
换句话说,两个三角形的对应角度对应相等,并且对应边的比例相等。
二、相似三角形的性质1. 对应边的比例性质在相似三角形中,对应边的比值相等。
即对于三角形ABC和DEF来说,如果∠A=∠D,∠B=∠E,∠C=∠F,则可以推出AB/DE=BC/EF=AC/DF。
这个性质的应用非常广泛。
例如,在地图上测量距离时,我们经常使用相似三角形的对应边的比例关系来计算实际距离。
2. 相似三角形的角度性质相似三角形的对应角度相等。
这意味着如果两个三角形的角度相等,则它们是相似三角形。
在三角形的几何证明中,我们经常使用这个性质来推导其他结论。
3. 相似三角形的边长比例性质如果两个三角形是相似的,则它们对应边的比例相等。
例如,如果∠A=∠D,∠B=∠E,∠C=∠F,并且AB/DE=BC/EF=AC/DF,则可以推导出三角形ABC和DEF是相似的。
4. 相似三角形的高度比例性质在相似三角形中,对应边的比值等于任意两条高度的比值。
例如,在三角形ABC和DEF中,如果∠A=∠D,∠B=∠E,∠C=∠F,并且AD/BF=BE/CF=AC/DF,则可以得出三角形ABC和DEF是相似的。
5. 相似三角形的面积比例性质在相似三角形中,任意两个相似三角形的面积之比等于对应边长的平方之比。
例如,在三角形ABC和DEF中,如果∠A=∠D,∠B=∠E,∠C=∠F,并且AB/DE=BC/EF=AC/DF,则可以得出三角形ABC和DEF的面积之比为(AB/DE)²=(BC/EF)²=(AC/DF)²。
三、相似三角形的应用相似三角形的性质在实际问题中有着广泛的应用。
相似三角形的性质
相似三角形的性质相似三角形是我们在初中数学中经常遇到的一个概念,它具有一些重要的性质。
本文将详细介绍相似三角形的定义及其性质。
一、相似三角形的定义两个三角形如果对应的角相等,且对应的边成比例,那么这两个三角形就是相似三角形。
相似三角形的定义可以表示为以下形式:对于△ABC和△DEF,如果∠A=∠D,∠B=∠E,∠C=∠F,并且AB/DE=BC/EF=AC/DF,那么△ABC和△DEF是相似三角形。
二、相似三角形的性质1. 对应角相等性质:如果两个三角形相似,那么它们对应的角必定相等。
例如,如果∠A=∠D,∠B=∠E,∠C=∠F,则△ABC和△DEF 是相似三角形。
2. 对应边成比例性质:如果两个三角形相似,那么它们对应的边长必定成比例。
设AB/DE=BC/EF=AC/DF=k,其中k为正实数,则△ABC和△DEF是相似三角形。
这个性质常常被用于求解相似三角形的边长。
3. 相似三角形的比例关系性质:在相似三角形中,对应边的比例关系成立。
即AB/DE=BC/EF=AC/DF=k,其中k为正实数。
根据这个性质,我们可以通过已知的边长,求解未知的边长。
4. 相似三角形高度和底边的比例关系性质:在相似三角形中,两个三角形的高度和底边的比例相等。
例如,设h1为△ABC的高度,h2为△DEF的高度,b1为△ABC的底边,b2为△DEF的底边,那么h1/h2=b1/b2=k,其中k为正实数。
这个性质在解决实际问题中经常被利用。
5. 相似三角形面积比性质:如果两个三角形相似,那么它们的面积比等于边长比的平方。
设S1为△ABC的面积,S2为△DEF的面积,AB/DE=BC/EF=AC/DF=k,那么S1/S2=(AB/DE)^2=(BC/EF)^2=(AC/DF)^2=k^2。
根据这个性质,我们可以计算相似三角形的面积。
6. 相似三角形的周长比性质:如果两个三角形相似,那么它们的周长比等于边长比。
设L1为△ABC的周长,L2为△DEF的周长,AB/DE=BC/EF=AC/DF=k,那么L1/L2=AB+BC+AC/DE+EF+DF=k。
相似三角形知识点归纳
相似三角形知识点归纳下面是关于相似三角形的一些重要知识点的归纳:1.相似三角形的定义:当两个三角形的对应角度相等时,它们称为相似三角形。
记作△ABC∽△DEF。
2.相似三角形的性质:相似三角形具有以下重要性质:-对应角度相等:如果△ABC∽△DEF,则∠A=∠D,∠B=∠E,∠C=∠F。
