第4讲 定积分的概念与微积分基本定理
第四节 定积分与微积分基本定理
第四节 定积分与微积分基本定理高考概览:1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念,几何意义;2.了解微积分基本定理的含义.[知识梳理]1.定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b ,将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑i =1nf (ξi )Δx =∑i =1nb -an f (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛a b f(x)d x ,即⎠⎛a b f (x )d x =lim n →∞∑i =1nb -an f (ξi ).在⎠⎛ab f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.2.定积分的性质3.微积分基本定理4.定积分的几何和物理应用[辨识巧记]1.两个结论(1)当曲边梯形位于x轴上方时,定积分的值为正;当曲边梯形位于x轴下方时,定积分的值为负;当位于x轴上方的曲边梯形与位于x轴下方的曲边梯形面积相等时,定积分的值为零.(2)加速度对时间的积分为速度,速度对时间的积分是路程.2.两个性质函数f(x)在闭区间[-a,a]上连续,则有[双基自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)若函数y =f (x )在区间[a ,b ]上连续,则⎠⎛ab f (x )d x =⎠⎛ab f (t )d t .( )(2)若⎠⎛ab f (x )d x <0,则由y =f (x ),x =a ,x =b 以及x 轴所围成的图形一定在x 轴下方.( )[答案] (1)√ (2)× (3)× (4)√[解析] ⎠⎛-11|x |d x =⎠⎛-1(-x )d x +⎠⎛1x d x =⎝⎛⎭⎪⎫-12x 2⎪⎪⎪⎪⎪⎪ 0-1+12x 210=12+12=1.[答案] A3.(选修2-2P 65A 组T 5改编)曲线y =x 2+2x 与直线y =x 所围成的封闭图形的面积为( )A.16B.13C.56D.23[解析] 如图,两函数图象交点为(-1,-1)和(0,0),所求面积S=⎠⎛-1 0[x -(x 2+2x )]d x=⎠⎛-10(-x 2-x )d x=⎝ ⎛⎭⎪⎫-13x 3-12x 2⎪⎪⎪-1=16. [答案] A4.设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],2-x ,x ∈(1,2],则⎠⎛02f (x )d x 等于( )A.34B.45C.56 D .不存在 [解析] 如图,[答案] C5.定积分⎠⎛0416-x 2d x =________.[解析] 令y =16-x 2,则x 2+y 2=16(y ≥0),点(x ,y )的轨迹为半圆,⎠⎛416-x 2d x 表示以原点为圆心,4为半径的圆面积的14,所以⎠⎛0416-x 2d x =14×π×42=4π.[答案] 4π考点一 定积分的计算【例1】 计算下列定积分: (1)⎠⎛01(2x +e x )d x ;(2)⎠⎛02(x -1)d x ; (3)⎠⎛01(-x 2+2x )d x ;[思路引导] 定理法→数形结合法→性质 [解]微积分基本定理求定积分的注意点:(1)对被积函数要先化简,再求积分.(2)若被积函数为分段函数的定积分,依据定积分“对区间的可加性”,先分段积分再求和.(3)对于含有绝对值符号的被积函数,要先去掉绝对值符号再求积分.(4)若被积函数具有明确的几何意义或奇偶性,可利用定积分的几何意义和性质求解.[对点训练]计算下列定积分: (1)⎠⎛122x d x ;(2)⎠⎛13⎝⎛⎭⎪⎫2x -1x 2d x ;[解]考点二 利用定积分求图形的面积【例2】 (1)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( )A.2 2 B .4 2 C .2 D .4(2)曲线y =x ,y =2-x ,y =-13x 所围成图形的面积为________. (3)曲线f (x )=sin x ,x ∈⎣⎢⎡⎦⎥⎤0,54π与x 轴围成的图形的面积为________.[思路引导] 作出图形→求交点→转化为定积分 [解析][答案] (1)D (2)136 (3)3-22利用定积分求平面图形面积的4个步骤[对点训练]1.(2018·河北张家口质检)如图,由曲线y=x2-4,直线x=0,x=4和x轴围成的封闭图形的面积是()[解析][答案] C2.曲线y =sin x 在[0,2π]上与x 轴围成的封闭图形的面积为________.[解析] S =⎠⎛0πsin x d x -∫2ππsin x d x =2⎠⎛0πsin x d x =4.[答案] 4考点三 定积分在物理中的应用【例3】 (1)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t (t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( )A .1+25 ln5B .8+25 ln 113 C .4+25 ln5D .4+50 ln2(2)一物体在变力F (x )=5-x 2(力单位:N ,位移单位:m)作用下,沿与F (x )成30°方向做直线运动,则由x =1运动到x =2时F (x )做的功为( )A. 3 JB.233 JC.433 JD .2 3 J[解析] (1)令v (t )=0,即7-3t +251+t =0,化简为3t 2-4t -32=0.又∵t >0, 解得t =4或t =-83(舍去), 所以s =⎠⎛4v (t )d t =⎠⎛04⎝⎛⎭⎪⎫7-3t +251+t d t=⎣⎢⎡⎦⎥⎤7t -32t 2+25ln (1+t )⎪⎪⎪4=7×4-32×42+25ln5=4+25 ln5,故选C. (2)W =⎠⎛12F (x )cos30°d x =⎠⎛1232(5-x 2)d x=32⎝ ⎛⎭⎪⎫5x -x 33| 21=433(J).[答案] (1)C (2)C定积分在物理中的两个应用(1)变速直线运动的位移:如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =⎠⎛ab v (t )d t .(2)变力做功:一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =⎠⎛ab F (x )d x .[对点训练]1.设变力F (x )作用在质点M 上,使M 沿x 轴正向从x =1运动到x =10,已知F (x )=x 2+1的方向和x 轴正向相同,则变力F (x )对质点M 所做的功为________J(x 的单位:m ,力的单位:N).[解析] 由题意知变力F (x )对质点M 所做的功为[答案]3422.一物体做变速直线运动,其v-t曲线如图所示,则该物体在1 2s~6 s间的运动路程为________.[解析]由图可知,[答案]494m课后跟踪训练(十九)基础巩固练一、选择题[解析][答案] C[解析]a =-1.故选A. [答案] A3.设f (x )=⎩⎨⎧x 2,x ∈[0,1],1x ,x ∈(1,e](其中e 为自然对数的底数),则⎠⎛0ef (x )d x 的值为( )A.43B.54C.65D.76[解析] ⎠⎛0e f (x )d x =⎠⎛01f (x )d x +⎠⎛1e f (x )d x =⎠⎛01x 2d x +⎠⎛1e 1x d x =13x 3⎪⎪⎪10+ln x ⎪⎪⎪e 1=13+1=43.故选A. [答案] A4.(2018·武汉武昌区调研)物体A 以速度v =3t 2+1(t 的单位:s ,v 的单位:m/s)在一直线上运动,在此直线上与物体A 出发的同时,物体B 在物体A 的正前方5 m 处以v =10t (t 的单位:s ,v 的单位:m/s)的速度与A 同向运动,当两物体相遇时,相遇地与物体A 的出发地的距离是( )A .120 mB .130 mC .140 mD .150 m[解析] 设t 秒后两物体相遇,则⎠⎛0t (3t 2+1)d t -⎠⎛0t 10t d t =5,即t 3+t -5t 2=5,(t 2+1)(t -5)=0,t =5(s),此时物体A 离出发地的距离为⎠⎛05(3t 2+1)d t =(t 3+t )| 50=53+5=130 (m).[答案] B5.由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为( )A.103 B .4 C.163 D .6[解析] 作出曲线y =x ,直线y =x -2的草图(如图所示),所求面积为阴影部分的面积.由⎩⎪⎨⎪⎧y =x ,y =x -2得交点A (4,2). 因此y =x 与y =x -2及y 轴所围成的图形的面积为⎠⎛04[x -(x -2)]d x =⎠⎛04(x -x +2)d x =⎝ ⎛⎭⎪⎫23x 32-12x 2+2x | 4=23×8-12×16+2×4=163. [答案] C 二、填空题6.(2019·湖南省长沙市高三统一模拟)⎠⎛0π(cos x +1)d x =________.[解析][答案] π[解析][答案]π-2 4[解析][答案]4 3三、解答题9.如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线所示),求原始的最大流量与当前最大流量的比值.[解]建立如图所示的直角坐标系.设抛物线的方程为x2=2py(p>0),由图易知(5,2)在抛物线上,可得p=254,抛物线方程为x2=252y,所以当前最大流量对应的截面面积为2⎠⎛5⎝⎛⎭⎪⎫2-225x2d x=403,原始的最大流量对应的截面面积为2×(6+10)2=16,所以原始的最大流量与当前最大流量的比值为16403=1.2.10.在区间[0,1]上给定曲线y=x2.试在此区间内确定t的值,使图中的阴影部分的面积S1与S2之和最小,并求最小值.[解]S1面积等于边长分别为t与t2的矩形面积去掉曲线y=x2与x轴、直线x=t所围成的面积,即S1=t·t2-⎠⎛t x2d x=23t3.S2的面积等于曲线y=x2与x轴,x=t,x=1围成的面积去掉矩形边长分别为t2,1-t面积,即S2=⎠⎛t1x2d x-t2(1-t)=23t3-t2+13.所以阴影部分的面积S (t )=S 1+S 2=43t 3-t 2+13(0≤t ≤1).令S ′(t )=4t 2-2t =4t ⎝ ⎛⎭⎪⎫t -12=0,得t =0或t =12. t =0时,S (t )=13;t =12时,S (t )=14;t =1时,S (t )=23. 所以当t =12时,S (t )最小,且最小值为14.能力提升练[解析][答案] D12.(2019·宁夏银川质检)如图,阴影部分的面积是( )A .2 3B .-2 3 C.353 D.323 [解析][答案] D13.(2019·福建师大附中期中)若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x=________.[解析] 设⎠⎛01f (x )d x =c ,则f (x )=x 2+2c ,所以⎠⎛01f (x )d x =⎠⎛01(x 2+2c )d x =⎝ ⎛⎭⎪⎫13x 3+2cx ⎪⎪⎪10=13+2c =c ,解得c =-13,所以⎠⎛1f (x )d x =-13.[答案] -1314.学校操场边有一条小沟,沟沿是两条长150米的平行线段,沟宽AB 为2米,与沟沿垂直的平面与沟的交线是一段抛物线,抛物线的顶点为O ,对称轴与地面垂直,沟深2米,沟中水深1米.(1)求水面宽;(2)如图①所示形状的几何体称为柱体,已知柱体的体积为底面积乘以高,求沟中的水有多少立方米?(3)现在学校要把这条水沟改挖(不准填土)成截面为等腰梯形的沟,使沟的底面与地面平行,沟深不变,两腰分别与抛物线相切(如图②所示),问改挖后的沟底宽为多少米时,所挖的土最少?[解] (1)建立如图所示的平面直角坐标系,设抛物线方程为y =ax 2(-1≤x ≤1).则由抛物线过点B (1,2),可得a =2.于是抛物线方程为y =2x 2,-1≤x ≤1.当y =1时,x =±22,由此知水面宽为2米.(3)为使挖的土最少,等腰梯形的两腰必须与抛物线相切.设切点P (t,2t 2)(0<t ≤1)是抛物线弧OB 上的一点,过点P 作抛物线的切线得到如图所示的直角梯形OCDE ,则切线CD 的方程为y -2t 2=4t (x -t ),于是C ⎝ ⎛⎭⎪⎫12t ,0,D ⎝ ⎛⎭⎪⎫12t +12t ,2. 记梯形OCDE 的面积为S ,则S =⎝ ⎛⎭⎪⎫t 2+t 2+12t ≥2,当且仅当t =12t ,即t =22时等号成立,所以改挖后的沟底宽为22米时,所挖的土最少.拓展延伸练15.(2019·安徽淮北质检)直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( )A.43 B .2 C.83 D.1623[解析] 由题意知,抛物线的焦点坐标为(0,1),故直线l 的方程为y =1,该直线与抛物线在第一象限的交点坐标为(2,1).根据图形的对称性和定积分的几何意义可得,所求图形的面积是2⎠⎛02⎝⎛⎭⎪⎫1-x 24d x =2⎝ ⎛⎭⎪⎫x -x 312⎪⎪⎪20=83. [答案] C16.(2018·四川绵阳期中)如图,直线y =kx 将抛物线y =x -x 2与x 轴所围图形分成面积相等的两部分,则k =________.[解析] 因为⎠⎛01(x -x 2)d x =⎝ ⎛⎭⎪⎫12x 2-13x 3⎪⎪⎪10=16,所以∫1-k 0[(x -x 2)-kx ]d x =⎝ ⎛⎭⎪⎫1-k 2x 2-13x 3⎪⎪⎪1-k 0=(1-k )36=112,所以(1-k )3=12,解得k =1-312=1-342.[答案] 1-342。
第4节 定积分与微积分基本定理[理]
①求被积函数 f(x)的一个原函数 F(x);
②计算 F(b)-F(a).
