厦门市海沧中学高二上期末数学理科复习讲义 第一讲 解三角形答案
高二数学三角函数三角恒等变换解三角形试题答案及解析
高二数学三角函数三角恒等变换解三角形试题答案及解析1.ABC中,已知,则ABC的形状为【答案】直角三角形【解析】略2.在中,,.(Ⅰ)求的值;(Ⅱ)设,求的面积.【答案】(1);(2).【解析】(1)利用内角和为,所以,再利用同角基本关系式求;(2),那么利用正弦定理,,求边,最后,试题解析:(1) ,,因为,所以,.(2),那么利用正弦定理,,代入数值,,所以.【考点】1.两角和的三角函数;2.正弦定理.3.(本题满分13分)已知中,点,动点满足(常数),点的轨迹为Γ.(Ⅰ)试求曲线Γ的轨迹方程;(Ⅱ)当时,过定点的直线与曲线Γ相交于两点,是曲线Γ上不同于的动点,试求面积的最大值.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)利用椭圆定义求动点轨迹,注意定义的条件要完整,不要少,另外要注意三角形中三顶点不共线,对轨迹要去杂(Ⅱ)求面积的最大值,首先要表示出面积,这要用到底乘高的一半,其中底为直线与椭圆的弦长,高为点到直线的距离,而由椭圆的几何性质知当直线与平行且与椭圆相切时,切点到直线的距离最大,因此还要求椭圆的切线,其次利用直线方程与椭圆方程联立方程组,再结合韦达定理可得弦长及切线,最后根据面积的表达式求最值,这要用到导数试题解析:(Ⅰ)在中,因为,所以(定值),且, 2分所以动点的轨迹为椭圆(除去与A、B共线的两个点).设其标准方程为,所以, 3分所以所求曲线的轨迹方程为.4分(Ⅱ)当时,椭圆方程为.5分①过定点的直线与轴重合时,面积无最大值.6分②过定点的直线不与轴重合时,设方程为:,,若,因为,故此时面积无最大值.根据椭圆的几何性质,不妨设.联立方程组消去整理得:, 7分所以则.8分因为当直线与平行且与椭圆相切时,切点到直线的距离最大,设切线,联立消去整理得,由,解得.又点到直线的距离, 9分所以, 10分所以.将代入得:,令,设函数,则,因为当时,,当时,,所以在上是增函数,在上是减函数,所以.故时,面积最大值是.所以,当的方程为时,的面积最大,最大值为.13分【考点】椭圆定义,直线与椭圆位置关系4.函数的图象的一条对称轴的方程是( )A.B.C.D.【答案】D【解析】根据余弦函数的图像和性质,可知,解得,,可知当时得到,故选D.【考点】余弦函数的图像和性质.5.已知两灯塔A和B与海洋观测站C的距离相等,灯塔A在观察站C的北偏东400,灯塔B在观察站C 的南偏东600,则灯塔A在灯塔B的()A.北偏东100B.北偏西100C.南偏东100D.南偏西100【答案】B【解析】由题意知, .由数形结合可得灯塔在灯塔的北偏西.故B正确.【考点】数形结合.6.已知函数的图象向左平移个单位长度,所得图象关于原点对称,则的最小值为()A.B.C.D.【答案】C【解析】函数,向左平移个单位长度得:,因为关于原点对称,所以,因此的最小正值为,选C.【考点】三角函数图像与性质7.角的终边上有一点,则()A.B.C.D.【答案】B【解析】【考点】三角函数定义8.三角形ABC中..则A的取值范围是.【答案】【解析】由已知不等式结合正弦定理得则A的取值范围是【考点】正余弦定理解三角形9.已知是锐角的外心,.若,则A.B.C.3D.【答案】A【解析】取AB的中点D,连接OA,OD,由三角形外接圆的性质可得OD⊥AB,∴.,代入已知,两边与作数量积得到由正弦定理可得:,化为cosB+cosCcosA=msinC,∵cosB=-cos(A+C)=-cosAcosC+sinAsinC,∴sinAsinC=msinC,∴m=sinA.∵,∴【考点】1.向量的线性运算性质及几何意义;2.正弦定理;3.三角函数基本公式10.如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A到墙面的距离为AB,某目标点P沿墙面上的射击线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角的大小.若,,,则的最大值是(仰角为直线AP与平面ABC所成角)【答案】【解析】仰角最大时即为面ACM与面ABC所成的角.过B作BC的垂线交CM于点P,过B作连接PN,则为所求的角,【考点】1、二面角的平面角;2、线面垂直的应用.【易错点晴】本题主要考查的是二面角的平面角的应用,属于中档题.本题容易犯的错误是过B作认为为所求角,从而出错.题中说目标P沿线MC运动,面ACM是确定的,仰角的最大值就是二面角M-AC-B的平面角,再应用三垂线法做出二面角的平面角.11.如图,某市新体育公园的中心广场平面图如图所示,在y轴左侧的观光道曲线段是函数,时的图象且最高点B(-1,4),在y轴右侧的曲线段是以CO为直径的半圆弧.(1)试确定A,和的值;(2)现要在右侧的半圆中修建一条步行道CDO(单位:米),在点C与半圆弧上的一点D之间设计为直线段(造价为2万元/米),从D到点O之间设计为沿半圆弧的弧形(造价为1万元/米).设(弧度),试用来表示修建步行道的造价预算,并求造价预算的最大值?(注:只考虑步行道的长度,不考虑步行道的宽度)【答案】(1);(2)造价,,在时取极大值,也即造价预算最大值为()万元.【解析】(1)由“五点法”可求得;(2)由(1)求出点坐标,得半圆的半径,用表示出弦长和弧长,由题意可得造价,,下面用导数的知识求出的最大值.试题解析:(1)因为最高点B(-1,4),所以A=4;,因为代入点B(-1,4),,又;(2)由(1)可知:,得点C即,取CO中点F,连结DF,因为弧CD为半圆弧,所以,即,则圆弧段造价预算为万元,中,,则直线段CD造价预算为万元所以步行道造价预算,.由得当时,,当时,,即在上单调递增;当时,,即在上单调递减所以在时取极大值,也即造价预算最大值为()万元.……16分【考点】“五点法”,的解析式,导数与最值.12.已知面积为,,则BC长为.【答案】【解析】由三角形面积公式可知【考点】三角形面积公式13.在△ABC中,a=3,b=5,sinA=,则sinB=()A.B.C.D.1【答案】A【解析】由正弦定理得【考点】正弦定理解三角形14.△ABC的内角A、B、C的对边分别为a、b、c.若a、b、c成等比数列且c=2a,则cosB =()A. B. C. D.【答案】A【解析】由a、b、c成等比数列且c=2,知:,所以,故选A.【考点】1、等比数列性质;2、余弦定理.15.已知中,角,所对的边分别是,且.(1)求的值;(2)若,求面积的最大值.【答案】(1);(2).【解析】(1)由条件的特点,可以考虑余弦定理求,再由半角公式求解;(2)由面积公式知,需求的最值,利用均值不等式即可.试题解析:(1)(2)又当且仅当时,△ABC面积取最大值,最大值为【考点】1、余弦定理;2、半角公式;3、基本不等式.【方法点晴】本题主要考查的是余弦定理、半角的正弦公式和三角形的面积公式及基本不等式,属于中档题.解题时一定要注意所给条件的结构特征,能主动联想余弦定理得角的余弦值,然后利用半角公式变形求解.由面积公式分析面积的最大值即求的最大值,因为考虑基本不等式来处理,注意等号成立的条件,这是易错点.16.已知角A、B、C为△ABC的三个内角,其对边分别为a、b、c,若=(-cos,sin),=(cos,sin),a=2,且·=.(1)若△ABC的面积S=,求b+c的值.(2)求b+c的取值范围.【答案】(1)b+c=4,(2)【解析】(1)由已知及余弦定理可求cosA=-,结合范围三角形内角的取值范围A∈(0,π),可求A.又由三角形面积公式可求bc,利用余弦定理即可解得b+c的值.(2)由正弦定理及三角形内角和定理可得b+c=4sin(B+),根据范围0<B<,利用正弦函数的有界性即可求得b+c的取值范围试题解析:(1)∵=(-cos,sin),=(cos,sin),且·=,∴-cos2+sin2=,即-cosA=,又A∈(0,π),∴A=.又由S=bcsinA=,所以bc=4,由余弦定理得:a2=b2+c2-2bc·cos=b2+c2+bc,△ABC∴16=(b+c)2,故b+c=4(2)由正弦定理得:==4,又B+C=π-A=,∴b+c=4sinB+4sinC=4sinB+4sin(-B)=4sin(B+),∵0<B<,则<B+<,则<sin(B+)≤1,即b+c的取值范围是.【考点】正弦定理,余弦定理,三角形面积公式.【方法点睛】(1)在三角形中处理边角关系时,一般全部转化为角的关系,或全部转化为边的关系.题中若出现边的一次式一般采用正弦定理,出现边的二次式一般采用余弦定理,应用正弦、余弦定理时,注意公式变形的应用,解决三角形问题时,注意角的限制范围;(2)在三角形中,注意隐含条件(3)解决三角形问题时,根据边角关系灵活的选用定理和公式.(3))在解决三角形的问题中,面积公式最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.17.要得到函数y = sin的图象,只要将函数y = sin2x的图象A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【答案】B【解析】,因此只需将函数y = sin2x的图象向左平移个单位【考点】三角函数图像平移18.在中,,则边的长为()A.B.3C.D.7【答案】A【解析】由三角形的面积公式,得,解得;由余弦定理,得,即;故选A.【考点】1.三角形的面积公式;2.余弦定理.19.在中,若,则的形状为.【答案】等腰三角形【解析】法一:由正弦定理可将变形为,,即.,.所以三角形为等腰三角形.法二: 由可得,整理可得,解得,即.所以三角形为等腰三角形.【考点】正弦定理,余弦定理.【方法点睛】本题主要考查的是正弦定理、余弦定理,属于容易题,本题利用正弦定理把边转化为角,变形后为正弦的两角和差公式.或是利用余弦定理将角转化为边再变形整理.即解此类题的关键是边角要统一.20.在△ABC中,已知B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.【答案】AB=.【解析】先根据余弦定理求出∠ADC的值,即可得到∠ADB的值,最后根据正弦定理可得答案.解:在△ADC中,AD=10,AC=14,DC=6,由余弦定理得cos∠ADC==,∴∠ADC=120°,∠ADB=60°在△ABD中,AD=10,∠B=45°,∠ADB=60°,由正弦定理得,∴AB=.【考点】余弦定理;正弦定理.21.(2015秋•醴陵市校级期末)正弦函数y=sinx在x=处的切线方程为.【答案】【解析】先求导函数,利用导函数在x=处可知切线的斜率,进而求出切点的坐标,即可求得切线方程.解:由题意,设f(x)=sinx,∴f′(x)=cosx当x=时,∵x=时,y=∴正弦函数y=sinx在x=处的切线方程为即故答案为:【考点】利用导数研究曲线上某点切线方程.22.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2﹣b2=bc,sinC=2sinB,则A= .【答案】30°【解析】已知sinC=2sinB利用正弦定理化简,代入第一个等式用b表示出a,再利用余弦定理列出关系式,将表示出的c与a代入求出cosA的值,即可确定出A的度数.解:将sinC=2sinB利用正弦定理化简得:c=2b,代入得a2﹣b2=bc=6b2,即a2=7b2,∴由余弦定理得:cosA===,∵A为三角形的内角,∴A=30°.故答案为:30°【考点】正弦定理.23.在△ABC中,所对的边分别为,且,则.【答案】【解析】由得【考点】正弦定理24.△ABC的内角A,B,C的对边分别为a,b,c,若,则a等于()A.B.2C.D.【答案】D【解析】先根据正弦定理求出角C的正弦值,进而得到角C的值,再根据三角形三内角和为180°确定角A=角C,所以根据正弦定理可得a=c.解:由正弦定理,∴故选D.【考点】正弦定理的应用.25.在中, 角的对边分别是,且则的形状是()A.等腰三角形B.等腰直角三角形C.直角三角形D.等边三角形【答案】C【解析】,三角形为直角三角形【考点】余弦定理及二倍角公式26.已知中,角所对的边分别,且.(Ⅰ)求;(Ⅱ)若,求面积的最大值.【答案】(Ⅰ);(Ⅱ).【解析】对于问题(Ⅰ),首先根据余弦定理把关于边的问题转化为关于角的问题,再结合降次公式以及三角函数的诱导公式,即可求得;对于问题(Ⅱ)可以根据(Ⅰ)的结论并结合基本不等式和三角形的面积公式即可求得面积的最大值.试题解析:(Ⅰ)(Ⅱ)且,,又,,,面积的最大值注:求法不唯一,只要过程、方法、结论正确,给满分。
高二数学解三角形试题答案及解析
高二数学解三角形试题答案及解析1.的内角的对边分别为,若,则=______.【答案】【解析】先利用正弦定理化简sinC=2sinB,得到c与b的关系式,代入a2−b2=bc中得到a2与b2的关系式,然后利用余弦定理表示出cosA,把表示出的关系式分别代入即可求出cosA的值,根据A的范围,利用特殊角的三角函数值即可求出A的值.【考点】解三角形.2.有一长为100米的斜坡,它的倾斜角为45°,现要把其倾斜角改为30°,而坡高不变,则坡长需伸长_____________米.【答案】100(-1)【解析】因为坡高为,所以倾斜角为30°时坡长为,因此需伸长100(-1) 米【考点】解直角三角形3.在中,,,,则 .【答案】4【解析】解法一:由正弦定理,,,所以答案应填:4.解法二:由余弦定理:整理得:解得:(舍去) ,. 所以答案应填:4.【考点】1、正弦定理、余弦定理;2、解三角形.4.在平面直角坐标系中,已知三角形顶点和,顶点在椭圆上,则 .【答案】【解析】由椭圆的标准方程,可知,此时恰好是椭圆的左、右焦点,由正弦定理可知,而由椭圆的定义可知,所以.【考点】1.正弦定理;2.椭圆的标准方程及其性质.5.在中,角所对的边分别为,且,.(1)求的值;(2)若,,求三角形ABC的面积.【答案】(1);(2).【解析】(1)先用正弦定理将条件中的所有边换成角得到,然后再利用两角和的正弦公式、三角形的内角和定理进行化简可得的值;(2)利用(1)中求得的结果,结合及余弦定理,可计算出的值,然后由(1)中的值,利用同角三角函数的基本关系式求出,最后利用三角形的面积计算公式即可算出三角形的面积.试题解析:(1)由已知及正弦定理可得 2分由两角和的正弦公式得 4分由三角形的内角和可得 5分因为,所以 6分(2)由余弦定理得:9分由(1)知 10分所以 12分.【考点】1.正弦定理与余弦定理;2.两角和的正弦公式;3.三角形的面积计算公式.6.在中,角的对边分别为,且满足.(1)求角;(2)求的面积.【答案】(1);(2)或.【解析】本试题主要是考查了解三角形中正弦定理和余弦定理的综合运用,求解边和角的关系,同时也考查了三角形面积公式的运用.(1)根据已知中的边角关系可以用正弦定理将边化为角,得到角的关系式,得到角;(2)结合(1)中求出的角,运用余弦定理,求出的值,然后利用正弦面积公式可得所求.试题解析:(1)2分即4分6分(2)由余弦定理,得:即 8分即,解得或 10分∴由或 12分.【考点】1.解斜三角形;2.正、余弦定理;3.两角和差公式;4.三角形的面积计算公式.7.设是锐角三角形,分别是内角A,B,C所对边长,并且(Ⅰ)求角A的值;(Ⅱ)若,求(其中).【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)利用两角和与差的三角函数对等式的右端进行变形化简,既然目标求的是,则必可最终消去.(Ⅱ)根据及的值,可得关于的一个等式;在等式中,代入和可得关于的另一个等式,两式联立解方程组即得.试题解析:(Ⅰ)因为(Ⅱ)由可得①由(I)知所以②由余弦定理知及①代入,得③③+②×2,得,所以因此,c,b是一元二次方程的两个根.解此方程并由【考点】1.三角形内的三角恒等变换;2.向量的数量积;3.余弦定理.8.在面积为的△ABC中,角A、B、C所对应的边为成等差数列,B=30°.(1)求;(2)求.【答案】(1)6 (2)【解析】(1)∵,又,∴,∴。
高二数学上期末复习1--必修五解三角形
S∆ABC = 6 + 2 3
例2 在△ABC中,若 B = 60 , 2b = a + c , 试判断 中若 的形状. △ABC的形状 的形状 分析:判断三角形的形状有两种途径 判断三角形的形状有两种途径,即从角的关系和 分析 判断三角形的形状有两种途径 即从角的关系和 从边的关系入手.从角入手需边化角 从角入手需边化角,从边入手需角化 从边的关系入手 从角入手需边化角 从边入手需角化 边. 解法1:由正弦定理 由正弦定理,得 解法 由正弦定理 得2sinB=sinA+sinC 代人上式,得 2sin 60 = sin(120 − C ) + sin C 代人上式 得 展开,整理得 展开 整理得
∵ B = 60 ,∴ A + C = 120 ,∴ A = 120 − C
3 1 sin C + cos C = 1 2 2
∴ sin(C + 30 ) = 1, C + 30 = 90 . ∴ C = 60 ,Байду номын сангаас故A = 60
∴ △ABC为正三角形 为正三角形
例2 在△ABC中,若 B = 60 , 2b = a + c , 中若 的形状. △ABC的形状 的形状 解法2:由余弦定理 得 解法 由余弦定理,得 由余弦定理
A = 60
2.在∆ABC中,若a =b +bc+c ,求A.
