直线与圆单元测试题(含答案)

合集下载

第二章 直线与圆的方程单元测试卷-高二数学人教A版(2019)选择性必修第一册

第二章 直线与圆的方程单元测试卷-高二数学人教A版(2019)选择性必修第一册

第二章 直线与圆的方程满分卷-2021-2020人教A (2019)高二(上)选择性必修第一册一.选择题(共8小题)1.如图中的直线1l 、2l 、3l 的斜率分别为1k 、2k 、3k ,则( )A .123k k k <<B .312k k k <<C .321k k k <<D .132k k k <<2.已知直线1:10l ax y -+=,2:420l ax y ++=,则“2a =”是“12l l ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件3.经过点(0,1)P -的直线l 与连接(1,2)A -,(2,1)B 两点的线段总有公共点,则l 的倾斜角的取值范围是( ) A .[1-,1] B .(-∞,1][1-,)+∞C .3[,]44ππD .3[0,][,)44πππ4.已知圆22:240C x y x y +-+=关于直线32110x ay --=对称,则圆C 中以(,)22a a-为中点的弦长为( ) A .1B .2C .3D .45.两条直线1:20l x y c ++=,2:210l x y -+=的位置关系是( ) A .平行B .垂直C .重合D .不能确定6.已知实数x ,y 满足224x y +=,则函数226825S x y x y =+--+的最大值和最小值分别为( )A .49,9B .7,3C D .77.已知直线l 经过点(1,2)P -,且与直线2310x y +-=垂直,则l 的方程为( ) A .2340x y ++=B .2380x y +-=C .3270x y --=D .3210x y --=8.关于x 、y 的方程210(0)a x ay a --=≠表示的直线(图中实线)可能是( )A .B .C .D .二.多选题(共4小题)9.已知直线:20l kx y k -+=和圆222:O x y r +=,则( ) A .存在k 使得直线l 与直线0:220l x y -+=垂直B .直线l 恒过定点(2,0)C .若4r >,则直线l 与圆O 相交D .若4r =,则直线l 被圆O 截得的弦长的取值范围为 10.下列结论错误的是( )A .若直线1l ,2l 的斜率相等,则12//l lB .若直线的斜率121k k ⋅=,则12l l ⊥C .若直线1l ,2l 的斜率都不存在,则12//l lD .若直线1l ,2l 的斜率不相等,则1l 与2l 不平行11.已知动直线:0m x y λλ-+=和:320n x y λλ+--=,P 是两直线的交点,A 、B 是两直线m 和n 分别过的定点,下列说法正确的是( ) A .B 点的坐标为(3,2)- B .m n ⊥C .P 的轨迹是一条直线D .PA PB ⨯的最大值为1012.已知直线1:40l x y +-=与圆心为(0,1)M 且半径为3的圆相交于A ,B 两点,直线2:22350l mx y m +--=与圆M 交于C ,D 两点,则四边形ACBD 的面积的值可以是()A .B .C .D .1)三.填空题(共4小题)13.在平面直角坐标系中,已知(2,2)A 、(1)B -若过点(1,1)P --的直线l 与线段AB 有公共点,则直线l 斜率的取值范围是 .14.直线210x y -+=和圆222410x y x y +---=的位置关系是 . 15.直线1:3470l x y +-=与直线2:3410l x y ++=之间的距离为 .16.圆222440x y x y +-++=上的点到3490x y -+=的最大距离是 ,最小距离是 . 四.解答题(共6小题)17.已知圆C 的圆心在x 轴上,且经过点(3,0)A -,(1,2)B -. (Ⅰ)求圆C 的标准方程; (Ⅱ)过点(0,2)P 斜率为34的直线l 与圆C 相交于M ,N 两点,求弦MN 的长. 18.(1)求直线y x =被圆22(2)4x y +-=截得的弦长;(2)已知圆22:430C x y x +-+=,求过点(3,2)M 的圆的切线方程.19.在直角坐标系xOy 中,直线:40l x --=交x 轴于M ,以O 为圆心的圆与直线l 相切.(1)求圆O 的方程;(2)设点0(N x ,0)y 为直线3y x =-+上一动点,若在圆O 上存在点P ,使得45ONP ∠=︒,求0x 的取值范围;(3)是否存在定点S ,对于经过点S 的直线L ,当L 与圆O 交于A ,B 时,恒有AMO BMO ∠=∠?若存在,求点S 的坐标;若不存在,说明理由.20.已知直线10l y -+=,圆C 的方程为224210x y x y ++-+=. (Ⅰ)判断直线l 与该圆的位置关系;(Ⅱ)若直线与圆相交,求出弦长;否则,求出圆上的点到直线l 的最短距离. 21.已知圆M 过点(4,0)A ,(2,0)B -,(1,3)C . (Ⅰ)求圆M 的标准方程;(Ⅱ)若过点(2,3)P且斜率为k的直线l与圆M相切,求k的值.22.在平面直角坐标系xOy中,已知直线:20l x y++=和圆22+=,P是直线l上一O x y:1点,过点P作圆C的两条切线,切点分别为A,B.(1)若PA PB⊥,求点P的坐标;(2)求线段PA长的最小值;(3)设线段AB的中点为Q,是否存在点T,使得线段TQ长为定值?若存在,求出点T;若不存在,请说明理由.参考答案与试题解析一.选择题(共8小题)1.如图中的直线1l 、2l 、3l 的斜率分别为1k 、2k 、3k ,则( )A .123k k k <<B .312k k k <<C .321k k k <<D .132k k k <<解:由图象知,直线1l 、2l 、3l 的倾斜角分别为1α,2α,3α, 且1(2πα∈,)π,3202παα<<<;所以对应的斜率分别为10k <,320k k <<, 即132k k k <<. 故选:D .2.已知直线1:10l ax y -+=,2:420l ax y ++=,则“2a =”是“12l l ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解:直线1:10l ax y -+=,2:420l ax y ++=,12l l ⊥, (1)40a a ∴⨯+-⨯=,240a ∴-=,2a ∴=±, 2a ∴=是12l l ⊥的充分不必要条件,故选:A .3.经过点(0,1)P -的直线l 与连接(1,2)A -,(2,1)B 两点的线段总有公共点,则l 的倾斜角的取值范围是( ) A .[1-,1]B .(-∞,1][1-,)+∞C .3[,]44ππD .3[0,][,)44πππ解:如图所示,设直线l 的倾斜角为α,[0α∈,)π. 12101PA k -+==--,11102PB k --==-. 直线l 与连接(1,2)A -,(2,1)B 的线段总有公共点,1tan 1α∴-.[0α∴∈,3][44ππ,)π. 故选:D .4.已知圆22:240C x y x y +-+=关于直线32110x ay --=对称,则圆C 中以(,)22a a-为中点的弦长为( ) A .1B .2C .3D .4解:依题意可知直线过圆心(1,2)-,即34110a +-=,2a =.故(,)(1,1)22a a-=-.圆方程配方得22(1)(2)5x y -++=,(1,1)-与圆心距离为1,故弦长为4=. 故选:D .5.两条直线1:20l x y c ++=,2:210l x y -+=的位置关系是( ) A .平行B .垂直C .重合D .不能确定解:直线1l 的斜率是:2-, 直线2l 的斜率是:12, 由1212-⨯=-,得直线垂直, 故选:B .6.已知实数x ,y 满足224x y +=,则函数226825S x y x y =+--+的最大值和最小值分别为( )A .49,9B .7,3CD .7解:22226825(3)(4)S x y x y x y =+--+=-+-, 实数x ,y 满足224x y +=,22(3)(4)S x y ∴=-+-的几何意义为圆224x y +=上的动点与定点(3,4)M 的距离的平方, 如图,||5OM =,2(52)49max S ∴=+=,2(52)9min S =-=.∴函数226825S x y x y =+--+的最大值和最小值分别为49,9.故选:A .7.已知直线l 经过点(1,2)P -,且与直线2310x y +-=垂直,则l 的方程为( ) A .2340x y ++=B .2380x y +-=C .3270x y --=D .3210x y --=解:直线l 与直线2310x y +-=垂直, 所以直线l 的斜率为32, 又直线l 经过点(1,2)P -,所以直线l 的方程为:3(2)(1)2y x --=-,化简得:3270x y --= 故选:C .8.关于x 、y 的方程210(0)a x ay a --=≠表示的直线(图中实线)可能是( )A .B .C .D .解:关于x 、y 的方程210(0)a x ay a --=≠表示的直线,直线的斜率为a ,在y 轴上的截距为1a-,直线的斜率和它在y 轴上的截距的乘积等于1-,图A 中,直线的斜率和它在y 轴上的截距都是正的,这不满足条件,故排除A ;图B 中,直线的斜率小于1,它在y 轴上的截距大于1-小于零,这不满足条件,故排除B ; 图C 中,直线的斜率和它在y 轴上的截距都是负值,这不满足条件,故排除C ;图D 中,直线的斜率小于1-,它在y 轴上的截距大于零小于1,能满足条件,故D 可能成立, 故选:D .二.多选题(共4小题)9.已知直线:20l kx y k -+=和圆222:O x y r +=,则( ) A .存在k 使得直线l 与直线0:220l x y -+=垂直B .直线l 恒过定点(2,0)C .若4r >,则直线l 与圆O 相交D .若4r =,则直线l 被圆O 截得的弦长的取值范围为 解:对于A ,直线0:220l x y -+=的斜率为12,则当2k =-时,满足直线l 与直线0:220l x y -+=垂直,故A 正确;对于B ,由:20l kx y k -+=,得(2)0k x y +-=,令200x y +=⎧⎨-=⎩,解得20x y =-⎧⎨=⎩,∴直线l 恒过定点(2,0)-,故B 错误;对于C ,若4r >,则直线l 所过定点(2,0)-在圆O 内部,则直线l 与圆O 相交,故C 正确;对于D ,若4r =,则直线l 被圆O 截得的弦长的最大值为8,最小值为=即直线l 被圆O 截得的弦长的取值范围为,8],故D 错误. 故选:AC .10.下列结论错误的是( )A .若直线1l ,2l 的斜率相等,则12//l lB .若直线的斜率121k k ⋅=,则12l l ⊥C .若直线1l ,2l 的斜率都不存在,则12//l lD .若直线1l ,2l 的斜率不相等,则1l 与2l 不平行 解:若直线1l ,2l 的斜率相等,则12//l l 或重合,A 错误; 若直线的斜率121k k ⋅=-,则12l l ⊥,B 错误;若直线1l ,2l 的斜率都不存在,则12//l l 或重合,C 错误; 若直线1l ,2l 的斜率不相等,则1l 与2l 一定不平行,D 正确. 故选:ABC .11.已知动直线:0m x y λλ-+=和:320n x y λλ+--=,P 是两直线的交点,A 、B 是两直线m 和n 分别过的定点,下列说法正确的是( ) A .B 点的坐标为(3,2)- B .m n ⊥C .P 的轨迹是一条直线D .PA PB ⨯的最大值为10解:对于A ,直线:(2)30n y x λ-+-=,所以直线n 过点(3,2),故A 错误; 对于B ,1(1)0λλ⨯+-⨯=,所以m n ⊥,故B 正确;对于C ,因为PA PB ⊥,所以P 的轨迹是以AB 为直径的圆,故C 错误; 对于D ,222202PA PB AB PA PB +==⨯,所以D 正确. 故选:BD .12.已知直线1:40l x y +-=与圆心为(0,1)M 且半径为3的圆相交于A ,B 两点,直线2:22350l mx y m +--=与圆M 交于C ,D 两点,则四边形ACBD 的面积的值可以是()A .B .C .D .1)解:根据题意,圆M 的圆心为(0,1)M 且半径为3,则圆M 的方程为22(1)9x y +-=,即22280x y y +--=,直线1:40l x y +-=与圆M 相交于A ,B 两点,则有2228040x y y x y ⎧+--=⎨+-=⎩,解可得:31x y =⎧⎨=⎩或04x y =⎧⎨=⎩,即A 、B 的坐标为(3,1),(0,4),则||AB AB 的中点为3(2,5)2,直线2:22350l mx y m +--=,变形可得(23)250m x y -+-=,直线2l 恒过定点3(2,5)2,设3(2N ,5)2,当CD 与AB 垂直时,四边形ACBD 的面积最大, 此时CD 的方程为5322y x -=-,变形可得1y x =+,经过点(0,1)M , 则此时||6CD =,故ACBD S 四边形的最大值162ACB ADB S S ∆∆=+=⨯⨯=故92ACBD S 四边形, 分析选项:BC 符合题意, 故选:BC .三.填空题(共4小题)13.在平面直角坐标系中,已知(2,2)A 、(1)B -若过点(1,1)P --的直线l 与线段AB 有公共点,则直线l 斜率的取值范围是 . 解:如图,显然点P 在直线AB 下方,直线AP 的斜率为21121AP k +==+,直线BP 的斜率BP k == 所以若过点(1,1)P --的直线l 与线段AB 有公共点, 则直线l 斜率BP k k ,或者AP k k , 所以3k -或者1k ,故答案为:(-∞,[1,)+∞.14.直线210x y -+=和圆222410x y x y +---=的位置关系是 .解:圆222410x y x y +---=化简可得22(1)(2)6x y -+-=,圆心坐标为(1,2),,圆心到直线210x y -+==< ∴直线210x y -+=和圆222410x y x y +---=的位置关系是相交,故答案为:相交.15.直线1:3470l x y +-=与直线2:3410l x y ++=之间的距离为 . 解:直线1:3470l x y +-=与直线2:3410l x y ++=之间的距离85d ==.故答案为:85.16.圆222440x y x y +-++=上的点到3490x y -+=的最大距离是 ,最小距离是 . 解:圆222440x y x y +-++=即22(1)(2)1x y -++=,表示以(1,2)C -为圆心,半径为1的圆.由于圆心(1,2)C -到直线3490x y -+=的距离4d ==,故动点P 到直线3490x y -+=的距离的最小值与最大值分别为3,5, 故答案为:5,3. 四.解答题(共6小题)17.已知圆C 的圆心在x 轴上,且经过点(3,0)A -,(1,2)B -. (Ⅰ)求圆C 的标准方程;(Ⅱ)过点(0,2)P 斜率为34的直线l 与圆C 相交于M ,N 两点,求弦MN 的长. 解:(Ⅰ)设AB 的中点为D ,则(2,1)D -, 由圆的性质得CD AB ⊥, 所以1CD AB k k ⨯=-,得1CD k =-,所以线段AB 的垂直平分线方程是1y x =--,设圆C 的标准方程为222()x a y r -+=,其中(,0)C a ,半径为(0)r r >, 由圆的性质,圆心(,0)C a 在直线CD 上,化简得1a =-,所以圆心(1,0)C -,||2r CA ==,所以圆C 的标准方程为22(1)4x y ++=; (Ⅱ)因为直线l 过点(0,2)P 斜率为34, 则直线l 的方程为324y x =+, 圆心(1,0)C -到直线l的距离为3|2|1d -==,所以MN ==18.(1)求直线y x =被圆22(2)4x y +-=截得的弦长;(2)已知圆22:430C x y x +-+=,求过点(3,2)M 的圆的切线方程. 解:(1)根据题意,圆22(2)4x y +-=的圆心为(0,2),半径2r =, 圆心到直线y x =的距离d =则直线y x =被圆截得的弦长2l == 故直线y x =被圆22(2)4x y +-=截得的弦长为(2)圆22:430C x y x +-+=,即22(2)1x y -+=,其圆心为(2,0),半径1r =, 若切线的斜率不存在,则切线的方程为3x =,符合题意;若切线的斜率存在,则设切线的斜率为k ,则切线的方程为2(3)y k x -=-,即320kx y k --+=,则有1d ==,解可得:34k =,此时切线的方程为3410x y --=.综上可得,圆的切线方程为3x =或3410x y --=.19.在直角坐标系xOy 中,直线:40l x --=交x 轴于M ,以O 为圆心的圆与直线l 相切.(1)求圆O 的方程;(2)设点0(N x ,0)y 为直线3y x =-+上一动点,若在圆O 上存在点P ,使得45ONP ∠=︒,求0x 的取值范围;(3)是否存在定点S ,对于经过点S 的直线L ,当L 与圆O 交于A ,B 时,恒有AMO BMO ∠=∠?若存在,求点S 的坐标;若不存在,说明理由.解:(1)直线:40l x -=交x 轴于(4,0)M ,圆心半径2r ==,所以圆的方程224x y +=.(2)如图,直线NP 与圆相切,设PNO α∠=,则2sin ONα=, 根据图象,N 越靠近O 点,ON 越小,sin α越大,由2sin 452ON ︒==,得ON = 设(,3)N x x -,由距离公式22(3)8x x +-=,解得x =0372x +.(3)AMO BMO ∠=∠,若直线L 的斜率不存在,显然S 点存在; 当斜率存在时,设:L y kx m =+,L 与圆的交点1(A x ,1)y ,2(B x ,2)y , 根据题意只需0AM BM k k +=,即1212044y yx x +=--, 把11y kx m =+,22y kx m =+带人并化简得12122(4)()80kx x m k x x m +-+-=, 把L 与圆联立解方程224y kx m x y =+⎧⎨+=⎩,得12221kmx x k +=-+,212241m x x k -=+, 带入上式222422(2)8011m kmk m k m k k ----=++,化简得0k m +=,即m k =-,所以:(1)L y k x =-,恒过(1,0)点.20.已知直线10l y -+=,圆C 的方程为224210x y x y ++-+=. (Ⅰ)判断直线l 与该圆的位置关系;(Ⅱ)若直线与圆相交,求出弦长;否则,求出圆上的点到直线l 的最短距离. 解:(Ⅰ)圆的方程为224210x y x y ++-+=,即22(2)(1)4x y ++-=,∴圆心为(2,1)-,半径为2r =,则圆心到直线的距离d r =,∴直线与圆相交.(Ⅱ)弦长2l ==. 21.已知圆M 过点(4,0)A ,(2,0)B -,(1,3)C . (Ⅰ)求圆M 的标准方程;(Ⅱ)若过点(2,3)P 且斜率为k 的直线l 与圆M 相切,求k 的值. 解:(Ⅰ)设圆M 的标准方程为222()()x a y b r -+-=,则有222222222(4)(0)(2)(0)(1)(3)a b r a b r a b r ⎧-+-=⎪--+-=⎨⎪-+-=⎩,解得1a =,0b =,3r =,所以圆M 的标准方程为22(1)9x y -+=; (Ⅱ)因为直线l 过点(2,3)P 且斜率为k ,则直线l 的方程为:3(2)y k x -=-,即230kx y k --+=, 因为直线l 与圆M 相切,所以圆心到直线l3=,解得0k =或34-.22.在平面直角坐标系xOy 中,已知直线:20l x y ++=和圆22:1O x y +=,P 是直线l 上一点,过点P 作圆C 的两条切线,切点分别为A ,B . (1)若PA PB ⊥,求点P 的坐标; (2)求线段PA 长的最小值;(3)设线段AB 的中点为Q ,是否存在点T ,使得线段TQ 长为定值?若存在,求出点T ;若不存在,请说明理由.解:(1)若PA PB ⊥,则四边形PAOB 为正方形, 则P=P 在直线20x y ++=上,设(,2)P x x --,则||OP =1x =-, 故(1,1)P --;(2)由22||||1PA PO =-,可知当线段PO 长最小时,线段PA 长最小. 线段PO 长的最小值,即点O 到直线l 的距离,故||min PO ==∴||1min PA ==;(3)设0(P x ,02)x --,则以OP 为直径的圆的方程为222200002(2)()()224x x x x x y --+---+-=, 化简得:2200(2)0x x x x y y -+++=,与221x y +=联立, 可得AB 所在直线方程为00(2)1x x x y -+=,联立0022(2)11x x x y x y -+=⎧⎨+=⎩,得22200000(244)2430x x x x x x x ++----=, Q ∴的坐标为002200002(,)244244x x x x x x --++++, 可得Q 点轨迹为22111()()448x y +++=,圆心11(,)44--,半径4R =.故存在点11(,)44T --,使得线段TQ 长为定值.。

浙教新版九年级下册数学《第2章 直线与圆的位置关系》单元测试卷(有答案)

浙教新版九年级下册数学《第2章 直线与圆的位置关系》单元测试卷(有答案)