(2)利用定积分的几何意义求定积分
当曲边梯形面积易求时,可通过求曲边梯形的面积求定积分.
1
如:定积分 0
1-x2dx 的几何意义是求单位圆面积的14,所以10
1-x2dx=π4.
返回
2.定积分应用的两条常用结论 (1)当曲边梯形位于 x 轴上方时,定积分的值为正;当曲 边梯形位于 x 轴下方时,定积分的值为负;当位于 x 轴上方 的曲边梯形与位于 x 轴下方的曲边梯形面积相等时,定积分 的值为零. (2)加速度对时间的积分为速度,速度对时间的积分是 路程.
2.∫e12x+1xdx=(
)
A.e2-2
B.e-1
其原函数
是什么?
C.e2
D.e+1
解析:
∫e12x+1xdx=(x2+ln
x)|e1=e2.
积分上下限
答案: C
与分段函数
3.设 f(x)=2xx2
x x
的定义域
,则
1 −1
������(������)dx
23.
答案:
1-
3 2
返回
返回
解析: 由图象可知 A=1,T2=23π--π3=π,所以 ω=1,
f(x)=sinx-π6.图中其与 x 轴的交点横坐标为6π,所以图中的阴影部分的
面积为
π 6
0
-sin������-π6dx=cosx-π6|0π6 =1-
b
么从时刻 t=a 到 t=b 所经过的路程 s=av(t)dt. (2)变力做功:一物体在变力 F(x)的作用下,沿着与 F(x)相同方向从 x
b
=a 移动到 x=b 时,力 F(x)所做的功是 W=aF(x)dx.
第4讲定积分的概念与微积分基本定理
第4讲定积分的概念与微积分基本定理【2013年高考会这样考】1.考查定积分的概念,定积分的几何意义,微积分基本定理.2.利用定积分求曲边形面积、变力做功、变速运动的质点的运动路程.【复习指导】定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物理问题等.基础梳理1.定积分(1)定积分的定义及相关概念设函数y=f(x)定义在区间[a,b]上用分点a=x0<x1<x2<…<x n-1<x n=b.把区间[a,b]分为n个小区间,其长度依次为Δx i=x i+1-x i,i=0,1,2,…,n-1.2.微积分基本定理如果F′(x)=f(x),且f(x)在[a,b]上可积,则=F(b)-F(a),其中F(x)叫做f(x)的一个原函数.3.定积分的应用(1)定积分与曲边梯形的面积定积分的概念是从曲边梯形面积引入的,但是定积分并不一定就是曲边梯形的面积.这要结合具体图形来定:作变速直线运动的物体所经过的路程s,等于其速度函数v=v(t)(v(t)≥0)在时间区间[a,b]上的定积分,即s=v(t)d t.一种思想定积分基本思想的核心是“以直代曲”,用“有限”的步骤解决“无限”过程的问题,其方法是“分割求近似,求和取极限”,利用这种方法可推导球的表面积和体积公式等.恩格斯曾经把对数的发明、解析几何的创始以及微积分的建立并称为17世纪数学的三大成就.三条性质(1)常数可提到积分号外;(2)和差的积分等于积分的和差;(3)积分可分段进行.一个公式由微积分基本定理可知求定积分的关键是求导函数的原函数,由此可知,求导与积分是互为逆运算.双基自测1.(2011·福建)等于().A.1 B.e-1 C.e D.e+1解析(e x+2x)d x(e x+x2)10=|=(e+1)-1=e.答案 C2.(2011·湖南)由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为( ).A.12 B .1 C.32D. 3 解析 S =∫π3-π3cos x d x =2∫π30cos x d x = |2sin x π30= 3.答案 D 3.(2011·山东)由曲线y =x 2,y =x 3围成的封闭图形面积为( ). A.112 B.14 C.13 D.712解析 由⎩⎪⎨⎪⎧y =x 2,y =x 3,得交点坐标为(0,0),(1,1),因此所求图形面积为S =(x 2-x 3)d x =⎪⎪⎝⎛⎭⎫13x 3-14x 410=112. 答案 A4.如图,在一个长为π,宽为2的矩形OABC 内,曲线y =sin x (0≤x ≤π)与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是( ).A.1πB.2πC.π4D.3π答案 A5.(人教B 版教材习题改编)汽车以v =(3t +2)m/s 作变速直线运动时,在第1 s 至第2 s 间的1 s 内经过的路程是________.解析 s =(3t +2)d t =⎝⎛⎪⎪⎭⎫32t 2+2t 21=32×4+4-⎝⎛⎭⎫32+2=10-72=132(m). 答案 6.5 m考向一 定积分的计算【例1】 计算下列积分解 (1)⎝⎛⎭⎫2x 2-1x d x =⎝⎛⎪⎪⎭⎫23x 3-ln x 21=143-ln 2. (2)∫π20sin 2x 2d x =∫π201-cos x2d x=⎪⎪12(x -sin x )π20=π-24.(3)(cos x +e x )d x =(sin x +e x )|0-π=1-e-π. (4)y =-x 2+2x =1-(x -1)2⇔⎩⎪⎨⎪⎧y ≥01-(x -1)2≥0y 2=1-(x -1)2⇔⎩⎪⎨⎪⎧y ≥0y 2=1-(x -1)2⇔⎩⎪⎨⎪⎧y ≥0(x -1)2+y 2=1由图形可知:-x 2+2x =π4(1)利用微积分基本定理求定积分,其关键是求出被积函数的原函数,求一个函数的原函数与求一个函数的导数是互逆运算,因此应注意掌握一些常见函数的导数.(2)根据积分的几何意义可利用面积求积分.(3)若y =f (x )为奇函数,则⎠⎛a-af (x )d x =0.【训练1】解 ∫π20sin 2x 2d x =∫π201-cos x2d x=⎪⎪⎝⎛⎭⎫12x -12sin x π20=π4-12. 可利用面积求得⎠⎛1-11-x 2d x =π2因此原式=3π-24.考向二 利用定积分求面积【例2】 求右图中阴影部分的面积.[审题视点] 观察图象要仔细,求出积分上下限,找准被积函数.解 解方程组⎩⎪⎨⎪⎧y =x -4,y 2=2x ,得⎩⎪⎨⎪⎧ x =2y =-2,或⎩⎪⎨⎪⎧x =8y =4=2 ⎪⎪⎝⎛⎭⎫23x 3280+2⎪⎪⎝⎛⎭⎫23x 3220-6=18.求由两条曲线围成的图形的面积的解题步骤(1)画出图形,确定图形的范围,通过解方程组求出交点的横坐标.定出积分的上、下限;(2)确定被积函数,特别要注意分清被积函数的上、下位置;(3)写出平面图形面积的定积分的表达式;(4)运用微积分基本定理计算定积分,求出平面图形的面积.【训练2】 求曲线y =x ,y =2-x ,y =-13x 所围成图形的面积.解 由⎩⎨⎧y =x ,y =2-x ,得交点A (1,1);由⎩⎪⎨⎪⎧y =2-x y =-13x 得交点B (3,-1).= ⎪⎪⎝⎛⎭⎫23x 32+16x 210+⎪⎪⎝⎛⎭⎫2x -13x 231 =23+16+43=136. 考向三 定积分的应用【例3】 一质点在直线上从时刻t =0(s)开始以速度v =t 2-4t +3(m/s)运动.求: (1)在t =4 s 的位置;(2)在t =4 s 内运动的路程.[审题视点] 理解函数积分后的实际意义,确定被积函数. 解 (1)在时刻t =4时该点的位置为(t 2-4t +3)d t =⎪⎪⎝⎛⎭⎫13t 3-2t 2+3t 40=43(m), 即在t =4 s 时刻该质点距出发点43m.(2)因为v (t )=t 2-4t +3=(t -1)(t -3),所以在区间[0,1]及[3,4]上的v (t )≥0, 在区间[1,3]上,v (t )≤0,所以t =4 s 时的路程为= ⎪⎪⎝⎛⎭⎫13t 3-2t 2+3t 10+|⎪⎪⎝⎛⎭⎫13t 3-2t 2+3t 31|+⎪⎪⎝⎛⎭⎫13t 3-2t 2+3t 43=43+43+43=4 (m), 即质点在4s 内运动的路程为4 m.由s =v 0t +12at 2通过求导可推出v =v 0+at ,反之根据积分的几何意义,由v=v (t )(v (t )≥0)可求出t ∈[a ,b ]时间段内所经过的路程.【训练3】 已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶,甲车、乙车的速度曲线分别为v 甲和v 乙(如图所示).那么对于图中给定的t 0和t 1,下列判断中一定正确的是( ).A .在t 1时刻,甲车在乙车前面B .t 1时刻后,甲车在乙车后面C .在t 0时刻,两车的位置相同D .t 0时刻后,乙车在甲车前面解析 可观察出曲线v 甲,直线t =t 1与t 轴围成的面积大于曲线v 乙,直线t =t 1与t 轴围成的面积,故选A.答案 A难点突破8——积分的综合应用定积分的考查在试卷中不是必然出现的,一般以选择题或填空题的形式出现,试题难度不大,在近两年的高考中,考查的一般是定积分的计算和定积分在求曲边图形面积中的应用等,如2011年福建卷,陕西卷考查的是定积分的计算,新课标全国卷、湖南卷、山东卷考查的是定积分求曲边形的面积.。
定积分的概念与微积分基本定理(优质课)教案
定积分的概念与微积分基本定理(优质课)教案教学目标:掌握定积分的计算,了解定积分的物理意义,会利用定积分求平面区域围成的面积.教学过程:一、定积分的概念:从前面求曲边图形面积以及求变速直线运动路程的过程发现,它们都可以通过“分割、近似代替、求和、取极限得到解决,且都归结为求一个特定形式和的极限,()()i ni n ni i x f n x f S ξξ∑∑=∞→=→∆=∆•=1101lim lim ()()i ni n n i i t v nt v S ξξ∑∑=∞→=→∆=∆•=1101lim lim事实上,许多问题都可以归结为求这种特定形式和的极限1定积分的概念一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b −=<<<<<<<=将区间[,]a b 等分成n 个小区间,在每个小区间[]1,i i x x −上取一点()1,2,,i i n ξ=,作和式:()()i ni ni i f n ab x f ξξ∑∑==−=∆•11当n →+∞)时,上述和式无限接近某个常数,这个常数叫做函数()f x 在区间[,]a b 上的定积分。
记为:()baf x dx ⎰即()baf x dx ⎰=()i ni n f n ab ξ∑=∞→−1lim其中函数()f x 叫做 ,x 叫做 变量,区间[,]a b 为 区间,b 积分 ,a 积分 。
说明:(1)定积分()baf x dx ⎰是一个常数(2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ−∈;③求和:1()ni i b a f n ξ=−∑;④取极限:()1()lim n b i a n i b af x dx f n ξ→∞=−=∑⎰ (3)曲边图形面积:()baS f x dx =⎰;变速运动路程21()t t S v t dt =⎰2定积分的几何意义从几何上看,如果在区间[a,b]上的函数()f x 连续且恒有()0f x ≥。
34定积分与微积分基本定理
第5页
●微积分基本定理
如果f x是区间a,b上的连续函数,并且Fx f x,
那么ba f xdx FbFa,这个结论叫做微积分基本
定理,又叫做牛顿一莱布尼兹公式.为了方便,常把
FbFa记成Fx|ba,即ba f xdx Fx|ba FbFa.
