利用空间向量证明平行、垂直问题 课件
空间向量与平行关系课件
(3)空间直线的向量表达式的两点作用: ①定位置:点A和向量a可以确定直线的_位__置__; ②定点:可以具体表示出l上的任意_一__点__. 3.向量a为平面α的法向量应满足的两个条件 (1)向量a表示直线l的_方__向__向__量__; (2)直线l_⊥__平面α.
4.用向量描述空间平行关系 设空间两条直线l,m的方向向量分别为a=(a1,a2,a3), b=(b1,b2,b3),两个平面α,β的法向量分别为u=(u1,u2,u3), v=(v1,v2,v3),则有如下结论
则
m
AN
0,
m NM 0,
所以
a 2
x1
0
y1
az1
0,
a 2
x1
a 2
y1
0
z1
0,
所以y1=-x1=-2z1.取z1=1,
所以平面AMN的一个法向量为m=(2,-2,1).
同理由
n n
DB DF
可00,,得x2=-y2,y2=-2z2.
令z2=1,
所以平面EFDB的一个法向量为n=(2,-2,1).
2.应用向量法证明线面平行问题的方法 (1)证明直线的方向向量与平面的法向量垂直. (2)证明直线的方向向量与平面内的某一直线的方向向量共线. (3)证明直线的方向向量可用平面内的任两个不共线的向量表 示.即用平面向量基本定理证明线面平行.
3.证明面面平行的方法 设平面α的法向量为n1=(a1,b1,c1),平面β的法向量为 n2=(a2,b2,c2),则α//β⇔n1∥n2⇔(a1,b1,c1)=k(a2,b2,c2) (k∈R).
位置关系 向量关系 向量运算关系
l∥m
_a_∥__b_ _a_=_k_b_,_k_∈__R_
空间向量与平行关系 课件
探究点三 利用空间向量证明平行关系 问题 怎样利用向量证明空间中的平行关系?
答案 可以按照下列方法证明空间中的平行关系. 线线 设直线 l1、l2 的方向向量分别是 a、b,则要证明 平行 l1∥l2,只需证明 a∥b,即 a=kb (k∈R) ①设直线 l 的方向向量是 a,平面 α 的法向量是 线面 u,则要证明 l∥α,只需证明 a⊥u,即 a·u=0; 平行 ②根据线面平行判定定理在平面内找一个向量 与已知直线的方向向量是共线向量即可;
则有 D(0,0,0),A(2,0,0),C(0,2,0),C1(0,2,2), E(2,2,1),F(0,0,1),B1(2,2,2), 所以F→C1=(0,2,1),D→A=(2,0,0),A→E=(0,2,1). 设 n1=(x1,y1,z1)是平面 ADE 的法向量, 则 n1⊥D→A,n1⊥A→E,
∴平面 ABC 的一个法向量为 n=(1,1,1).
例 1 根据下列条件,判断相应的线、面位置关系: (1)直线 l1,l2 的方向向量分别是 a=(1,-3,-1), b=(8,2,2); (2)平面 α,β 的法向量分别是 u=(1,3,0),v=(-3,-9,0); (3)直线 l 的方向向量,平面 α 的法向量分别是 a=(1, -4,-3),u=(2,0,3); (4)直线 l 的方向向量,平面 α 的法向量分别是 a=(3,2,1), u=(-1,2,-1).
因为 p·v=(xa+yb)·v=xa·v+yb·v=0, 即平面 β 的法线与平面 α 内任一直线垂直. 所以平面 β 的法向量也是平面 α 的法向量,即 u∥v. 因此,α∥β.
小结 在“平面与平面平行的判定定理”的证明过程中突 出了直线的方向向量和平面的法向量的作用.以后我们用 向量证明有关结论时,直线的方向向量和平面的法向量是 重要的工具.
11.10.18高二数学(理)第二节课《利用空间向量证明平行、垂直关系》(课件)
制作 梦中有缘人
P F D E
C
2011年下学期 B
已知正方体 ABCD A1 B1C1 D1 例2. 的棱长为 , E、F分别是BB1、DD1的中 2 点, 求证:平面 ADE // 平面B1C1 F
D
C
2011年下学期
《中学第二教材》P98 - P100“当堂检
测”与“课后巩固练习”
制作 梦中有缘人
2011年下学期
利用空间向量证明 平行、垂直关系
制作 梦中有缘人
2011年下学期
1.向量模块及其关键
2.会议立体几何中一般如何研究“线 面”间的平行、垂直关系
制作 梦中有缘人
2011年下学期
探究1.如何用向量法研究“线面”间
的平行关系?
探究2.如何用向量法研究“线面”间
的垂直关系?
探究3.通过对探究1、探究2的研究,
你对研究“线面”间平行、垂直关系有
何感想?
制作 梦中有缘人 2011年下学期
①利用向量法研究“线面”间平行、
垂直关系, 均可转化成“线线”间的向量 法运算; ②注意在分析中几何法、向量法、坐 标法的选择, 相互协作。
制作 梦中有缘人 2011年下学期
例1. 如图 在四棱锥P ABCD中, 底 ,
D1
A1
C1
F
B1
D
ECΒιβλιοθήκη 2011年下学期A
B
制作 梦中有缘人
在四面体 ABCD中, AB 平面 例3. BCD, BC CD, BCD 90, ADB 30, E1 F分别是AC1 AD的中点, 求证 : 平面BEF 平面ABC .