浙教新版九年级下册数学《第2章直线与圆的位置关系》单元测试卷一.选择题(共8小题,满分24分)1.如图,⊙O内切于四边形ABCD,AB=10,BC=7,CD=8,则AD的长度为()A.8B.9C.10D.112.如图,若⊙O的直径为6,点O到某条直线的距离为6,则这条直线可能是()A.l1B.l2C.l3D.l43.如图所示,直线l与半径为5cm的⊙O相交于A、B两点,且与半径OC垂直,垂足为H,AB =8cm,若要使直线l与⊙O相切,则l应沿OC方向向下平移()A.1cm B.2cm C.3cm D.4cm4.如图,△ABC内接于⊙O,BD切⊙O于点B,AB=AC,若∠CBD=40°,则∠ABC等于()A.40°B.50°C.60°D.70°5.如图,四边形ABCD是圆的内接四边形,AB、DC的延长线交于点P,若C是PD的中点,且PD=6,PB=2,那么AB的长为()A.9B.7C.3D.6.如图,PA、PB是圆O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为()A.B.πC.D.7.如图,⊙O的半径为2,弦AB向上平移得到CD(AB与CD位于点O两侧),且CD与⊙O 相切于点E.若的度数为120°,则AD的长为()A.4B.2C.D.38.如图,⊙O内切于△ABC,若∠AOC=110°,则∠B的度数为()A.40°B.60°C.80°D.100°二.填空题(共8小题,满分24分)9.如图,P是圆O外的一点,点B、D在圆上,PB、PD分别交圆O于点A、C,如果AP=4,AB=2,PC=CD,那么PD=.10.如图,PA、PB、DE分别切⊙O于A、B、C,DE分别交PA,PB于D、E,已知P到⊙O的切线长为8cm,那么△PDE的周长为.11.已知:如图,在⊙O中,AB是直径,四边形ABCD内接于⊙O,∠BCD=130°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为.12.如图,已知⊙P的半径是1,圆心P在抛物线y=x2﹣x﹣上运动,当⊙P与x轴相切时,圆心P的坐标为.13.如图,在△ABC中,∠A=60°,BC=6,△ABC的周长为19.若⊙O与BC,AC,AB三边分别相切于点E,F,D,则DF的长为.14.Rt△ABC的斜边为13,其内切圆的半径等于2,则Rt△ABC的周长等于.15.在下图中,AB是⊙O的直径,要使得直线AT是⊙O的切线,需要添加的一个条件是.(写一个条件即可)16.如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙O的半径为3,当圆心O与点C重合时,⊙O与直线AB的位置关系为;若⊙O从点C开始沿直线CA移动,当OC=时,⊙O与直线AB相切?三.解答题(共7小题,满分72分)17.已知AB是⊙O的直径,BD为⊙O的切线,切点为B.过⊙O上的点C作CD∥AB,交BD 点D.连接AC,BC.(Ⅰ)如图①,若DC为⊙O的切线,切点为C.求∠BCD和∠DBC的大小;(Ⅱ)如图②,当CD与⊙O交于点E时,连接BE.若∠EBD=30°,求∠BCD和∠DBC的大小.18.如图,AB是⊙O的直径,点M是△ABC的内心,连接BM并延长交AC于点F交⊙O于点E,连接OE与AC相交于点D.(1)求证:OD=BC;(2)求证:EM=EA.19.如图,PA,PB分别与⊙O相切于点A,B,AC为弦,BC为⊙O的直径,若∠P=60°,PB=2cm.(1)求证:△PAB是等边三角形;(2)求AC的长.20.如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)若EB⊥BC,ED=3,求BG的长.21.已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB=AC,连结AC,过点D作DE⊥AC,垂足为E.求证:DE为⊙O的切线.22.如图,AB是⊙O的直径,点C、点D在⊙O上,AC=CD,AD与BC相交于点E,点F在BC 的延长线上,且∠FAC=∠D.(1)求证:AF是⊙O的切线;(2)若EF=12,sin D=,求⊙O的半径.23.如图,给定锐角三角形ABC,BC<CA,AD,BE是它的两条高,过点C作△ABC的外接圆的切线l,过点D,E分别作l的垂线,垂足分别为F,G.试比较线段DF和EG的大小,并证明你的结论.参考答案与试题解析一.选择题(共8小题,满分24分)1.解:∵⊙O内切于四边形ABCD,∴AD+BC=AB+CD,∵AB=10,BC=7,CD=8,∴AD+7=10+8,解得:AD=11.故选:D.2.解:∵若⊙O的直径为6,∴圆O的半径为3,∵点O到某条直线的距离为6,∴这条直线与圆相离,故选:A.3.解:连接OB,∴OB=5cm,∵直线l⊙O相交于A、B两点,且与AB⊥OC,AB=8cm,∴HB=4cm,∴OH=3cm,∴HC=2cm.故选:B.4.解:∵BD切⊙O于点B,∴∠DBC=∠A=40°,∵AB=AC,∴∠ABC=∠C,∴∠ABC=(180°﹣40°)÷2=70°.故选:D.5.解:∵C是PD的中点,PD=6,∴PC=CD=PD=3,由切割线定理得,PC•PD=PB•PA,即3×6=2×PB,解得,PB=9,∴AB=PA﹣PB=7,故选:B.6.解:连接AB,∵PA、PB是圆O的切线,∴OB⊥BP,OA⊥PA,∵∠P=60°,∴∠AOB=360°﹣90°﹣90°﹣60°=120°,∴的长==,故选:C.7.解:∵的度数为120°,∴∠AOB=120°,连接OE,OE的反向延长线交AB于F,连接OA,OB,如图,∵CD与⊙O相切于点E,∴EF⊥CD,由平移的性质得:CD∥AB,CD=AB,∴EF⊥AB,∵OA=OB,∴∠AOF=∠BOF=∠AOB=60°,AF=BF=AB=DE,∴∠OAF=30°,四边形BDEF是矩形,∴OF=OA=×2=1,BD=EF,∴EF=2+1=3,∴BD=3,在Rt△AOF中,OA=2,OF=1,∴AF===,∴AB=2,∴AD===,故选:C.8.解:∵⊙O内切于△ABC,∴AO,CO分别平分∠BAC,∠BCA,∠AOC=110°,∴∠BAC+∠BCA=2(∠OAC+∠OCA)=2(180°﹣∠AOC)=140°,∴∠B=180°﹣(∠BAC+∠BCA)=40°.故选:A.二.填空题(共8小题,满分24分)9.解:如图,∵AP=4,AB=2,PC=CD,∴PB=AP+AB=6,PC=PD.又∵PA•PB=PC•PD,∴4×6=PD2,则PD=4.故答案是:4.10.解:∵PA、PB、DE分别切⊙O于A、B、C,∴PA=PB,DA=DC,EC=EB;∴C=PD+DE+PE=PD+DA+EB+PE=PA+PB=8+8=16cm;△PDE∴△PDE的周长为16cm.故答案为16cm.11.解:连接BD,则∠ADB=90°,又∠BCD=130°,故∠DAB=50°,所以∠DBA=40°;又因为PD为切线,故∠PDA=∠ABD=40°,即∠PDA=40°.12.解:设点P(x,y),∵⊙P与x轴相切,∴|y|=1,∴y=±1,当y=1时,1=x2﹣x﹣,解得:x1=3,x2=﹣1,∴点P(3,1),(﹣1,1),当y=﹣1时,﹣1=x2﹣x﹣,解得:x1=x2=1,∴点P(1,﹣1),故答案为:(3,1)或(﹣1,1)或(1,﹣1).13.解:∵⊙O与BC,AC,AB三边分别相切于点E,F,D,∴AD=AF,BD=BE,CE=CF,∵△ABC的周长为19.∴AD+BD+BE+CE+CF+AF=19,即2AD+2BE+2CE=19,∴AD+BC=9.5,而BC=6,∴AD=9.5﹣6=3.5,∵∠A=60°,AD=AF,∴△ADF为等边三角形,∴DF=AD=3.5.故答案为:3.5.14.解:如图,Rt△ABC三边分别切圆O于点D,E,F,得四边形ODBE是正方形,∴BE=BD=OD=OE,∴AF=AD=AB﹣2,CF=CE=BC﹣2,∴AC=AF+CF=AB﹣2+BC﹣2=AB+BC﹣4,∴AB+BC=AC+4=13+4=17,∴AB+BC+AC=17+13=30.∴Rt△ABC的周长等于30.故答案为:30.15.解:∵AB是⊙O的直径,∴∠ACB=90°,∴∠B+∠BAC=90°,当∠TAC=∠B时,∠TAC+∠BAC=90°,即∠OAT=90°,∵OA是圆O的半径,∴直线AT是⊙O的切线,故答案为:∠TAC=∠B(答案不唯一).16.解:如图1,过O作OD⊥AB于D,由勾股定理得:AB===13,由三角形的面积公式得:AC×BC=AB×CD,∴5×12=13×CD,∴CD=>3,∴⊙O与AB的位置关系是相离.①如图2,过O作OD⊥AB于D,当OD=3时,⊙O与AB相切,∵OD⊥AB,∠C=90°,∴∠ODA=∠C=90°,∵∠A=∠A,∴△ADO∽△ACB,∴=,即=,∴AO=,∴OC=5﹣=,②如图3,过O作OD⊥BA交BA延长线于D,则∠C=∠ODA=90°,∠BAC=∠OAD,∴△BCA∽△ODA,∴,∴,∴OA=,∴OC=5+=,答:若点O沿射线CA移动,当OC等于或时,⊙O与AB相切.故答案为:相离,或.三.解答题(共7小题,满分72分)17.解:(Ⅰ)∵AB是⊙O的直径,DB为⊙O的切线,切点为B,∴DB⊥AB,∴∠DBA=90°,∵DC为⊙O的切线,切点为C,∴DC=DB,∵CD∥AB,∴∠D+∠DBA=180°,∴∠D=90°,∴∠BCD=∠DBC=45°;(Ⅱ)∵AB是⊙O的直径,DB为⊙O的切线,切点为B,∴DB⊥AB,∴∠DBA=90°,∵CD∥AB,∴∠D+∠DBA=180°,∴∠D=90°,∴∠DEB=∠EBA,∵∠EBD=30°,∴∠DEB=60°,∴∠EBA=60°,∴∠ACE=120°,∵AB是⊙O的直径,∴∠BCA=90°,∴∠BCD=30°,∴∠DBC=60°.18.(1)证明:∵点M是△ABC的内心,∴∠ABE=∠CBE,∴,∴CD=DA,又∵OA=OB,∴OD=BC;(2)证明:连接AM,∵M是△ABC的内心,∴∠BAM=∠CAM,∠ABE=∠CBE,∵∠EMA=∠ABE+∠BAM,∠EAM=∠CAE+∠CAM,∠CBE=∠CAE,∴∠EMA=∠EAM.∴EM=EA.19.解:(1)∵PA,PB分别与⊙O相切于点A,B,∴PA=PB,且∠P=60°,∴△PAB是等边三角形;(2)∵△PAB是等边三角形;∴PB=AB=2cm,∠PBA=60°,∵BC是直径,PB是⊙O切线,∴∠CAB=90°,∠PBC=90°,∴∠ABC=30°,∴tan∠ABC==,∴AC=2×=cm.20.解:(1)AC与⊙O相切.理由如下:连接OE,如图,∵AB=BC,D是AC中点,∴BD⊥AC,∵BE平分∠ABD,∴∠OBE=∠DBE,∵OB=OE,∴∠OBE=∠OEB,∴∠OEB=∠DBE,∴OE∥BD,∴OE⊥AC,而OE为⊙O的半径,∴AC为⊙O的切线;(2)过O作OM⊥BD于M,则四边形OBEM是矩形,∴OM=ED=3,BM=BG,∵EB⊥BC,∴∠C+∠CEB=90°,同理∠2+∠CEB=90°,∴∠2=∠C,∵AB=BC,∴∠2=∠A,∴∠1=∠2=∠A=30°,在Rt△OBM中,tan∠OBM=,∴=,∴BM=,∴BG=2BM=2.21.证明:如图,连接OD.∵AB是⊙O的直径,∴∠ADB=90°,∵AB=AC,∴CD=BD,∵OA=OB,∴OD∥AC.∴∠ODE=∠CED.∵DE⊥AC,∴∠CED=90°.∴∠ODE=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线.22.(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠B+∠CAB=90°,∵∠FAC=∠D.∵∠D=∠B,∴∠FAC=∠B,∴∠FAC+∠CAB=90°∴AF是⊙O的切线;(2)解:∵AC=CD,∴∠D=∠CAD,∴∠FAC=∠CAD,又∵∠ACB=90°,∴FC=CE,∵EF=12,∴CE=6,∴,∴AE=10,AC=8,∵在Rt△ACB中,,∴,∴,∴⊙O的半径长为.23.解:结论是DF=EG.∵∠FCD=∠EAB,∠DFC=∠BEA=90°,∴Rt△FCD∽Rt△EAB,∴=,∴,同理可得,又∵,∴BE•CD=AD•CE,∴DF=EG.。

中职数学基础模块下册第八章直线和圆的方程单元测试卷含参考答案

中职数学基础模块下册第八章直线和圆的方程单元测试卷含参考答案

中职数学基础模块下册第八章直线和圆的方程单元测试卷含参考答案一、选择题:(每题3分,共30分)1.已知点M(2,-3)、N(-4,5),则线段MN 的中点坐标是( )A .(3,-4)B .(-3,4)C .(1,-1) D.(-1,1)2.直线过点A( -1,3)、B(2,-2),则直线的斜率为( )A .-53B .-35C . -1 D. 13.下列点在直线2x-3y-6=0上的是( )A.(2,-1)B. (0,2)C. (3,0)D.(6,-2)4.已知点A(2,5),B(-1,1),则|AB |=( )A .5B .4 C. 3 D .175.直线x+y+1=0的倾斜角为( )A. 45º B ,90º C .135º D .180º6.直线2x+3y+6=0在y 轴上的截距为( ).A .3B .2C .-3D .-27.经过点P(-2,3),倾斜角为45º的直线方程为( )A. x+y+5=0B.x-y+5=0C .x-y-5=0 D. x+y-5=08.如果两条不重合直线1l 、2l 的斜率都不存在,那么( )A .1l 与2l 重合B .1l 与2l 相交C .1l //2l D.无法判定9.已知直线y= -2x-5与直线y=ax-4垂直,则a =( )A .-2B . -21C .2D .2110.下列直线与3x-2y+5=0垂直的是( );A . 2x-3y-4=0B .2x+3y-4=0 C.3x+2y-7=0 D .6x-4y+8=011.直线2x-y+4=0与直线x-y+5=0的交点坐标为( ).A .(1,6)B .(-1,6)C .(2,-3)D .(2,3)12.点(5,7)到直线4x-3y-1=0的距离等于( )A .52B .252C .58 D .8 13.已知圆的一般方程为0422=-+y y x ,则圆心坐标与半径分别是( )A. (0,2), r=2 B .(0,2), r=4C .(0,-2), r=2D .(0,-2), r=414.直线x+y=2与圆222=+y x 的位置关系是( )A.相交 B .相切 C .相离 D .不确定15.点A(l ,3),B (-5,1),则以线段AB 为直径的圆的标准方程是( )A .10)2()2(22=-++y xB .10)2()2(22=-++y xC. 10)3()1(22=-+-y x D .10)3()1(22=-+-y x16.若点P(2,m)到直线3x-4y+2=0的距离为4,则m 的值为( )A. m=-3 B . m=7 C . m=-3或m=7 D . m=3或m=7二、填空题17.平行于x 轴的直线的倾斜角为 ;18.平行于y 轴的直线的倾斜角为 ;19.倾斜角为60º的直线的斜率为 ;20.若点(2,-3)在直线mx-y+5 =0上,则m= ;21.过点(5,2),斜率为3的直线方程为:22.在y 轴上的截距为5,且斜率为4的直线方程为:23.将y-4=31(x —6)化为直线的一般式方程为:24.过点(-1,2)且平行于x 轴的直线方程为25.过点(O ,-3)且平行于直线2x+3y-4=0的直线方程是26.两条平行直线3x+4y-2=0和3x+4y+3=0的距离是27.已知直线1l :mx+2y-1=0与直线2l :x-y-l=0互相垂直,则m= ;28.圆心在点(0,2)且与直线x-2y+9 =0相切的圆的方程为29.圆086422=++-+y x y x 的圆心坐标为 ,半径为 。

(完整版)高二数学-直线和圆的方程-单元测试(含答案).doc

(完整版)高二数学-直线和圆的方程-单元测试(含答案).doc

高二直线和圆的方程单元测试卷班级: 姓名:一、选择题: 本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线 l 经过 A (2, 1)、B ( 1,m 2) (m ∈ R)两点,那么直线 l 的倾斜角的取值范围是A . [0, )B . [ 0, ] [3 C . [0, ], )444D . [0, ](, ) 422. 如果直线 (2a+5) x+( a - 2)y+4=0 与直线 (2- a)x+(a+3)y - 1=0 互相垂直,则 a 的值等于 A . 2 B .- 2C . 2,- 2D .2,0,- 2 3.已知圆 O 的方程为 x 2+ y 2= r 2,点 P ( a ,b )( ab ≠ 0)是圆 O 内一点,以P为中点的弦所在的直线为 m ,直线 n 的方程为 ax +by = r 2,则A .m ∥n ,且 n 与圆 O 相交B . m ∥ n ,且 n 与圆 O 相 离C . m 与 n 重合,且 n 与圆 O 相离D .m ⊥ n ,且 n 与圆 O 相离4. 若直线 ax2by 2 0( a,b 0) 始终平分圆 x 2y 2 4x 2 y8 0 的周长,则12a b的最小值为A .1B . 5 C.4 2D . 3 225. M (x 0 , y 0 ) 为 圆 x 2 y 2a 2 ( a 0) 内 异 于 圆 心 的 一 点 , 则 直 线x 0 x y 0 y a 2 与该圆的位置关系为A .相切 B.相交C.相离 D .相切或相交6. 已知两点 M ( 2,- 3), N (- 3,- 2),直线 L 过点 P ( 1, 1)且与线段 MN 相交,则直线 L 的斜率 k 的取值范围是A .3≤k ≤ 4B . k ≥ 3或 k ≤- 4C . 3≤ k ≤ 4D .-34444≤ k ≤45) 2 1)27. 过直线 y x 上的一点作圆 (x ( y 2 的两条切线 l 1, l 2 ,当直 线 l 1, l 2 关于 yx 对称时,它们之间的夹角为A . 30oB . 45oC . 60oD . 90ox y 1 01x 、yy1 0,那么 xy8满足条件4()的最大值为.如果实数2xy 1 0A . 2B. 1C.1D.19 (0, a),1x 2 y224其斜率为 ,且与圆2相切,则 a 的值为.设直线过点A.4B. 2 2C.2D.210.如图, l 1 、 l 2 、 l 3 是同一平面内的三条平行直线,l 1 与 l 2 间的距离是 1,l 2 与 l 3 间的距离是 2,正三角形 ABC 的三顶点分别在 l 1 、l 2 、l 3 上,则⊿ ABC的边长是A. 23 4 63 172 21B.3 C.4D.3一、选择题答案123 45 678910二、填空题: 本大题共 5 小题,每小题 5 分,共 25 分.答案填在题中横线上.11.已知直线 l 1 : x y sin 1 0 , l 2 : 2x siny 1 0 ,若 l 1 // l 2 ,则.12.有下列命题:①若两条直线平行,则其斜率必相等;②若两条直线的斜率乘积为- 1, 则其必互相垂直;③过点(- 1,1),且斜率为 2 的直线方程是y 1 2 ;x1④同垂直于 x 轴的两条直线一定都和 y 轴平行 ;⑤若直线的倾斜角为 ,则 0 .其中为真命题的有 _____________( 填写序号 ).13.直线 Ax + By +C = 0 与圆 x 2+ y 2= 4 相交于两点 M 、 N ,若满足 C 2= A 2+ uuuuruuurB 2,则 OM · ON ( O 为坐标原点)等于 _ .14.已知函数 f ( x) x 22x 3 ,集合 Mx, y f ( x) f ( y) 0 , 集 合 N x, y f ( x) f ( y) 0 , 则 集 合 MN 的 面 积是;15.集合P ( x, y) | x y 5 0,x N*,y N*},Q ( x, y) | 2x y m 0 ,M x, y) | z x y , ( x, y) ( P Q),若z 取最大值时,M(3,1) ,则实数m的取值范围是;三、解答题:本大题共 6 小题,共 75 分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12 分)已知ABC 的顶点A为(3,-1),AB边上的中线所在直线方程为6x 10 y 59 0, B 的平分线所在直线方程为x 4y 10 0 ,求BC 边所在直线的方程.17.(本小题满分12 分)某厂准备生产甲、乙两种适销产品,每件销售收入分别为 3 千元, 2 千元。

高中试卷-专题10 直线和圆的方程(单元测试卷)(含答案)

高中试卷-专题10 直线和圆的方程(单元测试卷)(含答案)

专题10 《直线和圆的方程》单元测试卷一、单选题1.(2019·全国高二月考(文))直线:的倾斜角为( )A .B .C .D .【答案】D 【解析】直线的斜率,设直线的倾斜角为,则,所以.故选:D.2.(2019·浙江省高二期中)圆心为,且过原点的圆的方程是( )A .B .C .D .【答案】A 【解析】根据题意.故选:.3.(2020·南京市江宁高级中学高一月考)如果直线(2a+5)x+(a -2)y+4=0与直线(2-a)x+(a+3)y -1=0互相垂直,则a 的值等于( )A .2B .-2C .2,-2D .2,0,-2【答案】C 【解析】(2a +5)(2-a )+(a -2)(a +3)=0,所以a =2或a =-2.4.(2019·山东省高一期中)圆与直线的位置关系( )A .相切B .相离C .相交D .不能确定【答案】Cx y +-0=30°45°60°135°0x y +=1k =-0x y +=1(080)a a °£<°tan 1a =-135a =°()2,2()()22228x y -+-=()()22222x y -+-=()()22228x y +++=()()22222x y +++=r ==()()22228x y -+-=A 22(1)5x y +-=120mx y m -+-=直线即即直线过点,把点代入圆的方程有,所以点在圆的内部,过点的直线一定和圆相交.故选:C.5.(2019·山东省高一期中)从点向圆引切线,则切线长的最小值( )A .B .5CD .【答案】A【解析】设切线长为,则,故选:A.6.(2020·南京市江宁高级中学高一月考)已知直线在两坐标轴上的截距相等,则实数A .1B .C .或1D .2或1【答案】D 【解析】由题意,当,即时,直线化为,此时直线在两坐标轴上的截距都为0,满足题意;当,即时,直线化为,由直线在两坐标轴上的截距相等,可得,解得;综上所述,实数或.故选:D .7.(2019·山东省高一期中)若点为圆的弦的中点,则弦所在直线的方程为( )A .B .C .D .120mx y m -+-=()12y m x -=-()21,()21,405+<()21,()21,(,3)P m 22(2)(2)1x y +++=4+d 2222(2)51(2)24d m m =++-=++min d \=20ax y a +-+=(a =)1-2-2a 0-+=a 2=ax y 2a 0+-+=2x y 0+=2a 0-+¹a 2¹ax y 2a 0+-+=122x ya a a+=--2a2a a-=-a 1=a 2=a 1=(1,1)P 2240x y x +-=AB AB 20x y +-=0x y -=20x y -+=22(1)5x y +-=【解析】化为标准方程为.∵为圆的弦的中点,∴圆心与点确定的直线斜率为,∴弦所在直线的斜率为1,∴弦所在直线的方程为,即.故选:B.8.(2020·武威第六中学高三二模(文))过点且倾斜角为的直线被圆所截得的弦长为( )AB .1CD .【答案】C 【解析】根据题意,设过点且倾斜角为的直线为 ,其方程为,即,变形可得,圆 的圆心为,半径 ,设直线与圆交于点,圆心到直线的距离,则,故选C.9.(2020·南京市江宁高级中学高一月考)已知直线和以,为端点的线段相交,则实数k 的取值范围为( )A .B.2240x y x +-=()22-24x y +=()1,1P ()22-24x y +=AB P 01121k -==--AB AB 11y x -=-0x y -=()1,030o ()2221x y -+=()1,030o l ()tan 301y x =-o)1y x =-10x -=()2221x y -+=()2,01r =l AB 12d 2AB ==20kx y -+=()3,2M -()2,5N 32k £32k ³C .D .或【答案】C 【解析】因为直线恒过定点,又因为,,所以直线的斜率k 的范围为.故选:C .10.(2020·四川省宜宾市第四中学校高二月考(理))已知圆,圆,、分别是圆、上动点,是轴上动点,则的最大值是( )A .BC .D【答案】D 【解析】如下图所示:4332k -££43k £-32k ³20kx y -+=()0,2A 43AM k =-32AN k =4332k -££()()221:231C x y -+-=()()222:349C x y -+-=M N 1C 2C P x PN PM -4+4+圆的圆心,半径为,圆的圆心,半径为,,由圆的几何性质可得,,,当且仅当、、三点共线时,取到最大值.故选:D.二、多选题11.(2019·辽宁省高二月考)在同一直角坐标系中,直线与圆的位置不可能是( )A .B .C .D .【答案】ABD 【解析】直线经过圆的圆心,且斜率为.故选项满足题意.故选:.12.(2020·山东省高三期末)已知点是直线上一定点,点、是圆上1C ()12,3C 11r =2C ()23,4C 23r =12C C ==2223PN PC r PC £+=+1111PM PC r PC ³-=-2112444PN PM PC PC C C -£-+£+=1C P 2C PN PM -4+2y ax a =+222()x a y a ++=2y ax a =+222()x a y a ++=(),0a -a ,,A B D ABD A :0l x y +=P Q 221x y +=的动点,若的最大值为,则点的坐标可以是( )A .B .C .D .【答案】AC 【解析】如下图所示:原点到直线的距离为,则直线与圆相切,由图可知,当、均为圆的切线时,取得最大值,连接、,由于的最大值为,且,,则四边形为正方形,所以由两点间的距离公式得整理得,解得,因此,点的坐标为或.故选:AC.13.(2020·广东省高二期末)瑞士数学家欧拉(LeonhardEuler )1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,,其欧拉线方程为,则顶点的坐标可以是( )A .B .C .D .PAQ Ð90o A (()1))1,1-l 1d ==l 221x y +=AP AQ 221x y +=PAQ ÐOP OQ PAQ Ð90o 90APO AQO Ð=Ð=o 1OP OQ ==APOQ OA =OA ==220t -=0t =A ()ABC D ()4,0-A ()0,4B 20x y -+=C ()2,0()0,2()2,0-()0,2-【答案】AD 【解析】设的垂直平分线为,的外心为欧拉线方程为与直线的交点为,,①由,,重心为,代入欧拉线方程,得,②由 ①②可得或 .故选:AD 三、填空题14.(2019·浙江省高二期中)直线过定点______;若与直线平行,则______.【答案】 【解析】(1),故.即定点为(2) 若与直线平行,则,故或.当时与直线重合不满足.故.故答案为:(1) ; (2)15.(2018·江苏省高二月考)已知以为圆心的圆与圆相内切,则圆C 的方程是________.【答案】(x -4)2+(y +3)2=36.(,),C x y AB y x =-ABC D 20x y -+=y x =-(1,1)M-22||||(1)(1)10MC MA x y \==\++-=()4,0A -()0,4B ABC D 44(,33x y -+20x y -+=20x y --=2,0x y ==0,2x y ==-()1:20l m x y m +--=()m R Î1l 2:310l x my --=m =()1,23-()1:20(1)20l m x y m m x x y +--=Þ-+-=101202x x x y y -==ììÞíí-==îî()1,21l 2:310l x my --=()()()()()2310130m m m m +---=Þ-+=1m =3m =-1m =1l 2l 3m =-()1,23-()4,3C -22:1O x y +=【解析】,设所求圆的半径为,由两圆内切的充分必要条件可得:,据此可得:,圆C 的方程是(x -4)2+(y +3)2=36.16.(2020·河南省高三二模(文))圆关于直线的对称圆的标准方程为__________.【答案】【解析】,圆心为,半径为,设圆心关于直线的对称点为,对称圆的标准方程为.故答案为:.17.(2020·四川省高三二模(文))已知、为正实数,直线截圆所得的弦长为,则的最大值为__________.【答案】【解析】因为直线截圆所得的弦长为,且圆的半径为2.故圆心到直线的距离.,因为、为正实数,故,所以.当且仅当时取等号.5=()0r r >15r -=6r =22230x y y ++-=10x y +-=22(2)(1)4x y -+-=Q 2222230(41)x y y x y ++-=Þ+=+\(0,1)-210x y +-=(,)x y \1(1)1,2,1.110,22y x xy x y +ì´-=-ï=ìïÞíí=-îï+-=ïî\22(2)(1)4x y -+-=22(2)(1)4x y -+-=a b 10x y ++=()()224x a y b -+-=ab 1410x y ++=(224x (),a b d ==a b 1a b +=2124a b ab +æö£=ç÷èø12a b ==故答案为:四、解答题18.(2020·吴江汾湖高级中学高一月考)求圆上与直线的距离最小的点的坐标.【答案】【解析】过圆心且与直线垂直的直线方程为,联立圆方程得交点坐标为,,又因为与直线的距离最小,所以.19.(2019·全国高二月考(文))已知直线过点.(1)若原点到直线的距离为,求直线的方程;(2)当原点到直线的距离最大时,求直线的方程.【答案】(1)或;(2)【解析】(1)①当直线的斜率不存在时,方程符合题意;14224x y +=43120x y +-=86,55P æöç÷èø43120x y +-=340x y -=224340x y x y ì+=í-=î86,55æöç÷èø86,55æö--ç÷èø43120x y +-=86,55P æöç÷èøl (2,1)P -O l 2l O l l 20x -=34100x y --=250.x y --=l 2x =②当直线的斜率存在时,设斜率为,则方程为,即,解得,则直线的方程为故直线的方程为或(2)当原点到直线的距离最大时,直线因为,所以直线的斜率所以其方程为,即20.(2020·吴江汾湖高级中学高一月考)在中,,边上的高所在的直线方程为,边上中线所在的直线方程为.(1)求点坐标;(2)求直线的方程.【答案】(1)(2)【解析】(1)边上的高为,故的斜率为, 所以的方程为,即,因为的方程为解得所以.l k ()12y k x +=-210.kx y k ---=234k =l 34100.x y --=l 20x -=34100.x y --=O l .l OP ^011022OP k +==--l 2,k =()122y x +=-250.x y --=ABC D (1,2)A -AC BE 74460x y +-=AB CM 211540x y -+=C BC ()66C ,2180x y +-=AC 74460x y +-=AC 47AC ()4217y x -=+47180x y -+=CM 211540x y -+=21154047180x y x y -+=ìí-+=î,,66x y =ìí=î()66C ,(2)设,为中点,则的坐标为, 解得, 所以, 又因为,所以的方程为即的方程为.21.(2019·浙江省高二期中)如图,圆,点为直线上一动点,过点引圆的两条切线,切点分别为(1)求证:直线恒过定点,并求出该定点的坐标;(2)若两条切线于轴分别交于两点,求面积的最小值.【答案】(1)见解析,(2【解析】(1)设,则以 为直径的圆的方程: ,与圆,两式相减得:,()00,B x y M AB M 0012,22x y -+æöç÷èø0000122115402274460x y x y -+ì-+=ïíï+-=î0028x y =ìí=î()2,8B ()6,6C BC ()866626y x --=--BC 2180x y +-=22:(2)1C x y -+=P :4l x =P C ,A BAB Q ,PA PB y ,M N QMN V 5,02Q æöç÷èø(4,)P t CP ()22232t x y æö-+-=ç÷èø22:(2)1C x y -+=:2(2)1AB l x ty -+=所以直线恒过定点.(2)设直线与的斜率分别为,与圆,即.所以,,22.(2020·江西省新余一中高一月考)已知点,,直线:,设圆的半径为,圆心在直线上.(1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,为坐标原点,求圆心的横坐标的取值范围.【答案】(1)或.(2)【解析】(1)由得:,所以圆C:..当切线的斜率存在时,设切线方程为,由,解得:当切线的斜率不存在时,即也满足所以切线方程为:或.5,02Qæöç÷èøAP BP12,k k(4)y t k x-=-C1=223410k tk t-+-=2121241,33-+=×=t tk k k k14My t k=-24Ny t k=-12||44=-==³MN k k()min1522MNQSD==(4,4)A(0,3)B l1y x=-C1C lC37y x=-A CC M2MB MO=O C a4x=3440x y-+=a££a££137y xy x=-ìí=-î()3,2C22(3)(2)1x y-+-=4(4)y k x-=-1d==34k=4x=4x=3440x y-+=(2)由圆心在直线l :上,设设点,由化简得:,所以点M在以为圆心,2为半径的圆上. 又点M 在圆C 上,所以圆C 与圆D 有交点,则即,解得:23.(2019·山东省高一期中)已知点,点在圆上运动.(1)求过点且被圆截得的弦长为的直线方程;(2)求的最值.【答案】(1)或;(2)最大值为88,最小值为72.【解析】(1)依题意,直线的斜率存在,因为过点且被圆截得的弦长为,,设直线方程为,即,解得或所以直线方程为或.(2)设点坐标为则.因为,所以,即的最大值为88,最小值为72.C 1y x =-(,1)C a a -(,)M x y ||2||MB MO ==22(1)4x y ++=(0,1)D -1||3CD ££13££a ££a ££(2,2),(2,6),(4,2)A B C ----P 22:4E x y +=C E 222||||||PA PB PC ++7100x y ++=20x y +-=C E 2(4)y k x +=-420kx y k ---==17k =-1k =-7100x y ++=20x y +-=P (),x y 224x y +=222222222||||||(2)(2)(2)(6)(4)(2)PA PB PC x y x y x y ++=++++++-+-++()223468804x y y y=+-+=-22y -≤≤7280488y £-£222||||||PA PB PC ++。