第6页
考点自测
第7页
1.定 积 分 0cosxdx
2 形 的 面 积 为 __________. 答案:3
第13页
题型突破
第14页
题 型 一 tix in g yi定 积 分 的 计 算
【 例 1】 求 下 列 定 积 分 :
1
1 0
x2 x
dx;
2
2
sin
2
x 2
dx
;
2
3
2 1
3
2x
dx.
第15页
第16页
第17页
规律方法:利用微积分基本定理求定积分,其关键是求出被积 函数的原函数,求一个函数的原函数与求一个函数的导数是互 逆运算,因此应注意掌握一些常见函数的导数.此外,如果被积 函数是绝对值函数或分段函数,那么可以利用定积分的性
3.设f
x
x2 (x
2
x
x
0),
0,
则
11
f
x
dx的值是()
A. 11 x 2dx
B. 11 2xdx
C.
0 1
x
2dx
10
2xdx
D.
0 1
2xdx
10
x 2dx
第10页
解 析 :由 分 段 函 数 的 定 义 及 积 分 运 算 的 性 质 知 1 1 fx d x 0 1 fx d x 1 0 fx d x 0 1 2 x d x 1 0 x 2 d x .
人教A版高中数学选修2-2课件第四节 定积分与微积分基本定理
(2)变力做功:一物体在变力 F(x)的作用下,沿着与 F(x)相同方 向从 x=a 移动到 x=b 时,力 F(x)所做的功是 W=bF(x)dx.
a
课下限时答案
B AD
9、(1) ln 2 5 6
AC 1 4
329
(2)1 e
1
1 e
4、解:如图,分别画出对应图形,比较围成图形的面积
(2)一物体在力 F(x)=53,x+0≤4,x≤x>2,2 (单位:N)的作用下沿与力 F 相同的方向,从 x=0 处运动到 x=4(单位:m)处,则力 F(x)做的功为 ________焦.
(2)由题意知,力 F(x)所做的功为
W=4F(x)dx=25dx+4(3x+4)dx
面积为92,则 k 等于( )
A.2
B.1
C.3
D.4
解:选 C 由yy= =xk2x, 消去 y 得 x2-kx=0,所以 x=0 或 x
=k,则阴影部分的面积为0k(kx-x2)dx=12kx2-13x3 -13k3=92,解得 k=3.
=92.即12k3
2.由抛物线 y=x2-1,直线 x=0,x=2 及 x 轴围成的图形面 积为________. 解:如图,由 x2-1=0,得抛物线与 x 轴的交点分别为(-1,0)和(1,0)
7、
10、解:∵f′(x) =3x2-2x+1
设在点(1,2)处的切线的斜率为 k,则 k=f′(1)=2
∴在点(1,2)处的切线方程为 y-2=2(x-1),即 y=2x
y=2x 与函数 g(x)=x2 围成的图形如图:
y 2x
由
y
x2
可得交点
A(2,4)
定积分的概念与微积分基本定理知识导学
定积分的概念与微积分基本定理【要点梳理】要点一:定积分的引入 定积分的概念一般地,给定一个在区间[]a b ,上的函数=()y f x ,如图所示.将[]a b ,区间平分成n 份,分点为:0121i i n a x x x x x x b -=<<<<<<<=L L则每个小区间长度为x ∆(b ax n-∆=),在每个小区间[]1,i i x x -上任取一点()1,2,,i i n =L ξ,作和式:11()()n nn i i i i b aS f x f n==-=∆=∑∑ξξ. 如果x ∆无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分.记为:()baS f x dx =⎰,定积分的相关名称:⎰——叫做积分号, ()f x ——叫做被积函数, ()d f x x ——叫做被积表达式,x ——叫做积分变量, a ——叫做积分下限, b ——叫做积分上限, [a ,b]——叫做积分区间. 要点诠释: (1)定积分()baf x dx ⎰是一个常数,即n S 无限趋近的常数S (n →+∞时),记为()baf x dx ⎰,而不是n S .(2) 定积分是一个数值(极限值),它的值仅仅取决于被积函数与积分的上、下限,而与积分变量用什么字母表示无关,即()()()b bbaaaf x dx f u du f t dt ===⎰⎰⎰L (称为积分形式的不变性),另外定积分()()baf x d x ⎰与积分区间[a ,b]息息相关,不同的积分区间,定积分的积分上下限不同,所得的值也就不同,例如12(1)xdx +⎰与320(1)x dx +⎰的值就不同.用定义求定积分的一般方法: (1)分割:n 等分区间[],a b ; (2)近似代替:取点[]1,i i i x x -∈ξ; (3)求和:1()ni i b af n =-∑ξ; (4)取极限:()1()lim nbi an i b af x dx f n→∞=-=∑⎰ξ. 要点二:定积分的几何意义 定积分()baf x dx ⎰的几何意义:从几何上看,如果在区间[],a b 上函数()f x 连续且恒有()0f x ≥,那么定积分()baf x dx ⎰表示由直线,(),0x a x b a b y ==≠=和曲线()y f x =所围成的曲边梯形(如图中的阴影部分)的面积,这就是定积分()baf x dx ⎰的几何意义.一般情况下,定积分()baf x dx ⎰的几何意义是介于x 轴、函数()f x 的图形以及直线,x a x b ==之间各部分面积的代数和,在x 轴上方的面积取正号,在x 轴下方的面积取负号. 要点诠释:(1)当()0f x ≥时,积分()d baf x x ⎰在几何上表示由()y f x =、x=a 、x=b 与x 轴所围成的曲边梯形的面积;特别地:当a=b 时,有()d 0baf x x =⎰,如图(a ).(2)当()0f x ≤时,由()y f x =、x=a 、x=b 与x 轴所围成的曲边梯形位于x 轴的下方,积分()d baf x x ⎰在几何上表示上述曲边梯形面积的相反数.所以[()]d ()bbaaS f x x f x S =-=-=-⎰⎰,即()d baf x x S =-⎰,如图(b ).(3)当()f x 在区间[a ,b]上有正有负时,积分()d baf x x ⎰在几何上表示几个小曲边梯形面积的代数和(x 轴上方面积取正号,x 轴下方面积取负号).在如右图所示的图象中,定积分132()d baf x x S S S =+-⎰.要点三:微积分基本定理 微积分基本定理:一般地,如果'()()F x f x =,且()f x 在[a ,b]上可积,则()d ()()baf x x F b F a =-⎰.这个结论叫做微积分基本定理,又叫做牛顿-莱布尼茨公式.其中,()F x 叫做()f x 的一个原函数.为了方便,我们常把()()F b F a -记作()ba F x ,即()d ()()()bba af x x F x F b F a ==-⎰.要点诠释:(1)根据定积分定义求定积分,往往比较困难,而利用上述定理求定积分比较方便.(2)设()f x 是定义在区间I 上的一个函数,如果存在函数()F x ,在区间I 上的任何一点x 处都有'()()F x f x =,那么()F x 叫做函数()f x 在区间I 上的一个原函数.根据定义,求函数()f x 的原函数,就是要求一个函数()F x ,使它的导数'()F x 等于()f x .由于[()]''()()F x c F x f x +==,所以()F x c +也是()f x 的原函数,其中c 为常数.(3)利用微积分基本定理求定积分()d baf x x ⎰的关键是找出使'()()F x f x =的函数()F x .通常,我们可以运用基本初等函数的求导公式和导数的四则运算法则从反方向求出()F x .要点四:定积分的计算1. 求定积分的一般步骤是:(1)找出被积函数中的基本初等函数,将被积函数表示为基本初等函数的和或差的形式; (2)利用定积分的性质,将问题转化为求若干基本初等函数的定积分; (3)分别用求导公式找到各个基本初等函数的原函数; (4)利用牛顿―莱布尼兹公式求出各个定积分的值; (5)计算原始定积分的值. 2. 定积分的运算性质①有限个函数代数和(或差)的定积分等于各个函数定积分的代数和(或差),即1212[()()()d ]()d ()d ()d bb b bn n aaaaf x f x f x x f x x f x x f x x ±±±=±±±⎰⎰⎰⎰L L .②常数因子可提到积分符号前面,即()d ()d b baakf x x k f x x =⎰⎰.③当积分上限与下限交换时,积分值一定要反号.即()d ()d baabf x x f x x =-⎰⎰.④定积分的可加性,即对任意的c ,有()d ()d ()d bc baacf x x f x x f x x =+⎰⎰⎰.3. 定积分的计算技巧:(1)对被积函数,要先化简,再求积分.(2)求被积函数是分段函数的定积分,依据定积分“对区间的可加性”,分段积分再求和. (3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分. 要点诠释:① 求定积分主要是要找到被积函数的原函数,也就是说,要找到一个函数,它的导函数等于被积函数.因此,求导运算与求原函数运算互为逆运算.② 把积分上、下限代入原函数求差时,要按步骤进行,以免发生符号错误. ③ 由于[]()'(),F x c f x +=()F x c +也是)(x f 的原函数,其中c 为常数. 【典型例题】类型一:定积分的几何意义例1. 用定积分的几何意义求: (1)1(32)d x x +⎰;(2)322sin d x x ππ⎰;(3)2204x dx -⎰.【思路点拨】画出简图,结合图形确定积分区间. 【解析】(1)如下图:阴影部分面积为(25)1722+⨯=, 从而107(32)d 2x x +=⎰.(2)如下图:由于A 的面积等于B 的面积, 从而322sin d 0x x ππ=⎰.(3)设24y x =-,则224x y +=(0,02)y x ≥≤≤,表示半径为2的41个圆,由定积分的概念可知,204x dx -⎰表示如图所示的以2为半径的41圆的面积, 所以201444x dx ππ-=⨯=⎰【总结升华】(1)利用定积分的几何意义正确画出图形求定积分. (2)()d [()0]baf x x f x >⎰表示曲边梯形的面积,而上半圆可看做特殊曲边梯形(有两边缩为点),这里面积易求,从而得出定积分的值. 举一反三:【变式1】试用定积分的几何意义求31(21)d x x --⎰.【答案】如图所示:计算可得A 的面积为5525224⨯=,B 的面积为339224⨯=, 从而31259(21)d 444x x --=-=⎰.【变式2】利用定积分的几何定义求定积分:(1)⎰-adx x a 022; (2)2016x dx -⎰.【答案】(1)设22x a y -=,则222a y x =+)0,0(a x y ≤≤≥表示41个圆,由定积分的概念可知,所求积分就是41圆的面积,所以⎰-adx x a 02242a π=(2)设216y x -2216x y +=(0,02)y x ≥≤≤表示如图的曲边形, 其面积2233S S S π∆=+=+扇形, 故20216233x dx π-=+⎰类型二:利用微积分基本定理求定积分【高清课堂:微积分基本定理385549 典型例题1】 例2.计算下列定积分: (1)211dx x⎰; (2)312xdx ⎰.【思路点拨】根据求导函数与求原函数互为逆运算,找到被积函数的一个原函数,利用微积分基本定理求解.【解析】(1)因为'1(ln )x x=,所以22111ln |ln 2ln1ln 2dx x x ==-=⎰.(2)323112|817xdx x ==-=⎰.【总结升华】为使解题步骤清晰,通常都是把求原函数和计算原函数值的差用一串等式表示出来.