-对应边长度比相等:如果△ABC∽△DEF,则AB/DE=BC/EF=AC/DF。
-对应高度比相等:如果△ABC∽△DEF,则h₁/h₂=AB/DE=BC/EF=AC/DF,其中h₁和h₂分别为两个三角形的高度。
3.相似三角形的证明方法:-AA相似定理:如果两个三角形的两个角度分别相等,则它们相似。
根据该定理,只需证明两个对应角度相等即可证明两个三角形相似。
-SAS相似定理:如果两个三角形中的一对对应边的比相等,且对应角度相等,则这两个三角形相似。
-SSS相似定理:如果两个三角形的三对对应边比分别相等,则这两个三角形相似。
4.相似三角形的应用:-计算长度比例:根据相似三角形的性质,可以通过已知长度比例的一组相似三角形,来计算其他边的长度比例。
-求解角度:通过已知相似三角形的对应角度相等,可以求解未知的角度。
-计算面积比例:相似三角形的面积比等于边长比的平方。
所以,通过已知相似三角形的边长比,可以计算出面积比。
5.重要的相似三角形定理:-长边分割定理:如果一条直线平行于一个边,且与另外两条边相交,这条直线将三角形分割成两个相似的三角形。
-三角形的垂直角定理:在一个直角三角形中,斜边与任意一个锐角的两个垂直角相等。
总结起来,相似三角形是几何学中一个重要的概念。
通过理解相似三角形的定义、性质、证明方法以及应用,我们可以去解决各种几何问题。
相似三角形的知识点需要掌握好,也是我们在解决几何问题过程中的重要工具。
相似三角形的性质(经典全面)
相似三角形的性质(经典全面)相似三角形的性质及判定一、相似的有关概念相似形是指具有相同形状的图形,但大小不一定相同。
相似图形之间的互相变换称为相似变换。
二、相似三角形的概念相似三角形是指对应角相等,对应边成比例的三角形。
用符号XXX表示,例如△ABC∽△A B C。
三、相似三角形的性质1.对应角相等:如果△ABC与△A B C相似,则有A A,B B,C C。
2.对应边成比例:如果△ABC与△A B C相似,则有AB/BC=AC/A C=BC/B C=k(k为相似比)。
3.对应边上的中线、高线和对应角的平分线成比例,都等于相似比。
例如,如果AM是△ABC中BC边上的中线,A M是△A B C中B C边上的中线,则有AM/A M=k。
如果AH是△ABC中BC边上的高线,A H是△A B C中B C边上的高线,则有AH/A H=k。
如果AD是△ABC中BAC的角平分线,A D是△A B C中B A C的角平分线,则有AD/A D=k。
4.相似三角形周长的比等于相似比。
如果△ABC与△A B C相似,则有AB+BC+AC/A B+B C+A C=k。
ABCD中间观察,比例式中的比AD和BC中的三个字母A,B,C恰为△ABC的顶点;比CD和EF中的三个EFDC字母D,E,F恰为△DEF的三个顶点.因此只需证欲证△ABC∽△DEF.证明比例中项式或倒数式或复合式的方法,可以运用“三点定形法”,也可以利用“分离比例中项法”或“分离倒数式法”或“分离复合式法”.由于在运用三点定形法时,可能会遇到三点共线或四点中没有相同点的情况,此时可以考虑使用等线、等比或等积进行变换,然后再使用三点定形法来寻找相似三角形。
这种方法被称为等量代换法。
在证明比例式时,常常会用到中间比。
证明比例中项式通常涉及与公共边有关的相似问题。
这类问题的典型模型是射影定理模型,需要熟练掌握和透彻理解其特征和结论。
证明倒数式往往需要先进行变形,将等式的一边化为1,另一边化为几个比值的形式,然后对比值进行等量代换,进而证明之。
相似三角形的定义与性质
相似三角形的定义与性质相似三角形是初中数学中重要的概念,对于这一概念的理解和运用,有助于提高学生的空间想象能力和解题能力。
本文将从相似三角形的定义、相似三角形的性质以及相关应用等方面进行论述。
一、相似三角形的定义相似三角形是指两个三角形之间,对应角相等且对应边成比例的三角形。
具体来说,若两个三角形ABC与DEF满足以下条件:1. ∠A = ∠D,∠B = ∠E,∠C = ∠F,即它们的内角相等;2. AB/DE = BC/EF = AC/DF,即它们的对应边成比例。