新人教版高中数学选修一第二单元《直线和圆的方程》测试卷(含答案解析)

新人教版高中数学选修一第二单元《直线和圆的方程》测试卷(含答案解析)

一、选择题1.如果实数x 、y 满足22640x y x +-+=,那么yx的最大值是( )A .23B C .3D 2.一束光线从点()2,3A 射出,经x 轴上一点C 反射后到达圆22(3)(2)2x y ++-=上一点B ,则AC BC +的最小值为( )A.B .C .D .3.过点()1,0P 作圆22(2)(2)1x y -+-=的切线,则切线方程为( ) A .1x =或3430x y +-= B .1x =或3430x y --= C .1y =或4340x y -+=D .1y =或3430x y --=4.已知圆()221:24C x a y ++=与圆()22:1C x y b +-=有且仅有1条公切线,则2211a b +的最小值为( ) A .6 B .7C .8D .95.圆22(1)2x y ++=上一点到直线5y x =+的距离最小值为( )A .1B .2CD .6.直线0x y +=被圆226240x y x y +-++=截得的弦长等于( )A .4B .2C .D7.两圆交于点(1,3)A 和(,1)B m ,两圆的圆心都在直线02cx y -+=上, 则m c += . A .1B .2C .3D .48.过点()3,1作圆()2211x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .230x y +-=B .230x y --=C .430x y --=D .430x y +-=9.已知圆C :224x y +=上恰有两个点到直线l :0x y m -+=的距离都等于1,则实数m 的取值范围是( )A .(2,32⎡-⎣ B .(2,32⎡-⎣C .2,32⎡⎡-⎣⎣D .((2,32-10.若过点(2,1)P 的圆与两坐标轴都相切,则圆心到直线230x y -+=的距离是( )A.5B.5CD11.曲线214y x ([]2,2x ∈-)与直线()24y k x =-+有两个公共点时,则实数k的取值范围是( ) A .50,12⎛⎫⎪⎝⎭B .13,34⎛⎫⎪⎝⎭C .5,12⎛⎫+∞⎪⎝⎭D .53,12412.若圆()2220x y r r +=>上仅有4个点到直线20x y --=的距离为1,则实数r 的取值范围为( )A .)1,+∞B.)1-C .()1-D .()1二、填空题13.设()11,M x y 、()22,N x y 为不同的两点,直线:0l ax by c ++=,1122ax by cax by cδ++=++,以下命题中正确的序号为__________.(1)存在实数δ,使得点N 在直线l 上; (2)若1δ=,则过M 、N 的直线与直线l 平行; (3)若1δ=-,则直线l 经过MN 的中点;(4)若1δ>,则点M 、N 在直线l 的同侧且直线l 与线段MN 的延长线相交; 14.已知点M 是直线l :22y x =--上的动点,过点M 作圆C :()()22114x y -+-=的切线MA ,MB ,切点为A ,B ,则当四边形MACB 的面积最小时,直线AB 的方程为______.15.已知点(3,1)A -,点M 、N 分别是x 轴和直线250x y +-=上的两个动点,则AM MN +的最小值等于_________.16.过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为_________.17.与两圆22(2)1x y ++=,22(2)1x y -+=都相切,且半径为3的圆一共有________个18.已知k ∈R ,过定点A 的动直线10kx y +-=和过定点B 的动直线30x ky k --+=交于点P ,则22PA PB +的值为__________.19.直线:20180l x y +-=的倾斜角为__________; 20.已知定点A 到动直线l :()221420+---=mx m y m (m R ∈)的距离为一常数,则定点A 的坐标为________.三、解答题21.在ABC 中,(2,5)A ,()1,3B (1)求AB 边的垂直平分线所在的直线方程;(2)若BAC ∠的角平分线所在的直线方程为30x y -+=,求AC 所在直线的方程. 22.以点1(),C m m为圆心的圆与x 轴相交于点O ,A ,与y 轴相交于点,O B (O 为坐标原点).(1)求证OAB 的面积为定值,并求出这个定值;(2)设直线23y x =-+与圆C 相交于点,P Q ,且||||OP OQ =,求圆C 的方程. 23.已知三条直线123121323:20,:20,:210,,,l x y l x l x y l l A l l B l l C -=+=+-=⋂=⋂=⋂=.(1)求ABC 外接圆的方程;(2)若圆22:20D x y ax +-=与ABC 的外接圆相交,求a 的取值范围.24.圆心为C 的圆经过点(4,1)A -和(3,2)B -,且圆心C 在直线:20l x y --=上. (1)求圆心为C 的圆的方程;(2)过点(5,8)P 作圆C 的切线,求切线的方程.25.当实数m 的值为多少时,关于,x y 的方程()()222221220m m x m m y m +-+-+++=表示的图形是一个圆?26.已知圆C 方程222410x y x y +-++= (1)求圆C 的圆心,半径;(2)直线l 经过(2,0),并且被圆C 截得的弦长为l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】本题首先可求出圆的圆心与半径,然后将yx看作圆上一点(),x y 与()0,0连线的斜率,并结合图像得出当过原点的直线与圆相切时斜率最大,最后根据直线与圆相切即可得出结果. 【详解】22640x y x +-+=,即()2235x y -+=,圆心为()3,0yx的几何意义是圆上一点(),x y 与()0,0连线的斜率, 如图,结合题意绘出图像:结合图像易知,当过原点的直线与圆相切时,斜率最大,即yx最大, 令此时直线的倾斜角为α,则5tan 2α=,y x 的最大值为5,故选:D. 【点睛】关键点点睛:本题考查直线的斜率的几何意义的应用,考查直线与圆相切的相关性质,能否将yx看作点(),x y 与()0,0连线的斜率是解决本题的关键,考查数形结合思想,是中档题.2.C解析:C 【分析】做出圆22(3)(2)2x y ++-=关于x 轴的对称圆,进而根据图形得AC BC AP r+≥-即可求解. 【详解】解:如图,圆22(3)(2)1x y ++-=的圆心()3,2-,其关于x 轴的对称圆的圆心为()3,2P --, 由图得AC BC AP r +≥-52242=-=.故选:C. 【点睛】解题的关键在于求圆关于x 轴的对称圆圆心P ,进而将问题转化AC BC AP r +≥-求解.3.B解析:B 【分析】按照过点P 的直线斜率是否存在讨论,结合直线与圆相切的性质及点到直线的距离公式即可得解. 【详解】圆22(2)(2)1x y -+-=的圆心为()2,2,半径为1,点P 在圆外,当直线的斜率不存在时,直线方程为1x =,点()2,2到该直线的距离等于1,符合题意; 当直线的斜率存在时,设直线方程为()1y k x =-即kx y k 0--=,1=,解得34k =,所以该切线方程为3430x y --=; 所以切线方程为1x =或3430x y --=. 故选:B. 【点睛】方法点睛:求过圆外一点()00,x y 的圆的切线方程的方法几何法:当斜率存在时,设为k ,则切线方程为00()y y k x x -=-,即000kx y y kx -+-=.由圆心到直线的距离等于半径,即可求出k 的值,进而写出切线方程;代数法:当斜率存在时,设为k ,则切线方程为00()y y k x x -=-,即00y kx kx y =-+,代入圆的方程,得到一个关于x 的一元二次方程,由0∆=,求得k ,切线方程即可求出.4.D解析:D 【分析】由题意可知,圆2C 内切于圆1C ,由题意可得出2241a b +=,然后将代数式2211a b +与224a b +相乘,展开后利用基本不等式可求得2211a b+的最小值. 【详解】圆()221:24C x a y ++=的圆心为()12,0C a -,半径为12r =,圆()22:1C x y b +-=的圆心为()20,C b ,半径为21r =,由于两圆有且仅有1条公切线,则圆2C 内切于圆1C ,所以12121C C r r ==-=,可得2241a b +=,()2222222222111144559b a a b a b a b a b ⎛⎫+=++=∴++≥+= ⎪⎝⎭, 当且仅当222b a =时,等号成立,因此,2211a b +的最小值为9. 故选:D. 【点睛】结论点睛:圆与圆的位置关系:设圆1C 与圆2C 的半径长分别为1r 和2r .(1)若1212C C r r <-,则圆1C 与圆2C 内含; (2)若1212C C r r =-,则圆1C 与圆2C 内切; (3)若121212r r C C r r -<<+,则圆1C 与圆2C 相交; (4)若1212C C r r =+,则圆1C 与圆2C 外切; (5)若1212C C r r >+,则圆1C 与圆2C 外离.5.C解析:C 【分析】求出圆心到直线距离,减去半径得解. 【详解】圆心为(1,0)-,直线方程为5y x =+,所以d == ,圆22(1)2x y ++=上一点到直线5y x =+的距离最小值d r -=故选C . 【点睛】圆上的点到直线的距离的最值的几何求法通常运用圆心到直线的距离加减半径得到.属于基础题.6.A解析:A 【分析】先将圆化成标准方程,求出圆心与半径,再求圆心到直线的距离,然后解弦长即可. 【详解】因为226240x y x y +-++= 所以22(3)(1)6x y -++=,圆心到直线的距离为d ==直线0x y +=被圆226240x y x y +-++=截得的弦长4l =;故选:A . 【点睛】计算圆的弦长通常使用几何法简捷.也可使用代数法计算.7.C解析:C 【分析】由两圆相交且圆心都在直线02c x y -+=上可知线段AB 中点在02cx y -+=上,代入中点坐标整理即可. 【详解】由题意可知:线段AB 的中点1,22m +⎛⎫⎪⎝⎭在直线02c x y -+=上 代入得:12022m c+-+= 整理可得:3m c +=本题正确选项:C 【点睛】本题考查两圆相交时相交弦与圆心连线之间的关系,属于基础题.8.A解析:A 【分析】求出以(3,1)、(1,0)C 为直径的圆的方程,将两圆的方程相减可得公共弦AB 的方程. 【详解】圆22(1)1x y -+=的圆心为(1,0)C ,半径为1,以(3,1)、(1,0)C 为直径的圆的方程为2215(2)()24x y -+-=,因为过点()3,1圆()2211x y -+=的两条切线切点分别为A ,B ,所以,AB 是两圆的公共弦,将两圆的方程相减可得公共弦AB 的方程230x y +-=, 故选:A . 【点睛】本题考查直线和圆的位置关系以及圆和圆的位置关系、圆的切线性质,体现了数形结合的数学思想,属于基础题.9.D【分析】先判断圆心到直线的距离()1,3d ∈,再利用距离公式列不等式即解得参数的取值范围. 【详解】圆C :224x y +=的圆心是()0,0C ,半径2r,而圆C :224x y +=上恰有两个点到直线l :0x y m -+=的距离都等于1,所以圆心()0,0C 到直线l :0x y m -+=的距离()1,3d ∈,即()1,3d ==,解得m -<<m <<.故选:D. 【点睛】本题考查了圆上的点到直线的距离问题和点到直线的距离公式,属于中档题.10.C解析:C 【分析】由题意可知圆心在第一象限,设圆心的坐标为(),,0a a a >,可得圆的半径为a ,写出圆的标准方程,利用点()2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y -+=的距离. 【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=. 由题意可得()()22221a a a -+-=, 可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()1,1或()5,5,圆心()1,1到直线230x y -+=的距离均为15d ==圆心()5,5到直线230x y -+=的距离均为25d ==圆心到直线230x y -+=的距离均为5d ==;所以,圆心到直线230x y -+=. 故选:C.关键点点睛:本题考查圆心到直线距离的计算,求出圆的圆心是解题的关键,考查计算能力.11.D解析:D 【分析】 易知曲线214y x 表示以()0,1 为圆心,以2为半径的半圆,直线()24y k x =-+过定点()2,4A ,然后在同一坐标系中作出直线与半圆的图象,利用数形结合法求解. 【详解】 曲线214y x 变形为22214141y x x y y 表示以()0,1 为圆心,以2为半径的半圆,直线()24y k x =-+过定点()2,4A ,在同一坐标系中作出直线与半圆的图象,如图所示:当直线()24y k x =-+与圆相切时,圆心到直线的距离等于半径,23221kk -=+,解得512k =,即512AC k ,又413224AB k , 由图知:当曲线214y x ([]2,2x ∈-)与直线()24y k x =-+有两个公共点时:ACAB k kk ,即53124k <≤. 故选:D 【点睛】本题主要考查直线与圆的位置关系的应用,还考查了数形结合的思想方法,属于中档题.12.A解析:A 【分析】到已知直线的距离为1的点的轨迹,是与已知直线平行且到它的距离等于1的两条直线,根据题意可得这两条平行线与222x y r +=有4个公共点,由此利用点到直线的距离公式加以计算,可得r 的取值范围. 【详解】解:作出到直线20x y --=的距离为1的点的轨迹,得到与直线20x y --=平行, 且到直线20x y --=的距离等于1的两条直线, 圆222x y r +=的圆心为原点, 原点到直线20x y --=的距离为22d ==,∴两条平行线中与圆心O 距离较远的一条到原点的距离为21d '=+,又圆222(0)x y r r +=>上有4个点到直线20x y --=的距离为1,∴两条平行线与圆222x y r +=有4个公共点,即它们都与圆222x y r +=相交.由此可得圆的半径r d '>, 即21r >+,实数r 的取值范围是()21,++∞.故选:A .【点睛】本题给出已知圆上有四点到直线的距离等于半径,求参数的取值范围.着重考查了圆的标准方程、直线与圆的位置关系等知识,属于中档题.二、填空题13.②③④【分析】①点在直线上则点的坐标满足直线方程从而得到进而可判断①不正确②若则进而得到根据两直线斜率的关系即可判断②③若即可得到即可判断③④若则或根据点与直线的位置关系即可判定④【详解】解:若点在解析:②③④ 【分析】①点在直线上,则点的坐标满足直线方程,从而得到220ax bx c ++=,进而可判断①不正确.②若1δ=,则1122ax by c ax by c ++=++,进而得到1221y y ax x b-=--,根据两直线斜率的关系即可判断②.③若1δ=-,即可得到1212()()022x x y y a b c ++++=,即可判断③. ④若1δ>,则11220ax by c ax by c ++>++>,或11220ax by c ax by c ++<++<,根据点与直线的位置关系即可判定④. 【详解】解:若点N 在直线l 上则220ax bx c ++=,∴不存在实数δ,使点N 在直线l 上,故①不正确;若1δ=,则1122ax by c ax by c ++=++, 即1221y y ax x b-=--, MN l k k ∴=, 即过M 、N 两点的直线与直线l 平行,故②正确; 若1δ=-,则11220ax by c ax by c +++++= 即,1212()()022x x y y a b c ++++=, ∴直线l 经过线段MN 的中点,即③正确;若1δ>,则11220ax by c ax by c ++>++>,或12220ax by c ax by c ++<++<, 即点M 、N 在直线l 的同侧,且直线l 与线段MN 不平行.故④正确. 故答案为:②③④. 【点睛】本题考查两直线的位置关系,点与直线的位置关系,直线的一般式方程等知识的综合应用,若两直线平行则两直线的斜率相等.14.【分析】由已知结合四边形面积公式可得四边形MACB 面积要使四边形MACB 面积最小则需最小此时CM 与直线垂直求得以CM 为直径的圆的方程再与圆C 的方程联立可得AB 所在直线方程【详解】由圆的标准方程可知圆 解析:210x y ++=【分析】由已知结合四边形面积公式可得四边形MACB面积2||||2||CAM S S CA AM MA ==⋅==△要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直,求得以CM 为直径的圆的方程,再与圆C 的方程联立可得AB 所在直线方程. 【详解】由圆的标准方程可知,圆心C (1,1) ,半径r =2.因为四边形MACB的面积2||||2||CAM S S CA AM MA ==⋅==△ 要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直. 直线CM 的方程为11(x 1)2y -=- ,即11.22y x =+联立112222y x y x ⎧=+⎪⎨⎪=--⎩,解得(1,0)M -则以CM 为直径的圆的方程为2215()24x y +-=, 联立222215(),24(1)(1)4x y x y ⎧+-=⎪⎨⎪-+-=⎩消去二次项可得直线AB 的方程为210x y ++=, 故答案为:210x y ++= 【点睛】关键点点睛:根据四边形的面积表达式可以看出要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直,此时所做圆的直径为CM ,写出圆的方程,两圆方程相减即可求出过AB 的直线方程.15.【分析】利用对称性作点关于轴的对称点利用数形结合求的最小值【详解】作点关于轴的对称点则最小值即为到直线的距离所以的最小值为故答案为:【点睛】关键点点睛:本题的关键是利用对称性作点关于轴的对称点则再利解析:5【分析】利用对称性,作点(3,1)A -关于x 轴的对称点(3,1)A '--,||||||||AM MN A M MN '+=+,利用数形结合求AM MN +的最小值.【详解】作点(3,1)A -关于x 轴的对称点(3,1)A '--,则||||||||AM MN A M MN '+=+,最小值即为(3,1)A '--到直线250x y +-=的距离,12555d ==,所以||||AM MN +的最小值为55. 125【点睛】关键点点睛:本题的关键是利用对称性作点(3,1)A -关于x 轴的对称点(3,1)A '--,则AM A N '=,再利用点到直线的距离比其他折线都短,计算||||AM MN +的最小值. 16.x +4y -4=0【分析】设l1与l 的交点为A(a8-2a)求得关于的对称点坐标利用对称点在直线上求得即得点坐标从而得直线方程【详解】设l1与l 的交点为A(a8-2a)则由题意知点A 关于点P 的对称点B解析:x +4y -4=0【分析】设l 1与l 的交点为A (a,8-2a ),求得A 关于P 的对称点坐标,利用对称点在直线2l 上求得a ,即得A 点坐标,从而得直线l 方程.【详解】设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上, 代入l 2的方程得-a -3(2a -6)+10=0,解得a =4, 即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0. 故答案为:x +4y -4=0. 【点睛】本题考查求直线方程,解题方法是根据点关于点的对称点求解,直线l 与已知两直线各有一个交点,P 是这两个交点连线段中点,因此可设其中一点坐标,由对称性表示出另一点坐标,代入第二条直线方程可求得交点坐标,从而得直线方程.17.7【分析】根据两圆相离可以判定出与两圆都相切且半径为3的圆有7个【详解】解:因为两圆是相离的所以与两圆都相切且半径为3的圆的情况如下:与两圆都内切的有1个是以原点为圆心即;与两圆都外切的有2个设切点解析:7 【分析】根据两圆相离,可以判定出与两圆都相切且半径为3的圆有7个.【详解】解:因为两圆221:(2)1O x y ++=,222:(2)1O x y -+=是相离的,所以与两圆都相切且半径为3的圆的情况如下:与两圆都内切的有1个,是以原点为圆心,即229x y +=;与两圆都外切的有2个,设切点为(0,)b 4b =⇒=±∴22(9x y +±=,同理,利用圆与圆的圆心距和半径的关系可得:与圆1O 外切于圆2O 内切的圆有2个;与圆1O 内切于圆2O 外切的圆有2个;分别为223()(92x y ++±=和223()(92x y -+=,共7个, 故答案为:7. 【点睛】由圆心距判断两圆的位置关系相离,再利用直观想象可得与两圆都相切的情况,包括内切和外切两类.18.13【分析】由两直线方程可得定点再联立两直线方程解出的坐标然后由两点间距离公式可得进而可以求解【详解】动直线过定点动直线过定点联立方程解得则由两点间距离公式可得:故答案为:13【点睛】本题考查了直线解析:13 【分析】由两直线方程可得定点(0,1)A ,(3,1)B --,再联立两直线方程解出P 的坐标,然后由两点间距离公式可得2PA ,2PB ,进而可以求解. 【详解】动直线10kx y +-=过定点(0,1)A 动直线30x ky k --+=过定点(3,1)B --联立方程1030kx y x ky k +-=⎧⎨--+=⎩,解得223(1k P k -+,2231)1k k k -+++, 则由两点间距离公式可得:PA =PB =2432432222222222224129412991249124()()(1)(1)(1)(1)k k k k k k k k k k PA PB k k k k -+-+++++∴+=+++++++422213(21)13(1)k k k ++==+,故答案为:13. 【点睛】本题考查了直线中定点问题以及两点间距离公式,考查了学生的运算能力,属于基础题.19.【分析】把直线的一般方程化为斜截式方程得到斜率即可求出倾斜角【详解】由可得:所以斜率即所以倾斜角为故填【点睛】本题主要考查直线的斜率及倾斜角属于基础题解析:34π 【分析】 把直线的一般方程化为斜截式方程,得到斜率,即可求出倾斜角. 【详解】由20180x y +-=可得:2008y x =-+ ,所以斜率1k =-,即tan 1α=-,所以倾斜角为34π,故填34π. 【点睛】本题主要考查直线的斜率及倾斜角,属于基础题.20.【解析】【分析】设出定点A 根据点到直线的距离公式求出点到直线l 的距离由距离为常数利用一般到特殊的思想令分析可得定点A 的坐标检验一般性可知动直线l 是以为圆心半径为的圆的切线系即可求出定点A 的坐标为【详 解析:()2,1【解析】 【分析】设出定点A ,根据点到直线的距离公式求出点A 到直线l 的距离,由距离为常数,利用一般到特殊的思想,令0,1,1m =-分析可得,定点A 的坐标,检验一般性可知,动直线l 是以()2,1 为圆心,半径为1的圆的切线系,即可求出定点A 的坐标为()2,1. 【详解】设定点A 为(),a b ,所以点A 到直线l 的距离d =无论m R ∈,d 为定值,所以令0m = 可得,2d b =-,令1m = 可得,3d a =-, 令1m =-可得,1d a =- ,由31a a -=- 可得,2a =,即有1b =或3b = .当定点A 为()2,1 时,22111m d m +===+ ,符合题意; 当定点A 为()2,3时,22131m d m -==+ ,显然d 的值随m 的变化而变化,不符题意,舍去.综上可知,动直线l 是以()2,1 为圆心,半径为1的圆的切线系,所以定点A 为2,1.故答案为:()2,1. 【点睛】本题主要考查直线系方程的识别和应用,点到直线的距离公式的应用,考查学生的转化能力和数学运算能力,属于中档题.三、解答题21.(1)11924y x =-+;(2)280x y -+=. 【分析】(1)设AB 边的垂直平分线为l ,求出12l k =-,即得AB 边的垂直平分线所在的直线方程;(2)设B 关于直线30x y -+=的对称点M 的坐标为(,)a b ,求出(0,4)M 即得解. 【详解】(1)设AB 边的垂直平分线为l , 有题可知53221AB k -==-,12lk , 又可知AB 中点为3,42⎛⎫⎪⎝⎭,∴l 的方程为13422y x ⎛⎫-=-- ⎪⎝⎭,即11924y x =-+, (2)设B 关于直线30x y -+=的对称点M 的坐标为(,)a b ;则311133022b a a b -⎧=-⎪⎪-⎨++⎪-+=⎪⎩,解得04a b =⎧⎨=⎩,所以(0,4)M ,由题可知A ,M 两点都在直线AC 上,所以直线AC 的斜率为541202-=-,所以直线AC 的方程为14(0)2y x -=-, 所以AC 所在直线方程为280x y -+=.【点睛】方法点睛:求直线方程常用的方法是:待定系数法,先定式(点斜式、斜截式、两点式、截距式、一般式),再定量.22.(1)证明见解析;定值为2;(2)225((2x y -+=. 【分析】(1)由题可得出圆的方程,即可得出,A B 坐标,进而可求出面积; (2)由题可得OC PQ ⊥,利用斜率可求出m . 【详解】解:(1)由已知圆的半径r OC ==, 故圆C 的方程为222211()()x m y m m m-+-=+, 即22220x y mx y m +--=, ∴(2,0)A m ,2(0,)B m, ∴112||||2222OABSOA OB m m=⋅=⨯⋅=, ∴OAB 的面积为定值2.(2)∵||||OP OQ =,||||CP CQ =,∴OC PQ ⊥,而2PQ k =-,∴2112OC k m==,∴m =∴圆C 的方程为225((22x y +-=或225(()22x y +++=当圆C 为225((22x y ++=时,圆心到直线23y x =-+的距离|3|352d --==>, 此时直线与圆相离,故舍去.∴圆C 的方程为225((22x y +-=. 【点睛】关键点睛:本题考查圆中三角形面积的定值问题以及求圆的标准方程,解题的关键是将点A ,B 都用m 表示出来,根据||||OP OQ =得出OC PQ ⊥. 23.(1)22(2)(2)9x y ++-=;(2)11,,210⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭. 【分析】(1)由三条直线得到三交点,,A B C 构成直角三角形,联立方程组,求得,A C 点的坐标,得到圆心坐标和半径,进而求得圆的方程;(2)由两圆相交,得到|3|||43||a a -<<+,即可求得a 的取值范围. 【详解】(1)由题意,三条直线123:20,:20,:210l x y l x l x y -=+=+-=, 可得2l 平行于y 轴,1l 与3l 互相垂直,三交点,,A B C 构成直角三角形, 经过,,A B C 三点的圆就是以AC 为直径的圆. 由方程组2020x y x -=⎧⎨+=⎩,解得21x y =-⎧⎨=-⎩,所以点A 的坐标是(2,1)--.由方程组20210x x y +=⎧⎨+-=⎩,解得25x y =-⎧⎨=⎩,所以点C 的坐标是(2,5)-.可得线段AC 的中点坐标是(2,2)-,又由||6AC =,所以ABC 外接圆的方程为22(2)(2)9x y ++-=.(2)由圆222:()D x a y a -+=与22(2)(2)9x y ++-=相交,所以|3|||43||a a -<<+,化简得6||146||1a a a -+<<+, 当0a <时,12a <-;当0a >时,110a >. 综上可得,a 的取值范围是11,,210⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭. 【点睛】圆与圆的位置关系问题的解题策略:判断两圆的位置关系时常采用几何法,即利用两圆的圆心之间的距离与两圆的半径间的关系进行判断,一般不采用代数法;若两圆相交,则两圆的公共弦所在直线的方程可由两圆的方程作差消去22,x y 项得到.24.(1)22(2)25x y ++=;(2)5x =或34170x y -+=. 【分析】(1)联立点A 和B 的中垂线与直线l ,求出圆心坐标,算出圆心与A 距离,写出圆的标准方程即可;(2)讨论斜率存在与不存在,将直线与圆相切转化为d r =,解出k ,代回直线方程化简即可. 【详解】(1)根据题意可得2113(4)AB k -==---,,A B 中点坐标为73(,)22-,所以AB 的中垂线为7322y x ⎛⎫=-++ ⎪⎝⎭,即2y x =--, 联立方程202x y y x --=⎧⎨=--⎩可得圆心坐标(0,2)-,又222(0(3))(22)25r =--+--=, 所以圆C 的方程为22(2)25x y ++=.(2)①过点P 斜率不存在的直线为5x =,与圆C 相切; ②过点P 斜率存在的直线设斜率为k , 则(5)8y k x =-+,即580kx y k --+= 圆心(0,2)-到切线的距离为5=,解得34k =综上,切线的方程为5x =或34170x y -+=. 【点睛】求圆的方程的两种方法:(1)几何法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程; (2)待定系数法:①根据题意,选择标准方程与一般方程; ②根据条件列出关于,,a b r 或,,D E F 的方程组; ③解出,,a b r 或,,D E F ,代入标准方程或一般方程.25.3m =-【分析】圆的方程中22,x y 系数需相等,可得22212m m m m +-=-+,解方程即可得答案; 【详解】要使方程()()222221220m m x m m y m +-+-+++=表示的图形是一个圆,需满足22212m m m m +-=-+,得2230m m +-=, 所以3m =-或1m =.①当1m =时,方程为2232x y +=-不合题意,舍去;②当3m =-时,方程为2214141x y +=,即22114x y +=为半径的圆.综上,3m =-满足题意. 【点睛】圆的一般方程形式为2222(4)00x y Dx Ey F D E F ++++=+->,注意方程的特点是求解的关键.26.(1)圆心(1,2)-;半径2;(2)2x =或3460x y --=. 【分析】(1)将圆的方程化为标准方程,直接求圆心和半径;(2)利用弦长公式,得到圆心到直线的距离,分斜率存在和不存在两种情况,求直线方程. 【详解】(1)()()22222410124x y x y x y +-++=⇔-++=圆心(1,2)- 半径2;(2)圆222410x y x y +-++=可化为22(1)(2)4x y -++=.所以圆心到直线的距离为1d ==当直线l 的斜率不存在时,直线l 的方程为2x =, 此时直线l被圆C 截得的弦长为当直线l 的斜率k 存在时,设直线l 的方程为(2)y k x =-,即20kx y k --=1= 解得34k =∴直线的方程为3460x y --=综上所述,直线l 的方程为2x =或3460x y --=.【点睛】易错点睛:本题第二问,根据弦长求直线方程时,不要忽略过定点直线,其中包含斜率存在和不存在两种情况,否则容易丢根.。