解题格式如下:()d ()()()bba af x x F x F b F a ==-⎰举一反三:【变式】计算下列定积分(1)11dx ⎰; (2)1xdx ⎰;(3)130x dx ⎰; (4)131x dx -⎰.【答案】(1)11001d 101x x ==-=⎰;(2)11222001111d 102222x x x ==⋅-⋅=⎰; (3)130x dx⎰144401*********x ==⋅-⋅=; (4)131x dx -⎰144411111(1)0444x -==⋅-⋅-=. 【高清课堂:微积分基本定理385549 典型例题2】例3.求下列定积分: (1)221(1)d x x x ++⎰; (2)0(sin cos )d x x x π+⎰;(3)2211()d x x x x-+⎰; (4)(cos e )d x x x π--+⎰.【解析】(1)223222222221111111129(1)d d d 1d 326x x x x x x x x x x x ++=++=++=⎰⎰⎰⎰.(2)0000(sin cos )d sin d cos d (cos )sin 2x x x x x x x x x πππππ+=+=-+=⎰⎰⎰.(3)22232222222111111111375()d d d d ln ln 2ln 223236x x x x x x x x x x x x x -+=-+=-+=-+=-⎰⎰⎰⎰.(4)00001(cos e )d cos d e d sin e1e xxx x x x x x x ππππππ------=+=+=-⎰⎰⎰. 【总结升华】(1)求函数()f x 在某个区间上的定积分,关键是求出函数()f x 的一个原函数,要正确运用求导运算与求原函数运算互为逆运算的关系.(2)求复杂函数定积分要依据定积分的性质. 举一反三:【变式1】计算下列定积分的值:(1)22(31)x x dx -+⎰, (2)dx x x ⎰+20)sin (π, (3)180(8)x x dx -⎰【答案】(1)2223200(31)()82x x x dx x x -+=-+=⎰.(2)222201(sin )(cos )128x x dx x x +=-=+⎰πππ.(3)91801871(8)()0ln893ln 29x xx x dx -=-=-⎰.【高清课堂:微积分基本定理385549 典型例题2】 【变式2】计算: (1)120⎰; (2)121x e dx --⎰.【答案】(1)1201==⎰; (2)11222211111222xx e dx ee e -----=-=-⎰. 【变式3】计算下列定积分:(1)20(1)x x dx +⎰; (2)2211()xe dx x+⎰; (3)20sin xdx ⎰π.【答案】 (1)2(1)x x x x +=+Q 且32211(),()32x x x x ''==,∴22222232220003211(1)()||321114(20)(20).323x x dx x x dx x dx xdx x x +=+=+=+=⨯-+⨯-=⎰⎰⎰⎰(2)1(ln )x x '=,又222()(2)2x x xe e x e ''=⋅=,得221()2x x e e '= 所以2222222211111111()|ln |2x x x e dx e dx dx e x x x +=+=+⎰⎰⎰ 42421111ln 2ln1ln 2.2222e e e e =-+-=-+ (3)由(sin 2)cos 2(2)2cos 2x x x x ''=⋅=,得1cos 2(sin 2)2x x '=所以200001111sin (cos 2)cos 22222xdx x dx dx xdx ππππ=-=-⎰⎰⎰⎰00111111|(sin 2)|(0)(sin 2sin 0).22222222x x x ππππ=-=---= 类型三:几类特殊被积函数求定积分问题 例4.求值:(1)若2, 0()cos 1, 0x x f x x x ⎧≤=⎨->⎩,求11()d f x x -⎰;(2)计算x 的值.【思路点拨】对于图形由两部分组成的函数在求积分时,应注意用性质()baf x dx ⎰=()c af x dx ⎰+()bcf x dx ⎰进行化简. 【解析】(1)0111230110112()d d (cos 1)d (sin )sin133f x x x x x x xx x ---=+-=+-=-+⎰⎰⎰. (2)xx =20|sin -cos |d x x x π=⎰4204|sin cos |d |sin cos |d x x x x x x πππ=-+-⎰⎰4204cos sin d (sin cos )d x x x x x x πππ=-+-⎰⎰2404(sin cos )(cos sin )1)x x x x πππ=+-+=. 【总结升华】(1)对于分段函数的定积分,通常是依据定积分“对区间的可加性”,先分段积分再求和,要注意各段定积分的上、下限. (2)计算|()|d baf x x ⎰时,需要去掉绝对值符号,这时要讨论()f x 的正负,转化为分段函数求定积分问题.举一反三:【高清课堂:微积分基本定理385549 典型例题3】 【变式1】求定积分: (1)20()f x dx ⎰, 其中2,01()5,12x x f x x ≤<⎧=⎨≤≤⎩(2)31x dx -⎰.【答案】(1)212122101()d 2d 5d 56f x x x x x x x =+=+=⎰⎰⎰(2)31x dx -⎰=11x dx -⎰+311x dx -⎰=10(1)x dx -⎰+31(1)x dx -⎰=21230111()|()|22x x x x -+- =15222+=. 【变式2】计算下列定积分: (1)20|sin |x dx π⎰;(2)dx x |1|22⎰-.【答案】(1)(cos )sin x x '-=Q ,∴220|sin ||sin ||sin |x dx x dx x dx=+⎰⎰⎰ππππ2020sin sin cos |cos |(cos cos 0)(cos 2cos )4.xdx xdxx x =-=-+=--+-=⎰⎰πππππππππ(2)∵0≤x ≤2,于是 ⎪⎩⎪⎨⎧≤≤-≤<-=-)10(1)21(1|1|222x x x x x∴⎰⎰⎰-+-=-2121222)1()1(|1|dxx dx x dx x2131033131⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=x x x x⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫ ⎝⎛-=131********2=.类型四:函数性质在定积分计算中的应用 例5.求定积分:11(cos x x dx -⎰.【思路点拨】考虑利用被积式函数的奇偶性求积分. 【解析】∵cos y x x =是奇函数,∴11cos 0x xdx -=⎰,∵y∴211302x dx -=⎰⎰,∴25113310136(cos 022055x x dx x dx x -=+=⨯=⎰⎰.【总结升华】函数的奇偶性又是解决定积分有关问题的重要工具,利用这两点能简捷地解决定积分的有关问题,结论如下:(1)若()f x 是偶函数,则()2()aaa f x dx f x dx -=⎰⎰;(2)若()f x 是奇函数,则()0aaf x dx -=⎰.举一反三: 【变式1】求333(sin )x x dx -+⎰的值.【答案】∵()f x 是奇函数,∴333(sin )0x x dx -+=⎰.【变式2】设()f x 是偶函数,若2()2f x dx =⎰,则22()f x dx -=⎰ ;【答案】∵()f x 是偶函数,∴222()2()224f x dx f x dx -==⨯=⎰⎰.【变式3】求定积分:2222cos 2x dx ππ-⎰.【答案】∵22cos cos 12xy x ==+是偶函数, ∴222222cos (cos 1)2xdx x dx--=+⎰⎰ππππ2022(cos 1)2(sin )2.x dxx x =+=+=+⎰πππ。
定积分与微积分基本关系
定积分与微积分基本关系微积分是数学的一个重要分支,它研究函数的变化率与连续性等概念。
而定积分则是微积分中的一种运算,可以用来计算曲线下面的面积以及求解一些与面积相关的问题。
本文将详细介绍定积分与微积分的基本关系。
一、定积分的定义与基本性质定积分是微积分中的一种重要概念,它可以用来计算曲线下面的面积。
设有函数f(x)在区间[a, b]上连续,将[a, b]平分成n个小区间,每个小区间长度为Δx,选择每个小区间中任意一点ξk,并计算出相应的函数值f(ξk),那么这个小区间的面积可以表示为f(ξk)Δx。
将所有小区间的面积加起来,取极限过程,即可得到定积分的定义:∫[a, b] f(x)dx = lim(n→∞) Σ[f(ξk)Δx]其中,Σ表示求和,ξk是[a, b]中任意一点,Δx为小区间的长度。
定积分具有以下几个基本性质:1. 若f(x)在区间[a, b]上连续,则定积分∫[a, b] f(x)dx存在。
2. 定积分的值与区间的选取无关,即∫[a, b] f(x)dx = ∫[c, d] f(x)dx,其中[a, b]与[c, d]是相同长度的区间。
3. 若f(x)在区间[a, b]上连续,则定积分∫[a, b] f(x)dx可以通过不断细分区间并估计相应的面积来进行计算。
当n趋于无穷大时,这个估计的值与定积分的真实值越来越接近。
二、定积分的几何意义与应用定积分不仅可以用来计算曲线下面的面积,还有许多其他的几何意义与应用。
1. 曲线下面的面积:若函数f(x)在区间[a, b]上非负连续,则∫[a, b]f(x)dx表示曲线y=f(x)与x轴以及直线x=a、x=b所围成的面积。
2. 曲线长度:若函数f(x)在区间[a, b]上连续且可导,则∫[a, b]√[1+f'(x)²]dx表示曲线y=f(x)在区间[a, b]上的弧长。
3. 体积计算:若函数f(x)在区间[a, b]上非负连续且表示某个平面图形的截面积,则∫[a, b] π[f(x)]²dx表示该图形的旋转体的体积。
定积分与微积分基本定理课件
欢迎来到本次课程,我们将深入探讨定积分与微积分的基本定理。
定积分的概念与性质
1 概念
定积分是用来计算曲线下面的面积或者计算变化率的数学工具。
2 性质
定积分具有加法性、线性性、保号性、保序性等基本性质。
3 重要定理
有界函数定积分存在性定理、定积分的中值定理等。
定积分的定义
1 黎曼和
定积分定义为用无穷小矩形逼近曲线下面的面积,并在极限存在时得出结果。
2 积分上限与下限
定义了定积分的区间,上限与下限决定了曲线下面的范围。
3 求解方法
可以进行直接计算、几何意义、等价改写等方式求解定积分。
计算定积分的方法
1
换元法
通过变量代换,把原有的积分式子转化为更简单的形式,以便求解。
2
分部积分法
通过将积分式子分解成两个函数的乘积,再逐步求解得到结果。
3
级数法
将函数展开成幂级数,再通过对级数求积分计算定积分。
微积分基本定理的内容
第一基本定理
定积分与原函数之间的关系,使得我们可以通 过求导得到定积分。
第二基本定理
计算定积分时,我们可以通过寻找原函数的算 法来简化计和推导来证明微积分基本定理的正确性,为其在实际使用中奠定基础。
微积分基本定理的应用
物理学
微积分在物理学中常用于描述运 动、力学和电磁学等领域。
经济学
工程学
经济学家使用微积分来研究需求 和供给、垄断和竞争等经济现象。
工程学中的建模和设计过程依赖 于微积分来解决复杂的问题。
展望与总结
通过学习定积分与微积分的基本定理,你将更深入理解数学背后的美妙,并能应用于各个领域。
定积分与微积分基本定理.