立体几何中的向量方法2——证明平行和垂直
E
E(0,2,1),F(1,1,0)
A' F (1,1, 2), DB (2, 2,0), DE (0, 2,1) A' F DB (1,1, 2) (2, 2,0) 0
Y
F
A' F DE (1,1, 2) (0, 2,1) 0
X
A' F DB, A' F DE,又DB DE D. A' F 平面BDE
oB
H(0,1-2 a2 ,
E
a)、
2 2
2 2
x
G F
y A
故CGaB,(H01EG)n的-,2法(1 向a量22, 2为a1,0-,
22H(aG0) ,1n,0)H,
,而平面
故
,而 平面CBE
例2.在正方体
D1
C1
ABCD-A1B1C1D1 A1 中,P、Q分别是
P
B1
A1B1和BC上的动 点,且A1P=BQ, M是AB1的中点,N 是PQ的中点. 求证:A MN∥平面AC.
一、 用空间向量处理“平行”问 题
↑n→m
n
m
0
m↑
↑n
n
m
例1.如图:ABCD C
D
与ABEF是正方形,
CB⊥平面ABEF,
H
H、G分别是AC、
M
BF的中点,且
B
A
AH=GF. 求证:
N E
G F
HG∥平面CBE.
C
D
H
B
P
A
E
G
F
证明:分别以BE、BA、
空间向量与立体几何:第5讲利用空间向量证明平行与垂直问题
()
A.相交
B.平行
C.在平面内
D.平行或在平面内
→ → → →→ → 解析 ∵AB=λCD+μCE,∴AB,CD,CE共面.则 AB 与平面 CDE 的位置关系是平行或在平面内.
答案 D
6.已知平面α内有一点 M(1,-1,2),平面α的一个法向量为 n=(6,-3,6),则下列点 P 中,在平面α
内的是
()
A.P(2,3,3)
B.P(-2,0,1)
C.P(-4,4,0)
D.P(3,-3,4)
→ 解析 逐一验证法,对于选项 A,MP=(1,4,1),
→
→
∴MP·n=6-12+6=0,∴MP⊥n,
∴点 P 在平面α内,同理可验证其他三个点不在平面α内.
答案 A
∵PB⊄面 EFG,∴PB∥平面 EFG.
【变式探究】 如图,平面 PAC⊥平面 ABC,△ABC 是以 AC 为斜边的等腰直角三角形,E,F,O 分别为
PA,PB,AC 的中点,AC=16,PA=PC=10.
【例 2】如图,四棱柱 ABCD-A1B1C1D1 的底面 ABCD 是正方形,O 为底面中心,A1O⊥平面 ABCD,AB =AA1= 2.
号是________.
答案 ①②③
4.若直线 l 的方向向量为 a,平面α的法向量为 n,能使 l∥α的是
()
A.a=(1,0,0),n=(-2,0,0)
B.a=(1,3,5),n=(1,0,1)
C.a=(0,2,1),n=(-1,0,-1)
D.a=(1,-1,3),n=(0,3,1)
→→ → 5.若AB=λCD+μCE,则直线 AB 与平面 CDE 的位置关系是
【规律技巧】 恰当建立坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键. 利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量
向量法证明平行与垂直-人教版高中数学
知识图谱-利用向量证明空间中的平行关系-利用向量证明空间中的垂直关系直线的方向向量与直线的向量方程利用向量方法证明线面平行关系利用向量方法证明线线与面面的平行关系利用向量方法证明线线垂直平面的法向量利用向量方法证明线面垂直利用向量方法证明面面垂直第02讲_向量法证明平行与垂直错题回顾利用向量证明空间中的平行关系知识精讲一.直线的方向向量与直线的向量方程1.点的位置向量在空间中,我们取一定点作为基点,那么空间中任意一点的位置就可以用向量来表示,我们把向量称为点的位置向量.2.直线的方向向量空间中任一直线的位置可以由上的一个定点以及一个定方向确定,如图,点是直线上的一点,向量表示直线的方向向量,则对于直线上任一点,有,这样点和向量,不仅可以确定直线的位置,还可具体表示出上的任意点;直线上的向量以及与共线的向量叫做的方向向量.3.直线的向量方程直线上任意一点,一定存在实数,使得①,①式可以看做直线的参数方程,直线的参数方程还可以作如下表示:对空间中任意一确定点,点在直线上的充要条件是存在唯一的实数满足等式②,如果在上取,则上式可以化为③;①②③都叫做空间直线的向量参数方程.二.平面的法向量1.平面法向量的定义已知平面,如果向量的基线与平面垂直,则向量叫作平面的法向量或者说向量与平面正交.2.平面法向量的性质(1)平面上的一个法向量垂直于平面共面的所有向量;(2)一个平面的法向量有无限多个,它们互相平行.三.用向量方法证明空间中的平行关系1.线线平行设直线的方向向量分别是,则要证明或与重合,只需要证明,即.2.