浙教版九年级数学下册 第二章 直线与圆的位置关系 单元综合测试【含答案】

浙教版九年级数学下册 第二章 直线与圆的位置关系 单元综合测试【含答案】

浙教版九年级数学下册第二章直线与圆的位置关系单元综合测试一.选择题1.在平面直角坐标系中,以点P(1,2)为圆心,以P为圆心,以1为半径的圆必与x轴有多少个公共点()A.0B.1C.2D.32.如图,以点O为圆心作圆,所得的圆与直线a相切的是()A.以OA为半径的圆B.以OB为半径的圆C.以OC为半径的圆D.以OD为半径的圆3.如图,四边形ABCD内接于⊙O,AB=BC.AT是⊙O的切线,∠BAT=55°,则∠D等于()A.110°B.115°C.120°D.125°4.如图,A、B、C、D为⊙O上的点,直线BA与DC相交于点P,PA=2,PC=CD=3,则PB=()A.6B.7C.8D.95.如图所示,在4×4的网格中,A,B,C,D,O均在格点上,则点O是()A.△ACD的外心B.△ACD的内心C.△ABC的内心D.△ABC的外心6.如图,直线l与⊙O相切于点A,M是⊙O上的一个动点,MH⊥l,垂足为H.若⊙O的半径为2,则MA﹣MH的最大值为()A.B.C.1D.27.如图,∠MPN=60°,点O是∠MPN的角平分线上的一点,半径为4的⊙O经过点P,将⊙O向左平移,当⊙O与射线PM相切时,⊙O平移的距离是()A.2B.C.D.28.如图,PA,P B与⊙O分别相切于点A,B,PA=2,∠P=60°,则AB=()A.B.2C.D.3二.填空题9.如图,在△ABC中,∠ABC=50°,∠ACB=70°,点O是△ABC的内心,则∠BOC=度.10.如图,PA、PB分别切圆O于A、B,并与圆O的切线,分别相交于C、D,已知△PCD的周长等于10cm,则PA=cm.11.如图,过点P作⊙O的两条割线分别交⊙O于点A、B和点C、D,已知PA=3,BA=PC=2,则PD 的长是.12.已知,如图,AC切⊙O于点A,∠BAC=60°,则∠AOB=度.13.如图,△ABC中,∠ACB=90°,AB=5,AC=3,BC为半圆O的直径,将△ABC沿射线CB方向平移得到△A1B1C1.当A1B1与半圆O相切于点D时,平移的距离的长为.14.如图,△ABC中,∠ACB=90°,sin A=,AC=8,将△ABC绕点C顺时针旋转90°得到△A′B′C,P为线段A′B′上的动点,以点P为圆心,PA′长为半径作⊙P,当⊙P与△ABC的边相切时,⊙P 的半径为.15.如图,在Rt△ABC中,∠ACB=90°,AB=5,BC=3,点P在边AC上,⊙P的半径为1.如果⊙P 与边B C和边AB都没有公共点,那么线段PC长的取值范围是.16.如图,在矩形ABCD中,CD是⊙O直径,E是BC的中点,P是直线AE上任意一点,AB=4,BC=6,PM、PN相切于点M、N,当∠MPN最大时,PM的长为.三.解答题17.如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于E,过B作⊙O的切线,交AC的延长线于D.求证:∠CBD=∠CAB.18.如图,AB是⊙O的一条弦,点C是⊙O外一点,OC⊥OA,OC交AB于点P、交⊙O于点Q,且CP =CB=2.(1)求证:BC是⊙O的切线;(2)若∠A=22.5°,求图中阴影部分的面积.19.如图,点P在⊙O外,M为OP的中点,以点M为圆心,以MO为半径画弧,交⊙O于点A,B,连接PA;(1)判断P A与⊙O的位置关系,并说明理由;(2)连接AB,若OP=9,⊙O的半径为3,求AB的长.20.如图,A B为⊙O直径,PA、PC分别与⊙O相切于点A、C,PQ⊥PA,PQ交OC的延长线于点Q.(1)求证:OQ=PQ;(2)连BC并延长交PQ于点D,PA=AB,且CQ=6,求BD的长.21.已知:如图,在△ABC中,∠ACB=90°,AC=3,BC=4,I1为△ABC内切圆的圆心,⊙I2与BA,BC的延长线及AC边都相切(旁切圆).(1)求⊙I2的半径;(2)求线段I1I2的长.22.如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=20,BC=16,求CD的长.23.如图,在Rt△ABC中,∠ACB=90°,点D在边AC上,∠DBC=∠BAC,⊙O经过A、B、D三点,连接DO并延长交⊙O于点E,连接AE,DE与AB交于点F.(1)求证:CB是⊙O的切线;(2)求证:AB=EB;(3)若DF=3,EF=7,求BC的长.答案一.选择题1.解:∵P(1,2),即2>1,∴以P为圆心,以1为半径的圆与x轴的位置关系是相离,∴该圆与x轴的交点有0个.故选:A.2.解:∵OD⊥a于D,∴以点O为圆心,OD为半径的圆与直线a相切.故选:D.3.解:如图,连接AC,由弦切角定理知∠ACB=∠BAT=55°,∵AB=BC,∴∠ACB=∠CAB=55°,∴∠B=180°﹣2∠ACB=70°,∴∠D=180°﹣∠B=110°.故选:A.4.解:∵PB,PD是⊙O的割线,∴PA•PB=PC•PD,∵PA=2,PC=CD=3,∴2PB=3×6解得:PB=9.故选:D.5.解:由勾股定理可知:OA=OD=OC==,所以点O是△ACD的外心,故选:A.6.解:如图,连接AO并延长交圆O于点C,连接CM,设BH=b,MA=a,∵直线l与⊙O相切于点A,∴连接OA交圆O于点C,则∠CAH=90°,又∵∠MHA=90°,∴AC∥HM,∴∠HMA=∠MAC,∵AC为直径,∴∠CMA=90°.∴△AMH∽△CAM,∴=,CA=4,∴=,∴a2=4b,b=,∴a﹣b=a﹣=﹣(a﹣2)2+1,∴当a=2时,a﹣b的最大值为1.则MA﹣MH的最大值为1.故选:C.7.解:设⊙O'为⊙O向左平移后与PM相切的圆,切点为B,连接O'B交PO于D,过O作OA⊥PM于A,OC⊥O'B于C,如图所示:则OO'即为⊙O平移的距离,O'B=OP=4,O'B⊥PM,∵∠MPN=60°,PO是∠MPN的平分线,∴∠MPO=∠OPN=∠MPN=30°,∵OA⊥OM,∴OA=OP=2,∵OA⊥PM,OC⊥O'B,O'B⊥PM,∴四边形OABC是矩形,∴BC=OA=2,∴O'C=O'B﹣BC=2,由平移的性质得:OO'∥PN,∴∠DOO'=∠OPN=30°,∵O'B⊥PM,∴∠O'BP=90°,∴∠BDP=90°﹣∠MPO=60°,∵∠BDP=∠DOO'+∠DO'O,∴∠DO'O=∠BDP﹣∠DOO'=30°,∴OC=O'C=,OO'=2OC=,即⊙O平移的距离为,故选:B.8.解:∵PA,PB与⊙O分别相切于点A,B,∴PA=PB,∵∠APB=60°,∴△PAB是等边三角形,∴AB=AP=2.故选:B.二.填空题9.解:∵点O是△ABC的内心,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC=×50°=25°,∠OCB=∠ACB=×70°=35°,∴∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣25°﹣35°=120°.故答案为120.10.解:如图,设D C与⊙O的切点为E;∵PA、PB分别是⊙O的切线,且切点为A、B;∴PA=PB;同理,可得:DE=DA,CE=CB;则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=10(cm);∴PA=PB=5cm,故答案为:5.11.解:∵PAB,PCD是圆的两条割线,∴PA•PB=PC•PD,∵PA=3,BA=PC=2,∴3×5=2PD,∴PD=7.5.故答案为7.5.12.解:∵AC切⊙O于点A,∴∠AOB=2∠BAC=120°.13.解:连接OG,如图,∵∠BAC=90°,AB=5,AC=3,∴BC==4,∵Rt△ABC沿射线CB方向平移,当A1B1与半圆O相切于点D,得△A1B1C1,∴CC1=BB1,A1C1=AC=3,A1B1=AB=5,∠A1C1B1=∠ACB=90°,∵A1B1与半圆O相切于点D,∴OD⊥A1B1,∵BC=4,线段BC为半圆O的直径,∴OB=OC=2,∵∠B1=∠B1,∴Rt△B1OD∽Rt△B1A1C1,∴=,即=,解得OB1=,∴BB1=OB1﹣OB=﹣2=;故答案为:.14.解:∵,∴设BC=3x,则AB=5x,在Rt△ABC中,由勾股定理得,AB2=AC2+BC2,即:(5x)2=(3x)2+82,∴x=2,∴AB=10,BC=6,∴,①若⊙P与AC相切,如图1,设切点为M,连接PM,则PM⊥AC,且PM⊥PA′,∵PM⊥AC,A′C⊥AC,∴∠B′PM=∠A′,由旋转性质可知∠A′=∠A,∴∠B′PM=∠A,∴,设PM=4x,则PA′=PM=4x,B′P=5x,又∵A′B′=AB,即:4x+5x=10,解得,∴;②若⊙P与AB相切,延长PB′交AB于点N,如图2,∵∠A′+∠B=∠A+∠B=90°,∵∠A′NB=90°,即N为AB与⊙O切点,又∴A′B=BC+AC′=BC+AC=14,∴A′N=A′B•cos∠A′=A′B•cos A,即,∴.综上,⊙P的半径为或,故答案为:或.15.解:在Rt△ABC中,∠ACB=90°,AB=5,BC=3,∴AC=4,当⊙P与A B相切时,设切点为D,如图,连接PD,则PD⊥AB,∴∠C=∠ADP=90°,∵∠A=∠A,∴△ADP∽△ACB,∴,∴=,∴PA=,∴PC=AC﹣PA=,∴线段PC长的取值范围是1<CP<,故答案为:1<CP<.16.解:如图1,∵四边形ABCD是矩形,∴CD=AB=4,连接OP,OM,∵PM,PN是⊙O的切线,∴∠OPM=∠MPN,要∠MPN最大,则∠OPM最大,∵PM是⊙O的切线,∴∠OMP=90°,在Rt△PMO中,OM=OD=CD=2,∴sin∠OPM==,∴要∠OPM最大,则OP最短,即OP⊥AE,如图2,延长DC交直线AE于G,∵四边形ABCD是矩形,∴∠B=90°=∠ECG,AB∥CD,∴∠BAE=∠G,∵点E是BC的中点,∴BE=BC=3,∴△ABE≌△GCE(AAS),∴CG=AB=4,∵CD是⊙O的直径,∴OC=CD=2,∴OG=OC+CE=6,在Rt△ABE中,AB=4,BE=3,∴AE=5,∵∠OPG=90°=∠B,∠G=∠BAE,∴△ABE∽△GPO,∴,∴,∴OP=,在Rt△PMO中,PM===,故答案为:.三.解答题17.证明:连接AE,∵AB是圆的直径,∴AE⊥BC,∵AB=AC,∴AE平分∠BAC,∴∠BAE=∠CAE=∠CAB,∵BD是⊙O的切线,∴∠CBD=∠BAE,∴∠CBD=∠CAB.18.(1)证明:连接OB,∵OA=OB,∴∠OAB=∠OBA,∵CP=CB,∴∠CPB=∠CBP,∵∠CPB=∠APO,∴∠CBP=∠APO,在Rt△AOP中,∵∠A+∠APO=90°,∴∠OBA+∠CBP=90°,即:∠OBC=90°,∴OB⊥CB,又∵OB是半径,∴CB与⊙O相切;(2)解:∵∠A=22.5°,∠AOP=90°,∴∠APO=67.5°,∴∠BPC=∠APO=67.5°,∵PC=CB,∴∠CBP=67.5°,∴∠PCB=180°﹣2∠CBP=45°,∴∠OCB=∠POB=45°,∴OB=BC=2,∴图中阴影部分的面积=S△OBC ﹣S扇形OBD=×2×2﹣=2﹣.19.解:(1)P A是⊙O的切线,理由如下:如图,连接OA,∴OP是⊙M的直径,点A是⊙M上一点,∴∠OAP=90°,即OA⊥PA,∴PA是⊙O的切线;(2)设⊙O与OP的交点为N,AB与OP的交点为E,连接AN,AM,BM,∵MA=MB,OA=OB,∴OP是线段AB的垂直平分线,∴AB⊥OP,AE=BE,∵OP=9,OA=3,∴AP==6,∴S△OAP=OA•AP=AE•OP,∴OA•AP=AE•OP,∴3×6=9AE,∴AE=2,∴AB=4.20.(1)证明:连接OP.∵PA、PC分别与⊙O相切于点A,C,∴PA=PC,OA⊥PA,∵OA=OC,OP=OP,∴△OPA≌△OPC(SSS),∴∠AOP=∠POC,∵QP⊥PA,∴QP∥BA,∴∠QPO=∠AOP,∴∠QOP=∠QPO,∴OQ=PQ.(2)设OA=r.∵OB=OC,∴∠OBC=∠OCB,∵OB∥QD,∴∠QDC=∠B,∵∠OCB=∠QCD,∴∠QCD=∠QDC,∴QC=QD=6,∵QO=QP,∴OC=DP=r,∵PC是⊙O的切线,∴OC⊥PC,∴∠OCP=∠PCQ=90°,在Rt△PCQ中,∵PQ2=PC2+QC2,∴(6+r)2=62+(2r)2,r=4或0(舍弃),∴OP==4,∵OB=PD,OB∥PD,∴四边形OBDP是平行四边形,∴BD=OP=4.21.解:(1)如图,过点I2作I2Q⊥AC于点Q,连接I2S,过点I1作I1M⊥BC于点M,I1N⊥AC于点N,交I2S于点H,可得四边形QCSl2,I1MCN均为正方形,I1HSM为矩形,设⊙I2的半径为R,则AQ=AP=3﹣R,CS=CQ=R,又因为BP=BS,所以5+3﹣R=4+R,解得R=2.(2)∵∠ACB=90°,AC=3,BC=4,∴AB==5,∵I1为△ABC内切圆的圆心,∴I1M=I1N=,∴I1H=3,∴I1l2==.22.(1)证明:连接OC,∵DC切⊙O于C,∴OC⊥CD,∵AE⊥CD,∴AE∥OC,∵AO=BO,∴EC=BC,∴OC=AE,∵OC=OA=OB=AB,∴AE=AB;(2)解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACE=90°,AC⊥BE,∵由(1)知:AB=AE,∴EC=BC,∵BC=16,∴EC=16,在RtACB中,由勾股定理得:AC===15,==,在Rt△ACE中,S△ACE∵AE=BC=20,∴=CD,解得:CD=12,23.(1)证明:在⊙O中,OB=OD,∠BAC=∠BED,∴∠ODB=∠OBD,∵∠DBC=∠BAC,∴∠DBC=∠BED,∵D E是⊙O的直径,∴∠DBE=90°,∴∠ODB+∠BED=90°,∴∠OBD+∠DBC=90°,∴OB⊥BC,∵OB是⊙O的半径,∴CB是⊙O的切线;(2)证明:在⊙O中,∠ABD=∠AED,由(1)得:∠DBC=∠BED,∴∠ABD+∠DBC=∠AED+∠BED,∴∠ABC=∠BEA,∵DE是⊙O的直径,∴∠EAC=90°,∵∠ACB=90°,∴∠EAC+∠ACB=180°,∴AE∥BC,∴∠ABC=∠BAE,∴∠BEA=∠BAE,∴AB=EB;(3)解:延长BO交AE于H,由∠HAC=∠ACB=∠OBC=90°,得四边形ACBH是矩形,∴OH⊥AE,∴BC=AH=AE,∵DF=3,EF=7,∴直径DE=10,即半径DO=EO=5,∴OF=2,∵OB∥AC,∴=,∴AD=,在Rt△ADE中,AE==,∴BC=AH=AE=.。

(完整版)高二数学-直线和圆的方程-单元测试(含答案)

(完整版)高二数学-直线和圆的方程-单元测试(含答案)