2 2 2
A = 120
3.在∆ABC中,若a 2 +ab=c2 -b2 ,求C. C = 120
如图所示,a是海面上一条南北方向得海防警戒线 是海面上一条南北方向得海防警戒线, 例3 如图所示 是海面上一条南北方向得海防警戒线 上点A处有一个水声监测点 另两个监测点B,C分别 在a上点 处有一个水声监测点 另两个监测点 上点 处有一个水声监测点,另两个监测点 分别 的正东方20km处和 处和54km处.某时刻 监测点 收到 某时刻,监测点 在A的正东方 的正东方 处和 处 某时刻 监测点B收到 发自静止目标P的一个声波 后监测点A,20s后监测 的一个声波,8s后监测点 发自静止目标 的一个声波 后监测点 后监测 相继收到这一信号.在当时气象条件下 点C相继收到这一信号 在当时气象条件下 声波在水中 相继收到这一信号 在当时气象条件下,声波在水中 的传播速度是1.5km/s. 的传播速度是 (1)设A到P的距离为 设 到 的距离为 的距离为xkm,用含 的式子表示 用含x的式子表示 用含 的式子表示B,C到P的 到 的 距离,并求 的值; 并求x的值 距离 并求 的值 (2)求静止目标 到海防警戒线 距离 结果精确到 求静止目标P到海防警戒线 距离.(结果精确到 求静止目标 到海防警戒线a距离 0.01m)
厦外2015理科期末复习解三角形复习题目
厦门外国语学校2017届高二上理科期末复习练习《解三角形》班级________ 姓名__________________ 座号________一.选择题1.在△ABC 中,“A >30°”是“sin A >21”的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件2. 在△ABC 中,AB =2,AC =3,1AB BC ⋅=,则BC = ()A .3.△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a = 3,b = 2,B =45°,则A =( ) A .30° B .30°或105° C .60°D .60°或120°4. 在△ABC 中,若2cosBsinA=sinC ,则△ABC 的形状一定是 ( ) A .等腰直角三角形 B .等腰三角形 C .直角三角形 D .等边三角形5.在△ABC 中,∠ABC =π4,AB =2,BC =3,则sin ∠BAC = ( )A.1010 B.105 C .31010 D.556.在△ABC 中,已知b ·cos C +c ·cos B =3a ·cos B ,其中a 、b 、c 分别为角A 、B 、C 的对边,则cos B 的值为 ( ) A .13 B .-13 C.223 D .-2237.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是 ( ) A .3 B.932 C .332D .3 38.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c -b c -a =sin Asin C +sin B,则B =( ) A.π6 B.π4 C .π3 D.3π49.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知8b =5c ,C =2B ,则cos C =( )A .725B .-725C .±725 D.242510.一船向正北方向航行, 看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上, 继续航行半小时后, 看见一灯塔在船的南偏西60°方向, 另一灯塔在船的南偏西75°方向, 则这只船的速度是 ( )A. 15 海里/时B. 5 海里/时 C . 10 海里/时 D. 20 海里/时 11.△ABC 中 ,角A ,B ,C 所对边的长分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小 值为 ( ) A.32 B.22 C .12 D .-1212.在△ABC 中,已知tanA +B2=sin C ,给出以下四个结论: ①tan A tan B=1;②1<sin A +sin B ≤2;③sin 2A +cos 2B =1;④cos 2A +cos 2B =sin 2C . 其中一定正确的是 A .①③ B .②③ C .①④ D .②④ ( ) 二.填空题13.在ABC ∆中,已知10a =, b =45A =︒,则B=__________14.已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC 的面积为________.15.如图,嵩山上原有一条笔直的山路BC ,现在又新架设了一条索道AC ,小李在山脚B 处看索道AC ,发现张角∠ABC =120°;从B 处攀登400米到达D 处,回头看索道AC ,发现张角∠ADC =150°;从D 处再攀登800米方到达C 处,则索道AC 的长为________米.16.在△ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,已知b -c =14a,2sin B =3sin C ,则cos A 的值为________.17.在△ABC 中, 已知(b+c) ∶(c+a) ∶(a+b) =4∶5∶6, 给出下列结论: ①由已知条件, 这个三角形被唯一确定; ②△ABC 一定是钝角三角形;③sin A ∶sin B ∶sin C=7∶5∶3; ④若b+c=8, 则△ABC 的面积是153/2. 其中正确结论的序号是 .18.在平面四边形ABCD 中,A=B=C=75°,BC=2,则AB 的取值范围是______________. 三.解答题19.在△ABC 中,内角A,B,C 的对边分别为a,b,c,且(1)求角B 的大小; (2)若b=3,sinC=2sinA,求a,c 的值.20.在△ABC 中,角A,B,C 的对边分别为a,b,c.已知,sin()sin()444A b C cB a πππ=+-+=(1)求证:2B C π-=(2)若求△ABC 的面积.21. 在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且232cos cos sin()sin cos()25A B B A B B A C ---++=-。
《高二数学解三角形》课件
在地理测量中,利用解三角形的方法可以精确地测量方向。例如,使用 罗盘和三角函数可以确定一个物体的方向。
03
卫星轨道确定
在卫星轨道确定中,解三角形也是非常重要的工具。通过解三角形,可
以精确地计算卫星的位置和速度。
几何图形中的应用
三角形面积计算
解三角形的一个重要应用是计算三角 形的面积。通过解三角形,可以找到 三角形的底和高,然后使用公式计算 面积。
代数方法解题主要依赖于三角形的边和角的关系,通过代数 运算来求解三角形。
代数方法解题通常需要利用三角形的边和角的关系,如余弦 定理、正弦定理等,通过代数运算来求解三角形的角度、边 长等参数。这种方法适用于已知条件较为复杂,需要精细计 算的情况。
几何方法解题
几何方法解题主要依赖于几何图形的性质和定理,通过构造辅助线、图形变换等 方式来求解三角形。
正弦定理
总结词
利用正弦定理求解三角形的边长或角度。
详细描述
正弦定理是解三角形的重要工具,它建立了三角形边长和对应角正弦值之间的关 系。通过已知的边长和角度,我们可以使用正弦定理求解其他边长或角度。
余弦定理
总理是另一种求解三角形的方法,它建立了三角形边长的平方和与角度余弦值之间 的关系。通过已知的边长和角度余弦值,我们可以使用余弦定理求解其他边长或角度。
解三角形的重要性
总结词
解三角形在数学、物理、工程等领域具有广泛的应用价值。
详细描述
解三角形在数学中扮演着重要的角色,它不仅是解决几何问题的基础,也是解决物理、工程等领域问题的重要工 具。例如,在物理学中,解三角形可以用于解决力学、光学、电磁学等方面的问题;在工程学中,解三角形可以 用于解决建筑、机械、航空航天等方面的问题。
高中数学 高二第一讲学生版 解三角形
第一讲: 解三角形利用正、余弦定理解三角形取值范围为主,以解三角形与三角函数的结合为命题热点,试题多以大题的形式出现,难度中等.[考点精要]解三角形的常见类型及方法(1)已知三边:先由余弦定理求出两个角,再由A +B +C =π,求第三个角.(2)已知两边及其中一边的对角:先用正弦定理求出另一边的对角,再由A +B +C =π,求第三个角,最后利用正弦定理或余弦定理求第三边.(3)已知两边及夹角:先用余弦定理求出第三边,然后再利用正弦定理或余弦定理求另两角. (4)已知两角及一边:先利用内角和求出第三个角,再利用正弦定理求另两边. [典例] 设锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且有a =2b sin A . (1)求B 的大小;(2)若a =33,c =5,求b .[类题通法]利用正、余弦定理来研究三角形问题时,一般要综合应用三角形的性质及三角函数关系式,正弦定理可以用来将边的比和对应角正弦值的比互化,而余弦定理多用来将余弦值转化为边的关系.[题组训练]1.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sin C =23sin B ,则A =( )A .30°B .60°C .120°D .150°2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A =π6,a =1,b =3,则B =________.3.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . (1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C ); (2)若a ,b ,c 成等比数列,求cos B 的最小值.三角形形状的判定判断三角形的形状是一种常见的题型,就是利用条件寻找边的关系或角的关系,题型多为选择题、解答题,难度中等.[考点精要] 三角形中的常用结论(1)A +B =π-C ,A +B 2=π2-C2.(2)在三角形中大边对大角,反之亦然.(3)任意两边之和大于第三边,任意两边之差小于第三边.[典例] 在△ABC 中,a ,b ,c 分别表示三个内角A ,B ,C 的对边,如果(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断该三角形的形状.[类题通法]根据所给条件判断三角形的形状的途径(1)化边为角.(2)化角为边,转化的手段主要有: ①通过正弦定理实现边角转化; ②通过余弦定理实现边角转化; ③通过三角变换找出角之间的关系;④通过对三角函数值符号的判断以及正、余弦函数的有界性来确定三角形的形状.[题组训练]1.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形2.在△ABC 中,已知3b =23a sin B ,且A ,B ,C 成等差数列,则△ABC 的形状为( ) A .直角三角形 B .等腰三角形 C .等边三角形D .等腰直角三角形 3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知向量m =⎝⎛⎭⎫cos 3A 2,sin 3A 2,n =⎝⎛⎭⎫cos A 2,sin A 2,且满足|m +n |= 3.(1)求角A的大小;(2)若b+c=3a,试判断△ABC的形状.正、余弦定理的实际应用主,难度一般.[考点精要](1)仰角与俯角是相对水平线而言的,而方位角是相对于正北方向而言的.(2)利用方位角或方向角和目标与观测点的距离即可唯一确定一点的位置.[典例]如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sin α的值.[类题通法]应用解三角形知识解决实际问题的步骤(1)读题.分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词、术语,如坡度、仰角、俯角、方位角等;(2)图解.根据题意画出示意图,并将已知条件在图形中标出;(3)建模.将所求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解;(4)验证.检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.[题组训练]1.要测量底部不能到达的电视塔AB 的高度,如图,在C 点测得塔顶A 的仰角是45°,在D 点测得塔顶A 的仰角是30°,并测得水平面上的∠BCD =120°,CD =40 m ,则电视塔的高度为( )A .10 2 mB .20 mC .20 3 mD .40 m2.北京国庆阅兵式上举行升旗仪式,如图,在坡度为15°的观礼台上,某一列座位与旗杆在同一个垂直于地面的平面上,在该列的第一排和最后一排测得旗杆顶端的仰角分别为60°和30°,且第一排和最后一排的距离为10 6 m ,则旗杆的高度为________m.课后作业:1.在△ABC 中,若a =7,b =3,c =8,则其面积等于( ) A .12 B.212C .28D .6 32.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若3a =2b ,则2sin 2B -sin 2Asin 2A 的值为( )A.19B.13 C .1 D.723.在△ABC 中,A =60°,AB =2,且△ABC 的面积S △ABC =32,则边BC 的边长为( ) A. 3 B .3 C.7D .74.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,a =80,b =100,A =30°,则此三角形( ) A .一定是锐角三角形B .可能是直角三角形,也可能是锐角三角形C .一定是钝角三角形D .一定是直角三角形5.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知8b =5c ,C =2B ,则cos C =________.6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =23,C =45°,1+tan A tan B =2cb,则边c 的值为________.7.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B =5cos C .(1)求tan C 的值;(2)若a =2,求△ABC 的面积.8.在△ABC 中,A ,B ,C 的对边分别为a ,b ,c 且a cos C ,b cos B ,c cos A 成等差数列. (1)求B 的值;(2)求2sin 2 A +cos(A -C )的范围.。
高二数学解三角形试题答案及解析
高二数学解三角形试题答案及解析1.在中,,AB=2,且的面积为,则BC的长为( )A.B.3C.D.7【答案】C【解析】因为在中,,AB=2,且的面积为,所以可得.所以求得.由余弦定理可得.故选C.本小题主要考查余弦定理的使用.【考点】1.三角形的面积公式.2.余弦定理.3.解方程的能力.2.在△ABC中,若,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形【答案】D【解析】在处理含有边和角的等式时,一般是使用正、余弦定理把边转化为角或把角转化为边,如果都化为角的形式,则问题会转化为三角形内的三角恒等变换;若果都化为边的形式,则问题会转化为代数变形:通分、分解因式等.方法一:边化角:由正弦定理得:,代入得:,再由倍角公式得:.,或即或,所以△ABC为等腰或直角三角形.方法二:角化边:由余弦定理,原式可化为:,整理得,即,或,所以△ABC为等腰或直角三角形.【考点】1.正弦定理和余弦定理;2.三角恒等变换;3.解简单的三角方程.3.在中,角A,B,C所对边分别为a,b,c,且,面积,则等于A.B.5C.D.25【答案】B【解析】根据题意,由于角A,B,C所对边分别为a,b,c,且,面积,,所以,故选B.【考点】解三角形点评:主要是考查了解三角形中正弦定理的运用,属于基础题。
4.△ABC中,若,则△ABC的形状为()A.直角三角形B.等腰三角形C.等边三角形D.锐角三角形【答案】B【解析】因为,△ABC中,,所以由余弦定理得,,三角形为等腰三角形,故选B。
【考点】正弦定理、余弦定理的应用。
点评:简单题,判定三角形的形状,一般有两种思路,一是转化成角的关系,二是转化成边的关系。
5.在中,,则三角形的形状为()A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形【答案】C【解析】,,三角形是等腰三角形【考点】正余弦定理解三角形点评:要判定三角形形状,一般转化出三边的长度关系或找到三个内角的大小关系,常借助于正余弦定理实现边与角的互相转化6.在中,内角,,所对的边分别是,已知,,则()A.B.C.D.【答案】A【解析】,由正弦定理得【考点】解三角形及三角函数基本公式的考查点评:本题中用到了正弦定理实现三角形中边与角的互化与同角间的三角函数关系及倍角公式,如,,这要求学生对基本公式要熟练掌握7.在中,分别为内角的对边,且,(Ⅰ)求的大小;(Ⅱ)若,试判断的形状。