线面平行(1)设直线的方向向量是,平面的法向量是,要证明,只需要证明;(2)根据线面平行的判定定理:如果直线(平面外)与平面内的一条直线平行,那么这条直线与这个平面平行;所以,要证明一条直线和一个平面平行,也可以在平面内找到一个向量与已知直线的方向向量是共线向量即可;(3)根据共面向量定理可知:如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共面向量确定的平面一定平行.已知两个不共线向量与平面共面,一条直线的一个方向向量为,则由共面向量定理,可得或在内存在两个实数,使.3.面面平行(1)若能求出平面的法向量,要证明,只需要证明即可.(2)由面面平行的判定定理:要证明面面平行,只要转化为相应的线面平行、线线平行即可,已知两个不共线的向量与平面共面,则由两平面平行的判定与性质,得.三点剖析一.方法点拨1.在平面内,直线的向量方程可类比点斜式方程,直线的方向向量、斜率都是刻画直线方向的量,只是从不同角度引入,它们有一定的关系:斜率为的直线,其方向向量为,反之,方向向量为的直线不一定存在斜率;在空间中,用方向向量刻画直线较为方便.2.空间中建系描述选取三条两两相交的直线的交点作为原点,以哪三条直线为轴,建立空间直角坐标系.例如:正方体中,建系的描述为:以点为坐标原点,分别以所在直线为轴,建立空间直角坐标系.3.用空间向量证明平行关系需要注意的问题(1)用空间向量的方法证明立体几何中的平行问题,主要运用了直线的方向向量和平面的法向量,同时也要借助空间中已有的一些关于平行的定理.(2)用向量方法证明平行问题的步骤①建立空间图形与空间向量的关系,用空间向量表示问题中涉及的点、直线、平面;②通过向量运算研究平行问题;③根据运算结果解释相关问题.4.平面法向量的求法(1)建立适当的坐标系;(2)设出平面法向量为;(3)找出(求出)平面内的两个共线的向量的坐标;(4)根据法向量的定义建立关于的方程组;(5)解方程组,取其中的一个解,即得法向量,由于一个平面的法向量有无数个,故可在代入方程组的解中取一个最简单的作为平面的法向量.有时候,题目中的线面垂直条件比较明显,可以将垂线的方向向量作为平面的法向量来解决问题.题模精讲题模一直线的方向向量与直线的向量方程例1.1、已知向量=(2,4,5),=(3,x,y)分别是直线l1、l2的方向向量,若l1∥l2,则()A、x=6,y=15B、x=3,y=C、x=3,y=15D、x=6,y=例1.2、从点沿向量的方向取线段长,则B点的坐标为( )A、B、C、D、题模二平面的法向量例2.1、在空间直角坐标系内,设平面经过点,平面的法向量为,为平面内任意一点,求满足的关系式.例2.2、(1)设平面的法向量为,平面的法向量为,若,则__________;则__________.(2)若的方向向量为,平面的法向量为,若,则__________;若,则__________.题模三利用向量方法证明线面平行关系例3.1、已知正方形和正方形相交于分别在上,且,求证平面.例3.2、在正方体中,的中点,求证:.题模四利用向量方法证明线线与面面的平行关系例4.1、在正方体中,分别是的中点.证明:.例4.2、如右图所示,在平行六面体中,分别是的中点.求证:平面∥平面..随堂练习随练1.1、已知,,则直线的模为的方向向量是________________.随练1.2、已知点若点为直线上任意一点,则直线的向量参数方程为______________,当时,点的坐标为______________.随练1.3、已知,且均与平面平行,直线的方向向量,则()随练1.4、若两个不同平面的法向量分别为,则( )A、B、C、相交但不垂直D、以上均不正确随练1.5、已知平面经过三点,试求平面的一个法向量.随练1.6、在正方体中,分别是的中点,求证:.随练1.7、已知正方体的棱长为2,分别是的中点,求证:(1);(2).利用向量证明空间中的垂直关系知识精讲一.直线方向向量与平面法向量在确定直线、平面位置关系中的应用设空间两条直线的方向向量分别是,两个平面的法向量分别是,则有下表与与与二.用向量方法证明空间中的垂直关系1.线线垂直设直线的方向向量分别是,则要证明,只需要证明,即.2.线面垂直(1)设直线的方向向量是,平面的法向量是,要证明,只需要证明.(2)根据线面垂直的判定定理,转化为直线与平面内的两条相交直线垂直.3.面面垂直(1)根据面面垂直的判定定理转化为证相应的线面垂直,线线垂直;(2)证明两个平面的法向量互相垂直.一、方法点拨1.平面法向量可以不唯一,只要是垂直于平面的直线,其方向向量都可以当作法向量进行运算.2.平面中的平行、垂直关系的向量论证,注意复习线面、面面平行与垂直的判定定理,将这种位置关系的判断转化为向量间的代数运算,体现了向量的工具性功能.题模精讲题模一利用向量方法证明线线垂直例1.1、设的方向向量,的方向向量,若,则( )A、1B、2C、D、3例1.2、在正三棱柱中,.求证:.题模二利用向量方法证明线面垂直若直线的方向向量为,平面的法向量为,则( )A、B、C、D、斜交例2.2、在正方体中,分别是棱的中点,试在棱上找一点,使得.