高二直线和圆的方程单元测试卷班级:姓名:一、选择题:本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四 个选项中,只有一项是符合题目要求的.1.直线 l 经过 A(2,1)、B(1,m2)(m∈R)两点,那么直线 l 的倾斜角的取 值范围是A.[0, )B.[0, ] [ 3 , ) 44C.[0, ] 4D.[0, ] ( , ) 422. 如果直线(2a+5)x+(a-2)y+4=0与直线(2-a)x+(a+3)y-1=0互相垂直,则a 的值等于A. 2B.-2C.2,-2D.2,0,-23.已知圆 O 的方程为 x2+y2=r2,点 P(a,b)(ab≠0)是圆 O 内一点,以 P为中点的弦所在的直线为 m,直线 n 的方程为 ax+by=r2,则A.m∥n,且 n 与圆 O 相交 离B.m∥n,且 n 与圆 O 相C.m 与 n 重合,且 n 与圆 O 相离D.m⊥n,且 n 与圆 O 相离4. 若直线 ax 2by 2 0(a,b 0) 始终平分圆 x2 y2 4x 2 y 8 0 的周长,则 1 2 ab的最小值为A.1B.5C.42D. 3 2 25. M (x0 , y0 ) 为 圆 x2 y2 a2 (a 0) 内 异 于 圆 心 的 一 点 , 则 直 线x0 x y0 y a 2 与该圆的位置关系为A.相切B.相交C.相离D.相切或相交6. 已知两点 M(2,-3),N(-3,-2),直线 L 过点 P(1,1)且与线段MN 相交,则直线 L 的斜率 k 的取值范围是A. 3 ≤k≤4 4B.k≥ 3 或 k≤-4 4C. 3 ≤k≤4 4D.-4≤k≤ 3 47. 过直线 y x 上的一点作圆 (x 5)2 ( y 1)2 2 的两条切线 l1,l2 ,当直线 l1,l2 关于 y x 对称时,它们之间的夹角为A. 30B. 45C. 60D. 90x y 1 08.如果实数x、y满足条件 y 1 0x y 1 0,那么 4x (1)y 的最大值为 2A. 2B.1C. 1 2D. 1 49.设直线过点 (0, a), 其斜率为 1,且与圆 x2 y2 2 相切,则 a 的值为15 . 集 合 P (x, y) | x y 5 0 , x N* , y N* } ,Q (x, y) | 2x y m 0,M x, y) | z x y , (x, y) (P Q) , 若 z 取 最 大 值 时 ,M (3,1),则实数 m 的取值范围是;三、解答题:本大题共 6 小题,共 75 分.解答应写出文字说明,证明过程或 演算步骤.16.(本小题满分 12 分)已知 ABC 的顶点 A 为(3,-1),AB 边上的中线所在直线方程为 6x 10y 59 0 , B 的平分线所在直线方程为 x 4y 10 0 ,求BC 边所在直线的方程.17.(本小题满分 12 分) 某厂准备生产甲、乙两种适销产品,每件销售收入分别为 3 千元,2 千 元。

直线与圆试题及答案

直线与圆试题及答案

A.0<r<2 2 B.0<r<
2 C.0<r<2 D.0<r<4
8. 由曲线 y=| x| 与 x2+y2=4 所围成的图形的最小面积是 ( )
A.
B. π
3 C.
3 D.
4
4
2
2 9. 过点 (2 ,- 3) 且与直线 x- 2y+4=0 的夹角为 arctan 的直线 l 的方程是
3
( ).
A. x +8y+22=0或 7x-4y-26=0
,那么 b 的取值范围是
.
15. 圆( x-3) 2+( y+1) 2=1 关于直线 x+2y-3=0 对称的圆的方程是 _____.
16. 直线 x- 2y-2k=0 与 2x- 3y-k=0 的交点在圆 x2+y2=25 上,则 k 的值是
_____.
三、解答题
17. 求过 A(1 ,2) 与 B(3 ,4) 两点,且在 x 轴上截得的弦长等于 6 的圆的方程.
6. 解析 : 有内切、外切两种情况 . 答案 D 7. 解析 : 曲线 |x|+|y|=4 是顶点为(± 4,0)、(0,±4)的正方形,其中一
11. 圆 x2+y2- 2x+4y-20=0 截直线 5x-12y+c=0 所得的弦长为 8,则 c 的值
是( )
A.10
B. 10 或- 68
C.5 或- 34
D.- 68
12. 过点 (2 ,1) 并与两坐标轴都相切的圆的方程是 ( )
A.( x-1) 2+( y- 1) 2=1
B.(
x-1) 2+( y- 1) 2=1 或( x-5) 2+( y-5) 2=5

新人教版高中数学选修一第二单元《直线和圆的方程》测试卷(有答案解析)

新人教版高中数学选修一第二单元《直线和圆的方程》测试卷(有答案解析)

一、选择题1.一条光线从点()2,3--射出,经y 轴反射后与圆()()22321x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35 B .32-或23- C .54-或45- D .43-或34- 2.设点(1,2),(2,3)A B -,若直线10ax y ++=与线段AB 有交点,则a 的取值范围是( ) A .[3,2]- B .[2,3]-C .(,2][3,)-∞-⋃+∞D .(,3][2,)-∞-⋃+∞3.过点()0,0A 、()2,2B 且圆心在直线24y x =-上的圆的标准方程为( ) A .()2224x y -+= B .()2224x y ++= C .()()22448x y -+-=D .()()22448x y ++-=4.两圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,若a R ∈,b R ∈且0ab ≠,则2211a b +的最小值为( ) A .72B .4C .1D .55.已知直线1:210l ax y +-=2:820l x ay a ++-=,若12l l //,则a 的值为( ) A .4±B .-4C .4D .2±6.已知0a >,0b >,直线1l :()410x a y +-+=,2l :220bx y +-=,且12l l ⊥,则1112a b++的最小值为( ) A .2B .4C .23D .457.已知圆222:(1)(1)(0)C x y r r -+-=>,若圆C 上至少有3个点到直线20x y ++=,则实数r 的取值范围为( )A .(0,B .C .)+∞D .+∞[)8.两圆交于点(1,3)A 和(,1)B m ,两圆的圆心都在直线02cx y -+=上, 则m c += . A .1B .2C .3D .49.过点()3,1作圆()2211x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .230x y +-=B .230x y --=C .430x y --=D .430x y +-=10.点(2,3)P 到直线:(1)30ax a y +-+=的距离d 最大时,d 与a 的值依次为( ) A .3,-3 B .5,2 C .5,1 D .7,1 11.直线0x ay a +-=与直线(23)10ax a y ---=互相垂直,则a 的值为( )A .2B .-3或1C .2或0D .1或0第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案12.过点(1,2)的直线被圆229x y +=所截弦长最短时的直线方程是( ) A .250x y +-= B .20x y -= C .230x y -+=D .20x y +=二、填空题13.已知圆O :221x y +=,圆M :22()(2)2x a y -+-=.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点为A ,B ,使得PA PB ⊥,则实数a 的取值范围为______.14.若M 是直线cos sin 10x y θθ++=上到原点的距离最近的点,则当θ在实数范围内变化时,动点M 的轨迹方程是______.15.三条直线10x y ++=,280x y -+=,350ax y +-=不能围成三角形,则a 的取值集合是__________.16.已知圆C :()2234x y -+=,线段MN 在直线211y x =-+上运动,点P 是线段MN 上任意一点,若圆C 上存在两点A ,B ,使得PA PB ⊥,则线段MN 长度的最大值是___________.17.若实数x ,y 满足关系10x y ++=,则式子S =______.18.坐标平面内过点(2,1)A -,且在两坐标轴上截距相等的直线l 的方程为___________. 19.已知点P 是直线:3120l x y +-=上的一点,过P 作圆22(2)1x y -+=的切线,切点为A ,则切线长||PA 的最小值为__________.20.若直线l :y kx =23-60x y +=的交点位于第一象限,则直线l 的倾斜角的取值范围是___________.三、解答题21.已知圆C 经过点A (0,2)和B (2,-2),且圆心C 在直线l :x-y +1=0上. (1)求圆C 的方程;(2)若直线m 过点(1,4),且被圆C 截得的弦长为6,求直线m 的方程.22.在平面直角坐标系xOy 中,已知圆M 过点A (1,2),B (7,-6),且圆心在直线x +y -2=0上.(1)求圆M 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于C ,D 两点,且CD =2OA ,求直线l 的方程. 23.已知圆C :22420x y x +-+=. (1)求圆心C 的坐标和半径.(2)已知过点()1,3P 的直线l 交圆C 于,A B 两点,且2AB =,求直线l 的方程. 24.已知O 为坐标原点,倾斜角为2π3的直线l 与x ,y 轴的正半轴分别相交于点A ,B ,AOB的面积为(1)求直线l 的方程; (2)直线:3l y x =-',点P 在l '上,求PA PB +的最小值. 25.已知圆C 方程222410x y x y +-++= (1)求圆C 的圆心,半径;(2)直线l 经过(2,0),并且被圆C截得的弦长为l 的方程. 26.从圆外一点()4,4P -作圆22:1O x y +=的两条切线,切点分别为A ,B . (1)求以OP 为直径的圆的方程; (2)求线段AB 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据光的反射原理知,反射光线的反向延长线必过点()2,3--关于y 轴的对称点()2,3-,设反射光线所在直线方程为()32y k x +=-,利用直线与圆相切的性质即可求得斜率k . 【详解】根据光的反射原理知,反射光线的反向延长线必过点()2,3--关于y 轴的对称点()2,3-, 设反射光线所在直线的斜率为k ,则反射光线所在直线方程为()32y k x +=-,即230kx y k ---=, 又由反射光线与圆()()22321x y ++-=1=,整理得21225120k k ++=,解得43k =-或34k =-.故选:D. 【点睛】过一定点,求圆的切线时,首先判断点与圆的位置关系.若点在圆外,有两个结果,若只求出一个,应该考虑切线斜率不存在的情况.2.D解析:D 【分析】求出线段AB 的方程,列方程组求得直线与线段交点坐标(横坐标),由21x -≤≤可求得a 的范围. 【详解】321213AB k -==---,∴AB 方程为12(1)3y x -=--,即370x y +-=,由10370ax y x y ++=⎧⎨+-=⎩,解得1013x a =-,(显然310a -≠),由102113a -≤≤-解得3a ≤-或2a ≥. 故选:D . 【点睛】方法点睛:本题考查直线与线段有公共点问题,解题方法有两种:(1)求出直线AB 方程,由直线AB 方程知直线方程联立方程组求得交点坐标(只要求得横坐标),然后由横坐标在已知两个点的横坐标之间列不等式解之可得;(2)求出直线过定点P ,再求出定点P 与线段两端点连线斜率,结合图形可得直线斜率范围,从而得出参数范围.3.A解析:A 【分析】设圆心的坐标为(),24a a -,根据圆心到点A 、B 的距离相等可得出关于实数a 的等式,求出a 的值,可得出圆心的坐标,并求出圆的半径,由此可得出所求圆的标准方程. 【详解】设圆心为(),24C a a -,由AC BC ==整理可得20a -=,解得2a =,所以圆心()2,0C ,所求圆的半径为2AC =,因此,所求圆的标准方程为()2224x y -+=.故选:A. 【点睛】方法点睛:求圆的方程常见的思路与方法如下:(1)求圆的轨迹方程,直接设出动点坐标(),x y ,根据题意列出关于x 、y 的方程即可; (2)根据几何意义直接求出圆心坐标和半径,即可写出圆的标准方程;(3)待定系数法,可以根据题意设出圆的标准方程或一般方程,再根据所给条件求出参数即可.4.C解析:C 【分析】由题意可知两圆外切,可得出2249a b +=,然后将代数式2211a b +与2249a b +相乘,展开后利用基本不等式可求得2211a b+的最小值. 【详解】圆222240x y ax a +++-=的标准方程为()224x a y ++=,圆心为()1,0C a -,半径为12r =,圆2224140x y by b +--+=的标准方程为()2221x y b +-=,圆心为()20,2C b ,半径为21r =.由于圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,则这两圆外切,所以,1212C C r r =+3=,所以,2249a b +=,所以,222222222211411141551999a b a b a b a b b a ⎛⎛⎫+⎛⎫+=+=++≥⨯+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当222a b =时,等号成立,因此,2211a b +的最小值为1. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.5.B解析:B 【分析】由12l l //可得280,a a ⨯-⨯=解得4a =±,然后再检验,得出答案. 【详解】因为12l l //,所以280,4a a a ⨯-⨯=∴=±. 当4a =时,两直线重合,所以4a =舍去. 当4a =-时,符合题意. 所以4a =-. 故选:B 【点睛】易错点睛:已知直线1110a x b y c ++=和直线2220a x b y c ++=平行求参数的值时,除了要计算12210a b a b -=,还一定要把求出的参数值代入原直线方程进行检验,看直线是否重合.本题就是典型例子,否则容易出现错解,属于中档题6.D解析:D 【分析】根据12l l ⊥得到125a b ++=,再将1112a b++化为积为定值的形式后,利用基本不等式可求得结果. 【详解】因为12l l ⊥,所以240b a +-=,即125a b ++=, 因为0,0a b >>,所以10,20a b +>>, 所以1112a b ++=1112a b ⎛⎫+ ⎪+⎝⎭()1125a b ⨯++1212512b a a b +⎛⎫=++ ⎪+⎝⎭14255⎛≥+= ⎝, 当且仅当35,24a b ==时,等号成立. 故选:D 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方7.D解析:D【分析】根据题意,得到直线不过圆心,且求得圆心到直线的距离,结合题中条件,得到实数r 的取值范围. 【详解】圆222:(1)(1)(0)C x y r r -+-=>的圆心(1,1)到直线20x y ++=为:d ==,且直线20x y ++=不过圆心,若圆222:(1)(1)(0)C x y r r -+-=>上至少有3个点到直线20x y ++=,则有r ≥=所以实数r 的取值范围为+∞[), 故选:D. 【点睛】思路点睛:该题考查的是有关直线与圆的相关问题,解决该题的思路如下: (1)求得圆心到直线的距离,并且发现直线不过圆心; (2)结合题中条件,得到r 的取值范围.8.C解析:C 【分析】由两圆相交且圆心都在直线02c x y -+=上可知线段AB 中点在02cx y -+=上,代入中点坐标整理即可. 【详解】由题意可知:线段AB 的中点1,22m +⎛⎫⎪⎝⎭在直线02c x y -+=上代入得:12022m c+-+= 整理可得:3m c += 本题正确选项:C 【点睛】本题考查两圆相交时相交弦与圆心连线之间的关系,属于基础题.9.A解析:A 【分析】求出以(3,1)、(1,0)C 为直径的圆的方程,将两圆的方程相减可得公共弦AB 的方程. 【详解】圆22(1)1x y -+=的圆心为(1,0)C ,半径为1,以(3,1)、(1,0)C 为直径的圆的方程为2215(2)()24x y -+-=,因为过点()3,1圆()2211x y -+=的两条切线切点分别为A ,B ,所以,AB 是两圆的公共弦,将两圆的方程相减可得公共弦AB 的方程230x y +-=, 故选:A . 【点睛】本题考查直线和圆的位置关系以及圆和圆的位置关系、圆的切线性质,体现了数形结合的数学思想,属于基础题.10.C解析:C 【分析】将直线方程整理为()()30a x y y ++-=,可得直线()130ax a y +-+=经过定点()3,3Q -,由此可得当直线()130ax a y +-+=与PQ 垂直时PQ 的长,并且此时点P 到直线的距离达到最大值,从而可得结果. 【详解】直线()130ax a y +-+=, 即()()30a x y y ++-=,∴直线()130ax a y +-+=是过直线0x y +=和30y -=交点的直线系方程,由030x y y +=⎧⎨-=⎩,得33x y =-⎧⎨=⎩,可得直线()130ax a y +-+=经过定点()3,3Q -,∴当直线()130ax a y +-+=与PQ 垂直时,点()2,3P 到直线()130ax a y +-+=的距离最大,d ∴的最大值为5PQ ==,此时//PQ x 轴,可得直线()130ax a y +-+=斜率不存在,即1a =. 故选:C. 【点睛】本题主要考查直线的方程与应用,以及直线过定点问题,属于中档题. 探索曲线过定点的常见方法有两种:① 可设出曲线方程 ,然后利用条件建立等量关系进行消元(往往可以化为()(),,0tf x y g x y +=的形式,根据()(),0,0f x y g x y ⎧=⎪⎨=⎪⎩求解),借助于曲线系的思想找出定点(直线过定点,也可以根据直线的各种形式的标准方程找出定点). ,从特殊情况入手,先探求定点,再证明与变量无关.11.C解析:C 【分析】先考虑其中一条直线的斜率不存在时(0a =和32a =)是否满足,再考虑两直线的斜率都存在,此时根据垂直对应的直线一般式方程的系数之间的关系可求解出a 的值. 【详解】当0a =时,直线为:10,3x y ==,满足条件; 当32a =时,直线为:3320,223x y x +-==,显然两直线不垂直,不满足; 当0a ≠且32a ≠时,因为两直线垂直,所以()230a a a --=,解得2a =, 综上:0a =或2a =. 故选C. 【点睛】根据两直线的垂直关系求解参数时,要注意到其中一条直线斜率不存在另一条直线的斜率为零的情况,若两直线对应的斜率都存在可通过121k k 去计算参数的值.12.A解析:A 【分析】分析可得当弦长最短时,该弦所在直线与过点(1,2)的直径垂直,先求出过点(1,2)的直径的斜率,然后再求出所求直线的斜率,最后由点斜式写出直线的方程即可. 【详解】当弦长最短时,该弦所在直线与过点(1,2)的直径垂直, 圆229x y +=的圆心为(0,0),所以过点(1,2)的直径的斜率为20210-=-, 故所求直线为12-,所求直线方程为12(1)2y x ,即250x y +-=. 故选:A . 【点睛】方法点睛:本题考查直线与圆位置关系的应用,解题关键是明确当弦与圆的直径垂直时,弦长最短,考查逻辑思维能力,属于常考题.二、填空题13.【分析】将转化为由圆与圆:有公共点可解得结果【详解】因为所以所以所以圆与圆:有公共点所以所以得所以故答案为:【点睛】关键点点睛:转化为圆与圆:有公共点求解是解题关键 解析:22a -≤≤【分析】将PA PB ⊥转化为PO =,由圆222x y +=与圆M :22()(2)2x a y -+-=有公共点可解得结果. 【详解】因为PA PB ⊥,所以4APO BPO π∠=∠=,所以1PA PB ==,PO =,所以圆222x y +=与圆M :22()(2)2x a y -+-=有公共点,所以OM PO PM ≤+==≤24a ≤,所以22a -≤≤. 故答案为:22a -≤≤ 【点睛】关键点点睛:转化为圆222x y +=与圆M :22()(2)2x a y -+-=有公共点求解是解题关键.14.【分析】直线上到原点的距离最近的点就是过原点作直线的垂线垂足即为又原点到直线的距离为定值所以可知动点的轨迹【详解】∵原点到直线的距离为∴当在实数范围内变化时动点的轨迹为以原点为圆心半径为1的圆即其轨 解析:221x y +=【分析】直线cos sin 10x y θθ++=上到原点的距离最近的点,就是过原点作直线的垂线,垂足即为M ,又原点到直线的距离为定值,所以可知动点M 的轨迹. 【详解】∵原点()0,0到直线cos sin 10x y θθ++=1=,∴当θ在实数范围内变化时,动点M 的轨迹为以原点()0,0为圆心,半径为1的圆, 即其轨迹方程为221x y +=. 故答案为:221x y += 【点睛】本题主要考查轨迹方程,解决与直线有关的轨迹问题时,要充分考虑到图形的几何性质,属于中档题.15.【分析】由题意可知直线与另外两条直线分别平行或三条直线交于一点由此可求得实数的取值【详解】由于三条直线不能围成三角形则直线与另外两条直线分别平行或三条直线交于一点(1)直线与直线平行则解得;(2)直解析:1,3,63⎧⎫-⎨⎬⎩⎭【分析】由题意可知直线350ax y +-=与另外两条直线分别平行或三条直线交于一点,由此可求得实数a 的取值.【详解】由于三条直线10x y ++=,280x y -+=,350ax y +-=不能围成三角形, 则直线350ax y +-=与另外两条直线分别平行或三条直线交于一点.(1)直线350ax y +-=与直线10x y ++=平行,则35111a -=≠,解得3a =; (2)直线350ax y +-=与直线280x y -+=平行,则35218a -=≠-,解得6a =-; (3)若三条直线交于一点,联立10280x y x y ++=⎧⎨-+=⎩,解得32x y =-⎧⎨=⎩, 所以直线10x y ++=,280x y -+=交于点()3,2-,由题意可知,点()3,2-在直线350ax y +-=上,可得3650a -+-=,解得13a =. 因此,实数a 的取值集合为1,3,63⎧⎫-⎨⎬⎩⎭. 故答案为:1,3,63⎧⎫-⎨⎬⎩⎭.【点睛】由三线不能确定三角形问题的求解,除了考虑直线平行外,同时也不能忽略三线交于一点这种情况的讨论. 16.【分析】题目等同于点P 在已知直线上的轨迹长度考虑边界的情况此时△APC 和△ABC 均为等腰直角三角形先算出进一步求出答案【详解】题目等同于点P 在已知直线上的轨迹长度考虑边界的情况也就是PAPB 分别与圆解析:【分析】题目等同于点P 在已知直线上的轨迹长度,考虑边界的情况,此时△APC 和△ABC 均为等腰直角三角形,先算出2l ==. 【详解】题目等同于点P 在已知直线上的轨迹长度,考虑边界的情况,也就是PA ,PB 分别与圆相切的情况,此时△APC 和△ABC 均为等腰直角三角形,由题意知,圆心()3,0C ,半径2r线段PC 的长为22r =圆心到直线的距离22301152+1d -⨯-+==, 根据图像的对称性可知2232l PC d =-= 所以线段MN 长度的最大值为3故答案为: 3【点睛】本题考查了直线与圆位置关系的应用.本题的难点是分析何时EF 取到最值.根据考虑边界的情况数形结合得出结论.17.【分析】化简看成是一个动点到一个定点的距离结合点到直线的距离公式即可求解【详解】由题意化简可得所以上式可看成是一个动点到一个定点的距离从而即为点与直线:上任意一点的距离由点到直线的距离公式可得所以的 解析:322【分析】 ()()222222211x y x y x y +--+=-+-,看成是一个动点(),M x y 到一个定点()1,1N 的距离,结合点到直线的距离公式,即可求解.【详解】()()22222211x y x y x y +--+=-+-,所以上式可看成是一个动点(),M x y 到一个定点()1,1N 的距离,从而S 即为点N 与直线l :10x y ++=上任意一点(),M x y 的距离, 由点到直线的距离公式,可得1113222d ++==, 所以S 的最小值为min 322S d ==故答案为:2. 【点睛】 形如:22()()x a y b -+-的形式的最值问题,可转化为动点到定点的距离的平方的最值问题,结合两点间的距离公式或点到直线的距离公式进行求解.18.或【分析】按照截距是否为0分两种情况讨论可求得结果【详解】当直线在在两坐标轴上截距相等且为0时直线的方程为;当直线在在两坐标轴上截距相等且不为0时设直线的方程为又直线过点则解得所以直线的方程为;所以 解析:12y x =-或1y x =--. 【分析】按照截距是否为0分两种情况讨论,可求得结果.【详解】 当直线l 在在两坐标轴上截距相等且为0时,直线l 的方程为12y x =-; 当直线l 在在两坐标轴上截距相等且不为0时,设直线l 的方程为1x y a a+=, 又直线l 过点(2,1)A -,则211a a -+=,解得1a =-,所以直线l 的方程为1y x =--; 所以直线l 的方程为12y x =-或1y x =--. 故答案为:12y x =-或1y x =--. 【点睛】 易错点睛:本题考查了直线方程的截距式,但要注意:截距式1x y a b+=,只适用于不过原点或不垂直于x 轴、y 轴的直线,表示与x 轴、y 轴相交,且x 轴截距为a ,y 轴截距为b 的直线,考查学生分类讨论思想,属于基础题.19.【分析】利用切线长最短时取最小值找点:即过圆心作直线的垂线求出垂足点就切线的斜率是否存在分类讨论结合圆心到切线的距离等于半径得出切线的方程【详解】设切线长为则所以当切线长取最小值时取最小值过圆心作直 解析:3【分析】 利用切线长最短时,PC 取最小值找点P :即过圆心C 作直线l 的垂线,求出垂足点()3,3P .就切线的斜率是否存在分类讨论,结合圆心到切线的距离等于半径得出切线的方程.【详解】设切线长为L ,则21L PC =-,所以当切线长L 取最小值时,PC 取最小值, 过圆心()2,0C 作直线l 的垂线,则点P 为垂足点,此时,直线PC 的方程为360x y --=,联立3120360x y x y +-=⎧⎨--=⎩,得33x y =⎧⎨=⎩,点P 的坐标为()3,3. 此时22(32)(30)10PC =-+-=,此时,213L PC =-= 故答案为:3【点睛】关键点睛:解题的关键是利用过点的圆的切线方程的求解,在过点引圆的切线问题时, 将直线与圆相切转化为圆心到直线的距离等于半径长,即设切线长为L ,则21L PC =-,问题转变为求PC 的最小值,主要考查学生分析问题与解决问题的能力,属于中等题.20.【解析】若直线与直线的交点位于第一象限如图所示:则两直线的交点应在线段上(不包含点)当交点为时直线的倾斜角为当交点为时斜率直线的倾斜角为∴直线的倾斜角的取值范围是故答案为解析:(,)62ππ 【解析】若直线:3l y kx =-与直线2360x y +-=的交点位于第一象限,如图所示:则两直线的交点应在线段AB 上(不包含,A B 点), 当交点为()0,2A 时,直线l 的倾斜角为2π,当交点为()3,0B 时,斜率(033303k -==-,直线l 的倾斜角为6π ∴直线的倾斜角的取值范围是,62ππ⎛⎫⎪⎝⎭. 故答案为,62ππ⎛⎫ ⎪⎝⎭三、解答题21.(1)()()223225x y +++=;(2)x =1或512430x y -+=【分析】(1)根据圆心C 在直线l :x-y +1=0上,设圆心为:(),1a a +,再根据圆C 经过点A (0,2)和B (2,-2),由()()()2222123a a a a +-=-++求解.(2)当直线m 的斜率不存在时,方程为x =1,验证即可,当直线m 的斜率存在时,设方程为()41y k x -=-4=求解.【详解】(1)因为圆心C 在直线l :x-y +1=0上.设圆心为:(),1a a +又圆C 经过点A (0,2)和B (2,-2),所以()()()2222123a a a a +-=-++,解得3a =-, 所以圆心为 ()3,2--, ()222125r a a =+-=, 所以圆的方程为:()()223225x y +++=;(2)若直线m 的斜率不存在时,方程为x =1,被圆C 截得的弦长为6,符合, 若直线m 的斜率存在时,方程为()41y k x -=-,即 40kx y k -+-=,4=, 解得512k =, 所以直线方程为512430x y -+=,综上:直线m 的方程为x =1或512430x y -+=.【点睛】方法点睛:求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:(1)几何法,通过研究圆的性质进而求出圆的基本量.确定圆的方程时,常用到的圆的三个性质:①圆心在过切点且垂直切线的直线上;②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线;(2)代数法,即设出圆的方程,用待定系数法求解.22.(1)()()224225x y -++=;(2)2200x y --=.【分析】(1)联立线段AB 的垂直平分线所在的方程与圆心所在直线方程,可得圆心坐标,进而求出圆的半径以及圆M 的标准方程;(2)设出直线l 的方程,由CD =2OA 可得弦长,利用点到直线的距离公式结合勾股定理列出方程,可得直线l 的方程.【详解】(1)由题意可解得线段AB 的垂直平分线所在的方程为:y +2=34(x -4),即354y x =-,因为圆心在直线x +y -2=0上,且圆M 过点A (1,2),B (7,-6),则圆心为直线354y x =-与直线x +y -2=0的交点,联立20354x y y x +-=⎧⎪⎨=-⎪⎩,解得42x y =⎧⎨=-⎩,即圆心M 为(4,-2),半径为MA5=,所以圆M 的标准方程为()()224225x y -++=. (2)由直线l 平行于OA ,可设直线l 的方程为:20y x m m =+≠,,则圆心M 到直线l的距离为d ==CD =2OA =2525d +=,所以d ==,则解得m =-20或m =0(舍去),则直线l 的方程为2200x y --=.【点睛】关键点点睛:本题考查圆的标准方程,考查圆的性质,解决本题的关键点是由已知求出弦长CD ,利用圆的弦长的一半,圆心到直线的距离和圆的半径构造直角三角形,结合勾股定理计算出参数的值,进而可得直线的方程,考查了学生计算能力,属于中档题. 23.(1)圆心()2,0C ,半径r =2)1x =或43130x y +-=. 【分析】(1)将圆的一般方程化为标准方程,由此得到圆心和半径;(2)直线l 斜率不存在时,可验证满足题意;当直线l 斜率存在时,假设l 方程,利用垂径定理构造方程可求得斜率k ,从而得到所求方程.【详解】(1)圆C 方程可化为:()2222x y -+=,∴圆心()2,0C ,半径r =(2)①当直线l 斜率不存在时,l 的方程为:1x =,由()22122x x y =⎧⎪⎨-+=⎪⎩得:11x y =⎧⎨=⎩或11x y =⎧⎨=-⎩,()112AB ∴=--=,满足题意; ②当直线l 斜率存在时,设l 方程为:()31y k x -=-,即30kx y k --+=,∴圆心C 到直线l的距离d ==,2AB =,2∴==,解得:43k =-, 413:033l x y ∴--+=,即43130x y +-=; 综上所述:直线l 的方程为:1x =或43130x y +-=.【点睛】易错点睛:本题考查根据直线被圆截得弦长求解直线方程的问题,易错点是忽略直线斜率不存在的情况,造成求解不完整.24.(1)y =+;(2) .【分析】(1)求出直线l 的斜率,设直线l 的方程为:y b =+,求出横纵截距即可表示出AOB 的面积即可求解;(2)求出()4,0A ,(0,B ,求出点()4,0A 关于直线:l y x ='的对称点A ',PA PB PA PB A B '+='+≥,当A ',B ,P 三点共线时取得最小值. 【详解】(1)由题意可得:直线l 的斜率2πtan3k ==,设直线l 的方程为:y b =+.可得直线l 与坐标轴的正半轴交点为,03A b ⎛⎫ ⎪ ⎪⎝⎭,()0,B b ,其中0b>.123OAB S b b ∴=⨯⨯=△b =,∴直线l的方程为:y =+.(2)由(1)可得:()4,0A ,(0,B ,直线l '的方程为:y x =. 设点A 关于直线l '的对称点(),A m n ',则04422n m n m -⎧=⎪-⎪⎨+⎪=⎪⎩,解得:2m n =⎧⎪⎨=-⎪⎩(,2A ∴'-.PA PB PA PB A B '+='+≥,∴当A ',B ,P 三点共线时,PA PB +取得最小值.()m in PA B PB A ='==∴+【点睛】 关键点点睛:求出点()4,0A 关于直线l '的对称点(),A m n ',利用PA PA =', PA PB PA PB A B '+='+≥可求PA PB +的最小值.25.(1)圆心(1,2)-;半径2;(2)2x =或3460x y --=.【分析】(1)将圆的方程化为标准方程,直接求圆心和半径;(2)利用弦长公式,得到圆心到直线的距离,分斜率存在和不存在两种情况,求直线方程.【详解】(1)()()22222410124x y x y x y +-++=⇔-++=圆心(1,2)- 半径2;(2)圆222410x y x y +-++=可化为22(1)(2)4xy -++=. 所以圆心到直线的距离为1d ==当直线l 的斜率不存在时,直线l 的方程为2x =,此时直线l 被圆C 截得的弦长为当直线l 的斜率k 存在时,设直线l 的方程为(2)y k x =-,即20kx y k --= 1= 解得34k = ∴直线的方程为3460x y --=综上所述,直线l 的方程为2x =或3460x y --=.【点睛】 易错点睛:本题第二问,根据弦长求直线方程时,不要忽略过定点直线,其中包含斜率存在和不存在两种情况,否则容易丢根.26.(1)()()22228x y ++-=;(2. 【分析】(1)由已知求得圆心和半径可得所求的圆的方程;(2)由已知得A ,B 两点都在以OP 为直径的圆上.联立两圆的方程得直线AB 的方程为4410x y -+=,再由点到直线的距离公式可求得线段AB 的长度.【详解】(1)∵所求圆的圆心为线段OP 的中点()2,2-,半径为1||2OP ==∴以OP 为直径的圆的方程为()()22228x y ++-=. (2)∵PA 、PB 是圆22:1O x y +=的两条切线,∴OA PA ⊥,OB PB ⊥,∴A ,B 两点都在以OP 为直径的圆上.由2222(2)(2)81x y x y ⎧++-=⎨+=⎩得直线AB 的方程为4410x y -+=,O 点到直线AB 的距离为8d =,线段AB 的长度为4AB ==. 【点睛】方法点睛:在解决直线与圆的位置关系的问题时,注意运用平面几何知识,如圆的切线的性质,以及圆的垂径定理等.。