二、相似三角形的性质1. 判定相似的依据根据相似三角形的定义,一般有以下几种判定相似的方式:(1)AAA判定法:若两个三角形的对应角相等,则它们相似。
(2)AA判定法:若两个三角形有某两个对应角相等,则它们相似。
(3)SAS判定法:若两个三角形一个角相等,且包含等边,那么它们相似。
(4)S-S-S判定法:若两个三角形的三条边分别成比例,则它们相似。
2. 相似三角形的比例关系对于相似三角形ABC与DEF,它们所有对应边的比例都相等:AB/DE = BC/EF = AC/DF3. 相似三角形的线性关系相似三角形中,对应角的弧度数等于对应边的比例:m∠A/m∠D = m∠B/m∠E = m∠C/m∠F = AB/DE = BC/EF =AC/DF4. 相似三角形的高线关系如果两个相似三角形的高分别为h和k,它们对应边的比例为p,那么它们的面积的比例也为p²,即S1/S2 = (h₁*k₁)/(h₂*k₂) = p²5.相似三角形的周线关系如果两个相似三角形的周长分别为L₁与L₂,它们对应边的比例为p,那么它们的周长的比例也为p,即L₁/L₂ = AB/DE = BC/EF = AC/DF = p三、相似三角形的应用相似三角形的性质在实际应用中有很广泛的运用,以下是一些常见的应用场景:1. 测量不便的物体的高度:通过测量自己的影子长度和身高,可以利用相似三角形的原理计算出物体的高度。
相似三角形的性质
相似三角形的性质相似三角形是指具有相同形状但大小可以不同的三角形。
在数学中,相似三角形是一个重要的概念,它具有一系列独特的性质和特点。
本文将介绍相似三角形的性质,以及与之相关的定理和应用。
一、比例关系相似三角形中,对应边的长度成比例。
设ABC和DEF是相似三角形,对应边的长度满足以下比例关系:AB/DE = BC/EF = AC/DF其中,AB、BC、AC为三角形ABC的边长,DE、EF、DF为三角形DEF的边长。
这个比例关系可以推广至所有对应边。
二、角度关系相似三角形中,对应角度相等。
设ABC和DEF是相似三角形,对应角度满足以下关系:∠A = ∠D, ∠B = ∠E, ∠C = ∠F其中,∠A、∠B、∠C为三角形ABC的内角,∠D、∠E、∠F为三角形DEF的内角。
三、边长比例定理设ABC和DEF是相似三角形,若两个相似三角形的边长比例相等,则它们是相似的。
即如果AB/DE = BC/EF = AC/DF成立,那么三角形ABC与三角形DEF相似。
四、高度定理相似三角形的高度成比例。
设ABC和DEF是相似三角形,h1和h2分别为三角形ABC和DEF的高度,则有h1/h2 = AB/DE = BC/EF = AC/DF成立。
五、面积定理相似三角形的面积成比例的平方。
设ABC和DEF是相似三角形,S1和S2分别为三角形ABC和DEF的面积,则有S1/S2 = (AB/DE)^2 = (BC/EF)^2 = (AC/DF)^2成立。
六、勾股定理相似直角三角形中,斜边成比例。
设ABC和DEF是两个相似的直角三角形,且∠C和∠F是直角,则有AC/DF = BC/EF成立。
七、应用举例1. 角平分线定理:在相似三角形中,角平分线分割对应边成比例。
2. 重心定理:在相似三角形中,连接重心和顶点的线段成比例。
相似三角形的性质在几何学和实际问题中有着广泛的应用。
例如,在测量不便的情况下,我们可以利用相似三角形来计算无法直接测量的长度和距离。
相似三角形的性质和定义
相似三角形的性质和定义相似三角形是指具有相同形状但大小不同的三角形。
在几何学中,相似三角形是一种重要的概念,它们具有一些特定的性质和定义。
本文将介绍相似三角形的性质和定义,以及一些相关的应用。
一、相似三角形的定义相似三角形的定义是指两个三角形的对应角度相等,并且对应的边长成比例。
具体来说,如果两个三角形的角对应相等,而且对应边的比例相等,那么这两个三角形就是相似的。
二、相似三角形的性质1. 对应角相等性质:相似三角形的对应角度相等。
即如果两个三角形的某一角相等,那么它们的对应角也相等。