3 =(x3-x2+x)|- 1=24.
(2)
2 1 π
1 1 3 2 2 x-xdx=2x -ln x|1= -ln 2. 2
π π
(3) (sin x-cos x)dx= sin xdx- cos xdx=
定积分与微积分基本定理
结束
2.计算下列定积分: (1) (3)
3 -1 π 0
(3x -2x+1)dx;(2)
2
2 1 2 0
1 x-xdx; |1-x|dx.
(sin x-cos x)dx;(4)
3 -1
解:(1)
(3x2-2x+1)dx
0 0 0 π (-cos x) |0 -sin x |π 0 =2.
数学
首页
上一页
下一页
末页
第十二节
定积分与微积分基本定理
结束
(4) |1-x|dx= (1-x)dx+ (x-1)dx
0 0 1
2
1
2
1 2 1 1 2 =x-2x |0+2x -x |2 1 1 1 1 2 2 =1-2-0+2×2 -2-2×1 -1=1.
1 0 1 1 1-x dx 的几何意义是求单位圆面积的 ,所以 0 4
如:定积分 π 1-x dx= . 4
2
2
数学
首页
上一页
下一页
末页
第十二节
定积分与微积分基本定理
结束
[练一练]
若 f(x)dx=1, f(x)dx=-1,则 f(x)dx=________.
解析:∵ f(x)dx= f(x)dx+ f(x)dx, ∴ f(x)dx= f(x)dx- f(x)dx=-1-1=-2.
定积分与微积分基本定理
定积分与微积分基本定理1.定积分的概念 在⎰b af (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.2.定积分的性质 (1)⎰b akf (x )d x =k⎰b af (x )d x (k 为常数);(2)⎰b a[f 1(x )±f 2(x )]d x =⎰baf 1(x )d x ±⎰b af 2(x )d x ;(3⎰b af (x )d x =⎰b af (x )d x +⎰b af (x )d x (其中a <c <b ).3.微积分基本定理一般地,如果f (x )是在区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么⎰baf (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.其中F (x )叫做f (x )的一个原函数. 为了方便,常把F (b )-F (a )记作F (x )|b a ,即f ⎰b a(x )d x =F (x ) |b a =F (b )-F (a ).基本积分公式表⑴C dx =⎰0 ⑵C x m dx x m m++=+⎰111 ⑶C x dx x+=⎰ln 1⑷C e dx e xx+=⎰⑸C aa dx a xx+=⎰ln ⑹⎰+=C x xdx sin cos ⑺⎰+-=C x x cos sin ⑻⎰+-=C x x x xdx ln ln 1.(2013·江西高考)若S 1=⎰21x 2d x ,S 2=⎰211xd x ,S 3=⎰21e x d x ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3 .C .S 2<S 3<S 1D .S 3<S 2<S 12.(2013北京,5分)直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直, 则l 与C 所围成的图形的面积等于( ) A.43B .2 C.83 . D. 16233.(2013湖南,5分)若∫T 0x 2d x =9,则常数T 的值为________.4.(2012福建,5分)如图所示,在边长为1的正方形OABC 中任取 一点P ,则点P 恰好取自阴影部分的概率为( ) A.14 B.15 C.16 D.175.(2012湖北,5分)已知二次函数y =f (x )的图象如图所示,则它与x 轴所围图形的面积为( ) A.2π5 B.43 . C.32 D.π26.(2011湖南,5分)由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为( )A.12B .1 C.32D.3. 7.(2010山东,5分)由曲线y =x 2,y =x 3围成的封闭图形面积为( )A.112B.14C.13D.712 8.(2010湖南,5分)⎰421xd x 等于( ) A .-2ln2 B .2ln2 C .-ln2 D .ln2.9.(2009·福建,5分)⎰-22ππ(1+cos x )d x 等于( )A .πB .2C .π-2D .π+2.10.(2011陕西,5分)设f (x )=⎪⎩⎪⎨⎧≤+>⎰0,30,lg 2x dt t x x x a 若f (f (1))=1,则a =________. 11、(2008海南)由直线21=x ,x=2,曲线x y 1=及x 轴所围图形的面积为( ) A.415B. 417 C. 2ln 21 D. 2ln 2.12、(2010海南)设()y f x =为区间[0,1]上的连续函数,且恒有0()1f x ≤≤,可以用随机模拟方法近似计算积分1()f x dx ⎰,先产生两组(每组N 个)区间[0,1]上的均匀随机数12,,N x x x …和12,,N y y y …,由此得到N 个点11(,)(1,2,)x y i N =…,,再数出其中满足11()(1,2,)y f x i N ≤=…,的点数1N ,那么由随机模拟方案可得积分10()f x dx ⎰的近似值为 。
定积分与微积分基本定理
定积分与微积分基本定理1.定积分(1)定积分的相关概念:在∫ba f (x )d x 中,∫叫作积分号,a 叫作积分的下限,b 叫作积分的上限,f (x )叫作被积函数.(2)定积分的性质:①∫ba 1d x =b -a ;②⎠⎛a b kf (x )d x =k ⎠⎛a bf (x )d x (k 为常数); ③⎠⎛a b[f (x )±g (x )]d x =⎠⎛a bf (x )d x ±⎠⎛a bg (x )d x ; ④⎠⎛a bf (x )d x =⎠⎛a cf (x )d x +⎠⎛c bf (x )d x .(3)定积分的几何意义:①当函数f (x )在区间[a ,b ]上恒为正时,定积分∫ba f (x )d x 的几何意义是由直线x =a ,x =b ,y =0和曲线y =f (x )所围成的曲边梯形的面积(左图中阴影部分).②一般情况下,定积分∫b af (x )d x 的几何意义是介于x 轴、曲线f (x )以及直线x =a 、x =b 之间的曲边梯形面积的代数和(如图中阴影所示),其中在x 轴上方的面积等于该区间上的积分值,在x 轴下方的面积等于该区间上积分值的相反数.2.微积分基本定理如果连续函数f (x )是函数F (x )的导函数,即f (x )=F ′(x ),则有∫ba f (x )d x =F (b )-F (a ).这个式子称为牛顿——莱布尼茨公式.通常称F (x )是f (x )的一个原函数.为了方便,常把F (b )-F (a )记成F (x )|b a ,即∫ba f (x )d x = F (x )|b a =F (b )-F (a ).1.()baf x dx ⎰与()baf t dt ⎰相等吗?提示:相等.2.一个函数的导数是唯一的,反过来导函数的原函数唯一吗?提示:一个函数的导数是唯一的,而导函数的原函数则有无穷多个,这些原函数之间都相差一个常数,在利用微积分基本定理求定积分时,只要找到被积函数的一个原函数即可,并且一般使用不含常数的原函数,这样有利于计算.3.定积分[()()]baf xg x dx -⎰ (f (x )>g (x ))的几何意义是什么?提示:由直线x =a ,x =b 和曲线y =f (x ),y =g (x )所围成的曲边梯形的面积.1.(2013²江西高考)若S 1=221x dx ⎰,S 2=211dx x⎰,S 3=21e x dx ⎰,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1 2.已知质点的速度v =10t ,则从t =0到t =t 0质点所经过的路程是( ) A .10t 20 B .5t 20 C.103t 20 D.53t 203.设f (x )=⎩⎪⎨⎪⎧x2x 2xx,则11()f x dx -⎰的值是( )A.121x dx -⎰B. 112x dx -⎰ C. 021x dx -⎰+12x dx ⎰ D. 012x -⎰d x +120x ⎰d x4.直线x =0,x =2,y =0与曲线y =x 2所围成的曲边梯形的面积为________. 5.(2013²湖南高考)若20Tx dx ⎰=9,则常数T 的值为________.[例1] (1) 120(2)x x dx -+⎰; (2) 0(sin cos )x x dx π-⎰;(3) 2211(e )x dx x+⎰; (4) 201x dx -⎰.【互动探究】若将本例(1)中的“-x 2+2x ”改为“-x 2+2x ”,如何求解?【方法规律】 定积分的求法(1)用微积分基本定理求定积分,关键是求出被积函数的原函数.此外,如果被积函数是绝对值函数或分段函数,那么可以利用定积分对积分区间的可加性,将积分区间分解,代入相应的解析式,分别求出积分值相加.(2)根据定积分的几何意义可利用面积求定积分. (3)若y =f (x )为奇函数,则()aaf x dx -⎰=0.1.=________.2.若()20sin cos d x a x x π+⎰=2,则实数a =________.3.x ⎰=________.[例以速度v (t )=7-3t +251+t (t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( )A .1+25ln 5B .8+25ln 113C .4+25ln 5D .4+50ln 2(2)一物体在力F (x )=⎩⎪⎨⎪⎧10 x 3x +4x(单位:N)的作用下沿与力F (x )相同的方向运动了4米,力F (x )做功为( )A .44 JB .46 JC .48 JD .50 J 【方法规律】利用定积分解决变速直线运动与变力做功问题利用定积分解决变速直线运动问题和变力做功问题时,关键是求出物体做变速直线运动的速度函数和变力与位移之间的函数关系,确定好积分区间,得到积分表达式,再利用微积分基本定理计算即得所求.