人教版高中数学选修一第二单元《直线和圆的方程》测试卷(有答案解析)

人教版高中数学选修一第二单元《直线和圆的方程》测试卷(有答案解析)

一、选择题1.已知直线1:210l ax y +-=2:820l x ay a ++-=,若12l l //,则a 的值为( )A .4±B .-4C .4D .2±2.已知(1,1)P ,(2,3)Q --,点P ,Q 到直线l 的距离分别为2和4,则满足条件的直线l的条数是( ) A .1B .2C .3D .43.已知M (3,),N (-1,),F (1,0),则点M 到直线NF 的距离为( )A B .C .D .4.圆22(1)2x y ++=上一点到直线5y x =+的距离最小值为( ) A .1 B .2CD .5.直线220ax by -+=被222440x y x y ++--=截得弦长为6,则ab 的最大值是( ) A .9B .4C .12D .146.已知圆1C :224470x y x y ++-+=与圆2C :()()222516x y -+-=的位置关系是( ) A .外离B .外切C .相交D .内切7.在平面直角坐标系中,定义1212(,)||||d A B x x y y =-+-为两点11(,)A x y 、22(,)B x y 的“切比雪夫距离”,又设点P 及直线l 上任意一点Q ,称(,)d P Q 的最小值为点P 到直线l 的“切比雪夫距离”,记作(,)d P l ,给出下列三个命题: ①对任意三点A 、B 、C ,都有(,)(,)(,)d C A d C B d A B +≥; ②已知点(3,1)P 和直线:210l x y --=,则4(,)3d P l =; ③定义(0,0)O ,动点(,)P x y 满足(,)1d P O =,则动点P 的轨迹围成平面图形的面积是4;其中真命题的个数( ) A .0B .1C .2D .38.过坐标原点O 作圆()()22341x y -+-=的两条切线,切点为,A B ,直线AB 被圆截得弦AB 的长度为( )A .5B .5CD9.直线l :230kx y --=与圆C :()()22124x y -++=交于A 、B 两点,若ABC的周长为4+k 的值为( ) A .32B .32-C .32±D .12±10.点(2,3)P 到直线:(1)30ax a y +-+=的距离d 最大时,d 与a 的值依次为( ) A .3,-3 B .5,2 C .5,1D .7,111.圆221:2410C x y x y ++++=与圆222:4410C x y x y +---=的公切线有几条( ) A .1条B .2条C .3条D .4条12.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为221x y +≤,若将军从点()20A ,处出发,河岸线所在直线方程为4x y +=,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( )A 1B .1C .D二、填空题13.已知点M 是直线l :22y x =--上的动点,过点M 作圆C :()()22114x y -+-=的切线MA ,MB ,切点为A ,B ,则当四边形MACB 的面积最小时,直线AB 的方程为______.14.直线()130m x my m ++++=被圆2225x y +=所截的弦长的最小值为________. 15.已知方程:22(42)20,()x y m x my m m R +-+--=∈ ①该方程表示圆,且圆心在直线210x y --=上; ②始终可以找到一条定直线与该方程表示的曲线相切;③当1m =-时,该方程表示的曲线关于直线:10l x y -+=的对称曲线为C ,则曲线C上的点到直线l 的最大距离为22; ④若m 1≥,过点(1,0)-作该方程表示的面积最小的曲线的两条切线,切点分别为,A B ,则AB 所在的直线方程为420x y +-=.以上四个命题中,是正确的有_______________(填序号)16.将直线:10l x y +-=,20l nx y n +-=:,3:0l x ny n +-=(n *∈N ,2n ≥)围成的三角形面积记为n S ,则n n lim S →∞=___________.17.已知等腰三角形的底边所在直线过点()2,1P ,两腰所在的直线为20x y +-=与740x y -+=,则底边所在的直线方程是_____________.18.直线:20180l x y +-=的倾斜角为__________;19.已知直线l 过点(4,1)A -,且和直线320x y -+=的夹角为30°,则直线l 的方程为____________.20.直线2ax +by =1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且AOB 是直角三角形(O 是坐标原点),则点P (a ,b )与点(0,1)之间的距离的最大值为________.三、解答题21.已知三条直线123121323:20,:20,:210,,,l x y l x l x y l l A l l B l l C -=+=+-=⋂=⋂=⋂=.(1)求ABC 外接圆的方程;(2)若圆22:20D x y ax +-=与ABC 的外接圆相交,求a 的取值范围.22.已知直线方程为()()221340m x m y m -++++=,其中m R ∈. (1)当m 变化时,求点()3,4Q 到直线的距离的最大值;(2)若直线分别与x 轴、y 轴的负半轴交于A ,B 两点,求AOB 面积的最小值及此时的直线方程.23.已知圆C :222430x y x y ++-+=(1)若圆C 的切线在x 轴和y 轴上的截距相等,且截距不为零,求此切线的方程; (2)若从圆C 外一点()1,2P -向该圆引切线PA 和PB (A ,B 为切点),求弦长AB 的大小.24.已知圆1C 过点(0,6)A ,且与圆222:10100C x y x y +++=相切于原点,直线:(21)(1)740l m x m y m +++--=.(1)求圆1C 的方程;(2)求直线l 被圆1C 截得的弦长最小值.25.(1)如图,已知直线l : 0mx ny r ++=(0mn ≠)外一点P (a ,b ),请写出点P 到直线l 的距离PH 的公式及公式的推导过程.....(2)一质点从点(4,0)A 处沿向量(1,1)a =-方向按每秒2个单位速度移动,求几秒后质点与点(2,4)B 距离最近.26.已知正方形的一条边AB 所在直线为310--=x y ,正方形的中心为()0,1R .求:(1)该正方形的面积;(2)该正方形的两条对角线所在直线的一般式方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由12l l //可得280,a a ⨯-⨯=解得4a =±,然后再检验,得出答案. 【详解】因为12l l //,所以280,4a a a ⨯-⨯=∴=±. 当4a =时,两直线重合,所以4a =舍去. 当4a =-时,符合题意. 所以4a =-. 故选:B 【点睛】易错点睛:已知直线1110a x b y c ++=和直线2220a x b y c ++=平行求参数的值时,除了要计算12210a b a b -=,还一定要把求出的参数值代入原直线方程进行检验,看直线是否重合.本题就是典型例子,否则容易出现错解,属于中档题2.B解析:B 【分析】以P 为圆心,以2为半径的圆记为圆P ,以Q 为圆心,以4为半径的圆记为圆Q ,利用圆P 与圆Q 相交,两圆有两条公切线,可得结果.【详解】22||(12)(13)5PQ =+++=,以P 为圆心,以2为半径的圆记为圆P ,以Q 为圆心,以4为半径的圆记为圆Q , 因为42-<524<+,所以圆P 与圆Q 相交,所以两圆有两条公切线,所以满足条件的直线l 的条数是2. 故选:B 【点睛】关键点点睛:转化为判断两个圆的公切线的条数是解题关键.3.B解析:B 【分析】首先利用题中所给的点N (-1,,F (1,0),求出直线NF 的方程,之后利用点到直线的距离公式求得结果. 【详解】易知NF 的斜率kNF 的方程为y(x -1),+y=0. 所以M 到NF.故选:B. 【点睛】思路点睛:该题考查的是有关点到直线的距离的问题,解题思路如下:(1)根据题意首先求出直线的方程,可以先求斜率,利用点斜式求,也可以直接利用两点式求;(2)之后利用点到直线的距离公式直接求结果.4.C解析:C 【分析】求出圆心到直线距离,减去半径得解. 【详解】圆心为(1,0)-,直线方程为5y x =+,所以d == ,圆22(1)2x y ++=上一点到直线5y x =+的距离最小值d r -=故选C . 【点睛】圆上的点到直线的距离的最值的几何求法通常运用圆心到直线的距离加减半径得到.属于基础题.5.D解析:D 【分析】根据弦长可知直线过圆心,再利用基本不等式求ab 的最大值. 【详解】将222440x y x y ++--=化为标准形式:22(1)(2)9x y ++-=, 故该圆圆心为(1,2)-,半径为3. 因为直线截圆所得弦长为6,故直线过圆心,所以2220a b --+=,即1a b +=,所以2124a b ab +⎛⎫≤= ⎪⎝⎭(当且仅当12a b ==时取等号),故选:D. 【点睛】关键点点睛:本题考查直线与圆相交,基本不等式求最值,本题的关键是根据弦长判断直线过圆心,这样问题就变得简单易求.6.B解析:B 【分析】分别求得两圆的圆心坐标和半径,结合圆与圆的位置关系的判定方法,即可求解. 【详解】由题意,圆1C :224470x y x y ++-+=,可得圆心坐标为1(2,2)C -,半径为11r =,圆2C :()()222516x y -+-=,可得圆心坐标为1(2,5)C ,半径为14r =,又由125C C ==,且12145r r =+=+,即1212C C r r =+,所以圆12,C C 相外切. 故选:B. 【点睛】圆与圆的位置关系问题的解题策略:判断两圆的位置关系时常采用几何法,即利用两圆的圆心之间的距离与两圆的半径间的关系进行判断,一般不采用代数法;若两圆相交,则两圆的公共弦所在直线的方程可由两圆的方程作差消去22,x y 项得到.7.B解析:B 【分析】由新定义表示出三点,,A B C 两两之间的“切比雪夫距离”,然后根据绝对值的性质判断①,由新定义计算出(,)d P l ,判断②,根据新定义求出P 的轨迹方程,确定其轨迹,求得轨迹围成的图形面积判断③. 【详解】①设112233(,),(,),(,)A x y B x y C x y ,则1212(,)d A B x x y y =-+-,13132323(,)(,)d A C d B C x x y y x x y y +=-+-+-+-,显然1323132312()()x x x x x x x x x x -+-≥---=-,同理132312y y y y y y -+-≥-,∴(,)(,)(,)d C A d C B d A B +≥,①正确; ②设(,)P x y 是直线l 上任一点,则21y x =-,(,)31322d P l x y x x =-+-=-+-35,31,1353,1x x x x x x -≥⎧⎪=+≤<⎨⎪-<⎩,易知(,)d P l 在[1,)+∞上是增函数,在(,1)-∞上是减函数,∴1x =时,min (,)13222d P l =-+-=,②错; ③由(,)1d P O =得1x y +=,易知此曲线关于x 轴,y 轴,原点都对称,它是以(1,0),(0,1),(1,0),(0,1)--为顶点的正方形,其转成图形面积为12222S =⨯⨯=,③错.故选:B . 【点睛】关键点点睛:本题考查新定义,解题关键是理解新定义,解题方法是把新概念转化为绝对值的问题,利用绝对值的性质求解.8.A解析:A 【分析】求得圆的圆心坐标和半径,借助11222AOM AB S OA MA OM ∆=⨯⨯=⨯⨯,即可求解. 【详解】如图所示,设圆()()22341x y -+-=的圆心坐标为(3,4)M ,半径为1r =,则5OM ==,OA ===,则11222AOM AB S OA MA OM ∆=⨯⨯=⨯⨯,可得25OA MA AB OM ⨯⨯== 故选A.【点睛】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到圆的切线方程应用,着重考查了推理与运算能力,属于基础题.9.A解析:A 【分析】先根据半径和周长计算弦长23AB =即可. 【详解】圆C :()()22124x y -++=中,圆心是()1,2C -,半径是2r,故ABC 的周长为423+2423r AB +=+23AB =又直线与圆相交后的弦心距2243144k k d k k +-+==++,故由2222AB r d ⎛⎫=+ ⎪⎝⎭得()221434k k +=++,解得32k . 故选:A. 【点睛】本题考查了直线与圆的综合应用,考查了点到直线的距离公式,属于中档题.10.C解析:C 【分析】将直线方程整理为()()30a x y y ++-=,可得直线()130ax a y +-+=经过定点()3,3Q -,由此可得当直线()130ax a y +-+=与PQ 垂直时PQ 的长,并且此时点P 到直线的距离达到最大值,从而可得结果. 【详解】直线()130ax a y +-+=,即()()30a x y y ++-=,∴直线()130ax a y +-+=是过直线0x y +=和30y -=交点的直线系方程,由030x y y +=⎧⎨-=⎩,得33x y =-⎧⎨=⎩,可得直线()130ax a y +-+=经过定点()3,3Q -,∴当直线()130ax a y +-+=与PQ 垂直时,点()2,3P 到直线()130ax a y +-+=的距离最大,d ∴的最大值为5PQ ==,此时//PQ x 轴,可得直线()130ax a y +-+=斜率不存在,即1a =. 故选:C. 【点睛】本题主要考查直线的方程与应用,以及直线过定点问题,属于中档题. 探索曲线过定点的常见方法有两种:① 可设出曲线方程 ,然后利用条件建立等量关系进行消元(往往可以化为()(),,0tf x y g x y +=的形式,根据()(),0,0f x y g x y ⎧=⎪⎨=⎪⎩求解),借助于曲线系的思想找出定点(直线过定点,也可以根据直线的各种形式的标准方程找出定点). ,从特殊情况入手,先探求定点,再证明与变量无关.11.C解析:C 【分析】将两圆化为标准形式,求出圆心距和两圆半径之和,判断即可. 【详解】圆221:(1)(2)4C x y +++=,圆心 1(1,2)C -- ,12r =, 圆222:(2)(2)9C x y -+-= ,圆心2C ()2,2,23r =,圆心距125C C ==1212C C r r =+,∴两圆外切,有3条公切线.故选:C. 【点睛】本题考查圆与圆的位置关系,考查学生数形结合思想以及求解运算能力,属于基础题.12.B解析:B 【分析】先求出点A 关于直线4x y +=的对称点'A ,点'A 到圆心的距离减去半径即为最短. 【详解】解:设点A 关于直线4x y +=的对称点(,)A a b ','2AA bk a =-,AA '的中点为2,22a b +⎛⎫⎪⎝⎭,故122422b a a b ⎧=⎪⎪-⎨+⎪+=⎪⎩解得4a =,2b =, 要使从点A 到军营总路程最短,即为点f A 到军营最短的距离, 即为点'A 和圆上的点连线的最小值,为点'A 和圆心的距离减半径, “将军饮马”的最短总路程为4161251+-=-,故选:B 【点睛】本题考查了数学文化问题、点关于直线的对称问题、点与圆的位置关系等等,解决问题的关键是将实际问题转化为数学问题,建立出数学模型,从而解决问题.二、填空题13.【分析】由已知结合四边形面积公式可得四边形MACB 面积要使四边形MACB 面积最小则需最小此时CM 与直线垂直求得以CM 为直径的圆的方程再与圆C 的方程联立可得AB 所在直线方程【详解】由圆的标准方程可知圆 解析:210x y ++=【分析】由已知结合四边形面积公式可得四边形MACB 面积22||||2||2||4,CAM S S CA AM MA CM ==⋅==-△要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直,求得以CM 为直径的圆的方程,再与圆C 的方程联立可得AB 所在直线方程.【详解】由圆的标准方程可知,圆心C (1,1) ,半径r =2.因为四边形MACB的面积2||||2||CAM S S CA AM MA ==⋅==△ 要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直. 直线CM 的方程为11(x 1)2y -=- ,即11.22y x =+联立112222y x y x ⎧=+⎪⎨⎪=--⎩,解得(1,0)M -则以CM 为直径的圆的方程为2215()24x y +-=, 联立222215(),24(1)(1)4x y x y ⎧+-=⎪⎨⎪-+-=⎩消去二次项可得直线AB 的方程为210x y ++=, 故答案为:210x y ++= 【点睛】关键点点睛:根据四边形的面积表达式可以看出要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直,此时所做圆的直径为CM ,写出圆的方程,两圆方程相减即可求出过AB 的直线方程.14.【分析】转化条件为直线过结合垂径定理可得当直线与直线垂直时弦长最小即可得解【详解】直线可变为由可得所以直线过定点又圆的圆心为半径所以点在圆内所以当直线与直线垂直时弦长最小此时弦长为故答案为:【点睛】解析:【分析】转化条件为直线过()3,2A -,结合垂径定理可得当直线AO 与直线()130m x my m ++++=垂直时,弦长最小,即可得解.【详解】直线()130m x my m ++++=可变为()130x y m x ++++=,由1030x y x ++=⎧⎨+=⎩可得32x y =-⎧⎨=⎩,所以直线()130m x my m ++++=过定点()3,2A -, 又圆2225x y +=的圆心为()0,0O ,半径=5r ,所以213AO =,点()3,2A -在圆内,所以当直线AO 与直线()130m x my m ++++=垂直时,弦长最小,此时弦长为==.故答案为: 【点睛】关键点点睛:解决本题的关键是找到直线经过的定点,再利用几何法转化出弦长.15.③④【分析】先将方程:化为:确定出圆心半径判断选项①②;将代入得圆方程可转化为该圆上的点到直线的最大距离问题求解;先求出以圆外点与圆心连线为直径的圆方程再将两圆方程相减即可得两切点连线的直线方程【详解析:③④ 【分析】先将方程:22(42)20x y m x my m +-+--=化为:()()22221551x m y m m m -++-=++⎡⎤⎣⎦,确定出圆心,半径判断选项①②;将1m =-代入得圆方程,可转化为该圆上的点到直线l 的最大距离问题求解;先求出以圆外点(1,0)-与圆心连线为直径的圆方程,再将两圆方程相减即可得两切点连线的直线方程.【详解】方程:22(42)20x y m x my m +-+--=可化为:()()22221551x m y m m m -++-=++⎡⎤⎣⎦,当25510m m ++>即m >或m <时,方程表示圆,故①错;由①知,当m >或m <时,该方程表示圆,且圆心()21,M m m +在直线210x y --=上移动,且半径不定,故②显然不正确;当1m =-时,方程表示圆M :()()22111x y +++=,由条件知曲线C 上的点到直线l 的最大距离即为圆M 上的点到直线l 212+=,所以③正确;当m 1≥时,22211551524r m m m ⎛⎫=++=+- ⎪⎝⎭,所以当1m =时,圆面积最小,此时圆心为()3,1M ,圆M 方程为:()()223111x y -+-=,设()1,0P -,则PM 的中点为11,2⎛⎫ ⎪⎝⎭,217PM =, 所以PM 为直径的圆方程为()22117124x y ⎛⎫-+-= ⎪⎝⎭,两圆方程相减即得AB 所在的直线方程为420x y +-=,故④正确. 故答案为:③④ 【点睛】方法点睛:已知圆外一点引圆的两条切线,求解切点连线的直线方程,通常先求出以圆外一点与圆心连线为直径的圆方程,然后将两圆方程相减,即可得切点连线的直线方程.16.【分析】求出三条直线的交点坐标从而可求得三角形的面积再求极限即可【详解】由得即同理可得到直线的距离为∴∴故答案为:【点睛】本题考查数列的极限解题关键是求出三角形的面积 解析:12【分析】求出三条直线的交点坐标,从而可求得三角形的面积n S ,再求极限即可。