2. 对应边成比例性质:相似三角形的对应边成比例。
即如果两个三角形的一对对应边的比例相等,那么它们是相似的。
3. 对角比例性质:相似三角形的两个对应角的正弦值、余弦值或正切值的比例相等。
三、相似三角形的判定方法在实际应用中,为了判断两个三角形是否相似,我们可以使用以下的判定方法:1. AAA判定法:如果两个三角形的对应角度相等,那么它们是相似的。
2. SSS判定法:如果两个三角形的对应边成比例,那么它们是相似的。
3. SAS判定法:如果两个三角形的两对边成比例,并且夹角相等,那么它们是相似的。
四、相似三角形的应用1. 测量高大物体的高度:通过相似三角形的性质,可以利用地面上的影子和物体的影子长度来计算物体的高度。
其中一个三角形由物体本身的高度和物体的影子长度构成,另一个三角形由地面上的影子长度和地面距离构成。
2.导弹拦截系统:相似三角形的性质也可以应用于导弹拦截系统中。
通过拦截系统中摄像头的角度和距离的变化,可以计算导弹的运动轨迹和速度,从而进行拦截。
3. 针孔成像原理:在相机的针孔孔径足够小的情况下,光线会通过孔径进入相机,形成在胶片或传感器上的成像。
这个过程可以利用相似三角形的性质进行描述,通过长焦距与短焦距的比例来计算成像的大小和位置。
4. 美术设计:相似三角形的概念可以应用于美术设计中,通过描绘不同大小但相似形状的三角形来表达透视感和远近距离。
相似三角形的性质与定理
相似三角形的性质与定理相似三角形是几何学中重要的概念,它们在许多问题的解决中起着重要作用。
本文将讨论相似三角形的性质与定理,并探索它们的应用。
一、相似三角形的定义相似三角形是指具有相等角度的三角形。
设有两个三角形ABC和DEF,若它们的对应角度相等,则它们是相似三角形。
通常用符号∆ABC ∽ ∆DEF来表示。
二、相似三角形的性质1. 边比例性质在相似三角形中,对应边的长度比例相等。
即若∆ABC ∽ ∆DEF,则有AB/DE=BC/EF=AC/DF。
2. 角度对应性质在相似三角形中,对应角度相等。
即若∆ABC ∽ ∆DEF,则∠A =∠D,∠B = ∠E,∠C = ∠F。
3. 周长比例性质在相似三角形中,对应边的长度比例等于对应角度的边长比例。
即若∆ABC ∽ ∆DEF,则AB+BC+AC/DE+EF+DF=AB/DE=BC/EF=AC/DF。
4. 高度比例性质在相似三角形中,对应边的高度比例等于对应边的长度比例。
即若∆ABC ∽ ∆DEF,则hA/hD=hB/hE=hC/hF,其中hA、hB、hC为三角形ABC的高度,hD、hE、hF为三角形DEF的高度。
三、相似三角形的定理1. AAA相似定理若两个三角形的对应角度相等,则它们是相似的。
即若∆ABC与∆DEF的∠A=∠D,∠B=∠E,∠C = ∠F,则∆ABC ∽ ∆DEF。
2. 底角定理若两个三角形的边长成比例,且包含某个共同顶点的两个角相等,则它们是相似的。
即若∆ABC与∆DEF的AB/DE=AC/DF,且∠B = ∠E,则∆ABC ∽ ∆DEF。
3. 直角边定理若一个直角三角形的两个直角边分别与另一个三角形的两条边成比例,则它们是相似的。
即若∆ABC为直角三角形,且AB/DE=AC/DF=BC/EF,则∆ABC ∽ ∆DEF。
四、相似三角形的应用相似三角形的性质与定理在实际问题的解决中有广泛的应用,以下举例说明:1. 测量高度利用相似三角形的高度比例性质,可以通过测量已知高度的物体的阴影长度和未知高度物体的阴影长度来计算未知物体的高度。
相似三角形的性质
相似三角形的性质相似三角形是指具有相同形状但可能不同大小的两个三角形。
在几何学中,相似三角形具有一些独特的性质。
本文将介绍相似三角形的性质,并讨论其在实际问题中的应用。
一、相似三角形的定义和判定相似三角形是指具有相同形状但可能不同大小的两个三角形。
两个三角形相似的判定条件有以下几种:1. 三角形的对应角相等:如果两个三角形的对应角相等,则它们是相似的。
这可以表示为∠A=∠D,∠B=∠E,∠C=∠F。
2. 三角形的对应边成比例:如果两个三角形的对应边之比相等,则它们是相似的。