题模三利用向量方法证明面面垂直例3.1、若两个不同平面的法向量分别为,则( )A、B、C、相交但不垂直D、以上均不正确例3.2、在长方体中,,分别是棱的中点.(1)求证:平面;(2)求证:平面平面.随堂练习随练2.1、如图所示,已知空间四边形的各边和对角线的长都等于,点分别是的中点.求证:随练2.2、如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.(1)证明PA∥平面EDB;(2)证明PB⊥平面EFD;(3)求二面角C-PB-D的大小.随练2.3、在正棱锥中,三条侧棱两两互相垂直,的重心,分别为上的点,且(1)求证:平面;(2)求证:的公垂线段.自我总结课后作业作业1、已知,把按向量平移后所得的向量是( )A、B、C、D、作业2、正四面体的高的中点为,则平面的一个法向量可以是________,平面的一个法向量可以是________.作业3、若直线是两条异面直线,它们的方向向量分别是,则直线的公垂线(与两异面直线垂直相交的直线)的一个方向向量是________.作业4、是正四棱柱,侧棱长为3,底面边长为2,E是棱BC的中点,求证:.作业5、如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点,(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1;(3)求二面角C1-AB-C的余弦值.作业6、已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)求:(1)求以向量,为一组邻边的平行四边形的面积S;(2)若向量分别与向量,垂直,且||=,求向量的坐标.作业7、如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=2,E是PC的中点,作EF⊥PB交PB于点F.(1)证明:PA∥平面EDB;(2)证明:PB⊥平面EFD.作业8、在直三棱柱中,底面是以为直角的等腰直角三角形,,的中点,在线段,使?若存在,求出;若不存在,请说明理由.作业9、如图,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BA D=∠FAB=90°,BC AD,BE AF,G,H分别为FA,FD的中点(Ⅰ)证明:四边形BCHG是平行四边形;(Ⅱ)C,D,F,E四点是否共面?为什么?(Ⅲ)设AB=BE,证明:平面ADE⊥平面CDE.。
空间向量基本定理(23张PPT)——高中数学人教A版选择性必修第一册
B ,1,
,1,
A
口
1,
C.
9
解析:由题意知d=aa+βb+γc=α(e₁+e₂+e₃)+β(e₁+e₂-e₃)+y(e₁-e₂+e₃)=(a+β+y)e₁+(a+β-y)e₂+(α-β+y)e₃,
.故选A.
又d=e₁+2e₂+3e₃, 所 以
解得
5.(多选) 设a,b,c 是空间的一个基底,( BCDA. 若alb,b⊥c, 则 a ⊥cB. 则 a,b,c 两两共面,但a,b,c 不可能共面C.对空间任一向量p, 总存在有序实数组(x,y,z), 使p =xa+yb+zcD.则a+b,b +c,c+a 一定能构成空间的一个基底
D₁C₁ ,C₁B₁ 的中点.求证MN⊥AC₁ .
构成空间的一个基底,我们用它们表示MN,AC,贝 ,AC₁=AB+BC+CC₁=a+b+c,所
证明:设AB=a,AD=b,AA₁=c, 这三个向量不共面,{a,b,c}
所以
8.如图所示,已知四面体ABCD 的棱长为1,点E,F,G 分别是AB,AD,CD 的中
(1)EF·BA;(2)|EG|.
点,设AB=a,AC=b,AD=c,{a,b,c}
为空间向量的一个基底,计算:
解析:(1)由题意得la月bHc=1,
事
小结:回顾一下本节课学习了哪些新知识呢?1.空间向量基本定理2.基底和基向量
=0.所以MN⊥AC₁ .
例3如图,正方体 ABCD-A'B'CD 的棱长为1,E,F,G 分别为
用空间向量研究直线、平面的位置关系PPT课件
和平面.
(一)点的位置向量
1.思考:如何用空间向量表示空间中的一个点?
2.点的位置向量
如图 ,在空间中,我们取一定点 作为基点,
那么空间中任意一点 就可以用向量来表示:我
们把向量称为点 的位置向量.
向量称为点 的位置向量.
三
探究新知2——平面的法向量(互学)
注:其中符号
,
,
= − ;
4.平面法向量的三种求法
(3)求法三:叉乘法(该方法只适合选择题、填空题,不可用于解答题)
已知两个不共线的空间向量 = , , 与 = , , ,设向
量 = , , 为向量与确定平面的法向量,则
三
探究新知2——平面的法向量(互学)
1.平面法向量的定义
我们知道,给定空间一点 和一条直线,则过点 且
垂直于直线的平面是唯一确定的.由此得到启发,我们可以
利用点和直线的方向向量来确定平面.
如图,直线 ⊥ ,取直线的方向向量,我们称向量为
平面的法向量.