一物体做变速直线运动,其v t 曲线如图所示,则该物体在12 s ~6 s 间的运动路程为________.1.利用定积分求平面图形的面积是高考的常考内容,多以选择题、填空题的形式考查,难度偏小,属中低档题.2.高考对定积分求平面图形的面积的考查有以下几个命题角度:(1)知图形求曲线围成图形的面积;(2)知函数解析式求曲线围成图形的面积;(3)知曲线围成图形的面积求参数的值.[例3] (1)(2012²湖北高考)已知二次函数y=f(x)的图象如图所示,则它与x轴所围图形的面积为( )A.2π5B.43C.32D.π2(2)(2011²新课标全国卷)由曲线y=x,直线y=x-2及y轴所围成的图形的面积为A.103B.4 C.163D.6(3)(2012²山东高考)设a>0.若曲线y=x与直线x=a,y=0所围成封闭图形的面积为a2,则a=________.利用定积分求平面图形面积问题的常见类型及解题策略(1)知图形求面积.首先,依据函数的图象求出解析式;其次,确立被积函数;最后,利用定积分求面积.(2)知函数解析式求面积.解决此类问题应分四步:①画图;②确定积分上、下限,即求出曲线的交点坐标;③确定被积函数;④由定积分求出面积.(3)知图形的面积求参数.求解此类题的突破口:画图,一般是先画出它的草图;确定积分的上、下限,确定被积函数,由定积分求出其面积,再由已知条件可找到关于参数的方程,从而可求出参数的值.1.曲线y =x 2和曲线y 2=x 围成的图形的面积是( ) A.13 B.23 C .1 D.432.由抛物线y =x 2-1,直线x =0,x =2及x 轴围成的图形面积为________.————————————[课堂归纳——通法领悟]————————————————个定理——微积分基本定理利用微积分基本定理求定积分的关键是求导函数的原函数,由此可知,求导与积分互为逆运算.条结论——定积分应用的两条常用结论(1)当曲边梯形位于x 轴上方时,定积分的值为正;当曲边梯形位于x 轴下方时,定积分的值为负;当位于x 轴上方的曲边梯形与位于x 轴下方的曲边梯形面积相等时,定积分的值为零.(2)加速度对时间的积分为速度,速度对时间的积分是路程.条性质——定积分的性质(1)常数可提到积分号外;(2)和差的积分等于积分的和差;(3)积分可分段进行; (4)f (x )在区间[-a ,a ]上连续,若f (x )为偶函数,则()d aaf x x -⎰=2 0()d a f x x ⎰;若f (x )为奇函数,则()d aaf x x -⎰=0.易误警示(四)利用定积分求平面图形面积的易错点[典例] (2012²上海高考)已知函数y =f (x )的图象是折线段ABC ,其中A (0,0),B ⎝ ⎛⎭⎪⎫12,5,C (1,0).函数y =xf (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为________.[名师点评] 1.本题易写错图形面积与定积分间的关系而导致解题错误.2.本题易弄错积分上、下限而导致解题错误,实质是解析几何的相关知识和运算能力不够致错.3.解决利用定积分求平面图形的面积问题时,应处理好以下两个问题: (1)熟悉常见曲线,能够正确作出图形,求出曲线交点,必要时能正确分割图形; (2)准确确定被积函数和积分变量.曲线y =x 2+2与直线5x -y -4=0所围成的图形的面积等于________.[解题指导] 根据已知条件,求出f (x )的解析式,然后利用定积分求解.[全盘巩固]1.已知f (x )是偶函数,且6()d f x x ⎰=8,则66()d f x x -⎰=( )A .0B .4C .6D .162.由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为( )A.12 B .1 C.32 D.3 3.已知f (x )=2-|x |,则21()d f x x -⎰=( )A .3B .4 C.72 D.924.以初速度40 m/s 竖直向上抛一物体,t 秒时刻的速度v =40-10t 2,则此物体达到最高时的高度为( )A.1603 m B.803 m C.403 m D.203m 5.(2014²德州模拟)由曲线y =x 2,y =x 3围成的封闭图形的面积为( )A.112 B.14 C.13 D.7126.如图,由曲线y =x 2和直线y =t 2(0<t <1),x =1,x =0所围成的图形(阴影部分)的面积的最小值是( )A.14B.12 C .1 D .2 7.(2014²西安模拟)若11(2)d ax x x+⎰=3+ln 2,则a 的值是________.8.设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x,x ∈,e](e 为自然对数的底数),则()d ef x x ⎰的值为________.9.曲线y =12ex 在点(4,e 2)处的切线与坐标轴所围成的三角形的面积为________.10.已知二次函数f (x )=ax 2+bx +c ,直线l 1:x =2,直线l 2:y =-t 2+8t (其中0≤t ≤2,t 为常数),若直线l 1,l 2与函数f (x )的图象以及l 1、l 2、y 轴与函数f (x )的图象所围成的封闭图形(阴影部分)如图所示.(1)求a ,b ,c 的值;(2)求阴影面积S 关于t 的函数S (t )的解析式.11.如图所示,直线y =kx 分抛物线y =x -x 2与x 轴所围图形为面积相等的两部分,求k 的值.12.求曲线y =x ,y =2-x ,y =-13x 所围成图形的面积.[冲击名校]1.一物体在变力F (x )=5-x 2(x 的单位:m ,F 的单位:N)的作用下,沿着与F (x )成30°角的方向做直线运动,则从x =1处运动到x =2处时变力F (x )所做的功为( )A.233 J B. 3 J C.433J D .2 3 J 2.如图,设点P 从原点沿曲线y =x 2向点A (2,4)移动,直线OP 与曲线y =x 2围成图形的面积为S 1,直线OP 与曲线y =x 2及直线x =2围成图形的面积为S 2,若S 1=S 2,则点P 的坐标为________.[高频滚动]已知函数f (x )=ax 2-b ln x 在点(1,f (1))处的切线方程为y =3x -1.(1)若f (x )在其定义域内的一个子区间(k -1,k +1)内不是单调函数,求实数k 的取值范围;(2)若对任意x ∈(0,+∞),均存在t ∈[1,3],使得13t 3-c +12t 2+ct +ln 2+16≤f (x ),试求实数c 的取值范围.积分与微积分基本定理答案1.解析:选 B S 1=32113x =83-13=73,S 2=2ln 1x =ln 2<ln e =1,S 3=2e 1x =e 2-e≈2.72-2.7=4.59,所以S 2<S 1<S 3.2.解析:选 B S =10t tdt ⎰=0250t t=5t 2.3.解析:选 D11()f x dx -⎰=012x -⎰d x +12x ⎰d x .4.解析:22x dx ⎰=32103x =83.答案:83 5.解析:20T x dx ⎰=3103T x =13T 3=9,解得T =3.答案:3例 1.[自主解答] (1) 12(2)x x dx -+⎰=12()x dx -⎰+12xdx ⎰=31103x-+210x =-13+1=23.(2) 0(sin cos )x x dx π-⎰=0sin xdx π⎰-0cos xdx π⎰=(cos )x π--sin 0xπ=2.(3)2211(e )xdx x +⎰=221e xdx ⎰+211dx x ⎰=221e 12x +2ln 1x =12e 4-12e 2+ln 2-ln 1 =12e 4-12e 2+ln 2.(4)|x -1|=⎩⎪⎨⎪⎧1-x x ,x -x,故1(1)x dx -⎰=1(1)x dx -⎰+21(1)x dx -⎰=2102x x ⎛⎫- ⎪⎝⎭+2212x x ⎛⎫- ⎪⎝⎭=12+12=1.【互动探究】解:⎰表示y =-x 2+2x 与x =0,x =1及y =0所围成的图形的面积.由y =-x 2+2x ,得(x -1)2+y 2=1(y≥0),故0⎰表示圆(x -1)2+y 2=1的面积的14,即⎰=14π.解析:=20sin cos x x dx π-⎰=()40cos sin d x x x π-⎰+()24sin cos d x x x ππ-⎰=()sin cos 40x x π++()2cos sin 4x x ππ--=2-1+(-1+2)=22-2.答案:22-22.解析:∵(a sin x -cos x )′=sin x +a cos x ,∴46212243(34)d 4()d 22x x x x v t t ⎛⎫++ ⎪⎝⎭⎰⎰=(sin cos )20a x x π-=⎝⎛ a sin π2-⎭⎪⎫cos π2-(a sin 0-cos 0)=a +1=2,∴a =1.3.解析:由定积分的几何意义知,0x ⎰是由曲线y =9-x 2,直线x =0,x =3,y =围成的封闭图形的面积,故x ⎰=π²324=9π4.答案:9π4[例2] [自主解答] (1)由v (t )=7-3t +151+t =0,可得t =4⎝ ⎛⎭⎪⎫t =-83舍去,因此汽车从刹车到停止一共行驶了4 s ,此期间行驶的距离为⎠⎛04v (t )d t =⎠⎛04⎝⎛⎭⎪⎫7-3t +151+t d t =⎣⎢⎡⎦⎥⎤7t -32t 3++t 4=4+25ln 5.(2)力F (x )做功为2010d x ⎰+42(34)d x x +⎰=10x 20+243422x x ⎛⎫+ ⎪⎝⎭=20+26=46.[答案] (1)C (2)B解析:由图象可知,v (t )=⎩⎪⎨⎪⎧2t ,0≤t <1,2,1≤t <3,13t +1,3≤t ≤6,所以12s ~6 s 间的运动路程s=()331122322222021022132()d d e 33363kx x x x kx x x x x x x kx x x ππ-⎡⎤''⎛⎫⎛⎫⎛⎫⎢⎥--=+- ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭-⎣⎦⎰⎰则=1122d t t ⎰+312d t ⎰+6311d 3t t ⎛⎫+ ⎪⎝⎭⎰=t 2112+2t 31+⎝ ⎛⎭⎪⎫16t 2+t 63=494.