高二(理科)《解三角形》期末复习资料
必修5第一章《解三角形》单元复习资料班级 姓名 一、知识梳理1、解三角形1)三角形的元素(1) (2)2)解三角形的定义:已知三角形的几个元素2、正弦定理1)文字语言:在一个三角形中, 2)符号语言: 3正弦定理的推论1)边化角: 2)角化边:2)sin sin sin a b c A B C=== 3)::a b c = 4、应用正弦定理可以解决两类三角形问题1) 2)5、余弦定理1)文字语言:2)符号语言:2a = 2b = 2c = 6、余弦定理的推论:cos A = cos B = cos C =7、应用余弦定理可以解决两类三角形问题1) 2)8、正、余弦定理的应用1)三角形面积:S =2)距离、高度、角度问题二、典例及练习(一)正弦定理及其推论的应用1、已知两角一边例1、2.在ABC ∆中,003,45,75,AB A C ===则BC =_____________练习1、在ABC ∆中,030,45,1,B C c ===则最短边长为( ) A .63B .22C .12D .322、已知两边及其中一边的对角例2、已知ABC ∆中,c b a 、、分别是角C B A 、、的对边, 60,3,2===B b a ,则A =练习2、在△ABC 中,b=3,c=3,B=300,则a 等于( ) A .3 B .123 C .3或23 D .23、正弦定理推论的应用例3、在△ABC 中,A =60°,b =1,其面积为3,则CB A c b a s i n s i n s i n ++++等于( ) A .33 B .3392C .338D .239 练习3、1) 在△ABC 中,已知sinA ∶sinB ∶sinC=3∶5∶7,则此三角形的最大内角的度数等于________.2)、△ABC 中,30,8,83,A a b ===则此三角形的面积为( ) A 323 B 16 C 323或16 D 323或1633)、在△ABC 中,角A 、B 、C 对边分别为a 、b 、c 且cos C cos B =3a -c b .则sin B=. (二)余弦定理及其推论的应用1、已知两边一角例1、在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,A =3π,a =3,b =1,则c =________ 练习1、ABC ∆中,30,8,83,A a b ===则此三角形的面积为( ) A 323 B 16 C 323或16 D 323或1632、已知三边例2、在ABC ∆中,角A,B,C 的对应边分别为a,b,c,若2223a c b ac +-=,则角B=_________ 练习2、在ABC ∆中,222a c b ab -+=,则C =( )A.60︒B.45︒或135︒C.120︒D.30︒ (三)正、余弦定理的综合应用1、判断三角形形状、求角、边例3、1)△ABC 中,若2cos c a B =,则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .锐角三角形 2)在ABC ∆中,a b c 、、分别是三内角A B C 、、的对边,22sin sin (sin sin )sin A C A B B -=-,则角C 等于( )A .6π B .3π C .56π D .23π练习3、1)在△ABC 中,若C c B b A a cos cos cos ==,则△ABC 是_________三角形. 2)ABC ∆中,若C A C B A sin sin sin sin sin 222=+-那么角B =___________3)在ABC ∆中,a b c 、、分别是三内角A B C 、、的对边,sin cos 3cos sin A C A C =,求b2、实际应用例4、如图,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB=90°,BD 交AC 于E ,AB=2。
高二数学解三角形试题答案及解析
高二数学解三角形试题答案及解析1.在中,角、、所对的边长分别为,,,且满足,则的最大值是()A.1B.C.D.3【答案】C【解析】由,根据正弦定理,得,所以,所以,则,当时,有最大值,此时最大值为,故选C.【考点】三角函数的性质;正弦定理.2.(本小题满分12分)在△ABC中, a, b, c分别为角A, B, C所对的边,且4sin2-cos2A=.(1)求角A的度数;(2)若a=, b+c=3,求b和c的值.【答案】解:(1)由题设得2[1-cos(B+C)]-(2cos2A-1)=,∵ cos(B+C)=-cosA,∴ 2(1+cosA)-2cos2A+1=,整理得(2cosA-1)2=0,∴ cosA=,∴ A=60°.(2)∵ cosA====∴=,∴ bc=2.又∵ b+c=3,∴ b=1, c=2或b=2, c=1.【解析】略3.在中,若,则的形状是()A.直角三角形B.等边三角形C.等腰三角形D.不能确定【答案】C【解析】因,即,也即,故,应选C.【考点】三角变换及运用.4.在中,内角所对的边分别为,上的高为,且,则的最大值为()A.3B.C.2D.【答案】B【解析】根据题意,由于∴由余弦定理c2+b2=a2+2bccosA,==3sinA+2cosA=sin(A+θ)(tanθ=).故可知的最大值为,选B.【考点】余弦定理,三角函数点评:本题考查三角函数的最值,难点在于三角形的面积公式与余弦定理的综合运用,辅助角公式的使用,属于难题5.已知三角形中,边上的高与边长相等,则的最大值是__________.【答案】【解析】由题意得,因此,从而所求最大值是【考点】正余弦定理、面积公式【方法点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.6.在中,角的对边分别为,.(1)求的值;(2)求的面积.【答案】(1)(2)【解析】(Ⅰ)由同角三角函数关系式由可得.由诱导公式和两角和差公式可得.(Ⅱ)由正弦定理可求得,根据三角形面积公式可求得三角形面积.试题解析:解(Ⅰ)∵A、B、C为△ABC的内角,且,∴,∴6分(Ⅱ)由(Ⅰ)知,又∵,∴在△ABC中,由正弦定理,得∴.∴△ABC的面积12分【考点】1诱导公式,两角和差公式;2正弦定理.7.在中,分别为角所对的边长,已知的周长为,,且的面积为.(1)求边的长;(2)求的值.【答案】(1)(2)【解析】(1)由三角形周长得到三边之和,已知等式利用正弦定理化简得到关系式,两式联立求出AB的长即可;(2)利用三角形面积公式列出关系式,把已知面积代入求出BC•AC的值,利用余弦定理表示出cosC,利用完全平方公式变形后,把各自的值代入求出cosC的值,进而求出s1nC与tanC的值,原式利用诱导公式化简,把tanC的值代入计算即可求出值.试题解析:(1)∵△ABC的周长为,∴AB+BC+AC=,又s1nA+s1nB=s1nC,∴由正弦定理得:BC+AC=AB,两式相减,得AB=1;(2)由△ABC的面积BC•ACs1nC=s1nC,得BC•AC=,由余弦定理得,又C为三角形内角,∴,即,则.【考点】正弦、余弦定理;三角形的面积公式.8.已知分别是内角的对边,.(1)若,求(2)若,且求的面积.【答案】(1);(2)1【解析】(1)由,结合正弦定理可得:,再利用余弦定理即可得出(2)利用(1)及勾股定理可得c,再利用三角形面积计算公式即可得出试题解析:(1)由题设及正弦定理可得又,可得由余弦定理可得(2)由(1)知因为,由勾股定理得故,得所以的面积为1【考点】正弦定理,余弦定理解三角形9.在中,若,三角形的面积,则三角形外接圆的半径为( ) A.B.2C.D.4【答案】B【解析】,故选B.【考点】解三角形.10.如图,△ACD是等边三角形,△ABC是等腰直角三角形,∠ACB=90°,BD交AC于E,AB=2。
解三角形(讲义及答案)
3
精讲精练
1. 已知在△ABC 中,a,b,c 分别为 A,B,C 的对边,请根据 以下条件,解三角形. (1)已知 A 45,C 30,c 10 ,求 B,b,a; (2)已知 B 30,b 4 ,c 4 3 ,求 C,A,a.
2. (1)在△ABC 中, A : B : C 4 :1:1 ,则 a : b : c ( )
解三角形(讲义)
知识点睛
在本讲中,如没有特别说明,所有△ABC 中角 A,B,C 所对 的边均为 a,b,c,如图.
一、正弦定理、余弦定理
1. 正弦定理
(1) 正弦定理推导
设△ABC 的外接圆是⊙O,半径为 R.我们仅先分析 A 的情
况.
过点 B 作直径 BD,可知 BD=2R.
①如图(1),当 A 为锐角时,连接 CD,则∠BCD=90°, ∴ a 2R sin D ,
(1) S 1 ah (h 为 BC 边上的高);
2 (2) S 1 ab sin C 1 ac sin B 1 bc sin A ;
2
2
2
(3) S 2R2 sin Asin B sin C (R 为△ABC 外接圆的半径);
(4) S abc ;
4R (5) S p( p a)( p b)( p c),其中 p 1 (a b c) .
∴ | c |2 c c (a b) (a b) a a + b b 2a b
a2 b2 2ab cosC,
∴ c2 a2 b2 2ab cos C .
同理可证:
(2) 余弦定理 在△ABC 中,任何一边的平方等于其他两边的平方的和减去 这两边与它们的夹角的余弦的积的两倍.即
在△ABC 中,各边和它所对的角的正弦的比相等,即
高考理科数学一轮复习专题训练:解三角形(含详细答案解析)
第五单元 解三角形(基础篇)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在中,a 、b 、c 分别为A 、B 、C 的对边,且,,,则( )A .B .C .D .【答案】D 【解析】,,,由正弦定理sin sin a b A B =,可得sin 6sin12036sin sin45a B b A ⋅⨯︒===︒D .2.若△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若222a b c ab +-=,则C =( ) A .π6B .π3C .2π3D .5π6【答案】B【解析】角A ,B ,C 的对边分别为a ,b ,c ,故得到2221cos 222b ac ab C ab ab +-===, 故角π3C =,故答案为B .3.在ABC V 中,若7a =,3b =,8c =,则其面积等于( ) A .63 B .212C .28D .12【答案】A【解析】方法一:由余弦定理,得2222227381cos 22737a b c C ab +-+-===-⨯⨯, 所以243sin 1sin C A -,所以1143sin 736322S ab C ==⨯⨯=. 故选A .方法二:海伦-秦九韶公式()()()S p p a p b p c =---92a b cp ++==, 所以9(97)(93)(98)=63S =⨯-⨯-⨯-,故选A .4.在ABC V 中,a ,b ,c 分别是内角A ,B ,C 所对的边,若cos cos sin b C c B a A +=,则ABC V 的形状为( ) A .等腰三角形 B .直角三角形C .钝角三角形D .锐角三角形【答案】B【解析】因为cos cos sin b C c B a A +=,所以2sin cos sin cos sin B C C B A +=,所以()2sin sin B C A +=,即2sin sin A A =,因为()0,πA ∈,故sin 0A >,故sin 1A =,所以π2A =,ABC V 为直角三角形, 故选B .5.已知锐角三角形的三边长分别为1,2,a ,则a 的取值范围是( ) A.B .(3,5) C.)D.)【答案】A【解析】锐角三角形的三边长分别为1,2,a ,则保证2所对应的角和a 所对应的角均为锐角即可,即2222140214040a a aa a ⎧+->⎪⎪⎪+-⎪>⇒<<⎨⎪>⎪⎪⎪⎩A . 6.在ABC V 中,45B =︒,D 是BC边上一点,AD =4AC =,3DC =,则AB 的长为( ) A.2BC.D.【答案】D【解析】由题意,在△ADC 中,由余弦定理可得916131cos 2342C +-==⨯⨯,则sin C ,在ABC V 中,由正弦定理可得sin sin AB ACC B==,据此可得AB =D .7.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D .现测得15BCD ∠=︒,45BDC ∠=︒,m CD =,并在点C 测得塔顶A 的仰角为30︒,则塔高AB 为( )A .302mB .203mC .60 mD .20 m【答案】D【解析】15BCD ∠=︒Q ,45BDC ∠=︒,120CBD \??, 由正弦定理得302sin 45BC =,302sin 45203BC °\==, 3tan3020320AB BC 状=\=?,故选D .8.在ABC △中,1AB =,3AC =,2BC =,D 为ABC △所在平面内一点,且2BD AB AC =+u u u r u u u r u u u r,则ABC △的面积为( ) A .23 B .3C .3 D .33【答案】D【解析】由题可作如图所示的矩形,则易知π6BCA ∠=,则π3BCD ∠=,则3sin BCD ∠=, 所以113si 3n 23223BCD S BC DC BCD =⨯⨯⨯∠⨯⨯==⨯△,故选D .9.若满足sin cos cos A B Ca b c==,则ABC △为( ) A .等边三角形B .有一个内角为30︒的直角三角形C .等腰直角三角形D .有一个内角为30︒的等腰三角形【答案】C【解析】由正弦定理可知sin cos cos A B Ca b c==,又sin cos cos A B Ca b c==,所以cos sin B B =,cos sin C C =,有tan tan 1B C ==. 所以45B C ==︒.所以180454590A =︒-︒-︒=︒. 所以ABC △为等腰直角三角形.故选C .10.在ABC △中,已知a x =,2b =,60B =︒,如果ABC △有两组解,则x 的取值范围是( ) A .432,3⎛⎫ ⎪ ⎪⎝⎭B .432,3⎡⎤⎢⎥⎣⎦C .432,3⎡⎫⎪⎢⎪⎣⎭ D .432,3⎛⎤⎥ ⎥⎝⎦【答案】A【解析】由已知可得sin a B b a <<,则sin602x x ︒<<,解得4323x <<.故选A . 11.在ABC △中,3AC =,向量AB u u u r在AC u u u r 上的投影的数量为2-,3ABC S =△,则BC =( )A .5B .27C .29D .42【答案】C【解析】∵向量AB u u u r 在AC u u u r 上的投影的数量为2-,∴cos 2AB A =-u u u r.①∵3ABCS =△,∴13||||sin ||sin 322AB AC A AB A ==u u u r u u u r u u ur ,∴||sin 2AB A =u u u r .②由①②得tan 1A =-,∵A 为ABC △的内角,∴3π4A =,∴2223πsin 4AB ==u u u r . 在ABC △中,由余弦定理得 222223π22cos(22)322232942BC AB AC AB AC ⎛⎫=+-⋅⋅⋅=+-⨯⨯⨯-= ⎪ ⎪⎝⎭, ∴29BC =.故选C . 12.锐角中,角,,的对边分别为,,,且满足,函数()ππcos 22sin sin 344πf x x x x ⎛⎫⎛⎫⎛⎫=--+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则的取值范围是( )A .1,12⎛⎫⎪⎝⎭B .1,12⎛⎤ ⎥⎝⎦C .3,1⎛⎫ ⎪ ⎪⎝⎭D .13,2⎛⎫⎪ ⎪⎝⎭【答案】A 【解析】,,,,,,三角形为锐角三角形,,,,ππ02230π2202πB B B ⎧<<⎪⎪⎪∴<-<⎨⎪⎪<<⎪⎩,π,32πB ⎛⎫∴∈ ⎪⎝⎭,()ππcos 22sin sin 344πf x x x x ⎛⎫⎛⎫⎛⎫=--+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ππππcos 22sin cos cos 2sin 243π342x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=--++=--+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭πsin 26x ⎛⎫=- ⎪⎝⎭,所以()sin 2π6f B B ⎛⎫=- ⎪⎝⎭,因为2π2π3B <<,6π5π226πB ∴<-<,所以()112f B <<.故选A .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.ABC △的内角A ,B ,C 的对边分别是a ,b ,c .