这可以表示为AB/DE = BC/EF = AC/DF。
3. 两个角相等且夹在两边之间的比例相等:如果两个三角形的两个角分别相等,并且夹在两边之间的比例也相等,则它们是相似的。
这可以表示为∠A=∠D,∠B=∠E,并且AB/DE = BC/EF。
二、相似三角形具有以下性质:1. 对应边之比相等:如果两个三角形相似,它们的对应边之比相等。
这是相似三角形的最重要性质之一。
2. 对应角相等:如果两个三角形相似,它们的对应角是相等的。
3. 对应角平分线相交于一点:如果两个三角形相似,它们的对应角的平分线交于一点。
4. 对应中线之比相等:如果两个三角形相似,则它们的对应中线之比等于对应边之比。
5. 对应高之比相等:如果两个三角形相似,则它们的对应高之比等于对应边之比。
6. 相似三角形的面积之比等于边长之比的平方:如果两个三角形相似,则它们的面积之比等于对应边之比的平方。
7. 相似三角形的周长之比等于边长之比:如果两个三角形相似,则它们的周长之比等于对应边之比。
三、相似三角形的应用相似三角形在实际问题中有广泛的应用,以下是一些常见的应用场景:1. 测量不可直接测量的物体高度:通过测量相似三角形的一些已知边长和角度,可以推算出无法直接测量的物体的高度。
2. 利用相似三角形进行放缩:在地图制作、建筑设计等领域中,可以利用相似三角形进行放缩和缩小,以便在实际工作中进行精确的测量和设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、相似的有关概念1.相似形具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不一定相同.相似图形之间的互相变换称为相似变换. 2.相似图形的特性两个相似图形的对应边成比例,对应角相等. 3.相似比两个相似图形的对应角相等,对应边成比例.二、相似三角形的概念1.相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形.如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于”.A 'B 'C 'CB A2.相似比相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”.三、相似三角形的性质1.相似三角形的对应角相等如图,ABC △与A B C '''△相似,则有A A B B C C '''∠=∠∠=∠∠=∠,,.A 'B 'C 'CB A2.相似三角形的对应边成比例 如图,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比). 相似三角形的性质及判定A 'B 'C 'CB A3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比.如图1,ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的中线,则有AB BC AC AMk A B B C A C A M ====''''''''(k 为相似比). M 'MA 'B 'C 'C BA图1如图2,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H====''''''''(k 为相似比).H 'H AB C C 'B 'A '图2如图3,ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分线,则有AB BC AC ADk A B B C A C A D ====''''''''(k 为相似比).D 'D A 'B C 'C B A图34.相似三角形周长的比等于相似比. 如图4,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比).