最新人教版高中数学选修一第二单元《直线和圆的方程》测试卷(含答案解析)

最新人教版高中数学选修一第二单元《直线和圆的方程》测试卷(含答案解析)

一、选择题1.若圆22220x y x y k +---=上的点到直线100x y +-=的最大距离为k 的值是( )A .2-B .2C .2-或2D .2-或02.若直线1y kx =-与曲线y =有公共点,则k 的取值范围是( ) A .4(0,]3B .14[,]33C .1[0,]2D .[0,1]3.若圆22:60,(0,0)M x y ax by ab a b +++--=>>平分圆22:4240N x y x y +--+=的周长,则2a b +的最小值为( )A .8B .9C .16D .204.圆C :x 2+y 2-6x -8y +9=0被直线l :ax +y -1-2a =0截得的弦长取得最小值时,此时a 的值为( ) A .3B .-3C .13D .-135.直线0x y +=被圆226240x y x y +-++=截得的弦长等于( )A .4B .2C .D6.在平面直角坐标系中,定义1212(,)||||d A B x x y y =-+-为两点11(,)A x y 、22(,)B x y 的“切比雪夫距离”,又设点P 及直线l 上任意一点Q ,称(,)d P Q 的最小值为点P 到直线l 的“切比雪夫距离”,记作(,)d P l ,给出下列三个命题: ①对任意三点A 、B 、C ,都有(,)(,)(,)d C A d C B d A B +≥; ②已知点(3,1)P 和直线:210l x y --=,则4(,)3d P l =; ③定义(0,0)O ,动点(,)P x y 满足(,)1d P O =,则动点P 的轨迹围成平面图形的面积是4;其中真命题的个数( ) A .0B .1C .2D .37.已知圆22:(2)2C x y ++=,则在x 轴和y 轴上的截距相等且与圆C 相切的直线有几条( ) A .1条 B .2条 C .3条 D .4条 8.若圆x 2+y 2+ax -by =0的圆心在第二象限,则直线x +ay -b =0一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限9.过点(0,2)P 的直线l 与以(1,1)A ,(2,3)B -为端点的线段有公共点,则直线l 的斜率k的取值范围是( ) A .5[,3]2-B .5(,][3,)2-∞-⋃+∞C .3[,1]2-D .1(,1][,)2-∞-⋃-+∞ 10.已知直线1l :(4)10kx k y +-+=与2l :2230kx y -+=平行,则k 的值是( ) A .1或0B .5C .0或5D .1或511.抛物线2?y x =上一点到直线240x y --=的距离最短的点的坐标是( ) A .()2,4B .11,24⎛⎫ ⎪⎝⎭C .39,24⎛⎫⎪⎝⎭D .()1,112.若直线220++=ax y 与直线840x ay ++=平行,则a 的值为( ) A .4B .4-C .4-或4D .2-二、填空题13.已知三条直线的方程分别为0y =0y -+=0y +-,那么到三条直线的距离相等的点的坐标为___________.14.已知点(),P x y 是直线240x y -+=上一动点,直线PA ,PB 是圆22:20C x y y ++=的两条切线,A ,B 为切点,C 为圆心,则四边形PACB 面积的最小值是______.15.经过点(2,1)M ,并且与圆2268240x y x y +--+=相切的直线方程是________. 16.已知点M 是直线l :22y x =--上的动点,过点M 作圆C :()()22114x y -+-=的切线MA ,MB ,切点为A ,B ,则当四边形MACB 的面积最小时,直线AB 的方程为______.17.已知直线l 经过点(1,2)P -,且垂直于直线2310x y ,则直线l 的方程是________.18.在直角坐标系xoy 中,已知圆C :()222824580x y m x my m m +---+-=,直线l 经过点()2,1,若对任意的实数m ,直线l 被圆C 截得弦长为定值,则直线l 方程为______.19.定义点()00,P x y 到直线()22:00l Ax By C A B ++=+≠的有向距离d =.已知点12,P P 到直线l 的有向距离分别是12,d d ,给出以下命题:①若120-=d d ,则直线12PP 与直线l 平行;②若120d d +=,则直线12PP 与直线l 平行;③若120d d +=,则直线12PP 与直线l 垂直;④若120<d d ,则直线12PP 与直线l 相交.其中正确命题的个数是_______.20.已知点M 为直线1:20l x y a +-=与直线2:210l x y -+=在第一象限的交点,经过点M 的直线l 分别交x ,y 轴的正半轴于A ,B 两点,O 为坐标原点,则当AOBS 取得最小值为1425时,a 的值为________.三、解答题21.已知圆221:2440C x y x y ++--=.(1)在下列两个条件中任选一个作答.注:如果选择两个条件分别解答,按第一个解答计分.①已知不过原点的直线l 与圆1C 相切,且在x 轴、y 轴上的截距相等,求直线l 的方程; ②从圆外一点(2,1)P 向圆引切线,求切线方程.(2)若圆222:4C x y +=与圆1C 相交与D 、E 两点,求线段DE 的长.22.已知圆C 的圆心在直线l :20x y -=上,且过点()0,0O 和()2,6A . (1)求圆C 的方程.(2)求证:直线1l :()130m x y m -+-=,m ∈R 与圆C 恒相交. (3)求1l 与圆C 相交所得弦的弦长的最小值及此时对应的直线方程.23.已知直线l :43100x y ++=,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1)求圆C 的方程;(2)直线4y kx =-与圆C 交于不同的M ,N 两点,且120MCN ∠=︒,求直线l 的斜率;(3)过点()1,0M 的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分ANB ∠?若存在,请求出点N 的坐标;若不存在,请说明理由.24.已知圆C 经过点()1,0A -和()3,4B ,且圆心C 在直线3150x y +-=上. (1)求圆C 的标准方程;(2)设点()()1,0Q m m ->在圆C 上,求△QAB 的面积. 25.△ABC 中∠C 的平分线所在直线方程为y x =,且A (-1,52),B (4,0).(1)求直线AB 的截距式...方程; (2)求△ABC 边AB 的高所在直线的一般式...方程. 26.从圆外一点()4,4P -作圆22:1O x y +=的两条切线,切点分别为A ,B . (1)求以OP 为直径的圆的方程; (2)求线段AB 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】将圆的方程化成标准方程,求出圆心及半径r ,圆心到直线的距离为d ,则圆上的点到直线的最大距离为d r + 【详解】圆22220x y x y k +---=化成标准形式()()22112x y k -+-=+,圆心()1,1,半径r =2k >-;圆心()1,1到直线100x y +-=的距离===d圆上的点到直线的最大距离为+==d r=,解得:2k =或2k =-(舍去) 故选:B 【点睛】结论点睛:本题考查直线与圆的位置关系,求圆上点到直线的最大距离与最小距离常用的结论:设圆的半径r ,圆心到直线的距离为d , (1)当dr 时,圆上的点到直线的最大距离为d r +,最小距离为d r -;(2)当d r ≤时,圆上的点到直线的最大距离为d r +,最小距离为0; 2.D解析:D 【分析】1y kx =-是过定点()0,1-的直线,曲线表示以()2,0为圆心,半径为1的圆的下半部分,画出两函数图像,找出两图像有公共点时k 的范围即可. 【详解】解:根据题意可得:1y kx =-是过定点()0,1-的直线,曲线表示以()2,0为圆心,半径为1的圆的下半部分,画出函数图像,如图所示: 当直线与曲线相切时:0k =,当()1,0在直线上时,代入可得1k =,所以两函数图像有公共点的k 的范围是[]0,1. 故选:D.【点睛】本题考查直线与圆的位置关系,利用了数形结合的思想,属于中档题. 方法点睛:(1)画出函数图像;(2)根据图像找到有公共点的相切或相交的情况; (3)根据公式计算,得到结果.3.A解析:A 【分析】由两圆的相交弦是圆N 的直径得出,a b 的关系,然后由基本不等式求得最小值. 【详解】两圆方程相减得,(4)(2)100a x b y ab +++--=,此为相交弦所在直线方程, 圆N 的标准方程是22(2)(1)1x y -+-=,圆心为(2,1)N , ∴2(4)2100a b ab +++--=,121a b+=, ∵0,0a b >>,∴12442(2)()4428b a b aa b a b a b a b a b+=++=++≥+⨯=,当且仅当4b a a b =即2,4a b ==时等号成立.故选:A . 【点睛】本题考查圆的方程,考查基本不等式求最值.圆的性质:(1)圆的直径平分圆;(2)相交两圆方程相减所得一次方程是两圆公共弦所在直线方程.4.C解析:C 【分析】先判断直线l 恒过点(2,1)P ,可得直线l 垂直于直线PC 时,截得的弦长最短,利用直线垂直的性质可得答案. 【详解】直线:120+--=l ax y a 可化为:(2)(1)0-+-=l a x y , 故直线l 恒过点(2,1)P .圆22:6890+--+=C x y x y 的圆心为(3,4)C ,半径为4. 当直线l 垂直于直线PC 时,截得的弦长最短, 因为直线PC 的斜率41332PC k -==-, ax +y -1-2a =0的斜率为a -, 此时1313PC l k k a a ⋅=-=-⇒=.故选:C . 【点睛】方法点睛:判断直线过定点主要形式有: (1)斜截式,0y kx y =+,直线过定点()00,y ; (2)点斜式()00,y y k x x -=-直线过定点()00,x y ; (3)化为()(),,0tf x y g x y +=的形式,根据()(),0,0f x y g x y ⎧=⎪⎨=⎪⎩ 求解.5.A解析:A 【分析】先将圆化成标准方程,求出圆心与半径,再求圆心到直线的距离,然后解弦长即可. 【详解】因为226240x y x y +-++= 所以22(3)(1)6x y -++=, 圆心到直线的距离为22d ==直线0x y +=被圆226240x y x y +-++=截得的弦长()222(6)24l =-;故选:A . 【点睛】计算圆的弦长通常使用几何法简捷.也可使用代数法计算.6.B解析:B 【分析】由新定义表示出三点,,A B C 两两之间的“切比雪夫距离”,然后根据绝对值的性质判断①,由新定义计算出(,)d P l ,判断②,根据新定义求出P 的轨迹方程,确定其轨迹,求得轨迹围成的图形面积判断③. 【详解】①设112233(,),(,),(,)A x y B x y C x y ,则1212(,)d A B x x y y =-+-,13132323(,)(,)d A C d B C x x y y x x y y +=-+-+-+-,显然1323132312()()x x x x x x x x x x -+-≥---=-,同理132312y y y y y y -+-≥-,∴(,)(,)(,)d C A d C B d A B +≥,①正确; ②设(,)P x y 是直线l 上任一点,则21y x =-,(,)31322d P l x y x x =-+-=-+-35,31,1353,1x x x x x x -≥⎧⎪=+≤<⎨⎪-<⎩,易知(,)d P l 在[1,)+∞上是增函数,在(,1)-∞上是减函数,∴1x =时,min (,)13222d P l =-+-=,②错; ③由(,)1d P O =得1x y +=,易知此曲线关于x 轴,y 轴,原点都对称,它是以(1,0),(0,1),(1,0),(0,1)--为顶点的正方形,其转成图形面积为12222S =⨯⨯=,③错.故选:B . 【点睛】关键点点睛:本题考查新定义,解题关键是理解新定义,解题方法是把新概念转化为绝对值的问题,利用绝对值的性质求解.7.C解析:C 【分析】先看直线不过原点的情况,设出直线的方程,斜率为1-,则可知这样的直线有2条,再看直线过原点的情况,把原点代入即可知原点在圆外,则这样的直线也应该有2条,最后验证以上4条中有一条是重复,最后综合得到结论. 【详解】若直线不过原点,其斜率为1-,设其方程为y x m =-+,则d ==0m =或4-,当0m =时,直线过原点;若过原点,把()0,0代入()2200242++=>,即原点在圆外,所以过原点有2条切线,综上,一共有3条, 故选:C . 【点睛】本题主要考查了直线与圆的位置关系,考查了学生数形结合的思想和对基本知识的理解,属于中档题.8.C解析:C【分析】由圆心位置确定a ,b 的正负,再结合一次函数图像即可判断出结果. 【详解】因为圆22+0x y ax by +-=的圆心坐标为,22a b ⎛⎫-⎪⎝⎭, 由圆心在第二象限可得0,0a b >>,所以直线0x ay b +-=的斜率10a -<,y 轴上的截距为0b a>,所以直线不过第三象限. 故选:C9.D解析:D 【分析】画出图形,设直线l 的斜率为k ,求出PA k 和PB k ,由直线l 与线段AB 有交点,可知PA k k ≤或PB k k ≥,即可得出答案.【详解】直线过定点(0,2)P ,设直线l 的斜率为k , ∵12110PA k -==--,321202PB k -==---, ∴要使直线l 与线段AB 有交点,则k 的取值范围是1k ≤-或12k ≥-, 即1(,1][,)2k ∈-∞-⋃-+∞.故选:D. 【点睛】方法点睛:求直线的斜率(或取值范围)的方法:(1)定义法:已知直线的倾斜角为α,且90α︒≠,则斜率tan k α=; (2)公式法:若直线过两点()11,A x y ,()22,B x y ,且12x x ≠,则斜率2121y y k x x -=-;(3)数形结合方法:该法常用于解决下面一种题型:已知线段AB 的两端点及线段外一点P ,求过点P 且与线段AB 有交点的直线l 斜率的取值范围.若直线,PA PB 的斜率都存在,解题步骤如下: ①连接,PA PB ; ②由2121y y k x x -=-,求出PA k 和PB k ; ③结合图形写出满足条件的直线l 斜率的取值范围.10.C解析:C 【分析】由两直线平行得出()224k k k -=-,解出k 的值,然后代入两直线方程进行验证. 【详解】 解:直线1l :(4)10kx k y +-+=与2l :2230kx y -+=平行,()224k k k ∴-=-,整理得()50k k -=,解得0k =或5.当0k =时,直线11:4l y =-,23:2l y =,两直线平行;当5k =时,直线1:510l x y -+=,23:502l x y -+=,两直线平行. 因此,0k =或5. 故选:C. 【点睛】方法点睛:本题考查直线的一般方程与平行关系,在求出参数后还应代入两直线方程进行验证.(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A1、A2、B1、B2都不为零, ①11112222||A B C l l A B C ⇔=≠; ②2112210A A l B B l +⇔=⊥;11.D解析:D 【分析】设抛物线y=x 2上一点为A (x 0,x 02),点A (x 0,x 02)到直线2x-y-4=0的距离d ==由此能求出抛物线y=x 2上一点到直线2x-y-4=0的距离最短的点的坐标. 【详解】设抛物线y=x 2上一点为A (x 0,x 02), 点A (x 0,x 02)到直线2x-y-4=0的距离d ==∴当x 0=1时,即当A (1,1)时,抛物线y=x 2上一点到直线2x-y-4=0的距离最短. 故选D . 【点睛】本题考查抛物线上的点到直线的距离最短的点的坐标的求法,是基础题.解题时要认真审题,仔细解答.12.B解析:B 【分析】根据两直线平行,列出方程组,即可求解. 【详解】由题意,直线220++=ax y 与直线840x ay ++=平行,可得2802240a a a ⨯-⨯=⎧⎨-⨯≠⎩,解得4a =-.故选: B. 【点睛】本题主要考查了两直线的位置关系的应用,其中解答中熟记两直线的平行的条件是解答的关键,着重考查运算与求解能力.二、填空题13.【分析】先画出图形求出再分四种情况讨论得解【详解】如图所示由题得的平分线:和的平分线:的交点到三条直线的距离相等联立两直线的方程解方程组得交点为;的外角平分线:和的外角平分线:的交点到三条直线的距离解析:(0,30,3(-【分析】先画出图形,求出(1,0),(1,0)A B C -,再分四种情况讨论得解. 【详解】 如图所示,由题得(1,0),(1,0)A B C -,CAB ∠的平分线AO :0x =和ACB ∠的平分线CD :(1)3y x =+的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3xy x=⎧⎪⎨=+⎪⎩得交点为3(0,)3;ACB∠的外角平分线CE:3(1)y x=-+和ABC∠的外角平分线BF:3(1)y x=-的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3(1)y xy x⎧=-+⎪⎨=-⎪⎩得交点为(0,3)-;ACB∠的外角平分线CG:3(1)y x=-+和CAB∠的外角平分线AG:3y=的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3y xy⎧=-+⎪⎨=⎪⎩得交点为(2,3)-;ABC∠的外角平分线BH:3(1)y x=-和CAB∠的外角平分线AG:3y=的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3y xy⎧=-⎪⎨=⎪⎩得交点为(2,3).故答案为:(0,3)-、30,3、(2,3)、(2,3)-【点睛】关键点睛:解答本题的关键是利用平面几何的知识分析找到四个点,再利用直线的知识解答即可.14.2【分析】根据切线的性质可将面积转化为求出的最小值即到直线的距离【详解】圆化为可得圆心为半径为1如图可得则当取得最小值时最小点是直线上一动点到直线的距离即为的最小值故答案为:2【点睛】关键点睛:本题解析:2【分析】根据切线的性质可将面积转化为21PACBS PC=-PC的最小值即()0,1C-到直线240x y -+=的距离. 【详解】圆22:20C x y y ++=化为()2211x y ++=,可得圆心为()0,1-,半径为1,如图,可得22221PA PC AC PC =-=-,212212PACB PACS SPA AC PA PC ==⨯⨯⨯==-则当PC 取得最小值时,PACB S 最小, 点(),P x y 是直线240x y -+=上一动点,()0,1C ∴-到直线240x y -+=的距离即为PC 的最小值,()min 222014521PC ⨯++∴==+-()min 512PACB S ∴=-=.故答案为:2. 【点睛】关键点睛:本题考查直线与圆相切问题,解题的关键是利用切线性质将面积转化为21PACB S PC =-PC 的最小值即可.15.或【分析】求出圆心和半径判断斜率不存在的直线是否是切线斜率存在时设出直线方程由圆心到切线距离等于半径求得参数值得切线方程【详解】圆标准方程是圆心为半径为1易知直线与圆相切设斜率存在的切线方程为即由解解析:2x =或4350x y --= 【分析】求出圆心和半径,判断斜率不存在的直线是否是切线,斜率存在时设出直线方程,由圆心到切线距离等于半径求得参数值得切线方程. 【详解】圆标准方程是22(3)(4)1x y -+-=,圆心为(3,4),半径为1. 易知直线2x =与圆相切,设斜率存在的切线方程为1(2)y k x -=-,即210kx y k --+=,1=,解得43k =,切线方程为481033x y --+=,即4350x y --=.故答案为:2x =或4350x y --=. 【点睛】本题考查求圆的切线方程,解题方法是由圆心到切线的距离等于半径求解.但解题时要注意过定点斜率不存在的直线是否是切线,否则由方程求不出此直线方程.如果所过的点在圆上,由可由过切点的半径与切线垂直得出切线斜率后得直线方程.16.【分析】由已知结合四边形面积公式可得四边形MACB 面积要使四边形MACB 面积最小则需最小此时CM 与直线垂直求得以CM 为直径的圆的方程再与圆C 的方程联立可得AB 所在直线方程【详解】由圆的标准方程可知圆 解析:210x y ++=【分析】由已知结合四边形面积公式可得四边形MACB面积2||||2||CAM S S CA AM MA ==⋅==△要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直,求得以CM 为直径的圆的方程,再与圆C 的方程联立可得AB 所在直线方程. 【详解】由圆的标准方程可知,圆心C (1,1) ,半径r =2.因为四边形MACB的面积2||||2||CAM S S CA AM MA ==⋅==△ 要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直. 直线CM 的方程为11(x 1)2y -=- ,即11.22y x =+联立112222y x y x ⎧=+⎪⎨⎪=--⎩,解得(1,0)M -则以CM 为直径的圆的方程为2215()24x y +-=, 联立222215(),24(1)(1)4x y x y ⎧+-=⎪⎨⎪-+-=⎩消去二次项可得直线AB 的方程为210x y ++=, 故答案为:210x y ++=【点睛】关键点点睛:根据四边形的面积表达式可以看出要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直,此时所做圆的直径为CM ,写出圆的方程,两圆方程相减即可求出过AB 的直线方程.17.【分析】根据题意设直线的方程是代入点求得的值即可求解【详解】由题意所求直线垂直于直线设直线的方程是又由直线过点代入可得解得故的方程是【点睛】与直线平行的直线方程可;与直线垂直的直线方程可 解析:3270x y -+=【分析】根据题意,设直线l 的方程是320x y c -+=,代入点(1,2)P -,求得c 的值,即可求解. 【详解】由题意,所求直线l 垂直于直线2310x y , 设直线l 的方程是320x y c -+=,又由直线l 过点(1,2)P -,代入可得340c --+=,解得7c =, 故l 的方程是3270x y -+=. 【点睛】与直线220(0)Ax By C A B ++=+≠平行的直线方程可0()Ax By n n c ++=≠;与直线220(0)Ax By C A B ++=+≠垂直的直线方程可0Bx Ay M -+=。

高中数学-《直线与圆的位置关系》单元测试题

高中数学-《直线与圆的位置关系》单元测试题

高中数学-《直线与圆的位置关系》单元测试题高中数学-《直线与圆的位置关系》单元测试题班级:__________姓名:__________成绩:__________ 一.选择题(每题5分,共12题,共60分)1.直线3x + 4y + 12 = 0 与圆(x + 1)^2 + (y + 1)^2 = 9的位置关系是A。