已知60B =︒,3b =,6c =A =________. 【答案】75︒ 【解析】由正弦定理sin sin b c B C =,得sin 6sin 602sin c B C b ︒=== 又c b <,则C B <,45C ∴=︒,18075A B C ∴=︒--=︒, 本题正确结果75︒.14.已知ABC △的边a ,b ,c 的对角分别为A ,B ,C ,若a b >且sin cos A Ca b=,则角A 的大小为_____. 【答案】π2【解析】由正弦定理得sin cos 1sin sin A C A B ==,即cos sin C B =,cos 0C ∴>,π0,2C ⎛⎫∴∈ ⎪⎝⎭,又a b >,A B ∴>,π0,2B ⎛⎫∴∈ ⎪⎝⎭,由cos sin C B =,得πsin sin 2C B ⎛⎫-= ⎪⎝⎭,π2C B ∴-=,即2πB C +=,()ππ2A B C ∴=-+=,本题正确结果π2.15.如图,一栋建筑物AB 高()30103-m ,在该建筑物的正东方向有一个通信塔CD .在它们之间的地面M 点(B 、M 、D 三点共线)测得对楼顶A 、塔顶C 的仰角分别是15°和60°,在楼顶A 处测得对塔顶C 的仰角为30°,则通信塔CD 的高为______m .【答案】60【解析】由题意可知:45CAM ∠=︒,105AMC ∠=︒,由三角形内角和定理可知30ACM ∠=︒. 在ABM Rt △中,sin sin15AB ABAMB AM AM ∠=⇒=︒. 在ACM △中,由正弦定理可知:sin 45sin 45sin sin sin30sin15sin30AM CM AM AB CM ACM CAM ⋅︒⋅︒=⇒==∠∠︒︒⋅︒,在DCM Rt △中,sin 45sin sin60sin6060sin15sin30CD AB CMD CD CM CM ⋅︒∠=⇒=⋅︒=⋅︒=︒⋅︒. 16.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin (2)tan b C a b B =+,23c = 则ABC △面积的最大值为______. 【答案】3【解析】()()sin 2sin 2tan 2sin sin 2sin sin cos Bb C a b B B C A B B=+⇒=+⋅()2cos sin 2sin sin 2sin sin 2sin cos 2cos sin sin B C A B B C B B C B C B ⇒=+=++=++1cos 22π3C C ⇒==⇒-,由余弦定理可知222222cos 12c a b ab C a b ab =+-=++=, 222a b ab +≥Q ,1223ab ab ab ∴≥+=4ab ⇒≤,当且仅当a b =时取等号,max 113sin 43222S ab C ∴==⨯⨯=,本题正确结果3. 三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(10分)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,3cos 5A =,π4B =,2b =,(1)求a 的值; (2)求sin C .【答案】(1)85a =;(2)7210.【解析】(1)因为3cos 5A =,π4B =,2b =,所以4sin 5A =,2sin 2B =,由正弦定理可得24sin sin 252a b a A B =⇒=,85a ∴=. (2)[]sin sin π()sin()sin cos cos sin C A B A B A B A B =-+=+=+ 423272525210=⋅+⋅=. 18.(12分)在中,分别是角,,的对边,且.(1)求的值; (2)若,且,求的面积.【答案】(1)52;(2)3257. 【解析】(1)由正弦定理及,有,所以,又因为,,所以,因为,所以2cos 3B =, 又,所以25sin 1cos 3B B =-=,sin 5tan cos 2B B B ==. (2)在中,由余弦定理可得2224323b ac ac =+-=,又,所以有2967c =,所以的面积为21965325sin sin 27S ac B c B ===⨯=. 19.(12分)如图:在平面四边形ABCD 中,已知πB D ∠+∠=,且7AD CD ==,5AB =,3BC =.(1)求D ∠;(2)求四边形ABCD 的面积.【答案】(1)π3D =;(2) 【解析】(1)在ACD △中,由余弦定理得222222cos 77277cos AC AD CD AD CD D D =+-⨯⋅=+-⨯⨯9898cos D =-.在ABC △中,由余弦定理得:222222cos 53253cos AC AB BC AB BC B B =+-⨯⋅=+-⨯⨯=3430cos B -. ∴9898cos 3430cos D B -=-,∵πB D +=,∴cos cos(π)cos B D D =-=-, ∴9898cos 3430cos D D -=+,∴1cos 2D =,∴π3D =. (2)由(1)得2ππ3π3B =-=, ∴11sin sin 22ABCD ACD ABCS S S AD CD D AB BC B =+=⋅+⋅11775322=⨯⨯+⨯⨯=20.(12分)已知向量()sin ,cos x x =a ,),cosx x =b ,()f x =⋅a b .(1)求函数()f x =⋅a b 的最小正周期;(2)在ABC △中,BC sin 3sin B C =,若()1f A =,求ABC △的周长.【答案】(1)π;(2)4+【解析】(1)()211cos cos cos222f x x x x x x =+=++, ()1sin 262πf x x ⎛⎫=++ ⎪⎝⎭,所以()f x 的最小正周期2ππ2T ==. (2)由题意可得1sin 22π6A ⎛⎫+= ⎪⎝⎭,又0πA <<,所以ππ13π2666A <+<,所以π5π266A +=,故π3A =. 设角A ,B ,C 的对边分别为a ,b ,c ,则2222cos a b c bc A =+-, 所以2227a b c bc =+-=,又sin 3sin B C =,所以3b c =,故222793c c c =+-,解得1c =. 所以3b =,ABC △的周长为47+.21.(12分)如图,在等腰梯形ABCD 中,AB CD ∥,2(62)CD =+,22BC =,BF BC <,梯形ABCD 的高为31+,E 是CD 的中点,分别以C ,D 为圆心,CE ,DE 为半径作两条圆弧,交AB 于F ,G 两点.(1)求∠BFC 的度数;(2)设图中阴影部分为区域Ω,求区域Ω的面积. 【答案】(1)45BFC ∠=︒;(2)2(31)S Ω=. 【解析】(1)设梯形ABCD 的高为h , 因为3162sin 22h BCD BC ++∠===,180BCD CBF ∠+∠=︒, 所以()62sin sin 180sin CBF BCD BCD +∠=︒-∠=∠= 在CBF △中,由正弦定理,得sin sin CF BCCBF BFC =∠∠622262++ 解得2sin BFC ∠=又()0,180BFC ∠∈︒︒,且CF BC >,所以45BFC ∠=︒.(2)由(1)得45ECF BFC ∠=∠=︒.在BCF △中,由余弦定理推论,得222cos 2BF FC BC BFC BF FC +-∠=⨯,即22(31)430BF BF -+,解得2BF =,23BF =(舍去). 因为112sin 2(62)3122CBF DAG S S BF FC BFC ==⨯⨯∠=⨯⨯=△△, 所以2(31)CBF DAG S S S Ω=+=△△.22.(12分)如图,在平面四边形中,14AB =,3cos 5A =,5cos 13ABD ∠=.(1)求对角线BD 的长;(2)若四边形ABCD 是圆的内接四边形,求BCD △面积的最大值. 【答案】(1)13BD =;(2)1698. 【解析】(1)在ABD △中,56sin sin(π())sin()sin cos cos sin 65ADB A ABD A ABD A ABD A ABD ∠=-+∠=+∠=∠+∠=, 由正弦定理得sin sin BD AB A ADB =∠,即sin 13sin AB ABD ADB⋅==∠. (2)由已知得,πC A =-,所以3cos 5C =-,在BCD △中,由余弦定理可得2222cos 169BC DC BC DC C BD +-⋅⋅==,则2261616955BC DC BC DC BC DC =++⋅⋅≥⋅⋅,即516916BC DC ⋅≤⨯,所以1154169sin 169221658BCD S BC CD C ⎛⎫=⋅⋅⋅≤⨯⨯⨯= ⎪⎝⎭△,当且仅当135BC DC ==第五单元 解三角形(提高篇)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在ABC △中,若2BC =,2AC =,45B =︒,则角A 等于( ) A .30︒ B .60︒C .120︒D .150︒【答案】A【解析】由正弦定理可得sin sin BC AC A B ==1sin 2A =, 因BC AC <,所以45AB <=︒,故A 为锐角,所以30A =︒,故选A .2.若△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若a =2,b =3,c =4,则cos C =( ) A .14-B .14 C .23-D .23【答案】A【解析】a =2,b =3,c =4,根据余弦定理得到22294161cos 2124b ac C ab +-+-===-, 故答案为A .3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =,4b =,120A =︒, 则△ABC 的面积为( )A .2BC .4D .【答案】D【解析】因为a =,4b =,120A =︒,所以由余弦定理2222cos a b c bc A =+-,可得2c =,所以△ABC 的面积为1sin 2bc A =.故选D .4.△ABC 中,60B =︒,2b ac =,则△ABC 一定是( ) A .锐角三角形 B .钝角三角形C .等腰三角形D .等边三角形【答案】D【解析】△ABC 中,60B =︒,2b ac =,()2222221cos 20022a cb B ac ac a c ac +-==⇒+-=⇒-=,故得到a c =,故得到角A 等于角C ,三角形为等边三角形.故答案为D .5.钝角△ABC 中,若1a =,2b =,则最大边c 的取值范围是( )A .)B .()2,3C .)D .【答案】A【解析】因为钝角△ABC ,所以222cos 02a b c C ab +-=<,2140c \+-<,c >,又因为3c a b <+=,3c <<,故选A .6.如图,在△ABC 中,45B =︒,D 是BC 边上一点,AD =6AC =,4DC =,则AB 的长为( )A.2 B .36 C .33 D .32【答案】B【解析】由余弦定理可得22246(27)1cos 2C +-==,60C \=?,sin sin AB AC C BQ =,得到36sin 236sin 2C AC AB B ××===,故选B . 7.如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75︒,30︒,此时气球的高度是60m ,则河流的宽度是( )A .()24031m B .()18021m C .()3031mD .)12031m【答案】D【解析】由题意可知:105ABC ∠=︒,45BAC ∠=︒,),2(m A ,6060120sin sin30AC C ∴===︒,由正弦定理sin sin BC ACBAC ABC =∠∠,得()sin 120sin 4560212031sin sin105AC BAC BC ABC ∠︒===∠︒,即河流的宽度)12031m ,本题正确选项D .8.已知ABC △的面积为3AC ⋅u ur u u u r ,则角A 的大小为( ) A .60︒ B .120︒ C .30︒ D .150︒【答案】D【解析】cos AB AC c b A ⋅=⋅u u u r u u u r Q ,又ABC △的面积为3AC ⋅u ur u u u r ,13sin cos 2S bc A b c A ∴==⋅,则3tan A =,又(0,π)A ∈,150A ∴=︒,故选D .9.我国南宋著名数学家秦九韶提出了由三角形三边求三角形面积的“三斜求积”,设ABC △的三个内角,,A B C所对的边分别为,,a b c ,面积为S ,则“三斜求积”公式为S =若2sin 2sin a C A =,22()6a c b +=+,则用“三斜求积”公式求得ABC △的面积为( )A B C .12D .1【答案】A【解析】2sin 2sin a C A =Q ,22a c a ∴=,2ac =,因为22()6a c b +=+,所以22226a c ac b ++=+,22262642a c b ac +-=-=-=,从而ABC △=,故选A .10.已知ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,AD 为角A 的角平分线,交BC 于D ,π4B =,AD =2BD =,则b =( )A .BC .3D 【答案】A【解析】因为AD =2BD =,π4B =,由正弦定理得sin sin AD BDB BAD=∠,2sin sin 4BAD =∠,解得1sin 2BAD ∠=, 又由π0,2BAD ⎛⎫∠∈ ⎪⎝⎭,所以π6BAD ∠=,则π3BAC ∠=,所以ππ5ππ3412C =--=,又因为5π12ADC B BAD ∠=+∠=,所以ADC △为等腰三角形,所以b AD ==,故选A . 11.已知在ABC △中,a ,b ,c 分别为内角A ,B ,C 的对边,60A ∠=︒,2a =,则ABC △周长的取值范围是( )A .(0,6)B .(2⎤⎦C .(4,6]D .2⎡⎤⎣⎦【答案】C【解析】根据三角形正弦定理得到sin sin sin a b c A B C ===变形得到sin ,sin ,2sin sin 3333b Bc C l B C ===++,因为2π3B C +=, 2π2sin sin π223sin 2cos 24sin 3633l B B B B B ⎛⎫⎛⎫∴=++-=++=++ ⎪ ⎪⎝⎭⎝⎭, 2ππ5ππ10,π,,sin ,1366662B B B ⎛⎫⎛⎫⎛⎫⎛⎤∈+∈∴+∈ ⎪ ⎪ ⎪ ⎥⎝⎭⎝⎭⎝⎭⎝⎦,(]4,6l ∴∈,故答案为C .12.在平面四边形ABCD 中,75A B C ∠=∠=∠=︒,2BC =,则AB 的取值范围是( ) A .()2,6B .()22,62++C .()2,62+D .()62,62-+【答案】D 【解析】由题意,平面四边形ABCD 中,延长BA 、CD 交于点E , ∵∠B =∠C =75°,∴△EBC 为等腰三角形,∠E =30°, 若点A 与点E 重合或在点E 右方,则不存在四边形ABCD , 当点A 与点E 重合时,根据正弦定理sin sin AB BCECB BEC=∠∠,算得62AB =,∴62AB <,若点D 与点C 重合或在点C 下方,则不存在四边形ABCD , 当点D 与点C 重合时∠ACB =30°, 根据正弦定理sin sin AB BCACB BAC=∠∠,算得62AB =,∴62AB >,综上所述,AB 6262AB <.故选D .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.在ABC △中,角,,A B C 所对的边分别为,,a b c ,角C 等于60︒,若4,2a b ==,则c 的长为_______. 【答案】23【解析】因为角C 等于60︒,4,2a b ==,所以由余弦定理可得22212cos60164242122c a b ab =+-︒=+-⨯⨯⨯=, 所以23c =,故答案为23. 14.在ABC △中,π3A =,1b =,3a =,则ABC △的面积为______. 【答案】3 【解析】π3A =Q ,1b =,3a =, ∴由正弦定理可得31sin 3B =,解得1sin 2B =,b a <Q ,B A ∴<,π6B ∴=,可得ππ2C A B =--=, 11π3sin 31sin 222ABC S ab C ∴==⨯⨯⨯=△,本题正确结果3. 15.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞,若要测量如图所示的蓝洞的口径,两点间的距离,现在珊瑚群岛上取两点,,测得,,,,则,两点的距离为______.