应用比例的等比性质有AB BC AC AB BC ACk A B B C A C A B B C A C ++====''''''''''''++.A 'B 'C 'CB A图45.相似三角形面积的比等于相似比的平方.如图5,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).进而可得21212ABC A B C BC AHS BC AHk S B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△.H 'H AB C C 'B 'A '图5四、相似三角形的判定1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两个三角形相似.3.如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.4.如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:三边对应成比例,两个三角形相似.5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.6.直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明)7.如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如果它们的腰和底对应成比例,那么这两个等腰三角形也相似.五、相似证明中的比例式或等积式、比例中项式、倒数式、复合式证明比例式或等积式的主要方法有“三点定形法”. 1.横向定型法欲证AB BCBE BF=,横向观察,比例式中的分子的两条线段是AB 和BC ,三个字母A B C ,,恰为ABC △的顶点;分母的两条线段是BE 和BF ,三个字母B E F ,,恰为BEF △的三个顶点.因此只需证ABC EBF △∽△.2.纵向定型法欲证AB DEBC EF=,纵向观察,比例式左边的比AB 和BC 中的三个字母A B C ,,恰为ABC △的顶点;右边的比两条线段是DE 和EF 中的三个字母D E F ,,恰为DEF △的三个顶点.因此只需证ABC DEF △∽△.3.中间比法由于运用三点定形法时常会碰到三点共线或四点中没有相同点的情况,此时可考虑运用等线,等比或等积进行变换后,再考虑运用三点定形法寻找相似三角形.这种方法就是等量代换法.在证明比例式时,常用到中间比.比例中项式的证明,通常涉及到与公共边有关的相似问题。
这类问题的典型模型是射影定理模型,模型的特征和结论要熟练掌握和透彻理解.倒数式的证明,往往需要先进行变形,将等式的一边化为1,另一边化为几个比值和的形式,然后对比值进行等量代换,进而证明之.复合式的证明比较复杂.通常需要进行等线代换(对线段进行等量代换),等比代换,等积代换,将复合式转化为基本的比例式或等积式,然后进行证明.六、相似证明中常见辅助线的作法在相似的证明中,常见的辅助线的作法是做平行线构造成比例线段或相似三角形,同时再结合等量代换得到要证明的结论.常见的等量代换包括等线代换、等比代换、等积代换等.如图:AD 平分BAC ∠交BC 于D ,求证:BD ABDC AC=. 321EDCA B证法一:过C 作CE AD ∥,交BA 的延长线于E . ∴1E ∠=∠,23∠=∠.∵12∠=∠,∴3E ∠=∠.∴AC AE =.∵AD CE ∥,∴BD BA BADC BE AC==. 点评:做平行线构造成比例线段,利用了“A”型图的基本模型.BA CDE12证法二;过B 作AC 的平行线,交AD 的延长线于E . ∴12E ∠=∠=∠,∴AB BE =.∵BE AC ∥,∴BD BE ABDC AC AC==. 点评:做平行线构造成比例线段,利用了“X”型图的基本模型.七、相似证明中的面积法面积法主要是将面积的比,和线段的比进行相互转化来解决问题. 常用的面积法基本模型如下:图1:“山字”型H DC B A如图:1212ABCACDBC AHSBC S CD CD AH ⋅⋅==⋅⋅△△. 