给定一个点 和一个向量,那么过点A,且以向量为
是直线上的任意一点,由向量共线的条件可知,点在
直线上的充要条件是存在实数,使得
= ,即 =
二
探究新知1——空间中点、直线和平面的向量表示(互学)
2.直线的向量表示
进一步地,如图,取定空间中的任意一点,可以得
到点在直线上的充要条件是存在实数,使
= ,
, , ;
③列方程:由 ⊥ ⇔ ∙ = 列出方程
⊥
∙ =
3.2立体几何中的向量方法 第2课时 空间向量与垂直关系 课件
研一研· 问题探究、课堂更高效
3.2 第2课时
例 2 如图所示, 在正方体 ABCD—A1B1C1D1 中,O 为 AC 与 BD 的交点,G 为 CC1 的中 点.求证:A1O⊥平面 GBD.
证明 方法一 如图取 D 为坐标原点, DA、DC、DD1 所在的直线分别作 x 轴, y 轴,z 轴建立空间直角坐标系. 设 正 方 体 棱 长 为 2 , 则 O(1,1,0) , A1(2,0,2),G(0,2,1),B(2,2,0),D(0,0,0), → → → ∴OA1=(1,-1,2),OB=(1,1,0),BG=(-2,0,1), → → → → 而OA1· OB=1-1+0=0,OA1· BG=-2+0+2=0. → → → → ∴OA1⊥OB,OA1⊥BG,即 OA1⊥OB,OA1⊥BG, 而 OB∩BG=B,∴OA1⊥平面 GBD.
角坐标系.则 C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0), → → ∵AC=(-3,0,0),BC1=(0,-4,4), → → ∴AC· BC1=0.∴AC⊥BC1.
小结 证明两直线垂直的基本步骤:建立空间直角坐标系 →写出点的坐标→求直线的方向向量→证明向量垂直→得 到两直线垂直.
解析 ∵(1,2,0)· (2,-1,0)=0,∴两法向量垂直,从 而两平面垂直.
练一练· 当堂检测、目标达成落实处
3.2 第2课时
4.如图,在四棱锥 P- ABCD 中,底面 ABCD 是矩形,PA⊥平面 ABCD,AP=AB= 2, BC=2 2, E, F 分别是 AD, PC 的中点. 证 明: PC⊥平面 BEF.
练一练· 当堂检测、目标达成落实处
3.2 第2课时
又 E,F 分别是 AD,PC 的中点,
第七章 第六节 第一课时 证明平行与垂直
则 A(0, 3 ,0),D(0,0,0),E(1,0,t),B(-1,0,0),B1(-1,0,2t),
A,
3
,0),D→E
=1,0,t
,
→ A1N
=(-1,-
3
,
2λt-2t),
设平面 ADE 的法向量 n=(x,y,z),
则nn··DD→→AE==x+3yt=z=00 ,取 z=1,得 n=(-t,0,1),
z 轴建立如图所示的空间直角坐标系,
由题意可知 D(0,0,0),B(1,2,0),A(1,0,0),C(0,
2,0),S(0,0, 3 ),
→ BS
=(-1,-2,
3 ),D→C =(0,2,0),
假设存在 M,N 满足 MN⊥CD 且 MN⊥SB.
∵M 在线段 CD 上,可设B→M =λB→S =(-λ,-2λ, 3 λ)(λ∈[0,1]). ∵D→M =D→B +B→M =(1,2,0)+(-λ,-2λ, 3 λ)=(1-λ,2-2λ, 3 λ), ∴M 的坐标(1-λ,2-2λ, 3 λ),
N 在线段 SB 上,可设 N(0,y,0),y∈[0,2],
则N→M =(1-λ,2-2λ-y, 3 λ).
要使 MN⊥CD 且 MN⊥SB,则NN→ →MM· ·DB→→SC==00,,
又B→S =(-1,-2, 3 ),D→C =(0,2,0), 可得2-((2-1-2λλ-)y-)2=(02-2λ-y)+3λ=0 , 解得 λ=14 ∈[0,1],y=32 ∈[0,2]. 故存在 M,N 使 MN⊥CD 且 MN⊥SB, 其中 M 是线段 SB 靠近 B 的四等分点,N 是线段 CD 靠近 C 的四等分点.
∵PB⊄平面 EFG,∴PB∥平面 EFG.