【答案】【解析】由已知,△ACD 中,∠ACD =15°,∠ADC =150°,∴∠DAC =15°, 由正弦定理得(80sin1504062sin1562AC ︒==︒-,△BCD 中,∠BDC =15°,∠BCD =135°,∴∠DBC =30°, 由正弦定理,sin sin CD BCCBD BDC=∠∠, 所以()sin 80sin15160sin1540621sin 2CD BDC BC CBD⋅∠⨯︒===︒=-∠,△ABC 中,由余弦定理,2222cos AB AC BC AC BC ACB +=∠-⋅⋅()()()()1160084316008432160062622=++-+⨯+⨯-⨯16001616004160020=⨯+⨯=⨯,解得805AB =, 则两目标A ,B 间的距离为,故答案为.16.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin cos cos sin sin sin ab Ca Bb A a A b Bc C+=+-,且3a b +=,则c 的取值范围为_______. 【答案】3,32⎡⎫⎪⎢⎣⎭【解析】因为()sin sin sin cos cos sin C A B A B A B =+=+, 所以由正弦定理可得cos cos a B b A c +=, 又因为sin cos cos sin sin sin ab Ca Bb A a A b Bc C +=+-,所以由正弦定理可得222abcc a b c =+-,即222a b c ab +-=,所以2222()3c a b ab a b ab =+-=+-, 因为3a b +=,所以293c ab =-,因为2924a b ab +⎛⎫≤= ⎪⎝⎭, 当且仅当32a b ==时取等号,所以27304ab -≤-<,所以99394ab ≤-<,即2994c ≤<,所以332c ≤<,故c 的取值范围为3,32⎡⎫⎪⎢⎣⎭.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(10分)在ABC V 中,45,10B AC ∠=︒=25cos C =. (1)求BC 边长;(2)求AB 边上中线CD 的长. 【答案】(1)32;(2)13.【解析】(1)(0,π)C ∈Q ,25sin 1cos C C ∴=-=, 310sin sin(π)sin cos cos sin A B C B C B C =--=⋅+⋅=, 由正弦定理可知中:sin 32sin sin sin BC AC AC ABC A B B⋅=⇒==. (2)由余弦定理可知: 22252cos 10182103225AB AC BC AC BC C =+-⋅⋅=+-⨯⨯⨯=,D 是AB 的中点, 故1BD =,在CBD △中,由余弦定理可知:2222cos 1812321132CD BC BD BC BD B =+-⋅⋅=+-⨯⨯⨯=. 18.(12分)已知ABC V 的内角,,A B C 的对边分别为,,a b c ,若2sin 2sin sin B A C =. (1)若2a b ==,求cos B ;(2)若90B ∠=︒且2a =,求ABC V 的面积. 【答案】(1)14;(2)2. 【解析】2sin 2sin sin B A C =Q ,由正弦定理可得22b ac =,(1)21a b c ==∴=Q ,,由余弦定理222cos 2a c b B ac +-=,可得1cos 4B =.(2)90B ∠=︒Q ,由勾股定理可得22222()02b a c ac a c a c =+=⇒-=⇒==,1122222ABC S ac ∴==⋅⋅=△.19.(12分)如图,在四边形ABCD 中,60A ∠=︒,90ABC ∠=︒.已知3AD =,6BD =.(1)求sin ABD ∠的值;(2)若2CD =,且CD BC >,求BC 的长. 【答案】(1)6;(2)1BC =. 【解析】(1)在ABD △中,由正弦定理,得sin sin AD BDABD A=∠∠.因为60,3,6A AD BD ∠=︒==,所以36sin sin sin 606AD ABD A BD ∠=⨯∠=⨯︒=. (2)由(1)可知,6sin ABD ∠=, 因为90ABC ∠=︒,所以()6cos cos 90sin CBD ABD ABD ∠=︒-∠=∠=. 在BCD △中,由余弦定理得2222cos CD BC BD BC BD CBD =+-⋅∠. 因为2,6CD BD ==,所以264626BC BC =+-⨯⨯, 即2320BC BC -+=,解得1BC =或2BC =. 又CD BC >,则1BC =.20.(12分)已知a ,b ,c 分别是ABC V 内角A ,B ,C 的对边.角A ,B ,C 成等差数列,sin A ,sin B ,sin C 成等比数列.(1)求sin sin A C 的值;(2)若2a =,求ABC V 的周长. 【答案】(1)3sin sin 4A C?;(2)ABC V 的周长为32. 【解析】(1)角A ,B ,C 成等差数列,2B A C ∴=+,即60B =︒,sin ,sin sin A B C Q ,成等比数列,2233sin sin sin 4A CB 骣琪\?==琪桫. (2)由(1)可知2sin sin sin A C B ?,即2ac b =, 由余弦定理可得2222cos60b a c ac =+-?, 化简得2()0a c -=,即2a c ==,2b ac ==, 32a b c \++=,因此ABC V 的周长为32.21.(12分)某市欲建一个圆形公园,规划设立,,,四个出入口(在圆周上),并以直路顺次连通,其中,,的位置已确定,,(单位:百米),记,且已知圆的内接四边形对角互补,如图所示.请你为规划部门解决以下问题:(1)如果,求四边形的区域面积;(2)如果圆形公园的面积为28π3万平方米,求的值.【答案】(1);(2)12或17. 【解析】(1)∵πcos cos ADC ABC ADC θ∠+∠=∠=-,, 在和中分别使用余弦定理得:,得1cos 7θ=, ∴43sin sin 7ADC θ∠==, ∴四边形的面积()1sin 2ABC ADC S S S BA BC DA DC θ=+=⋅+⋅△△ ()14326448327=⨯+⨯⨯=. (2)∵圆形广场的面积为28π3,∴圆形广场的半径2213R =,在中由正弦定理知:4212sin sin 3AC R θθ==, 在中由余弦定理知:,∴2421sin 4024cos θθ⎛⎫=- ⎪ ⎪⎝⎭,化简得,解得1cos 2θ=或1cos 7θ=. 22.(12分)已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,π02B <<,3b ,22ac +-1sin sin tan 12A CB =. (1)求内角B 的大小;(2)求(2)(2)a c b a c b +++-的最大值.【答案】(1)π6B =(2【解析】(1)b =Q 221sin sin tan 12a c A C B +-=,222sin sin tan a c A C B b ∴+-=,即222sin sin tan a c b A C B +-=,由余弦定理得2cos sin sin tan ac B A C B =,2tan sin sin cos ac B A C B∴=,由正弦定理得222tan cos sin b BBB =,即222cos sin tan b B B B =,231cos sin 6B B ∴=,231sin 6sin B B ∴-=,即326sin sin 10B B +-=, 变形得2(2sin 1)(3sin 2sin 1)0B B B -++=,解得1sin 2B =, π02B <<Q ,∴π6B =.(2)b =Q π6B =,∴由余弦定理得22π12cos 612a c ac +-=,化简得22112a c +=,21()(212a c ac ∴+-+=,2()4a c ac +≤Q ,(2ac ∴-≥,2()(2a c ac ∴+-,112≤,2()a c ∴+,22(2)(2)()4a c b a c b a c b ∴+++-=+-≤a c =时等号成立,∴(2)(2)a c b a c b +++-。
高二数学解三角形试题答案及解析
高二数学解三角形试题答案及解析1.已知函数.(1)求函数最大值和最小正周期;(2)设内角所对的边分别为,且.若,求的值.【答案】(1)的最大值为,最小正周期为;(2).【解析】(1)先用倍角公式与辅助角公式化简得,结合正弦函数的图像与性质可得的最大值,由公式计算出函数的最小正周期;(2)先由,结合,确定,用正弦定理化简得到,再结合余弦定理即可解出的值.试题解析:(1) 3分则的最大值为,最小正周期是 5分(2),则 6分∵,∴,∴∴,∴ 7分又∵,由正弦定理得,① 9分由余弦定理得,即,② 10分由①②解得, 12分.【考点】1.倍角公式;2.三角函数的性质;3.正余弦定理.2.在中,角所对的边分别为,若,且,则下列关系一定不成立的是()A.B.C.D.【答案】B【解析】由余弦定理,得,∴,∵,由正弦定理,得,∴或.当时,为直角三角形,且,所以C,D可能成立;当时,,所以∴,即A可能成立,因此一定不成立的是选项B.【考点】正弦定理与余弦定理的应用.3.已知A、B、C 为的三个内角,他们的对边分别为a、b、c,且。
(1)求A;(2)若求bc的值,并求的面积。
【答案】(1);(2)【解析】(1)(2)由余弦定理可得:由得【考点】两角和与差的三角函数,余弦定理的应用。
点评:中档题,涉及三角形问题,往往与三角函数相结合,运用三角公式对三角函数式进行化简。
本题(2)利用发察数列,将bc视为一个变量,简化了解题过程。
4.已知△ABC的内角A、B、C所对的边分别为a,b,c,且a=2, cosB=.=4,求b,c的值.(1)若b=4,求sinA的值; (2) 若△ABC的面积S△ABC【答案】(1) .(2) .【解析】(1) ∵cosB=>0,且0<B<π,∴sinB=.由正弦定理得,.=acsinB=4,(2) ∵S△ABC∴,∴c="5."由余弦定理得b2=a2+c2-2accosB,∴.【考点】本题主要考查三角函数同角公式,正弦定理、余弦定理的应用。
高二数学解三角形
第一章 解三角形第一讲 正弦定理一、 知识要点:1. 正弦定理:2. 利用正弦定理,可以解决以下两类有关三角形的问题:3.三角形面积公式(3个):二、 正弦定理的证明:(1)平面几何法:(2)向量法:三、 典型例题分析:例1.在ABC 中,已知c=10, A=45︒, C=15︒, 求b. 例2. ⑴在ABC 中,已知a=20, b=28, A=40︒,求B (精确到1︒)和c (保留两个有效数字). ⑵在ABC 中,已知a=60, b=50, A=38︒,求B (精确到1︒)和c (保留两个有效数字).例3.在ABC 中,如果lg lg lgsin a c B -==-B 为锐角,试判断此三角形的形状.例 4.(2006.湖北)在ABC 中,已知角A,B,C 的对边分别为a,b,c 且满足sin tan ,A B =(1cos )a b A =+,求证:A C ∠=∠.例5. 已知22sin )()sin A C a b B -=-,ABC (1)求角C; (2)求ABC 面积S 的最大值.例6.已知在ABC 中,BC=a,AB=c,AC=b,且tan tan A B =,求A 的值.四、 课堂练习:1.在分别满足下列条件的两个三角形:①B ∠=30︒,a=14, b=7;②B ∠=60︒,a=10, b=9,那么下列判断正确的是( )A .①只有一解,②也只有一解B .①,②都有两解 C. ①有两解,②有一解 D. ①有一解,②有两解2.(2008四川高考)在ABC 中,a,b,c 分别是三角形A,B,C 的对边.若2a =,A=2B,则cos B 等于( ) 3.(1)(2005.上海)在ABC 中,若cos cos cos a b cA B C==,则ABC 是( ) A.直角三角形 B.等边三角形 C.钝角三角形 D.等腰直角三角形(2)若sin cos cos A B Ca b c==,则ABC 是( ) A.等边三角形 B.有一个内角是30︒的直角三角形 C.等腰直角三角形 D. 有一个内角是30︒的等腰三角形4.在ABC 中,A ∠=45︒,C ∠=75︒,则BC 长为 .5. 已知在ABC 中,|BC |=3,|CA |=4,且BC ·CA =-,则ABC 的面积是 .6.不解三角形,判断下列三角形解的个数. (1)a=5, b=4, A=120︒;(2)a=7, b=14, A=150︒;(3)a=9, b=10, A=60︒;(4)c=50, b=72, C=135︒.7. 在ABC 中,已知a=2.73, b=3.70,B=82︒,解这个三角形(角度精确到1︒,边长保留两个有效数字).8. 在ABC 中,a,b,c 分别是三角形A,B,C 的对边.设a+c=2b, 3A C π-=,求sin B 的值.9. 在ABC 中,已知角A,B,C 的对边分别为a,b,c, 其中c 边最长,并且22sin sin 1A B +=.(1)求证:ABC 为直角三角形;(2)当c=1时,求ABC 面积的最大值.五、 轻松过关:1. 在ABC 中,若a=11,b=12,A=60︒,那么( )A.这样的三角形不存在B.这样的三角形存在且唯一C.这样的三角形存在不唯一,但外接圆面积唯一D.这样的三角形存在不唯一,且外接圆面积不唯一 2.(2005.江苏)在ABC 中,3A π∠=,BC=3,则ABC 的周长为( )A.sin()3B π++3 B.)6B π++3 C.6sin()3B π++3 D.6sin()36B π++3. 在ABC 中,若2cos sin sin B A C =,则ABC 的形状一定是 .4.在ABC 中,已知︒,则C ∠= .5.(2008浙江高考,理13文14) 在ABC 中, 角A,B,C 所对的边分别为a,b,c ,若c -)cos A =cos a C ,则cos A = .6. 在ABC 中,已知︒,求角A,C 及边c.7. 在ABC 中,a,b,c 分别是三角形A,B,C 的对边,且80A ∠=︒,2()a b b c =+,求C ∠的度数.8.(2007.上海)在ABC 中,a,b,c 分别是三角形A,B,C 的对边,若a=2, C=4π,cos 2B =求ABC 的面积S.9. 如图,某城市有一条公路,自西向东经过经过A 点到市中心O 点后转向东北方向OB,先要修建一条铁路L,L 在OA 上设一站A ,在OB 上设一站B ,铁路在AB 部分为直线段,现要求市中心O 与AB 的距离为10km ,问把A,B 分别设在公路上离中心O 多远处才能使|AB|最短?并求其最短距离.(不要求作近似计算)OBAL第二讲余弦定理一、知识要点:1.余弦定理:◆两种表示形式:2.利用正弦定理,可以解决以下两类有关三角形的问题:二、正弦定理的证明:(1)平面几何法:(2)向量法:三、典型例题分析:例1.在ABC中,已知a=7,b=10,c=6,求A,B和C.例2. 在ABC中,已知a=2.73,b=3.70,C=82 ,解这个三角形. 例3.在ABC中,a=8,b=7,B=60,求C和S.ABC例4.在ABC 中,已知:422242242()0c a b c a a b b -++++=,求C ∠..例5. 在ABC 中,若(a+b+c )(b+c-a)=bc,并且sinA=2sinBcosC,试判断ABC 的形状.例6.已知在ABC 中,222sin sin sin sin B C A A C --=,求B 的值.例7.求22sin 10cos 40sin10cos 40︒︒+︒+︒的值.则cos B 等于( ) A.3 B.4 C.5 D.63.(1)(2005.上海)在ABC 中,若cos cos cos a b cA B C==,则ABC 是( ) A.直角三角形 B.等边三角形 C.钝角三角形 D.等腰直角三角形(2)若sin cos cos A B Ca b c==,则ABC 是( ) A.等边三角形 B.有一个内角是30︒的直角三角形 C.等腰直角三角形 D. 有一个内角是30︒的等腰三角形4.在ABC 中,A ∠=45︒,C ∠=75︒,则BC 长为 .5. 已知在ABC 中,|BC |=3,|CA |=4,且BC ·CA =-,则ABC 的面积是 .6.不解三角形,判断下列三角形解的个数. (1)a=5, b=4, A=120︒;(2)a=7, b=14, A=150︒;(3)a=9, b=10, A=60︒;(4)c=50, b=72, C=135︒.7. 在ABC 中,已知a=2.73, b=3.70,C=82︒,解这个三角形(角度精确到1︒,边长保留两个有效数字).8. 在ABC 中,a,b,c 分别是三角形A,B,C 的对边.设a+c=2b, 3A C π-=,求sin B 的值.9. 在ABC 中,已知角A,B,C 的对边分别为a,b,c, 其中c 边最长,并且22sin sin 1A B +=.(1)求证:ABC 为直角三角形;(2)当c=1时,求ABC 面积的最大值.五、轻松过关:1. 在ABC 中,若a=11,b=12,A=60︒,那么( )A.这样的三角形不存在B.这样的三角形存在且唯一C.这样的三角形存在不唯一,但外接圆面积唯一D.这样的三角形存在不唯一,且外接圆面积不唯一 2.(2005.江苏)在ABC 中,3A π∠=,BC=3,则ABC 的周长为( )A.sin()3B π++3 B.)6B π++3 C.6sin()3B π++3 D.6sin()36B π++3. 在ABC 中,若2cos sin sin B A C =,则ABC 的形状一定是 .4.在ABC 中,已知︒,则C ∠= .5.(2008浙江高考,理13文14) 在ABC 中, 角A,B,C 所对的边分别为a,b,c ,若c -)cos A =cos a C ,则cos A = .6. 在ABC 中,已知︒,求角A,C 及边c.7. 在ABC 中,a,b,c 分别是三角形A,B,C 的对边,且80A ∠=︒,2()a b b c =+,求C ∠的度数.8.(2007.上海)在ABC 中,a,b,c 分别是三角形A,B,C 的对边,若a=2, C=4π,cos 25B =,求ABC 的面积S.9. 如图,某城市有一条公路,自西向东经过经过A 点到市中心O 点后转向东北方向OB,先要修建一条铁路L,L 在OA 上设一站A ,在OB 上设一站B ,铁路在AB 部分为直线段,现要求市中心O 与AB 的距离为10km ,问把A,B 分别设在公路上离中心O 多远处才能使|AB|最短?并求其最短距离.(不要求作近似计算)OBAL第二章数列一、基础知识1、数列的概念:2、数列的记法:3、数列的分类4、数列的通向公式5、递推公式二、例题分析例1、写出下面数列的一个通向公式(1)3,6,9,12…..(2)2,4,8,16……(3)9,99,999,9999,……例2、已知数列{}的首项,其递推公式为,求其前五项。