答案:494[例3] [自主解答] (1)由题意知二次函数f (x )=-x 2+1,它与x 轴所围图形的面积为11()d f x x -⎰=12()d f x x ⎰=2 120(1)d x x -+⎰=2⎝ ⎛⎭⎪⎫x -13x 3 10=2⎝ ⎛⎭⎪⎫1-13=43.(2)作出曲线y =x ,直线y =x -2的草图(如图所示),所求面积为阴影部分的面积.由⎩⎨⎧y =x ,y =x -2得交点A (4,2).因此y =x 与y =x -2及y 轴所围成的图形的面积为4(2)d x x ⎤-⎦⎰=)42d x x +⎰=3224212032x x x ⎛⎫-+ ⎪⎝⎭=23³8-12³16+2³4=163.(3)由题意知0x ⎰=a 2.又332222033a x x '⎛⎫= ⎪⎝⎭则=a 2.即23a 32=a 2,所以a =49.[答案] (1)B (2)C (3)491.解析:选A 解方程组⎩⎪⎨⎪⎧y =x 2,y 2=x ,得两曲线的交点为(0,0),(1,1).所以)12d x x ⎰=332121033x x ⎛⎫- ⎪⎝⎭=13,即曲线y =x 2和曲线y 2=x 围成的图形的面积是13.2.解析:如图所示,由y =x 2-1=0,得抛物线与x 轴的交点分别为(-1,0)和(1,0). 所以S =221d x x -⎰=()121d x x -⎰+()2211d x x -⎰=⎪⎪⎪⎝ ⎛⎭⎪⎫x -x 331+⎪⎪⎪⎝ ⎛⎭⎪⎫x 33-x 21=⎝ ⎛⎭⎪⎫1-13+⎣⎢⎡⎦⎥⎤83-2-⎝ ⎛⎭⎪⎫13-1=2.答案:2[解析] 由题意可得f (x )=⎩⎪⎨⎪⎧10x ,0≤x ≤12,10-10x ,12<x ≤1,所以y =xf (x )=⎩⎪⎨⎪⎧10x 2,0≤x ≤12,10x -10x 2,12<x ≤1与x 轴围成图形的面积为122010d x x ⎰+()12121010d x x x -⎰=3110230x +⎝ ⎛⎭⎪⎫5x 2-103x 3112=54.[答案] 54 解析:由⎩⎪⎨⎪⎧y =x 2+2,5x -y -4=0,消去y ,得x 2-5x +6=0,解得x 1=2,x 2=3.如图所示,当2<x <3时,直线5x -y -4=0在曲线y =x 2+2的上方,所以所求面积为()32254(2)d x x x ⎡⎤--+⎣⎦⎰=()32256d x x x ⎡⎤--⎣⎦⎰=⎝ ⎛⎭⎪⎫52x 2-13x 3-6x ⎪⎪⎪32=⎝ ⎛⎭⎪⎫52³32-13³33-6³3-⎝ ⎛⎭⎪⎫52³22-13³23-6³2=⎝ ⎛⎭⎪⎫-92-⎝ ⎛⎭⎪⎫-143=16.答案:161.解析:选 D 因为函数f (x )是偶函数,所以函数f (x )在y 轴两侧的图象对称,所以66()d f x x -⎰=06()d f x x -⎰+60()d f x x ⎰=26()d f x x ⎰=16.2.解析:选D 结合函数图象可得所求封闭图形的面积是33cos d x x ππ-⎰=sin x 33ππ-= 3.3.解析:选C ∵f (x )=2-|x |=⎩⎪⎨⎪⎧2-x x ,2+x x,∴21()d f x x -⎰=()012d x x -+⎰+()202d x x -⎰=⎪⎪⎪⎝⎛⎭⎪⎫2x +x 220-1+⎪⎪⎪⎝⎛⎭⎪⎫2x -x 2220=32+2=72. 4.解析:选A 由v =40-10t 2=0,得t =2(t =-2舍去),则此物体达到最高时的高度为()2204010d t t -⎰=⎝ ⎛⎭⎪⎫40t -103t 320=40³2-103³8=1603 (m). 5.解析:选A 由⎩⎪⎨⎪⎧y =x 2,y =x 3,得x =0或x =1,由图易知封闭图形的面积=1230()d xx x-⎰=⎪⎪⎪⎝ ⎛⎭⎪⎫x 33-x 4410=13-14=112.6.解析:选A 设图中阴影部分的面积为S (t ),则S (t )=22()d ttx x -⎰+122()d tx t x-⎰=43t 3-t 2+13,由S ′(t )=2t (2t -1)=0,得t =12为S (t )在区间(0,1)上的最小值点,此时S (t )min =S ⎝ ⎛⎭⎪⎫12=14.7.解析:由11(2)d ax x x +⎰=()x 2+ln x 1a =()a 2+ln a -(12+ln 1)=a 2+ln a -1=3+ln 2(a >1),得a 2+ln a =4+ln 2,所以a =2.答案:28.解析:依题意得()d ef x x ⎰=12d x x ⎰+11d ex x ⎰=x 3310+ln x 1e =13+1=43.答案:439.解析:由题意得y ′=12e x '⎛⎫ ⎪⎝⎭=1212e x ,所以曲线在点(4,e 2)处的切线斜率为12e 2,因此切线方程为y -e 2=12e 2²(x -4),则切线与坐标轴的交点为A (2,0),B (0,-e 2),所以S △AOB =12|-e 2|³2=e 2(O 为坐标原点).答案:e 210解:(1)由图形可知二次函数的图象过点(0,0),(8,0),并且f (x )的最大值为16,则⎩⎪⎨⎪⎧c =0,a ²82+b ²8+c =0,4ac -b 24a =16,解得⎩⎪⎨⎪⎧a =-1,b =8,c =0,故函数f (x )的解析式为f (x )=-x 2+8x .(2)由⎩⎪⎨⎪⎧y =-t 2+8t ,y =-x 2+8x ,得x 2-8x -t (t -8)=0,∴x 1=t ,x 2=8-t .∵0≤t ≤2,∴直线l 2与f (x )的图象的交点坐标为(t ,-t 2+8t ),由定积分的几何意义知:S (t )=()2208(8)d tt t x x x⎡⎤-+--+⎣⎦⎰+()222(8)8d tx x t t x⎡⎤-+--+⎣⎦⎰=⎣⎢⎡⎦⎥⎤-t 2+8t x -⎝ ⎛⎭⎪⎫-x 33+4x 20t +⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-x 33+4x 2--t 2+8t x 2t=-43t 3+10t 2-16t +403. 11解:抛物线y =x -x 2与x 轴两交点的横坐标为x 1=0,x 2=1, 所以,抛物线与x 轴所围图形的面积S =120()d x x x -⎰=⎝ ⎛⎭⎪⎫x 22-13x 310=16.又⎩⎪⎨⎪⎧y =x -x 2,y =kx ,由此可得,抛物线y =x -x 2与y =kx 两交点的横坐标为x 3=0,x 4=1-k ,所以,S2=120()d kx x kx x ---⎰d x =⎝ ⎛⎭⎪⎫1-k 2x 2-13x 310k -=16(1-k )3. 又知S =16,所以(1-k )3=12,于是k =1- 312=1-342.12解:由⎩⎨⎧y =x ,y =2-x ,得交点A (1,1);由⎩⎪⎨⎪⎧y =2-x ,y =-13x ,得交点B (3,-1).故所求面积S =101d 3x x ⎫⎪⎭⎰+3112d 3x x x ⎛⎫-+ ⎪⎝⎭⎰=322121036x x ⎛⎫+ ⎪⎝⎭+⎝ ⎛⎭⎪⎫2x -13x 231=23+16+43=136. 1.解析:选C 由已知条件可得,F (x )所做的功为32()2215d x x -⎰=433J. 2.解析:设直线OP 的方程为y =kx ,点P 的坐标为(x ,y ), 则()20d xkx x x -⎰=()22d x x kx x -⎰,即⎝ ⎛⎭⎪⎫12kx 2-13x 30x =⎝ ⎛⎭⎪⎫13x 3-12kx 22x , 整理得12kx 2-13x 3=83-2k -⎝ ⎛⎭⎪⎫13x 3-12kx 2,解得k =43,即直线OP 的方程为y =43x ,所以点P 的坐标为⎝ ⎛⎭⎪⎫43,169.答案:⎝ ⎛⎭⎪⎫43,169解:(1)f ′(x )=2ax -bx ,由⎩⎪⎨⎪⎧f =3,f=2,得⎩⎪⎨⎪⎧a =2,b =1,f (x )=2x 2-ln x ,f ′(x )=4x -1x =4x 2-1x ,令f ′(x )=0,得x =12,则函数f (x )在⎝ ⎛⎭⎪⎫0,12上单调递减,在⎝ ⎛⎭⎪⎫12,+∞上单调递增,所以⎩⎪⎨⎪⎧k -1≥0,k -1<12,解得1≤k <32.k +1>12,故实数k 的取值范围为⎣⎢⎡⎭⎪⎫1,32. (2)设g (t )=13t 3-c +12t 2+ct +ln 2+16,根据题意可知g (t )min ≤f (x )min ,由(1)知f (x )min =f ⎝ ⎛⎭⎪⎫12=12+ln 2,g ′(t )=t 2-(c +1)t +c =(t -1)(t -c ),当c ≤1时,g ′(t )≥0,g (t )在t ∈[1,3]上单调递增,g (t )min =g (1)=c2+ln 2,满足g (t )min ≤f (x )min .当1<c <3时,g (t )在t ∈[1,c ]时单调递减,在t ∈[c,3]时单调递增,g (t )min =g (c )=-16c 3+12c 2+ln 2+16,由-16c 3+12c 2+ln 2+16≤12+ln 2,得 c 3-3c 2+2≥0,(c -1)(c 2-2c -2)≥0,此时1+3≤c <3.当c ≥3时,g ′(t )≤0,g (t )在t ∈[1,3]上单调递减,g (t )min =g (3)=-3c 2+143+ln 2,g (3)=-3c 2+143+ln 2≤-3³32+143+l n 2≤12+ln 2.综上,c 的取值范围是(-∞,1]∪[1+3,+∞).。
定积分的微积分基本定理
定积分的微积分基本定理微积分是数学中非常重要的一门学科,通过微积分的学习可以更好地解决现实生活中的问题。
其中,定积分是微积分中非常重要的一个概念,定积分的微积分基本定理则是定积分的核心概念。
本文将围绕这个主题进行详细讲解。
一、什么是定积分在学习定积分之前,首先需要了解什么是积分。
积分可以被理解为对函数曲线下的面积进行求和的过程。
而定积分则是指在一定范围内对函数进行积分的过程。
比如我们要求在区间$[a,b]$上函数$f(x)$的定积分,可以写作$\int_{a}^{b}f(x)dx$,其中dx表示微小的区间。
二、微积分基本定理微积分基本定理是定积分中非常重要的一个概念,它表明了某个函数的导数和积分之间存在一定的关系。
具体来说,微积分基本定理有两条,分别如下。
第一条基本定理:若函数f(x)在区间[a,b]上连续,则定义在区间[a,b]上的函数F(x) = $\int_{a}^{x}f(t)dt$在[a,b]上可导,且$F'(x)=f(x)$。