图2:“田字”型G HODCBA如图:1212ABC BCDBC AHS AH AO S DG OD BC DG ⋅⋅===⋅⋅△△. 图3:“燕尾”型CDEB A如图:ABD ABD AED ACE AED ACE S S S AB AD AB ADS S S AE AC AE AC⋅=⋅=⋅=⋅△△△△△△.八、相似证明中的基本模型I H G FED CB AGF EDC BAEDCB A ED C BAEFDC BA F ED C BA OD C BAODC BAHE DCBAE DCBAEDCBAODCBAD C BD BA CAEDCB AD C B AG FEDC BAGFEDC BA G FE DCB ADEFCBAH PMNF EDCBAGHG FEDC BAEF DCBAFEDCBA一、与三角形有关的相似问题【例1】 如图,在ABC △中,AC AB >,点D 在AC 边上,若在增加一个条件就能使ABC ACB △∽△,则这个条件可以是 .CDBA【例2】 如图,D 、E 是ABC ∆的边AC 、AB 上的点,且AD AC ⋅=AE AB ⋅,求证:ADE B ∠=∠.例题精讲EDCBA【例3】 如图,在ABC ∆中,AD BC ⊥于D ,CE AB ⊥于E ,ABC ∆的面积是BDE ∆面积的4倍,6AC =,求DE 的长.ED CB A【例4】 直线DE 与ABC △的AB 边相交于点D ,与AC 边相交于点E ,下列条件:①DE BC ∥;②AED B ∠=∠;③AE AC AD AB ⋅=⋅;④AE EDAC BC=中,能使ADE △与ABC △相似的条件有( ) A .1个 B .2个 C .3个 D .4个【例5】 如图,ABC △中,60ABC ∠=︒,点P 是ABC △内一点,使得APB BPC CPA ∠=∠=∠,86PA PC ==,,则PB = .PCBA【例6】 如图,已知三个边长相等的正方形相邻并排,求EBF EBG ∠+∠.HGFED CB A【例7】 如图,已知ABC ∆中,:1:3AE EB =,:2:1BC CD =,AD 与CE 相交于F ,则AF EFFC FD+的值为( )A DEFCBA.52 B.1 C.32D.2【例8】 在ABC ∆中,BD CE =,DE 的延长线交BC 的延长线于P , 求证:AD BP AE CP ⋅=⋅.PE D CBA MPE D C BA【例9】 如图,在ABC ∆的边AB 上取一点D ,在AC 取一点E ,使AD AE =,直线DE 和BC 的延长线相交于P ,求证:BP BDCP CE=PEDCBA4321MPE D CBA【例10】 如图,M 、N 为ABC △边BC 上的两点,且满足BM MN NC ==,一条平行于AC 的直线分别交AB 、AM 和AN 的延长线于点D 、E 和F . 求证:3EF DE =.F NMED CBAK HF N MG ED CBA【例11】 如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证:111c a b=+.DCF EB A【例12】 如上图,AB BD ⊥,CD BD ⊥,垂足分别为B 、D ,AC 和BD 相交于点E ,EF BD ⊥,垂足为F .证明:111AB CD EF+=. FDCEAB【例13】 如图,已知////AB EF CD ,找出ABD S ∆、BED S ∆、BCD S ∆之间的关系,并证明你的结论.NM H D CF EB A【例14】 如图,在四边形ABCD 中,AC 与BD 相交于点O ,直线l 平行于BD ,且与AB 、DC 、BC 、AD及AC 的延长线分别相交于点M 、N 、R 、S 和P .求证:PM PN PR PS ⋅=⋅lSR PNMO DC BA【例15】 已知,如图,四边形ABCD ,两组对边延长后交于E 、F ,对角线BD EF ∥,AC 的延长线交EF于G .