高二数学三角函数三角恒等变换解三角形试题答案及解析
高二数学三角函数三角恒等变换解三角形试题答案及解析1.已知、、为△的三边,且,则角等于()A.B.C.D.【答案】B【解析】略2.(本小题满分13分)已知、、分别为的三边、、所对的角,的面积为,且.(Ⅰ)求角的大小;(Ⅱ)若,求周长的最大值.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)利用面积公式及,建立等式关系求出角C;(Ⅱ)方法1:由(Ⅰ)确定角C,用角B表示角A,由正弦定理,求出a,b关于角A的关系,这样周长就是表示成了关于角A的函数,求出该函数的最大值;方法2:利用余弦定理,配方,利用基本不等式,,解出的范围,即可求出周长最大值.试题解析:(Ⅰ)∵△的面积为,且∴∴,又∵ C为三角形内角,∴.(Ⅱ)解法1:由正弦定理得:,∵,,,从而.综上:.解法2:由余弦定理即,(当且仅当时取到等号)综上:.【考点】 1.面积公式;2.正弦定理;3.余弦定理.3.若函数在区间上单调递增,则的最小值是()A.B.C.D.【答案】D【解析】依题意,,令,在区间上,,单调递增,,所以;【考点】1.导数与单调性;2.化归的思想;4.设在的内角的对边分别为且满足,则.【答案】4【解析】由正弦定理可将变形为.,.【考点】1正弦定理;2两角和差公式.5.(本小题满分12分)在中,.(1)求角的大小;(2)若,,求.【答案】(1);(2).【解析】(1)将已知条件用余弦二倍角公式展开再化简可得,从而可得角.(2)根据正弦定理将转化为边间的关系,再根据余弦定理得另一组间的关系式,解方程组可得的值.由三角形面积公式即可求得其面积.试题解析:解:(1)由已知得:,,(2)由可得:解得:【考点】1.正弦定理;2.余弦定理.6.在△ABC中,,,,则等于()A.B.C.或D.或【答案】C【解析】由三角形面积公式可得,所以等于或【考点】三角形面积公式7.将函数y=sin(6x+的图象上各点向右平移个单位,则得到新函数的解析式为()A.y=sin B.y=sin C.y=sin D.y=sin【答案】A【解析】新函数解析式为y=sin sin故选A.【考点】图像平移.【方法点睛】图像的左右平移:(1)①当时,函数的图像向左平移个单位得到函数的图像;②当时,函数的图像向右平移个单位得到函数的图像.(2)①当时,函数的图像向左平移个单位得到函数的图像;②当时,函数的图像向右平移个单位得到函数的图像.8.在△ABC中,角A,B,C的对边分别为a,b,c,且A,B,C成等差数列.(1)若b=,a=3,求c的值;(2)设t=sinAsinC,求t的最大值.【答案】(1)4;(2)【解析】(1)由A,B,C成等差数列求得B的值,再由余弦定理求得c的值;(2)根据,利用两角和差的正弦公式化简函数t的解析式,再利用正弦函数的定义域和值域,求得t的最大值.试题解析:(1)由2B=A+C,及,得.又b=,a=3,,所以.所以c=4(c=-1舍去).因为,所以,因为,所以.所以当,即时,t有最大值.【考点】余弦定理;等差数列的通项公式;两角和与差的正弦函数9.已知α为第二象限角,且sin α=,则tan(π+α)的值是()A.B.C.D.【答案】B【解析】为第二象限角, ,.故B正确.【考点】1同角三角函数关系式;2诱导公式.10.(2015秋•海口校级期中)已知△ABC三个顶点的坐标分别为A(﹣3,1)、B(3,﹣3)、C(1,7),请判断△ABC的形状.【答案】△ABC是直角三角形【解析】由三角形的三个顶点的坐标分别求出三边长,再由勾股定理的逆定理能得到这个三角形是直角三角形.解:∵△ABC的三个顶点的坐标分别为A(3,4),B(5,2),C(﹣1,﹣4),∴|AB|==2,|BC|==6,|AC|==4,∴AC2=BC2+AB2,∴△ABC是直角三角形.【考点】三角形的形状判断.11.(2015秋•河南期末)已知△ABC的三内角A,B,C成等差数列,且AB=1,BC=4,则该三角形面积为()A.B.2C.2D.4【答案】A【解析】由A,B,C成等差数列A+B+C=π可求B,利用三角形的面积公式S=bcsinA可求.解:∵△ABC三内角A,B,C成等差数列,∴B=60°又AB=1,BC=4,∴;故选A.【考点】三角形的面积公式.12.在中,,那么三边之比∶∶等于()A.1∶2∶3B.3∶2∶1C.1∶∶2D.2∶∶1【答案】C【解析】【考点】正弦定理解三角形13.边长为5、7、8的三角形的最大角与最小角之和为()A.90°B.120°C.135°D.150°【答案】B【解析】长为7的边对应的角满足,,所以最大角与最小角之和为120°【考点】余弦定理解三角形14.(2015秋•福建期末)已知函数f(x)=(sin2x﹣cos2x+)﹣sin2(x﹣),x∈R.(1)求函数f(x)的弹道递增区间;(2)在△ABC中,角A,B,C的对边分别为a,b,c,且f(B)=1,b=2,求△ABC的面积的最大值.【答案】(1)函数f(x)的单调递增区间[kπ﹣,kπ+],k∈Z;(2)△ABC的面积的最大值为.【解析】(1)f(x)解析式利用二倍角的余弦函数公式化简,再利用两角和与差的正弦函数公式化为一个角的正弦函数,利用正弦函数的单调性确定出f(x)的递增区间即可;(2)f(B)=1,求出B的度数,利用余弦定理列出关系式,把b,cosB的值代入,并利用基本不等式求出ac的最大值,即可确定出三角形面积的最大值.解:(1)f(x)=(﹣cos2x)﹣[1﹣cos(2x﹣)]=sin2x﹣cos2x=sin(2x﹣),令﹣+2kπ≤2x﹣≤+2kπ,k∈Z,得到kπ﹣≤x≤kπ+,k∈Z,则函数f(x)的单调递增区间[kπ﹣,kπ+],k∈Z;(2)由f(B)=1,得到sin(2B﹣)=1,∴2B﹣=,即B=,由余弦定理得:b2=a2+c2﹣2accosB,即4=a2+c2﹣ac≥2ac﹣ac=ac,即ac≤4,∴S=acsinB=ac≤,△ABC则△ABC的面积的最大值为.【考点】余弦定理;三角函数中的恒等变换应用.15.如图中,已知点在边上,且,,,.(Ⅰ)求的长;(Ⅱ)求.(注:)【答案】(Ⅰ)(Ⅱ)【解析】(I)通过垂直关系,求出cos∠BAD的值,在△ABD中,由余弦定理求AD的长;(Ⅱ)在△ABD中,由正弦定理,求出sin∠ADB,通过三角形是直角三角形,即可求cosC试题解析:(Ⅰ)由知,在△ABD中,由余弦定理知即解得或显然,故(Ⅱ)由得在△ABD中,由正弦定理知,故【考点】余弦定理;正弦定理的应用16.在△ABC中,若,则是A.直角三角形B.锐角三角形C.钝角三角形D.不能确定【答案】C【解析】由正弦定理得,因此角最大,,为钝角,三角形为钝角三角形.故选C.【考点】三角形形状的判断.17.的值是()A.B.C.D.【答案】B【解析】由,故选B.【考点】两角差的余弦函数.18.将函数的图象上各点的纵坐标伸长为原来的2倍(横坐标不变),所得函数的解析式为()A.B.C.D.【答案】A【解析】纵坐标伸长为原来的倍(横坐标不变),即.【考点】三角函数图象变换.19.已知函数,其中,若对x∈R恒成立,且,则等于()A.B.C.D.【答案】C【解析】若对x∈R恒成立,所以,即,又,所以或,当时,,不任命题意,当时,,符合题意,所以,故选C.【考点】三角函数和图象与性质.20.如图,正方形的边长为,延长至,使,连接、,则.【答案】【解析】记,则,在中,,由勾股定理有,所以,,由两角差的正弦公式有.【考点】1.勾股定理;2.两角差的正弦公式.21.若,则= .【答案】【解析】令,因,故,所以,故应填.【考点】函数的概念和二倍角公式.22.()A.B.C.D.【答案】C【解析】因,故应选C.【考点】三角函数的诱导公式及运用.23.已知函数.(1)求及的单调递增区间;(2)求在闭区间的最值.【答案】(1),;(2)最大值为,最小值为.【解析】(1)将原函数由倍角公式和辅助角公式,可得化为,看成整体,利用正弦函数的单调递区间求得此函数的单调增区间;(2)先求出对应的的范围,再进一步得出对应的正弦值的取值,可得函数值的取值范围,可得函数最值.试题解析:(1),则,,单调递增区间,(2)由,则,所以最大值为1,最小值为.【考点】1.三角恒等变换;2.三角函数性质.【知识点睛】本题主要考查辅助角公式及三角函数的性质.对于函数的单调区间的确定,基本思路是把视做一个整体,由解出的范围所得区间即为增区间,由解出的范围,所得区间即为减区间.若函数中,可用诱导公式先将函数变为,则的增区间为原函数的减区间,减区间为原函数的增区间.24.已知,则的值为()A.B.C.D.【答案】B【解析】由得:,所以。
高二数学三角函数三角恒等变换解三角形试题答案及解析
高二数学三角函数三角恒等变换解三角形试题答案及解析1.已知△中,,,分别是,的等差中项与等比中项,则△的面积等于()A.B.C.或D.或【答案】C【解析】和的等差中项是,正的等比中项是,所以,,根据正弦定理:,,或,或,那么的面积是,或是.故选C.【考点】1.正弦定理;2.三角形的面积3.等差,等比中项.2.(本小题满分12分)在中,已知.(1)求sinA与的值;(2)若角A,B,C的对边分别为的值.【答案】(1);(2),.【解析】(1)由于,可得,又,可得.∵,即可求出的值;(2)由正弦定理得,得,然后再由余弦定理可得.试题解析:解:(1)∵,,又∵,.∵,且,.(2)由正弦定理得,,另由得,解得或(舍去),.【考点】1.三角恒等变换;2.正、余弦定理.3.(满分10分)已知函数的最小正周期为,且.(1)求的表达式;(2)设,,,求的值.【答案】(1)(2)【解析】(1)由周期求得的值,代入可求得值,得到函数表达式;(2)由代入函数式得到的正余弦值,由代入函数式得到的正余弦值,代入得展开式求其值试题解析:(1)依题意得,∴,由,得,即,∴,∴(2)由,得,即,∴,,由,得,即,又∵,∴,【考点】1.三角函数性质与解析式;2.三角函数求值4.已知,则等于()A.B.C.D.【答案】A【解析】,.【考点】1.三角函数的诱导公式;2.三角函数恒等变换.5.要得到函数的图象,只需要将函数的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【答案】B【解析】因为,所以要得到函数的图象只需将函数的图象向右平移个单位.故B正确.【考点】三角函数伸缩变换.6.(本小题满分13分)函数y=Asin(ωx+)(A>0,ω>0)在x∈(0,7π)内取到一个最大值和一个最小值,且当x=π时,y有最大值3,当x=6π时,y有最小值-3.(1)求此函数解析式;(2)写出该函数的单调递增区间;(3)是否存在实数m,满足不等式Asin()>Asin()?若存在,求出m值(或范围),若不存在,请说明理由.【答案】(1);(2);(3)存在,.【解析】(1)由最大值可得,取的最大值与最小值时的值差半个周期,根据周期公式可得.根据最值可求得.(2)将整体角代入正弦函数的单调增区间内,所得的范围即为所求.(3)分析可得和均在内,而正弦函数在内单调递增,所以可将原不等式转化为,若不等式有解,则说明存在满足题意,否则说明不存在.试题解析:解:(1)∵∴∴(2)令得∴函数的单调递增区间为:(3)∵而在上是增函数∴【考点】1正弦函数周期性,最值;2正弦函数的单调性.7.的内角的对边分别为,,那么角等于()A.B.或C.D.【答案】C【解析】根据正弦定理,,根据大角对大边,所以,故选C.【考点】正弦定理8.三角形ABC中,由已知条件解三角形,其中有两解的是()A.B.C.D.【答案】C【解析】A中,由正弦定理得边只有1解;B中由余弦定理可知边只有1解;C中由正弦定理可知,因此B角有2个,三角形有两解;D中三角形无解【考点】正余弦定理解三角形9.在中,已知,,则的长为____________________.【答案】【解析】由正弦定理可得【考点】正弦定理解三角形10.如图,某市新体育公园的中心广场平面图如图所示,在y轴左侧的观光道曲线段是函数,时的图象且最高点B(-1,4),在y轴右侧的曲线段是以CO为直径的半圆弧.(1)试确定A,和的值;(2)现要在右侧的半圆中修建一条步行道CDO(单位:米),在点C与半圆弧上的一点D之间设计为直线段(造价为2万元/米),从D到点O之间设计为沿半圆弧的弧形(造价为1万元/米).设(弧度),试用来表示修建步行道的造价预算,并求造价预算的最大值?(注:只考虑步行道的长度,不考虑步行道的宽度)【答案】(1);(2)造价,,在时取极大值,也即造价预算最大值为()万元.【解析】(1)由“五点法”可求得;(2)由(1)求出点坐标,得半圆的半径,用表示出弦长和弧长,由题意可得造价,,下面用导数的知识求出的最大值.试题解析:(1)因为最高点B(-1,4),所以A=4;,因为代入点B(-1,4),,又;(2)由(1)可知:,得点C即,取CO中点F,连结DF,因为弧CD为半圆弧,所以,即,则圆弧段造价预算为万元,中,,则直线段CD造价预算为万元所以步行道造价预算,.由得当时,,当时,,即在上单调递增;当时,,即在上单调递减所以在时取极大值,也即造价预算最大值为()万元.……16分【考点】“五点法”,的解析式,导数与最值.11.如图,一根木棒长为米,斜靠在墙壁上,,若滑动至位置,且米,则中点所经过的路程为.【答案】【解析】设的中点为,的中点为,连接、,∵,为中点,∴====.当端下滑端右滑时,的中点到的距离始终为定长,∴是随之运动所经过的路线是一段圆弧,∵,∴,.∵,,∴,∴,∴,∴,∴弧的长==,即点运动到所经过路线的长为.【考点】动点的轨迹,弧长公式.【方法点睛】该题考查的是有关动点运动时所经过的路程问题,属于较难题目,解决该题的关键是要明确动点运动的轨迹是什么曲线,根据直角三角形斜边上的中线等于斜边的一半,从而确定出动点应该在以原点为圆心,以为半径的圆上,再结合题中所给的角的大小,从而确定出相应的边长,结合,从而确定出动点所经过的圆弧所对的圆心角的大小,进一步确定出弧长,求得结果.12.(本小题满分12分)在ABC中,D是BC上的点,AD平分BAC,ABD面积是ADC面积的2倍.(Ⅰ)求;(Ⅱ)若,求和的长.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)由题根据面积公式及所给条件不难得到AB=2AC,结合正弦定理可得;(Ⅱ)设,则在与中,由余弦定理可得AC.试题解析:(Ⅰ)由题由正弦定理可知(II),设,则在与中,由余弦定理可知,,解得即【考点】三角形面积公式;正弦定理;余弦定理13.在△ABC中,内角A、B、C对边的边长分别是a、b、c.已知c=2,.(1)若△ABC的面积等于求a与b的值;(2)若sinB=2sinA,求△ABC的面积.【答案】(1)a=2,b=2;(2).【解析】(1)结合已知条件由三角形的面积公式、余弦定理列出关于a,b的方程组求解即可;(2)由正弦定理得到b=2a,然后由余弦定理得到a,b的另一等量关系,解方程组求出a,b,然后由面积公式求解即可.试题解析:(1)由余弦定理及已知条件,得ab=4,又因为△ABC的面积等于所以sin得ab=4.联立方程组解得a=2,b=2.(2)由正弦定理,sinB=2sinA化为b=2a,联立方程组 -解得.所以△ABC的面积sin.【考点】①正弦定理、余弦定理的应用;②三角形的面积公式.14.在△ABC中,BC=a,AC=b,a,b是方程的两个根,且.求:(1)角C的度数;(2)AB的长度.【答案】(1);(2);【解析】(1)由已知条件和可得;(2)由已知和韦达定理可得与,再利用余弦定理可得;试题解析:(1)C=120°由题设:【考点】1.余弦定理;2.韦达定理;15.在△中,已知,且.(1)试确定△的形状;(2)求的范围.【答案】(1)直角三角形(2)【解析】(1)利用和差化积公式和二倍角公式对cos2C+cosC=1-cos(A-B)整理求得sinAsinB=sin2C,利用正弦定理换成边的关系,同时利用正弦定理把(b+a)(sinB-sinA)=asinB角的正弦转化成边的问题,然后联立方程求得,推断出三角形为直角三角形;(2)利用正弦定理化简所求式子,将C的度数代入,用A表示出B,整理后利用余弦函数的值域即可确定出范围试题解析:(1)由,得,即…①…2分又∵,∴.