立体几何中的向量方法(一)—证明平行与垂直讲义
立体几何中的向量方法(一)—证明平行与垂直讲义一、知识梳理1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n ·a =0,n ·b =0. 2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2.3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线的方向向量是唯一确定的.( )(2)平面的单位法向量是唯一确定的.( )(3)若两平面的法向量平行,则两平面平行.( )(4)若两直线的方向向量不平行,则两直线不平行.( )(5)若a ∥b ,则a 所在直线与b 所在直线平行.( )(6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( )题组二:教材改编2.设u ,v 分别是平面α,β的法向量,u =(-2,2,5),当v =(3,-2,2)时,α与β的位置关系为__________;当v =(4,-4,-10)时,α与β的位置关系为________.3.如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是________.题组三:易错自纠4.已知A (1,0,0),B (0,1,0),C (0,0,1),则下平面ABC 单位法向量的是5.直线l的方向向量a=(1,-3,5),平面α的法向量n=(-1,3,-5),则有()A.l∥αB.l⊥αC.l与α斜交D.l⊂α或l∥α6.已知平面α,β的法向量分别为n1=(2,3,5),n2=(-3,1,-4),则()A.α∥βB.α⊥βC.α,β相交但不垂直D.以上均不对三、典型例题题型一:利用空间向量证明平行问题典例如图所示,平面P AD⊥平面ABCD,ABCD为正方形,△P AD是直角三角形,且P A=AD=2,E,F,G分别是线段P A,PD,CD的中点.求证:PB∥平面EFG.引申探究:若本例中条件不变,证明平面EFG∥平面PBC.思维升华:(1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.跟踪训练如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=22,M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.证明:PQ∥平面BCD.题型二:利用空间向量证明垂直问题命题点1:证线面垂直典例如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC—A1B1C1的所有棱长都为2,D为CC1的中点.求证:AB1⊥平面A1BD.命题点2:证面面垂直典例如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面P AD⊥底面ABCD,且P A=PD=22AD,设E,F分别为PC,BD的中点.(1)求证:EF∥平面P AD;(2)求证:平面P AB⊥平面PDC.思维升华:证明垂直问题的方法(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然,也可证直线的方向向量与平面的法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.跟踪训练如图所示,已知四棱锥P—ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC =2CD,侧面PBC⊥底面ABCD.证明:(1)P A⊥BD;(2)平面P AD⊥平面P AB.题型三:利用空间向量解决探索性问题典例如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置,若不存在,请说明理由.思维升华:对于“是否存在”型问题的探索方式有两种:一种是根据条件作出判断,再进一步论证;另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.跟踪训练:如图,在四棱锥P ABCD 中,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面P AB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱P A 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AM AP的值;若不存在,说明理由. 注意:利用向量法解决立体几何问题典例 (12分)如图1所示,正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B ,如图2所示.(1)试判断直线AB 与平面DEF 的位置关系,并说明理由;(2)求二面角E -DF -C 的余弦值;(3)在线段BC 上是否存在一点P ,使AP ⊥DE ?证明你的结论.四、反馈练习1.已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内的是( )A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)2.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量.若α⊥β,则t 等于( )A .3B .4C .5D .63.如图,F 是正方体ABCD —A 1B 1C 1D 1的棱CD 的中点,E 是BB 1上一点,若D 1F ⊥DE ,则有( )A .B 1E =EB B .B 1E =2EBC .B 1E =12EB D .E 与B 重合 4.已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________________________.5.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x +y =________.6.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的序号是________.答案 ①②③7.正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是C 1C ,B 1C 1的中点.求证:MN ∥平面A 1BD .8.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .9.如图所示,四棱锥P —ABCD 的底面是边长为1的正方形,P A ⊥CD ,P A =1,PD =2,E 为PD 上一点,PE =2ED .(1)求证:P A ⊥平面ABCD ;(2)在侧棱PC 上是否存在一点F ,使得BF ∥平面AEC ?若存在,指出F 点的位置,并证明;若不存在,请说明理由.10.如图所示,在正方体ABCD-A1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1M=AN=2a 3,则MN与平面BB1C1C的位置关系是()A.相交B.平行C.垂直D.MN在平面BB1C1C内11.如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别是棱BC,DD1上的点,如果B1E⊥平面ABF,则CE与DF的和为________.12.如图,圆锥的轴截面SAB是边长为2的等边三角形,O为底面中心,M为SO的中点,动点P在圆锥底面内(包括圆周).若AM⊥MP,则点P形成的轨迹长度为________.。
空间向量与平行关系 课件
【解析】1.选A.(-2,0,2)=-2(1,0,-1),故v1∥v2,又l1和
l2不重合,所以直线l1和l2的位置关系是平行.
2.存在.如图所示,建立空间直角坐标系,设正方体ABCD-
A1B1C1D1的棱长为1,则E(1,1 ,0),F(1,0,1 ),C 0,1,0 ,
2
3
假设在DD1上存在一点G,使CG∥EF则,CG EF,由于点G在z
2.∵l∥α,∴l的方向向量与平面α的法向量垂直,
则2, m,1 (1, 1 , 2) 0,
2 2 1 m 2 0标系,则有D(0,0,0),A(2,
0,0),B1(2,2,2),C1(0,2,2),E(2,2,1),F(0,0,
1),所以 FC1 0,2,1,AD 2,0,0,AE 0,2,1,C1B1 2,0,0,
A(0,0,0),A1(0,0,4),B(1,0,0),
B1(1,0,4),C1(0,2,4).
(1) AB1 1,0,4,AC1 0,2,4,
设平面AB1C1的法向量为n=(x,y,z),则 n AB1且n AC1,
即
x 4z 0, 2y 4z 0,
令z=1,则x=-4,y=-2,
类型 三 利用空间向量处理线面平行与面面平行问题
【典型例题】
1.已知平面α的一个法向量是(2,3,-1),平面β的一个法
向量是(4,λ,-2),若α∥β,则λ的值是( )
A. 10
B.-6
C.6
D.10
3
3
2.已知l∥α,且l的一个方向向量为(2,m,1),平面α的一个法
向量为 (1, 1 , 2),则m=_________.