求证:EG GF =.G F ECDBANM G FECD B A【例16】 已知:P 为ABC ∆的中位线MN 上任意一点,BP 、CP 的延长线分别交对边AC 、AB 于D 、E ,求证:1AD AEDC EB+=PNME D CBA RQPNMED CB A【例17】 如图所示,ABCDEF 是一个凸六边形,P 、Q 、R 分别是直线BA 与EF 、FE 与CD 、DC 与AB的交点,S 、T 、U 分别是BC 与ED 、DE 与AF 、FA 与CB 的交点,如果AB PR CD =∶∶RQ EF QP =∶,求证:BC US DE ST FA TU ==∶∶∶.TSURQPFEDCBA【例18】 设P 、Q 分别是凸四边形ABCD 的边BC 、AD 上的点,且AQ QD BP PC AB CD ==∶∶∶,求证:直线PQ 与AB 之间的夹角等于直线PQ 与CD 之间的夹角.QPEFDCBAC'QPREFDCBA【例19】 如图, ABC ∆中,BC a =,若11D E ,分别是AB AC ,的中点,则1112D E a =;若22D E 、分别是11D B E C 、的中点,则2213224a D E a a ⎛⎫=+= ⎪⎝⎭;若33D E 、分别是22D B E C 、的中点,则33137248D E a a a ⎛⎫=+= ⎪⎝⎭;…………若n n D E 、分别是-1-1n n D B E C 、的中点,则n n D E =_________.E n D n E 3D 3E 2D 2E 1D 1CBA【例20】 如图,ABC △内有一点P ,过P 作各边的平行线,把ABC △分成三个三角形和三个平行四边形.若三个三角形的面积123S S S ,,分别为112,,,则ABC △的面积是 .P S 3S 2S 1I HGFE D CBA【例21】 【如图,梯形ABCD 的两条对角线与两底所围成的两个三角形的面积分别为22p q ,,则梯形的面积是( )q 2p 2O AB CDA .()222p q+B .()2p q + C .22p q pq ++D .222222p q P q p q +++【例22】 如图,梯形ABCD 中,AD BC ∥,两条对角线AC 、BD 相交于O ,若:1:9AOD COB S S =△△,那么:BOC DOC S S =△△ .OAB CD【例23】 已知:ABC ∆的高AD 所在直线与高BE 所在直线相交于点F .(1)如图l ,若ABC ∆为锐角三角形,且45ABC ∠=︒,过点F 作FG BC ∥,交直线AB 于点G ,求证:FG DC AD +=;(2)如图 2,若135ABC ∠=︒,过点F 作FG BC ∥,交直线AB 于点G ,则FG DC AD 、、之间满足的数量关系是 ;(3)在(2)的条件下,若AG =,3DC =,将一个45︒角的顶点与点B 重合并绕点B 旋转,这个角的两边分别交线段FG 于M N ,两点(如图3),连接CF ,线段CF 分别与线段BM 、线段BN 相交于P Q ,两点,若32NG =,求线段PQ 的长.图1GF E D CBA图2GFEDCBA图3NQ PABCDEFG M【例24】 如图所示,在ABC ∆中,60B ∠=︒,100A ∠=︒,E 为AC 的中点,80DEC ∠=︒,D 是BC 边上的点,1BC =,求ABC ∆的面积与CDE ∆的面积的两倍的和.EDC BA二、与平行四边形有关的相似问题【例25】 如图,已知平行四边形ABCD 中,过点B 的直线顺次与AC 、AD 及CD 的延长线相交于点E 、F 、G ,若5BE =,2EF =,则FG 的长是 .EFGDC AB【例26】 如图,已知DE AB ∥,2OA OC OE =⋅,求证:AD BC ∥.DOECB A【例27】 如图,ABCD 的对角线相交于点O ,在AB 的延长线上任取一点E ,连接OE 交BC 于点F ,若AB a AD c BE b ===,,,求BF 的值.OFEDC BAKOFED CBA【例28】 如图:矩形ABCD 的面积是36,在AB AD ,边上分别取点E F ,,使得3AE EB =,2DF AF =,且DE 与CF 的交点为点O ,求FOD ∆的面积。