这个定理说明了定积分和导数之间的关系,即如果我们知道了一个函数在某一个区间内的导数,那么我们就可以求出它在该区间内的积分。
相对于求导数,求积分的过程要更加复杂,所以这个定理对于我们来说有很大的帮助。
第二条基本定理:若函数f(x)在区间[a,b]上连续,则$\int_{a}^{b}f(x)dx=F(b)-F(a)$,其中$F(x)$是函数$f(x)$在区间$[a,b]$上的一个原函数。
这个定理则说明了积分和原函数之间的关系。
由于在求导数的时候,我们还需要知道函数的一个原函数,而求原函数的过程又比求导数更加复杂,因此这个定理对我们的作用同样非常重要。
三、微积分基本定理的应用微积分基本定理可以应用于很多领域中的问题。
比如在物理学中,我们需要求出某个物体的位移、速度和加速度的变化率,这些都需要通过积分来求解。
而在金融学中,我们需要通过定积分来求出复利的收益率。
此外,在实际应用中,我们常常还需要通过微积分基本定理来计算某个函数在某个区间内的平均值、变化率等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4讲 定积分的概念与微积分基本定理一、选择题1.以初速度40 m/s 竖直向上抛一物体,t 秒时刻的速度v =40-10t 2,则此物体达到最高时的高度为( ). A.1603 m B.803 m C.403m D.203m 解析 v =40-10t 2=0,t =2,⎠⎛02(40-10t 2)d t =⎪⎪⎪⎝⎛⎭⎪⎫40t -103t 320=40×2-103×8=1603(m). 答案 A2.已知f (x )=2-|x |,则⎠⎛2-1f (x )d x 等于( ).A .3B .4C.72D.92解析 f (x )=2-|x |=⎩⎨⎧2-x (x ≥0),2+x (x <0),∴⎠⎛2-1f (x )d x =⎠⎛0-1(2+x )d x +⎠⎛02(2-x )d x = ⎪⎪⎪⎝ ⎛⎭⎪⎫2x +x 220-1+⎝ ⎛⎪⎪⎪⎭⎪⎫2x -x 2220=32+2=72. 答案 C3.函数f (x )满足f (0)=0,其导函数f ′(x )的图象如图所示,则f (x )的图象与x 轴所围成的封闭图形的面积为( ). A.13B.43 C .2D.83解析 由导函数f ′(x )的图象可知函数f (x )为二次函数,且对称轴为x =-1,开口方向向上.设函数f (x )=ax 2+bx +c (a >0),由f (0)=0,得c =0.f ′(x )=2ax +b ,因过点(-1,0)与(0,2),则有⎩⎨⎧ 2a ×(-1)+b =0,2a ×0+b =2,∴⎩⎨⎧a =1,b =2.∴f (x )=x 2+2x ,则f (x )的图象与x 轴所围成的封闭图形的面积为S =⎠⎛0-2(-x 2-2x )d x=⎪⎪⎪⎝ ⎛⎭⎪⎫-13x 3-x 20-2=13×(-2)3+(-2)2=43.答案 B4.已知a =∑i =1n1n ⎝ ⎛⎭⎪⎫i n 2,n ∈N *,b =⎠⎛01x 2d x ,则a ,b 的大小关系是( ).A .a >bB .a =bC .a <bD .不确定答案 A 5.下列积分中①⎠⎛1e1x d x ;②⎠⎛2-2x d x ;③⎠⎛024-x 2πd x ; ④∫π20cos 2x x -sin xd x ,积分值等于1的个数是( ).A .1B .2C .3D .4 解析 ①⎪⎪⎪⎠⎛1e1x d x =ln x e1=1, ②⎪⎪⎪⎠⎛2-2x d x =12x 22-2=0, ③⎠⎛024-x 2πd x =1π(14π22)=1, ④∫π20cos 2x 2cos x -sin xd x =12∫π20(cos x +sin x )d x=12(sin x -cos)|π20=1. 答案 C6.如图所示,在一个边长为1的正方形AOBC 内,曲线y =x 2和曲线y =x 围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),则所投的点落在叶形图内部的概率是( ).A.12B.16C.14D.13解析 依题意知,题中的正方形区域的面积为12=1,阴影区域的面积等于⎠⎛01(x -x 2)d x =⎪⎪⎪⎝ ⎛⎭⎪⎫23x 32-13x 310=13,因此所投的点落在叶形图内部的概率等于13,选D. 答案 D 二、填空题7.如果10 N 的力能使弹簧压缩10 cm ,为在弹性限度内将弹簧拉长6 cm ,则力所做的功为______.解析 由F(x)=kx ,得k =100,F(x)=100x ,W =∫0.060100x d x =0.18(J ). 答案 0.18 J8.曲线y =1x与直线y =x ,x =2所围成的图形的面积为____________.答案32-ln 2 9.已知f (x )=⎩⎨⎧2x +1,x ∈[-2,2],1+x 2,x ∈[2,4]若⎠⎛k 3f (x )d x =403(k <2).则k =________. 解析 ⎠⎛k 3f (x )d x =⎠⎛k 2(2x +1)d x +⎠⎛23(1+x 2)d x =403,所以得到k 2+k =0,即k =0或k =-1. 答案 0或-110.设f (x )=x n +ax 的导函数为f ′(x )=2x +1且⎠⎛12f (-x )d x =m ,则⎝ ⎛⎭⎪⎫mx +1612展开式中各项的系数和为________.解析 因为f (x )=x n +ax 的导函数为f ′(x )=2x +1.故n =2,a =1.所以⎠⎛12f (-x )d x =⎠⎛12(x 2-x )d x =⎝ ⎛⎪⎪⎪13x 3-⎭⎪⎫12x 221=56=m 所以⎝ ⎛⎭⎪⎫mx +1612展开式中各项的系数和为⎝ ⎛⎭⎪⎫56+1612=1.答案 1 三、解答题11.已知f (x )是一次函数,且⎠⎛01f (x )d x =5,⎠⎛01xf (x )d x =176,求⎠⎛12f (x )x d x 的值.解 ∵f (x )是一次函数,∴可设f (x )=ax +b (a ≠0). ∴⎠⎛01f (x )d x =⎠⎛01(ax +b )d x =⎝ ⎛⎭⎪⎫12ax 2+bx ⎪⎪⎪10=12a +b .∴12a +b =5.①又⎠⎛01xf (x )d x =⎠⎛01x (ax +b )d x =⎝ ⎛⎭⎪⎫13ax 3+12bx 2⎪⎪⎪10=13a +12b . ∴13a +12b =176.②解①②得a =4,b =3,∴f (x )=4x +3, ∴⎠⎛12f (x )x d x =⎠⎛124x +3x d x =⎠⎛12⎝⎛⎭⎪⎫4+3x d x =(4x +3ln x )⎪⎪⎪21=4+3ln 2.12.如图所示,直线y =kx 分抛物线y =x -x 2与x 轴所围图形为面积相等的两部分,求k 的值. 解 抛物线y =x -x 2与x 轴两交点的横坐标为x 1=0,x 2=1,所以,抛物线与x 轴所围图形的面积S =⎠⎛01(x -x 2)d x =⎪⎪⎪⎝ ⎛⎭⎪⎫x 22-13x 310=16.又抛物线y =x -x 2与y =kx 两交点的横坐标为 x 3=0,x 4=1-k ,所以,S 2=∫1-k 0(x -x 2-kx )d x =⎝ ⎛⎪⎪⎪⎭⎪⎫1-k 2x 2-13x 31-k 0 =16(1-k )3.又知S =16,所以(1-k )3=12, 于是k =1- 312=1-342.13.在区间[0,1]上给定曲线y =x 2.试在此区间内确定点t 的值,使图中的阴影部分的面积S 1与S 2之和最小,并求最小值.解 面积S 1等于边长为t 与t 2的矩形面积去掉曲线y =x 2与x 轴、直线x =t 所围成的面积, 即S 1=t ·t 2-⎠⎛0t x 2d x =23t 3.S 2的面积等于曲线y =x 2与x 轴,x =t ,x =1围成的面积去掉矩形面积,矩形边长分别为t 2,1-t ,即S 2=⎠⎛t1x 2d x -t 2(1-t )=23t 3-t 2+13.所以阴影部分面积S =S 1+S 2=43t 3-t 2+13(0≤t ≤1). 令S ′(t )=4t 2-2t =4t ⎝ ⎛⎭⎪⎫t -12=0时,得t =0或t =12.t =0时,S =13;t =12时,S =14;t =1时,S =23.所以当t =12时,S 最小,且最小值为14.14. 已知二次函数f(x)=3x 2-3x ,直线l 1:x =2和l 2:y =3tx(其中t 为常数,且0<t<1),直线l 2与函数f(x)的图象以及直线l 1、l 2与函数f(x)的图象所围成的封闭图形如图K 15-3,设这两个阴影区域的面积之和为S(t). (1)求函数S(t)的解析式;(2)定义函数h(x)=S(x),x ∈R .若过点A (1,m )(m ≠4)可作曲线y =h (x )(x ∈R )的三条切线,求实数m 的取值范围.解析 (1)由⎩⎨⎧y =3x 2-3x ,y =3tx得x 2-(t +1)x =0,所以x 1=0,x 2=t +1.所以直线l 2与f(x)的图象的交点的横坐标分别为0,t +1. 因为0<t<1,所以1<t +1<2.所以S(t)=∫t +1[3tx -(3x 2-3x)]d x +⎠⎛2t +1[(3x 2-3x)-3tx]d x =⎪⎪⎪⎣⎢⎡⎦⎥⎤+2x 2-x 3t +1+⎪⎪⎪⎣⎢⎡⎦⎥⎤x 3-+2x 22t +1 =(t +1)3-6t +2.(2)依据定义,h(x)=(x +1)3-6x +2,x ∈R , 则h ′(x )=3(x +1)2-6.因为m ≠4,则点A (1,m )不在曲线y =h (x )上. 过点A 作曲线y =h (x )的切线,设切点为M (x 0,y 0), 则3(x 0+1)2-6=x 0+3-6x 0+2-mx 0-1,化简整理得2x 30-6x 0+m =0,其有三个不等实根.设g (x 0)=2x 30-6x 0+m ,则g ′(x 0)=6x 20-6.由g ′(x 0)>0,得x 0>1或x 0<-1; 由g ′(x 0)<0,得-1<x 0<1,所以g (x 0)在区间(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减, 所以当x 0=-1时,函数g (x 0)取极大值;当x 0=1时,函数g (x 0)取极小值.因此,关于x 0的方程2x 30-6x 0+m =0有三个不等实根的充要条件是⎩⎨⎧ g -,g,即⎩⎨⎧m +4>0,m -4<0,即-4<m <4.故实数m 的取值范围是(-4,4).。