2.利用空间向量证明两个平面平行的思路方法 (1)直接证明法:建立空间直角坐标系,分别求出两个平面的法向 量,证明两个法向量平行. (2)间接证明法:根据两个平面平行的判定定理,把证明两个平面 平行转化为证明线面平行或线线平行,再利用空间向量证明.
利用空间向量证明平行、垂直问题 课件
7.证明两条直线垂直,只要证明这两条直线的方向向量 __垂__直__.
8.空间中的平行共有:线__线__平__行__.
9.空间中的垂直共有:线__线__垂__直__、__线__面__垂__直__、__面__面__垂__直__.
(2)①u=(1,-1,2),v=3,2,-12 ,
∴u·v=3-2-1=0,∴u⊥v,∴α⊥β.
②∵u=(0,3,0),v=(0,-5,0),∴u=-
3 5
v,
∴u∥v,∴α∥β.
③∵u=(2,-3,4),v=(4,-2,1),
∴u与v不共线,也不垂直,
∴α与β相交但不垂直.
(3)①∵u=(2,2,-1),a=(-3,4,2),
设平面 CB1D1 的法向量为 n=(x,y,z), 则 n·C→B1=0,n·C→D1=0.
即-y+z=0 -x+z=0,
令 z=1,
解得 n=(1,1,1).
∴A→1B·n=0,A→1D·n=0.
又∵A1B∩A1D=A1,且 A1B⊂平面 A1BD,
A1D⊂平面 A1BD,
∴平面 A1BD∥平面 CB1D1.
①u=(1,-1,2),v= 3,2,-12 ;
②u=(0,3,0),v=(0,-5,0);
③u=(2,-3,4),v=(4,-2,1).
(3)设u是平面α的法向量,a是直线l的方向向量,根据 下列条件判断α和l的位置关系:
①u=(2,2,-1),a=(-3,4,2);
②u=(0,2,-3),a=(0,-8,12);
③u=(4,1,5),a=(2,-1,0).
解析:(1)①∵a=(2,3,-1),
高中数学课件-利用空间向量解决探究性问题
5
10
,
10
故当点 F 为线段 BC上靠近点 B 的三等分点时,平面 ADE 与平面 DEF
的夹角的余弦值为
10
.
10
(1)几何法证明VS向量法证明
(2)向量法
(3)向量法
动点设法1:直接设点法
动点设法2:共线式引参法
动点与设未知问题(一)
21
又因为D是AB的中点,所以DF∥BC1.
又因为DF⫋平面A1CD,BC1⊈平面A1CD,
故BC1∥平面A1CD.
2
2
(2)设 AB=2a,由 AA1=AC=CB= AB 可得 AA1=AC=CB= 2a,
所以AC⊥BC.
又因为ABC-A1B1C1是直三棱柱,故可建立如图所示的空间直角坐
标系.
则 C(0,0,0),A1( 2a,0, 2a),D
为坐标原点,AD,AP所在直线分别为y轴、z轴,过点A垂直于平面
PAD的直线为x轴,建立空间直角坐标系.
则 A(0,0,0),B
2
3
1
3
E 0, , ,
3
1
,- ,0
2
2
,C
3 1
, ,0
2
2
,D(0,a,0),P(0,0,a),
探究一
探究二
规范解答
2
1
3
3
3
所以 = 0, , , =
10
F 在 BC 上的位置.
解:(1)∵AE⊥平面CDE,∴AE⊥CD.
又AD⊥CD,AE∩AD=A,∴CD⊥平面ADE.
又CD⫋平面ABCD,∴平面ABCD⊥平面ADE.
1
2
3
4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=12(b2-a2+c·a+c·b)
=12(|b|2-|a|2+0+0)=0. 所以 E→F⊥A→B1,即 EF⊥AB1.同理,EF⊥B1C. 又 AB1∩B1C=B1,所以 EF⊥平面 B1AC. 方法二 设正方体的棱长为 2,以 D 为原点,以 DA, DC,DD1 所在直线分别为 x 轴,y 轴,z 轴建立如图
点评:利用向量法证明线面垂直,有两种方法: ①证明直线的方向向量与平面的法向量平行;②证明 直线的方向向量与平面内的不共线的两个向量都垂 直.
2.如图所示,在正方体ABCDA1B1C1D1中,E,F分 别是BB1,D1B1的中点.求证:EF⊥平面B1AC.