即,则………②由①②知,即,∴△为直角三角形.(2)在△中,,即.又,当且仅当,即为等腰直角三角形时,等号成立.故的取值范围为.【考点】1.三角形的形状判断;2.正弦定理;余弦定理16.设中.若,,,且,则()A.B.C.D.【答案】B【解析】因为,整理得,又,所以.【考点】余弦定理的应用.17.已知函数.(1)设,且,求θ的值;(2)在△ABC中,AB=1,,且△ABC的面积为,求sinA+sinB的值.【答案】(1),(2)1+【解析】(1)利用三角函数降幂公式及两角和与差正余弦公式将三角函数式化为的形式,通过已知条件即可求θ的值;(2)通过三角形的面积以及余弦定理和正弦定理直接求sinA+sinB的值.试题解析:(本小题12分)(1)f(x)=2cos2-2sin cos=(1+cosx)-sinx=2cos+.由2cos+=+1,得cos=.于是k∈Z),因为∈,所以(2)因为C∈(0,π),由(1)知C=.因为△ABC的面积为,所以=absin,于是ab=2.①在△ABC中,设内角A、B的对边分别是a、b.由余弦定理得1=a2+b2-2abcos=a2+b2-6,所以a2+b2=7.②由①②可得或于是a+b=2+.由正弦定理得所以sinA+sinB=(a+b)=1+.【考点】三角函数的化简求值正弦定理余弦定理的应用.【方法点睛】(1)在三角形中处理边角关系时,一般全部转化为角的关系,或全部转化为边的关系.题中若出现边的一次式一般采用正弦定理,出现边的二次式一般采用余弦定理,应用正弦、余弦定理时,注意公式变形的应用,解决三角形问题时,注意角的限制范围;(2)在三角形中,注意隐含条件(3)解决三角形问题时,根据边角关系灵活的选用定理和公式;(3)在解决三角形的问题中,面积公式最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.18.在△ABC中,若,则∠C=()A.60°B.90°C.150°D.120°【答案】A【解析】【考点】余弦定理解三角形19.在△ABC中,若,那么△ABC一定是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形【答案】B【解析】已知条件变形为,三角形为等腰三角形【考点】三角函数基本公式20.在中,若,则()A.B.C.D.【答案】B【解析】由正弦定理得,,所以,故选B.【考点】正弦定理.21.在△ABC中,已知B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.【答案】AB=.【解析】先根据余弦定理求出∠ADC的值,即可得到∠ADB的值,最后根据正弦定理可得答案.解:在△ADC中,AD=10,AC=14,DC=6,由余弦定理得cos∠ADC==,∴∠ADC=120°,∠ADB=60°在△ABD中,AD=10,∠B=45°,∠ADB=60°,由正弦定理得,∴AB=.【考点】余弦定理;正弦定理.22.已知△中,,,,那么角A等于A.B.C.D.【答案】C【解析】由得【考点】正弦定理23.海上有A、B两个小岛相距10海里,从A岛望C岛和B岛成600的视角,从B岛望C岛和A岛成300的视角,则B、C间的距离是___________________海里.【答案】【解析】依题意,作图如下:∵∠CAB=60°,∠ABC=30°,∴△ABC为直角三角形,∠C为直角,又|AB|=10海里,∴|BC|=|AB|sin60°=10×=海里,【考点】正弦定理的应用24.设△ABC的内角A, B, C所对的边分别为a, b, c, 若, 则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.不确定【答案】A【解析】由正弦定理可将变形为,三角形为直角三角形【考点】正弦定理与三角函数基本公式25.=()A.B.C.D.【答案】D【解析】由倍角公式的运用可得:.故选D.【考点】1、二倍角公式;2、特殊角的三角函数值.26.已知A、B、C为△ABC的三个内角,他们的对边分别为a、b、c,且.(1)求A;(2)若,求bc的值,并求△ABC的面积.【答案】(1)(2)【解析】(1)已知等式左边利用两角和与差的余弦函数公式化简,求出B+C的度数,即可确定出A的度数;(2)利用余弦定理列出关系式,再利用完全平方公式变形,将a,b+c以及cosA的值代入求出bc的值,再由sinA的值,利用三角形面积公式即可求出三角形ABC的面积.解:(1)∵A、B、C为△ABC的三个内角,且cosBcosC﹣sinBsinC=cos(B+C)=,∴B+C=,则A=;(2)∵a=2,b+c=4,cosA=﹣,∴由余弦定理得:a2=b2+c2﹣2bccosA=b2+c2+bc=(b+c)2﹣bc,即12=16﹣bc,解得:bc=4,=bcsinA=×4×=.则S△ABC【考点】余弦定理;两角和与差的余弦函数.27.已知函数(其中),其部分图像如图所示.(I)求的解析式;(II)求函数在区间上的最大值及相应的x值.【答案】(I);(II) 当时,取得最大值.【解析】(I)根据图象可求出的值,再根据图象可求出周期,进而可求得的值,再结合函数在处有最大值以及,就可以求出的值,由此可求出函数的表达式;(II)根据(I)的结论先求出函数的表达式,再结合,就可求出在区间上的的最大值及相应的值.试题解析:(I)由图可知,,所以.又,且,所以.所以(II)由(I),所以因为,所以,.故:,当时,取得最大值【考点】1、三角函数的“由图求式”;2、形如的函数的最值问题.28.已知中,角所对的边分别,且.(Ⅰ)求;(Ⅱ)若,求面积的最大值.【答案】(Ⅰ);(Ⅱ).【解析】对于问题(Ⅰ),首先根据余弦定理把关于边的问题转化为关于角的问题,再结合降次公式以及三角函数的诱导公式,即可求得;对于问题(Ⅱ)可以根据(Ⅰ)的结论并结合基本不等式和三角形的面积公式即可求得面积的最大值.试题解析:(Ⅰ)(Ⅱ)且,,又,,,面积的最大值注:求法不唯一,只要过程、方法、结论正确,给满分。
海沧区高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
海沧区高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.定义某种运算S=a⊗b,运算原理如图所示,则式子+的值为()A.4 B.8 C.10 D.132.沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为()A.B.C.D.3.集合U=R,A={x|x2﹣x﹣2<0},B={x|y=ln(1﹣x)},则图中阴影部分表示的集合是()A.{x|x≥1} B.{x|1≤x<2} C.{x|0<x≤1} D.{x|x≤1}4.已知f(x)=,则“f[f(a)]=1“是“a=1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.即不充分也不必要条件5.如图,在平面直角坐标系中,锐角α、β及角α+β的终边分别与单位圆O交于A,B,C三点.分别作AA'、BB'、CC'垂直于x轴,若以|AA'|、|BB'|、|CC'|为三边长构造三角形,则此三角形的外接圆面积为()A .B .C . D.π6.已知变量,x y满足约束条件20170x yxx y-+≤⎧⎪≥⎨⎪+-≤⎩,则yx的取值范围是()A.9[,6]5B.9(,][6,)5-∞+∞C.(,3][6,)-∞+∞D.[3,6]7.抛物线y=﹣8x2的准线方程是()A.y=B.y=2 C.x=D.y=﹣28.执行如图所示的程序,若输入的3x=,则输出的所有x的值的和为()A.243B.363C.729D.1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力.9.已知命题p:存在x0>0,使2<1,则¬p是()A.对任意x>0,都有2x≥1 B.对任意x≤0,都有2x<1C.存在x0>0,使2≥1 D.存在x0≤0,使2<110.设定义域为(0,+∞)的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)﹣lnx]=e+1,若x0是方程f(x)﹣f′(x)=e的一个解,则x0可能存在的区间是()A.(0,1) B.(e﹣1,1)C.(0,e﹣1)D.(1,e)11.函数y=e cosx(﹣π≤x≤π)的大致图象为()A .B .C .D .12.以下四个命题中,真命题的是( ) A .(0,)x π∃∈,sin tan x x =B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2C π=”的充要条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.13.若函数21,1,()ln ,1,x x f x x x ⎧-≤=⎨>⎩则函数1()2y f x x =+的零点个数为( )A .1B .2C .3D .4 14.已知在平面直角坐标系xOy 中,点),0(n A -,),0(n B (0>n ).命题p :若存在点P 在圆1)1()3(22=-++y x 上,使得2π=∠APB ,则31≤≤n ;命题:函数x xx f 3log 4)(-=在区间 )4,3(内没有零点.下列命题为真命题的是( )A .)(q p ⌝∧B .q p ∧C .q p ∧⌝)(D .q p ∨⌝)(15.函数f (x )=ax 2+bx 与f (x )=log x (ab ≠0,|a|≠|b|)在同一直角坐标系中的图象可能是( )A .B .C .D .二、填空题16.(﹣2)7的展开式中,x 2的系数是 .17.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 .18.直线l :(t 为参数)与圆C :(θ为参数)相交所得的弦长的取值范围是 .19.已知点A (2,0),点B (0,3),点C 在圆x 2+y 2=1上,当△ABC 的面积最小时,点C 的坐标为 .三、解答题20.(本小题满分10分)选修4-5:不等式选讲 已知函数()()f x x a a R =-∈.(1)当1a =时,解不等式()211f x x <--;(2)当(2,1)x ∈-时,121()x x a f x ->---,求的取值范围.21.已知数列{a n }满足a 1=,a n+1=a n +(n ∈N *).证明:对一切n ∈N *,有(Ⅰ)<;(Ⅱ)0<a n <1.22.已知曲线C1:ρ=1,曲线C2:(t为参数)(1)求C1与C2交点的坐标;(2)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线C1′与C2′,写出C1′与C2′的参数方程,C1与C2公共点的个数和C1′与C2′公共点的个数是否相同,说明你的理由.2015-2016学年安徽省合肥168中学高三(上)10月月考数学试卷(理科)23.如图,四面体ABCD中,平面ABC⊥平面BCD,AC=AB,CB=CD,∠DCB=120°,点E在BD上,且CE=DE.(Ⅰ)求证:AB⊥CE;(Ⅱ)若AC=CE,求二面角A﹣CD﹣B的余弦值.24.(本小题满分12分)已知数列{n a }的前n 项和为n S ,且满足*)(2N n a n S n n ∈=+. (1)证明:数列}1{+n a 为等比数列,并求数列{n a }的通项公式;(2)数列{n b }满足*))(1(log 2N n a a b n n n ∈+⋅=,其前n 项和为n T ,试求满足201522>++nn T n 的最小正整数n .【命题意图】本题是综合考察等比数列及其前n 项和性质的问题,其中对逻辑推理的要求很高.25.已知函数f (x )=•,其中=(2cosx , sin2x ),=(cosx ,1),x ∈R .(1)求函数y=f (x )的单调递增区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=2,a=,且sinB=2sinC ,求△ABC 的面积.海沧区高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】解:模拟执行程序,可得,当a≥b时,则输出a(b+1),反之,则输出b(a+1),∵2tan=2,lg=﹣1,∴(2tan)⊗lg=(2tan)×(lg+1)=2×(﹣1+1)=0,∵lne=1,()﹣1=5,∴lne⊗()﹣1=()﹣1×(lne+1)=5×(1+1)=10,∴+=0+10=10.故选:C.2.【答案】A【解析】解:由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D不正确;中间的棱在侧视图中表现为一条对角线,故C不正确;而对角线的方向应该从左上到右下,故B不正确故A选项正确.故选:A.【点评】本题考查的知识点是简单空间图象的三视图,其中熟练掌握简单几何体的三视图的形状是解答此类问题的关键.3.【答案】B【解析】解:由Venn图可知,阴影部分的元素为属于A当不属于B的元素构成,所以用集合表示为A∩(∁U B).A={x|x2﹣x﹣2<0}={x|﹣1<x<2},B={x|y=ln(1﹣x)}={x|1﹣x>0}={x|x<1},则∁U B={x|x≥1},则A∩(∁U B)={x|1≤x<2}.故选:B.【点评】本题主要考查Venn图表达集合的关系和运算,比较基础.4.【答案】B【解析】解:当a=1,则f(a)=f(1)=0,则f(0)=0+1=1,则必要性成立,若x≤0,若f(x)=1,则2x+1=1,则x=0,若x>0,若f(x)=1,则x2﹣1=1,则x=,即若f[f(a)]=1,则f(a)=0或,若a>0,则由f(a)=0或1得a2﹣1=0或a2﹣1=,即a2=1或a2=+1,解得a=1或a=,若a≤0,则由f(a)=0或1得2a+1=0或2a+1=,即a=﹣,此时充分性不成立,即“f[f(a)]=1“是“a=1”的必要不充分条件,故选:B.【点评】本题主要考查充分条件和必要条件的判断,根据分段函数的表达式解方程即可.5.【答案】A【解析】(本题满分为12分)解:由题意可得:|AA'|=sinα、|BB'|=sinβ、|CC'|=sin(α+β),设边长为sin(α+β)的所对的三角形内角为θ,则由余弦定理可得,cosθ==﹣cosαcosβ=﹣cosαcosβ=sinαsinβ﹣cosαcosβ=﹣cos(α+β),∵α,β∈(0,)∴α+β∈(0,π)∴sinθ==sin(α+β)设外接圆的半径为R,则由正弦定理可得2R==1,∴R=,∴外接圆的面积S=πR2=.故选:A.【点评】本题主要考查了余弦定理,三角函数恒等变换的应用,同角三角函数基本关系式,正弦定理,圆的面积公式在解三角形中的综合应用,考查了转化思想和数形结合思想,属于中档题.6. 【答案】A 【解析】试题分析:作出可行域,如图ABC ∆内部(含边界),yx 表示点(,)x y 与原点连线的斜率,易得59(,)22A ,(1,6)B ,992552OAk ==,661OB k ==,所以965y x ≤≤.故选A .考点:简单的线性规划的非线性应用.7. 【答案】A【解析】解:整理抛物线方程得x 2=﹣y ,∴p=∵抛物线方程开口向下,∴准线方程是y=,故选:A .【点评】本题主要考查抛物线的基本性质.解决抛物线的题目时,一定要先判断焦点所在位置.8. 【答案】D【解析】当3x =时,y 是整数;当23x =时,y 是整数;依次类推可知当3(*)n x n N =∈时,y 是整数,则由31000nx =≥,得7n ≥,所以输出的所有x 的值为3,9,27,81,243,729,其和为1092,故选D .9. 【答案】A【解析】解:∵命题p :存在x 0>0,使2<1为特称命题,∴¬p 为全称命题,即对任意x >0,都有2x≥1.故选:A10.【答案】 D【解析】解:由题意知:f (x )﹣lnx 为常数,令f (x )﹣lnx=k (常数),则f (x )=lnx+k . 由f[f (x )﹣lnx]=e+1,得f (k )=e+1,又f (k )=lnk+k=e+1, 所以f (x )=lnx+e ,f ′(x )=,x >0.∴f (x )﹣f ′(x )=lnx ﹣+e ,令g (x )=lnx ﹣+﹣e=lnx ﹣,x ∈(0,+∞)可判断:g (x )=lnx ﹣,x ∈(0,+∞)上单调递增,g (1)=﹣1,g (e )=1﹣>0, ∴x 0∈(1,e ),g (x 0)=0,∴x 0是方程f (x )﹣f ′(x )=e 的一个解,则x 0可能存在的区间是(1,e ) 故选:D .【点评】本题考查了函数的单调性,零点的判断,构造思想,属于中档题.11.【答案】C【解析】解:函数f (x )=e cosx(x ∈[﹣π,π])∴f (﹣x )=e cos (﹣x )=e cosx=f (x ),函数是偶函数,排除B 、D 选项. 令t=cosx ,则t=cosx 当0≤x ≤π时递减,而y=e t单调递增,由复合函数的单调性知函数y=e cosx在(0,π)递减,所以C 选项符合,故选:C .