变式 训练
证明:方法一 设A→B=a,A→D=c,A→A1=b, 则E→F=E→B1+B→1F=12(B→B1+B→1D1) =12(A→A1+B→D)=12(A→A1+A→D-A→B)=12(-a+b+c). 因为A→B1=A→B+A→A1=a+b, 所以E→F·A→B1=12(-a+b+c)·(a+b)
A.1
B.-2
C.-3 D.3
2.若两个不同平面α、β的法向量分别为u=(1,2, -1),v=(2,3,8),则( B )
A.α∥β B.α⊥β
C.α、β相交但不垂直 D.以上均不正确
3.已知平面 α 内有一个点 A(2,-1,2),它的一个法
向量为 n=(3,1,2),则下列点 P 中,在平面 α 内的是( )
所以E→F·A→B1=(-1,-1,1)·(0,2,2)
=(-1)×0+(-1)×2+1×2=0,
E→F·A→C=(-1,-1,1)·(-2,2,0)=2-2+0=0, 所以E→F⊥A→B1,E→F⊥A→C, 所以 EF⊥AB1,EF⊥AC.又 AB1∩AC=A, 所以 EF⊥平面 B1AC.
题型二 证明线面垂直
例2 在四棱锥VABCD中,底面ABCD是正方形,侧 面VAD是正三角形,平面VAD⊥底面ABCD.证明:AB⊥ 平面VAD.
证明:以 D 为坐标原点,建立如图所示的空间直角坐标系. 不妨设 A(1,0,0), 则 B(1,1,0),V12,0, 23, A→B=(0,1,0),V→A=12,0,- 23. 由A→B·V→A=0,得 AB⊥VA,又 AB⊥AD,因而 AB 与平面 VAD 内两条相交直线 VA,AD 都垂直. ∴AB⊥平面 VAD.
Q→N=Q→O+O→N=-12b+12(a+c)=12(a+c-b). ∴P→M·Q→N=14[c-(a-b)][c+(a-b)] =14[c2-(a-b)2]=14(|O→C|2-|B→A|2). 由|A→B|=|O→C|,∴P→M·Q→N=0, 即P→M⊥Q→N,即 PM⊥QN.
点评:利用向量法证明线线垂直往往转化为证明 直线的方向向量垂直,即证明它们的方向向量的数量 积为0.证明的关键是建立恰当的空间直角坐标系,正 确地表示出点的坐标进而求直线的方向向量.
1. 在棱长为a的正方体OABC-O1A1B1C1中,E,F分
别是AB,BC上的动点,且AE=BF,求证:A1F⊥C1E.
1.证明:以 O 为坐标原点建立如图所示的空间直角 坐标系,则 A1(a,0,a),C1(0,a,a).
设 AE=BF=x, 则 E(a,x,0),F(a-x,a,0). 所以A→1F=(-x,a,-a), C→1E=(a,x-a,-a). 因为A→1F·C→1E=(-x,a,-a)·(a,x-a,-a)= -ax+ax-a2+a2=0, 所以A→1F⊥C→1E,即 A1F⊥C1E.
利用空间向量证明平行、垂直问题
空间的垂直关系.
空间中的垂直关系
线线垂直
线面垂直
面面垂直
设直线l的方向
向量为a=(a1, a2,a3),直线m 的方向向量为b
=(b1,b2,b3),
则
l⊥m⇔__a_1_b_1+___
____a_2b_2_+__a_3b_3_=__0 __
设直线l的方向向
Байду номын сангаас
量是a=(a1,b1, 若平面α的法向量u
变式 训练
所示的空间直角坐标系,
则 A(2,0,0),C(0,2,0),B1(2,2,2),E(2,2,1), F(1,1,2).
所以E→F=(1,1,2)-(2,2,1)=(-1,-1,1),
A→B1=(2,2,2)-(2,0,0)=(0,2,2),
A→C=(0,2,0)-(2,0,0)=(-2,2,0).
A.(1,-1,1) B.1,3,32
C.1,-3,32 D.-1,3,-32
解 析 : 对 于 选 项 A , P→A = (1,0,1) , 则 P→A ·n = (1,0,1)·(3,1,2) = 5≠0 , 故 排 除 A ; 对 于 选 项 B , P→A = 1,-4,12,则P→A·n=1,-4,12·(3,1,2)=0.故选 B.
c1),平面α的法 =(a1,b1,c1),平
向量u=(a2,b2, 面β的法向量v=
c2),则
(a2,b2,c2),则
l_⊥_bλ_∈1α_=_R⇔ _λ_b___a2,__1=__c__1λ__=a__2__,λc2,α_a=⊥_1_a0β_2_+⇔ __b__1b__2__+____c__1__c2___
例:若直线的一个方向向量为(1,1,1),向量(1,
-1,0)及向量(0,1,-1)都与平面α平行,则l与α有
什么位置关系?
解析:∵(1,1,1)·(0,1,-1)=0,(1,1,1)·(1, -1,0)=0,而向量(1,-1,0)与向量(0,1,-1)不
平行,∴l⊥α.
1.设直线l1的方向向量为a=(2,1,-2),直线l2的方 向向量为b=(2,2,m),若l1⊥l2,则m=( D )
答案:B
题型一 证明线线垂直
例1 已知空间四边形OABC中,M为BC的中点,N为
AC的中点,P为OA的中点,Q为OB的中点,若AB=OC,证
明:PM⊥QN.
证明:如图,连接 OM,ON,设O→A=a,O→B=b,O→C=c. ∵O→M=12(O→B+O→C)=12(b+c), O→N=12(O→A+O→C)=12(a+c), ∴P→M=P→O+O→M =-12a+12(b+c)=12(b+c-a).