【点评】本题考查函数的图象的判断,考查同学们对函数基础知识的把握程度以及数形结合的思维能力.12.【答案】D13.【答案】D 【解析】考点:函数的零点.【易错点睛】函数零点个数的判断方法:(1)直接求零点:令0)(=x f ,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:要求函数在],[b a 上是连续的曲线,且0)()(<b f a f .还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.14.【答案】A 【解析】试题分析:命题p :2π=∠APB ,则以AB 为直径的圆必与圆()()11322=-++y x 有公共点,所以121+≤≤-n n ,解得31≤≤n ,因此,命题p 是真命题.命题:函数()xxx f 3log 4-=,()0log 1443<-=f ,()0log 34333>-=f ,且()x f 在[]4,3上是连续不断的曲线,所以函数()x f 在区间()4,3内有零点,因此,命题是假命题.因此只有)(q p ⌝∧为真命题.故选A .考点:复合命题的真假.【方法点晴】本题考查命题的真假判断,命题的“或”、“且”及“非”的运算性质,同时也考查两圆的位置关系和函数零点存在定理,属于综合题.由于点P 满足2π=∠APB ,因此在以AB 为直径的圆上,又点P 在圆1)1()3(22=-++y x 上,因此P 为两圆的交点,利用圆心距介于两圆半径差与和之间,求出的范围.函数x xx f 3log 4)(-=是单调函数,利用零点存在性定理判断出两端点异号,因此存在零点.15.【答案】 D【解析】解:A 、由图得f (x )=ax 2+bx 的对称轴x=﹣>0,则,不符合对数的底数范围,A 不正确;B 、由图得f (x )=ax 2+bx 的对称轴x=﹣>0,则,不符合对数的底数范围,B 不正确;C 、由f (x )=ax 2+bx=0得:x=0或x=,由图得,则,所以f (x )=log x 在定义域上是增函数,C 不正确;D 、由f (x )=ax 2+bx=0得:x=0或x=,由图得,则,所以f (x )=logx 在定义域上是减函数,D 正确.【点评】本题考查二次函数的图象和对数函数的图象,考查试图能力.二、填空题16.【答案】﹣280解:∵(﹣2)7的展开式的通项为=.由,得r=3.∴x2的系数是.故答案为:﹣280.17.【答案】12.【解析】解:设两者都喜欢的人数为x人,则只喜爱篮球的有(15﹣x)人,只喜爱乒乓球的有(10﹣x)人,由此可得(15﹣x)+(10﹣x)+x+8=30,解得x=3,所以15﹣x=12,即所求人数为12人,故答案为:12.18.【答案】[4,16].【解析】解:直线l:(t为参数),化为普通方程是=,即y=tanα•x+1;圆C的参数方程(θ为参数),化为普通方程是(x﹣2)2+(y﹣1)2=64;画出图形,如图所示;∵直线过定点(0,1),∴直线被圆截得的弦长的最大值是2r=16,最小值是2=2×=2×=4∴弦长的取值范围是[4,16].故答案为:[4,16].【点评】本题考查了直线与圆的参数方程的应用问题,解题时先把参数方程化为普通方程,再画出图形,数形结合,容易解答本题.19.【答案】 (,) .【解析】解:设C (a ,b ).则a 2+b 2=1,① ∵点A (2,0),点B (0,3), ∴直线AB 的解析式为:3x+2y ﹣6=0.如图,过点C 作CF ⊥AB 于点F ,欲使△ABC 的面积最小,只需线段CF 最短.则CF=≥,当且仅当2a=3b 时,取“=”,∴a=,②联立①②求得:a=,b=,故点C 的坐标为(,).故答案是:(,).【点评】本题考查了圆的标准方程、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.三、解答题20.【答案】(1){}11x x x ><-或;(2)(,2]-∞-. 【解析】试题解析:(1)因为()211f x x <--,所以1211x x -<--, 即1211x x ---<-,当1x >时,1211x x --+<-,∴1x -<-,∴1x >,从而1x >;当112x ≤≤时,1211x x --+<-,∴33x -<-,∴1x >,从而不等式无解; 当12x <时,1211x x -+-<-,∴1x <-,从而1x <-;综上,不等式的解集为{}11x x x ><-或.(2)由121()x x a f x ->---,得121x x a x a -+->--, 因为1121x x a x a x x a -+-≥-+-=--,所以当(1)()0x x a --≥时,121x x a x a -+-=--; 当(1)()0x x a --<时,121x x a x a -+->--记不等式(1)()0x x a --<的解集为A ,则(2,1)A -⊆,故2a ≤-, 所以的取值范围是(,2]-∞-.考点:1.含绝对值的不等式;2.分类讨论. 21.【答案】【解析】证明:(Ⅰ)∵数列{a n }满足a 1=,a n+1=a n +(n ∈N *),∴a n >0,a n+1=a n +>0(n ∈N *),a n+1﹣a n =>0,∴,∴对一切n ∈N *,<.(Ⅱ)由(Ⅰ)知,对一切k ∈N *,<,∴,∴当n≥2时,=>3﹣[1+]=3﹣[1+]=3﹣(1+1﹣)=,∴a n<1,又,∴对一切n∈N*,0<a n<1.【点评】本题考查不等式的证明,是中档题,解题时要注意裂项求和法和放缩法的合理运用,注意不等式性质的灵活运用.22.【答案】【解析】解:(1)∵曲线C1:ρ=1,∴C1的直角坐标方程为x2+y2=1,∴C1是以原点为圆心,以1为半径的圆,∵曲线C2:(t为参数),∴C2的普通方程为x﹣y+=0,是直线,联立,解得x=﹣,y=.∴C2与C1只有一个公共点:(﹣,).(2)压缩后的参数方程分别为:(θ为参数):(t为参数),化为普通方程为::x2+4y2=1,:y=,联立消元得,其判别式,∴压缩后的直线与椭圆仍然只有一个公共点,和C1与C2公共点个数相同.【点评】本题考查两曲线的交点坐标的求法,考查压缩后的直线与椭圆的公共点个数的判断,是基础题,解题时要认真审题,注意一元二次方程的根的判别式的合理运用.23.【答案】【解析】解:(Ⅰ)证明:△BCD中,CB=CD,∠BCD=120°,∴∠CDB=30°,∵EC=DE,∴∠DCE=30°,∠BCE=90°,∴EC⊥BC,又∵平面ABC⊥平面BCD,平面ABC与平面BCD的交线为BC,∴EC⊥平面ABC,∴EC⊥AB.(Ⅱ)解:取BC的中点O,BE中点F,连结OA,OF,∵AC=AB,∴AO⊥BC,∵平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,∴AO⊥平面BCD,∵O是BC中点,F是BE中点,∴OF⊥BC,以O为原点,OB为y轴,OA为z轴,建立空间直角坐标系,设DE=2,则A(0,0,1),B(0,,0),C(0,﹣,0),D(3,﹣2,0),∴=(0,﹣,﹣1),=(3,﹣,0),设平面ACD的法向量为=(x,y,z),则,取x=1,得=(1,,﹣3),又平面BCD的法向量=(0,0,1),∴cos<>==﹣,∴二面角A﹣CD﹣B的余弦值为.【点评】本小题主要考查立体几何的相关知识,具体涉及到线面以及面面的垂直关系、二面角的求法及空间向量在立体几何中的应用.本小题对考生的空间想象能力与运算求解能力有较高要求.24.【答案】【解析】(1)当111,12n a a =+=时,解得11a =. (1分)当2n ≥时,2n n S n a +=,① 11(1)2n n S n a --+-=,②①-②得,1122n n n a a a -+=-即121n n a a -=+, (3分) 即112(1)(2)n n a a n -+=+≥,又112a +=. 所以{}1n a +是以2为首项,2为公比的等比数列.即12n n a +=故21n n a =-(*n N ∈).(5分)25.【答案】【解析】解:(1)f (x )=•=2cos 2x+sin2x=sin2x+cos2x+1=2sin (2x+)+1,令﹣+2k π≤2x+≤+2k π,解得﹣+k π≤x ≤+k π,函数y=f (x )的单调递增区间是[﹣+k π,+k π],(Ⅱ)∵f (A )=2∴2sin(2A+)+1=2,即sin(2A+)=….又∵0<A<π,∴A=.…∵a=,由余弦定理得a2=b2+c2﹣2bccosA=(b+c)2﹣3bc=7 ①…∵sinB=2sinC∴b=2c ②…由①②得c2=.…∴S△ABC=.…。
高中数学解三角形(有答案)
高中数学解三角形(有答案) Solving Triangles1.(2015 Henan Second Model Test) In triangle ABC。
the sides opposite to angles A。
B。
and C are a。
b。
and c。
respectively。
and a=3.c=8.and B=60°。
What is the perimeter of triangle ABC?A。
18 B。
19 C。
16 D。
172.(2015 Henan Second Model Test) In triangle ABC。
the sides opposite to angles A。
B。
and C are a。
b。
and c。
respectively。
and a=3.c=8.and B=60°。
What is the perimeter of triangle ABC?A。
17 B。
19 C。
16 D。
183.(2014 Yunnan Mock Exam) In triangle ABC。
if b^2-a^2-c^2=ac。
what is the measure of angle B?A。
30° B。
60° C。
120° D。
150°4.(2013 Shaanxi) In triangle ABC。
the sides opposite to angles A。
B。
and C are a。
b。
and c。
respectively。
and bc cos C + c cos B = a sin A。
What is the shape of triangle ABC?A。
XXX5.(2013 Hunan) In acute triangle ABC。
the XXX angles A and B are a and b。
respectively。
高二数学学案:第章解三角形本章小结含解析
本章小结一、正、余弦定理的基本应用应用正、余弦定理解三角形问题往往和三角形面积公式、正、余弦定理的变形等结合.在解三角形时,注意挖掘题目中的隐含条件和正、余弦定理的变形应用,注意公式的选择和方程思想的应用.[例1]在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a-b)cos C=c cos B,△ABC的面积S=10错误!,c=7.(1)求角C;(2)求a,b的值.[解](1)∵(2a-b)cos C=c cos B,∴(2sin A-sin B)cos C=sin C cos B,2sin A cos C-sin B cos C=cos B sin C,即2sin A cos C=sin(B+C).∴2sin A cos C=sin A.∵A∈(0,π),∴sin A≠0.∴cos C=错误!.∴C=错误!.(2)由S=错误!ab sin C=10错误!,C=错误!,得ab=40。
①由余弦定理得c2=a2+b2-2ab cos C,即c2=(a+b)2-2ab错误!,∴72=(a+b)2-2×40×错误!。
∴a+b=13.②由①②得a=8,b=5或a=5,b=8.规律总结正、余弦定理常与三角恒等变换、三角形面积公式结合在一起综合考查学生的能力,解题的关键是结合条件,利用正、余弦定理进行边角互化,然后在此基础上再进行三角恒等变换,解题时要注意公式的变形及熟练应用.二、判断三角形的形状根据已知条件(通常是含有三角形的边和角的等式或不等式)判断三角形的形状时,需要灵活地应用正弦定理和余弦定理转化为边的关系或角的关系.判断三角形的形状是高考中考查能力的常见题型,此类题目要求准确地把握三角形的分类,三角形按边的关系分为等腰三角形和不等边三角形;三角形按角的关系分为锐角三角形、直角三角形和钝角三角形.判断三角形的形状,一般有以下两种途径:将已知条件统一化成边的关系,用代数方法求解;将已知条件统一化成角的关系,用三角知识求解.在解三角形时常用的结论有:(1)在△ABC中,A〉B⇔a〉b⇔sin A〉sin B⇔cos A<cos B;A=B⇔a=b⇔sin A=sin B⇔cos A=cos B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
厦门市海沧中学高二上期末数学 第一讲 解三角形详细答案
1.在锐角ABC ∆中,AB=3,AC=4,其面积33ABC S ∆=,则BC=( )
A .5
B .13或37
C .37
D .13
【答案】D
【解析】 试题分析:三角形面积为A AC AB S ABC sin 21⋅⋅=∆,由33ABC S ∆=,可解得2
3sin =A ,因为三角形为锐角三角形,所以有21cos =
A ,利用余弦定理有13cos 222=⋅-+=A AC A
B A
C AB BC ,故正确选项为
D .
考点:1、三角形面积公式;2、余弦定理的运用.
2.一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( )
A .102海里
B .103海里
C .203海里
D .202海里
【答案】A
【解析】
试题分析:因为AB=20,∠CAB=30 ,∠ABC=105 ,所以∠ACB=45 ,根据正弦定理0020sin 45sin 30
BC =,所以102BC =,故选A . 考点:1正弦定理;2、方位角.
3.已知向量(sin ,sin ),(cos ,cos ),sin2,m A B n B A m n C ==⋅= 且A 、B 、C 分别为△ABC 的三边a 、b 、c 所对的角.
(1)求角C 的大小;
(2)若sin ,sin ,sin A C B 成等差数列,且()18CA AB AC ⋅-= ,求c 边的长.
【答案】(1)3C π=
;(2)6c =.
【解析】 试题分析:(1)先利用数量积公式得:sin cos sin cos sin()m n A B B A A B ⋅=⋅+⋅=+ ,化简得:
sin 2sin C C =,再有二倍角公式化简即可;(2)由(1)可得3C π
=,由
sin ,sin ,sin A C B 成等差数列得:2c a b =+,()18CA AB AC ⋅-= 得:36ab =,利用余弦定理
可得c 的值.
试题解析:(1)()18CA AB AC ⋅-=
对于,,0sin()sin ABC A B C C A B C ππ∆+=-<<∴+=,
sin .m n C ∴⋅= 又sin 2m n C ⋅= ,.3
,21cos ,sin 2sin π===∴C C C C (2)由sin ,sin ,sin A C B 成等差数列,得2sin sin sin C A B =+,
由正弦定理得.2b a c +=()18,18CA AB AC CA CB ⋅-=∴⋅= ,
即.36,18cos ==ab C ab 由余弦弦定理ab b a C ab b a c 3)(cos 22222-+=-+=,
36,3634222=⨯-=∴c c c ,.6=∴c
考点:1、数量积公式;2、等差中项;3、正弦定理;4、两角和正弦公式、二倍角正弦公式;5、余弦定理.
4.如图,在四边形ABCD 中,AB=8,BC=3,CD=5,3A π∠= ,1cos 7
ADB ∠=.
(Ⅰ)求BD 的长;
(Ⅱ)求BCD ∆的面积.
【答案】(Ⅰ)7;(Ⅱ)
1534
【解析】
试题分析:(Ⅰ)在ABD ∆中,所以(0,π)ADB ∠∈,因为1cos 7ADB ∠=,所以43sin 7ADB ∠=,根据正弦定理,有sin sin BD AB A ADB =∠∠,代入8,,3
AB A π=∠=解得BD 的值; (Ⅱ)在BCD ∆中,根据余弦定理 222cos 2BC CD BD C BC CD +-∠=⋅,求得1cos 2
C ∠=-,所以2π3
C ∠=. 再由三角形面积公式1sin 2
S BC CD C =⋅ ,即可求得BCD ∆的面积 试题解析:(Ⅰ)在ABD ∆中,因为1cos 7
ADB ∠=,(0,π)ADB ∠∈, 所以43sin 7
ADB ∠=. 根据正弦定理,有
sin sin BD AB A ADB =∠∠ , 代入8,,3AB A π
=∠=
解得7BD =.
(Ⅱ)在BCD ∆中,根据余弦定理222
cos 2BC CD BD C BC CD
+-∠=⋅. 代入3,5BC CD ==,得1cos 2C ∠=-,(0,π)C ∠∈所以2π3
C ∠=, 所以1
2π15335sin 234
BCD S ∆=⋅⋅⋅= 考点:1.正弦定理和余弦定理;2.三角形面积.。