过圆心 B。

相切 C。

相离 D。

相交2.直线l将圆x^2 + y^2 - 2x - 4y = 0 平分,且与直线x + 2y = 0 垂直,则直线l的方程为A。

y = 2x B。

y = 2x - 2 C。

y = x + 1 D。

y = x - 13.若圆C半径为1,圆心在第一象限,且与直线4x - 3y = 0 和x轴都相切,则该圆的标准方程是A。

(x - 2)^2 + (y - 1)^2 = 1 B。

(x - 2)^2 + (y + 1)^2 = 1 C。

(x + 2)^2 + (y - 1)^2 = 1 D。

(x - 3)^2 + (y - 1)^2 = 14.若直线ax + by = 1与圆x^2 + y^2 = 1相交,则点P(a,b)的位置是A。

在圆上 B。

在圆外 C。

在圆内 D。

都有可能5.由直线y = x + 1上的一点向圆(x - 3)^2 + y^2 = 1引切线,则切线长的最小值为A。

1 B。

2 C。

3 D。

46.圆x^2 + y^2 + 2x + 4y - 3 = 0 上到直线l:x + y + 1 = 0的距离为2的点有A。

1个 B。

2个 C。

3个 D。

4个7.两圆x^2 + y^2 - 6x = 0 和x^2 + y^2 + 8y + 12 = 0 的位置关系是A。

相离 B。

外切 C。

相交 D。

内切8.两圆x + y = r,(x-3)+(y+1)=r外切,则正实数r的值是A。

10 B。

5 C。

2 D。

229.半径为6的圆与x轴相切,且与圆x+(y-3)^2=1内切,则此圆的方程是A。

第二十九章 直线与圆的位置关系 单元测试 (含答案)冀教版九年级数学下册

第二十九章 直线与圆的位置关系 单元测试 (含答案)冀教版九年级数学下册

第二十九章 直线与圆的位置关系综合素质评价卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题所给出的四个选项中,只有一项是符合题目要求的)1.已知⊙O 的半径为3,当OP =5时,点P 与⊙O 的位置关系为( )A. 点P 在⊙O 内B. 点P 在⊙O 外C. 点P 在⊙O 上D. 不能确定2.已知,⊙O 的半径OE =3,若OF =2,则直线EF 与⊙O 位置关系的图形可能为( )A. B.C. D.3.如图,正六边形ABCDEF 内接于⊙O ,G 是⌢BC 上一点,则∠EGD 的度数为( )(第3题)A. 60∘B. 50∘C. 45∘D. 30∘4.如图,∠BAC =40∘ ,⊙O 的圆心O 在AB 上,且与边AC 相切于点D ,与AB 交于点E ,F ,连接FD ,则∠AFD =( )(第4题)A. 15∘B. 20∘C. 25∘D. 30∘5.如图,⊙O与直线l1相离,圆心O到直线l1的距离OB=2 3,OA=4,将直线l1绕点A逆时针旋转30∘后得到的直线l2刚好与⊙O相切于点C,则OC=()(第5题)A. 1B. 2C. 3D. 46.嘉淇用一些完全相同的△ABC纸片拼接图案,已知用六个△ABC纸片按照图①所示的方法拼接可得外轮廓是正六边形的图案,若用n个△ABC纸片按图②所示的方法拼接,那么得到图案的外轮廓是()(第6题)A. 正十二边形B. 正十边形C. 正九边形D. 正八边形7.如图,EA,ED是⊙O的切线,切点为A,D,点B,C在⊙O上,若∠BAE +∠BCD=236∘,则∠E=()(第7题)A. 56∘B. 60∘C. 68∘D. 70∘8.已知⊙O及⊙O外一点P,过点P作出⊙O的一条切线(只用圆规和三角尺这两种工具),以下是甲、乙两名同学的作业:第 3 页(第8题)甲:①连接OP ,作OP 的垂直平分线l ,交OP 于点A ;②以点A 为圆心,OA 的长为半径画弧,交⊙O 于点M ;③作直线PM ,则直线PM 即为所求(如图①).乙:①让三角尺的一条直角边始终经过点P ;②调整三角尺的位置,让它的另一条直角边过圆心O ,直角顶点落在⊙O 上,记这时直角顶点的位置为点M ;③作直线PM ,则直线PM 即为所求(如图②).对于两人的作业,下列说法正确的是( )A. 甲、乙都对B. 甲、乙都不对C. 甲对,乙不对D. 甲不对,乙对9.如图,在四边形ABCD 中,AB //CD ,AD ⊥AB ,以点D 为圆心,AD 的长为半径的弧恰好与BC 相切,切点为E ,若AB CD =13,则sin C 的值是( )(第9题)A. 23B. 53C. 34D. 7410.发动机的曲柄连杆将直线运动转化为圆周运动,如图是其示意图.点A 在直线l 上往复运动,推动点B 做圆周运动形成⊙O ,AB 与BO 表示曲柄连杆的两直杆,点C ,D 是直线l 与⊙O 的交点.当点A 运动到点E 时,点B 到点C ;当点A 运动到点F 时,点B 到点D .若AB =12,OB =5,则下列结论正确的是( )(第10题)A. FC =3B. EF=12C. 当AB与⊙O相切时,EA=4D. 当OB⊥CD时,EA=AF二、填空题(本大题共3小题,每空4分,共16分.把答案填写在横线上)11.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD =2,△ABC的周长为14,则BC的长为________.(第11题)12.已知⊙O的半径r=5,直线l1//l2,且l1与⊙O相切,圆心O到l2的距离为7,则l1与l2的距离为______________.13.如图①的螺丝钉由头部(直六棱柱)和螺纹(圆柱)组合而成,其俯视图如图②所示.小明将刻度尺紧靠螺纹放置,经过点A且交CD于点P,量得PC的长为1 mm,六边形ABCDEF的边长为4 mm.(1)AP长为________mm;(2)Q为圆上一点,则AQ的最小值为______________mm.三、解答题(本大题共4小题,共44分.解答时应写出文字说明、证明过程或验算步骤)14.(9分)如图,在△ABC中,AB=AC=5,D是BC的中点,以D为圆心,DC长为半径作⊙D,求:第 5 页(1) 当BC =8时,点A 与⊙D 的位置关系;(2) 当BC =6时,点A 与⊙D 的位置关系;(3) 当BC =5 2时,点A 与⊙D 的位置关系.15.(9分)如图,在正六边形ABCDEF 中,AM =BN ,连接MF ,AN 交于点P .(1) 求证:△AMF≌△BNA ;(2) 求∠FPN 的度数.16.(10分)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,过点C 的切线交AB 的延长线于点F ,连接DF ,OC.(1)求证:DF是⊙O的切线;(2)连接BC,若∠BCF=30∘,BF=2,求CD的长.17.(16分)如图,在四边形ABCD中,AB//DC,∠B=90∘,∠BAD=60∘,BC=4 cm,对角线AC平分∠BAD.点P是BA边上一动点,它从点B出发,向点A 移动,移动速度为1 cm/s;点Q是AC上一动点,它从点A出发,向点C移动,移动速度为1 cm/s.设点P,Q同时出发,移动时间为t s(0≤t≤6).连接PQ,以PQ 为直径作⊙O.(1)求DC的长.(2)当t为何值时,⊙O与AC相切?(3)当t为何值时,线段AC被⊙O截得的线段长恰好等于⊙O的半径?(4)当t为________时,圆心O到直线DC的距离最短,最短距离为____________.第 7 页【答案】一、1. B 2. A 3. D 4. C 5. B 6. C 7.C 8. A 9. B 10.C二、11. 512. 2或1213.(1) 7(2) (4−637)三、14.解:连接AD .(1) ∵ 在△ABC 中,AB =AC =5,BC =8,D 是BC 的中点,∴AD ⊥BC ,CD =4,∴AD =AC 2−CD 2=3.∵3<4,∴ 点A 在⊙D 内.(2) ∵ 在△ABC 中,AB =AC =5,BC =6,D 是BC 的中点,∴AD ⊥BC ,CD =3,∴AD =AC 2−CD 2=4.∵4>3,∴ 点A 在⊙D 外.(3) ∵ 在△ABC 中,AB =AC =5,BC =5 2,D 是BC 的中点,∴AD ⊥BC ,CD =5 22,∴AD =AC 2−CD 2=5 22.∵5 22=5 22,∴ 点A 在⊙D 上.15.(1) 证明:∵ 六边形ABCDEF 是正六边形,∴AF =AB ,∠FAM =∠ABN =120∘ .在△AMF 和△BNA 中,{AF =BA ,∠FAM =∠ABN ,AM =BN ,∴△AMF≌△BNA (SAS).(2) 解:∵△AMF≌△BNA ,∴∠AFM =∠BAN .∴∠APF =∠AMF +∠BAN =∠AMF +∠AFM =180∘−∠FAM =180∘−120∘=60∘ .∴∠FPN =180∘−60∘=120∘ .16.(1) 证明:如图,连接OD .∵CF 是⊙O 的切线,∴∠OCF =90∘ ,∴∠OCD +∠DCF =90∘ .∵AB ⊥CD ,∴CE =ED ,∴OF 为CD 的垂直平分线,∴CF =DF ,∴∠CDF =∠DCF .∵OC =OD ,∴∠CDO =∠OCD ,∴∠CDO +∠CDF =∠OCD +∠DCF =90∘ ,∴OD ⊥DF .∵OD 为⊙O 的半径,∴DF 是⊙O 的切线.(2) 解:如图.∵∠OCF =90∘ ,∠BCF =30∘ ,∴∠OCB =60∘ .∵OC =OB ,∴△OCB 为等边三角形,∴∠COB =60∘ ,∴∠CFO =30∘ ,∴FO =2OC =2OB ,∴FB =OB =OC =2.∵∠COE =60∘ ,∴CE =3,∴CD =2CE =2 3.17.(1) 解:如图①,过点D 作DM ⊥AB 于点M ,则∠DMB =90∘ .∵AB //DC ,∠B =90∘ ,∴∠DCB =90∘=∠B =∠DMB ,∴ 四边形DCBM 是矩形,∴DM =BC =4 cm .∵∠BAD =60∘ ,∠DMA =90∘ ,∴∠ADM =30∘ ,∴AD =2AM ,∴(2AM )2=42+AM 2,∴AM =4 33 cm .∵AC 平分∠BAD ,AB //DC ,∴∠CAD =∠CAB =∠ACD ,∴DC =AD =2AM =8 33cm .(2) 如图②,当⊙O 与AC 相切时,QP ⊥AC .由题意,得AQ =BP =t cm .∵∠BAC =12∠BAD =30∘ ,BC =4 cm ,∴AC =8 cm ,AB =4 3 cm ,∴AP =(4 3−t )cm .∵AQ =32AP ,∴t =32(4 3−t ),解得t =24−12 3,∴ 当t 为24−12 3时,⊙O 与AC 相切.第 9 页(3) 第一种情况:如图③,当∠OQM =60∘ 时满足条件,则∠AQP =120∘ .∵∠QAP =30∘ ,∴ 易得AP =2×32t =3t (cm),由(2)知AB =4 3 cm ,∴4 3−t =3t ,解得t =6−2 3;第二种情况:如图④,当∠OQM =60∘ 时满足条件.∵∠QAP =30∘ .∴∠APQ =90∘ ,∴AP =32t cm ,即4 3−t =32t ,解得t =16 3−24.综上所述,当t 为6−2 3或16 3−24时,线段AC 被⊙O 截得的线段长恰好等于⊙O 的半径.(4) 6 ;52cm。

直线与圆单元测试题(含答案)

直线与圆单元测试题(含答案)

《直线与圆》单元测试题(1)班级 学号 姓名一、选择题:1. 直线20x y --=的倾斜角为( )A .30︒B .45︒ C. 60︒ D. 90︒2.将直线3y x =绕原点逆时针旋转90︒,再向右平移1个单位,所取得的直线为( ) A.1133y x =-+ B. 113y x =-+ C.33y x =- D.31y x =+30y m -+=与圆22220x y x +--=相切,那么实数m 等于( )A .-B .- D .或4.过点(0,1)的直线与圆224x y +=相交于A ,B 两点,那么AB 的最小值为( )A .2B .C .3D .5.假设圆C 的半径为1,圆心在第一象限,且与直线034=-y x 和x 轴都相切,那么该圆的标准 方程是( )A. 1)37()3(22=-+-y x B. 1)1()2(22=-+-y x C. 1)3()1(22=-+-y x D. 1)1()23(22=-+-y x6.已知圆1C :2(1)x ++2(1)y -=1,圆2C 与圆1C 关于直线10x y --=对称,那么圆2C 的方程为( )A.2(2)x ++2(2)y -=1 B.2(2)x -+2(2)y +=1 C.2(2)x ++2(2)y +=1 D.2(2)x -+2(2)y -=17.已知圆C 与直线0=-y x 及04=--y x 都相切,圆心在直线0=+y x 上,那么圆C 的方程为( )A.22(1)(1)2x y ++-= B. 22(1)(1)2x y -++= C. 22(1)(1)2x y -+-= D. 22(1)(1)2x y +++=8.设A 在x 轴上,它到点P 的距离等于到点(0,1,1)Q -的距离的两倍,那么A 点的坐标是( )A.(1,0,0)和( -1,0,0)B.(2,0,0)和(-2,0,0)C.(12,0,0)和(12-,0,0) D.(,0,00,0)9.直线012=--y x 被圆2)1(22=+-y x 所截得的弦长为( )B D10.假设直线y x b =+与曲线3y =有公共点,那么b 的取值范围是( )A.[1-1+1-,3] C.[-1,1+1-3] 二、填空题:11.设假设圆422=+y x 与圆)0(06222>=-++a ay y x 的公共弦长为32,那么a =______.12.已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线1:-=x y l 被该圆所截得的弦长为C 的标准方程为_________ ___.13.已知圆C 的圆心与点(21)P -,关于直线1y x =+对称.直线34110x y +-=与圆C 相交于A B ,两点,且6AB =,那么圆C 的方程为 . 14.已知直线2310x y +-=与直线40x ay += 平行,那么a = .15.直线m 被两平行线12:10:30l x y l x y -+=-+=与所截得的线段的长为22,那么m 的 倾斜角能够是①15;②30;③45;④60;⑤75. 其中正确答案的序号是 .三、解答题:16(1).已知圆C 通过A (5,1),B (1,3)两点,圆心在x 轴上,求圆C 的方程..(2)求与圆014222=++-+y x y x 同心,且与直线012=+-y x 相切的圆的方程.17.已知圆22:(3)(4)4C x y -+-=,(Ⅰ)假设直线1l 过定点A (1,0),且与圆C 相切,求1l 的方程;(Ⅱ) 假设圆D 的半径为3,圆心在直线2l :20x y +-=上,且与圆C 外切,求圆D 的方程.18.在平面直角坐标系xOy 中,已知圆C 1:(x +3)2+(y -1)2=4和圆C 2:(x -4)2+(y -5)2=9. (1)判定两圆的位置关系;(2)求直线m 的方程,使直线m 被圆C 1截得的弦长为4,与圆C 2截得的弦长是6.19.已知圆C :,25)2()1(22=-+-y x 直线)(47)1()12(:R m m y m x m l ∈+=+++ (1)证明:不论m 取何实数,直线l 与圆C 恒相交;(2)求直线l 被圆C 所截得的弦长的最小值及现在直线l 的方程;20.已知以点C ⎝⎛⎭⎪⎫t ,2t (t ∈R,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△AOB 的面积为定值;(2)设直线2x +y -4=0与圆C 交于点M 、N ,假设OM =ON ,求圆C 的方程;21.在平面直角坐标系xOy 中,已知圆2212320x y x +-+= 的圆心为Q ,过点(02)P ,且斜率为k 的直线与圆Q 相交于不同的两点A B ,.(Ⅰ)求k 的取值范围;(Ⅱ)以OA,OB 为邻边作平行四边形OADB,是不是存在常数k ,使得直线OD 与PQ 平行若是存在,求k 值;若是不存在,请说明理由.参考答案:一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 答案 B AABBBBADD二、填空题11. _1__. 12.4)3(22=+-y x . 13.18)1(22=++y x . 14. 6 15. ①⑤ .三、解答题(本大题共6小题,共70分,解许诺写出文字说明.证明进程或演算步骤) 16.解:(1)(x -2)2+y 2=10 ;(2)5)2()1(22=++-y x ;17.(Ⅰ)①假设直线1l 的斜率不存在,即直线是1x =,符合题意.②若直线1l 斜率存在,设直线1l 为(1)y k x =-,即0kx y k --=. 由题意知,圆心(3,4)到已知直线1l 的距离等于半径2,即2= 解之得 34k =.所求直线方程是1x =,3430x y --=. (Ⅱ)依题意设(,2)D a a -,又已知圆的圆心(3,4),2C r =, 由两圆外切,可知5CD =∴可知5, 解得 2,3-==a a 或, ∴ (3,1)D -或(2,4)D -, ∴ 所求圆的方程为 9)4()29)1()32222=-++=++-y x y x 或((. 18.解 (1)圆C 1的圆心C 1(-3,1),半径r 1=2;圆C 2的圆心C 2(4,5),半径r 2=2.∴C 1C 2=72+42=65>r 1+r 2, ∴两圆相离;(2)由题意得,所求的直线过两圆的圆心,即为连心线所在直线,易患连心线所在直线方程为:4x -7y +19=0.19.解:(1)证明:直线)(47)1()12(:R m m y m x m l ∈+=+++可化为:04)72(=-++-+y x y x m ,由此明白直线必通过直线072=-+y x 与04=-+y x 的交点,解得:⎩⎨⎧==13y x ,那么两直线的交点为A (3,1),而此点在圆的内部,故不论m 为任何实数,直线l 与圆C 恒相交。

直线与圆单元测试题及答案

直线与圆单元测试题及答案

直线与圆单元测试题及答案一、选择题(每题2分,共10分)1. 直线与圆相切时,直线与圆心的距离等于()。

A. 圆的半径B. 圆的直径C. 圆的周长D. 圆的面积2. 圆的方程为 \( (x-a)^2 + (y-b)^2 = r^2 \),其中 \( a \) 和\( b \) 分别代表()。

A. 圆的半径和直径B. 圆的中心坐标C. 圆的周长和面积D. 圆的直径和面积3. 如果直线 \( y = mx + c \) 与圆 \( (x-a)^2 + (y-b)^2 = r^2 \) 相切,则直线到圆心的距离是()。

A. \( \sqrt{m^2 + 1} \cdot r \)B. \( \frac{|ma - mb + c|}{\sqrt{m^2 + 1}} \)C. \( \frac{|ma + mb + c|}{\sqrt{m^2 + 1}} \)D. \( \frac{|ma - mb - c|}{\sqrt{m^2 + 1}} \)4. 直线 \( x = 3 \) 与圆 \( (x-2)^2 + (y-1)^2 = 5 \) 的位置关系是()。

A. 相切B. 相交C. 相离D. 无法确定5. 圆心在原点,半径为 \( \sqrt{5} \) 的圆的方程是()。

A. \( x^2 + y^2 = 5 \)B. \( x^2 + y^2 = 3 \)C. \( x^2 + y^2 = 4 \)D. \( x^2 + y^2 = 2 \)二、填空题(每题3分,共15分)6. 若直线 \( y = kx + 1 \) 与圆 \( x^2 + y^2 = 9 \) 相切,则\( k \) 的值为________。

7. 圆 \( x^2 + y^2 - 6x - 8y + 16 = 0 \) 的圆心坐标是________。

8. 若直线 \( x - 2y + 3 = 0 \) 与圆 \( x^2 + y^2 = 25 \) 相切,则圆心到直线的距离是________。

直线和圆测试题含答案

直线和圆测试题含答案

直线和圆单元测试题一、选择题1.方程04422=+-+y x y x 表示的曲线是(A)两个圆 (B)不表示图形 (C)一个圆 (D) 一个点2.把直线x y 33=绕原点按逆时针方向旋转,使它与圆0323222=+-++y x y x 相切,则直线旋转的最小正角是( )A .3πC .32πD .65π 3.若两直线y=x+2k 与y=2x+k+1的交点P 在圆x 2+y 2=4的内部,则k 的范围是( )A.- 51<k <-1 31<k <1 D.-2<k <24.若直线3x -4y +12A 、B ,则以线段AB 为直径的圆的方程为A .x 2+y 2+4x -3y -4=0B .x 2+y 2-4x -3y -4=0C .x 2+y 2-4x -3y =0D .x 2+y 2+4x -3y =0 5、如果实数y x ,满足等式22(2)3x y -+=,那么y x的最大值是( )A 、12B 、3C 、2 6、方程0322222=++-++a a ay ax y x 表示的图形是半径为r (0>r )的圆,则该圆圆心在 ( )(A )第一象限 (B )第二象限(C )第三象限 (D )第四象限7.直线0234=--y x 与圆01242222=-++-+a y ax y x 总有两个交点,则a 应满足(A)73<<-a (B)46<<-a (C)37<<-a (D)1921<<-a8.圆(x-3)2+(y+4)2=2关于直线x+y=0的对称圆的标准方程是( )A.(x+3)2+(y-4)2=2B.(x-4)2+(y+3)2=2C.(x+4)2+(y-3)=2D.(x-3)2+(y-4)2=29.若动点),a (b P 在曲线221y x =+上移动,则P 与点(0,-1)Q 连线 中点的轨迹方程为A .22y x = B .24 y x = C .26y x = D . 28y x =二、填空题10、过点M (0,4)、被圆4)1(22=+-y x 截得的线段长为32的直线方程为15x+8y-32=0或x=011.圆022=++++F Ey Dx y x 与y 轴切于原点,则D 、E 、F 应满足的条件是 E=F=0,D ≠0_.三、解答题12.自点A(-3,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线m 所在直线与圆x 2+y 2-4x-4y+7=0相切,求光线l 与m 所在直线方程.13.已知圆C :(x+4)2+y 2=4和点A(-23,0),圆D 的圆心在y 轴上移动,且恒与圆C 外切,设圆D 与y 轴交于点M 、N ,求证:∠MAN 为定值.14.(选做).已知圆O :122=+y x 和抛物线22-=x y 上三个不同的点A 、B 、C ,如果直线AB 和AC 都与圆O 相切,求证:直线BC 也与圆O 相切.参考答案12.l 的方程为:3x+4y-3=0或4x+3y+3=0 M 的方程为3x-4y-3=0或4x-3y+3=0 13.60°14.设A )2,(2-a a ,B )2,(2-b b ,C )2,(2-c c ,则直线AB 、AC 、BC 的方程分别为02)(=---+ab y x b a 02)(,02)(=---+=---+bc y x c b ac y x c a ……3分,由于AB 是圆O 的切线,则11)(|2|2=+++b a ab ,整理得032)1(222=-++-a ab b a ,同理032)1(222=-++-a ac c a ∴b 、c 是方程032)1(222=-++-a ax x a 的两根,22213,12a a bc a a c b --=-=+,于是圆心O 到直线BC 的距离11)1(4|213|1)(|2|222222=+-+--=+++=a a a a c b bc d ,故BC 也与圆O 相切20.M 的轨迹方程为(λ2-1)(x 2+y 2)-4λ2x+(1+4x 2)=0,当λ=1时,方程为直线x=45.当λ≠1时,方程为(x-1222-λλ)2+y 2=222)1(31-+λλ它表示圆, 该圆圆心坐标为(1222-λλ,0)半径为13122-+λλ。

第2章 直线与圆的位置关系 单元测试卷 2021-2022学年浙教版数学九年级下册( 含答案)

第2章 直线与圆的位置关系 单元测试卷   2021-2022学年浙教版数学九年级下册( 含答案)

2021-2022学年浙教新版九年级下册数学《第2章直线与圆的位置关系》单元测试卷一.选择题(共10小题,满分30分)1.已知⊙O的半径为3,圆心O到直线l的距离为2,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.不能确定2.在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,2.4cm长为半径的圆与AB的位置关系是()A.相切B.相交C.相离D.不能确定3.如图,在平面直角坐标系xOy中,直线AB过点A(﹣3,0),B(0,3),⊙O 的半径为1(O为坐标原点),点P在直线AB上,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A.B.2C.3D.4.如图,已知AB、AC分别为⊙O的直径和弦,D为弧BC的中点,DE垂直于AC,交AC 的延长线于E,连接BC,若DE=6cm,CE=2cm,下列结论正确的是()①DE是⊙O的切线;②直径AB长为20cm;③弦AC长为15cm;④C为弧AD的中点.A.①②④B.①③④C.①②D.②③5.如图,AB为⊙O的直径,C、D为⊙O上的点,直线MN切⊙O于C点,图中与∠BCN 互余的角有()A.1个B.2个C.3个D.4个6.如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若△PCD 的周长等于3,则PA的值是()A.B.C.D.7.如图,PA、PB切⊙O于点A、B,直线FG切⊙O于点E,交PA于F,交PB于点G,若PA=8cm,则△PFG的周长是()A.8cm B.12cm C.16cm D.20cm8.如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙O上一点,连接PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正确的个数为()A.4个B.3个C.2个D.1个9.如图,已知AB、AC分别为⊙O的直径和弦,D为的中点,DE垂直于AC的延长线于E,连接BC,若DE=6cm,CE=2cm,下列结论一定错误的是()A.DE是⊙O的切线B.直径AB长为20cmC.弦AC长为16cm D.C为的中点10.已知⊙O的半径为5cm,点O到同一平面内直线l的距离为6cm,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法判断二.填空题(共10小题,满分30分)11.已知⊙O半径为5,点O到直线l的距离为3,则直线l与⊙O的位置关系为.12.⊙O的直径为8,圆心O到直线l的距离为4,则直线l与⊙O的位置关系是.13.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为(结果保留π).14.如图,点A、B、D在⊙O上,∠A=25°,OD的延长线交直线BC于点C,且∠OCB =40°,直线BC与⊙O的位置关系为.15.如图,已知半径为1的⊙M经过直角坐标系的原点O,且与x轴、y轴分别交于点A、B,点A的坐标为(,0),⊙M的切线OC与直线AB交于点C.则∠ACO=度.16.如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,则此光盘的直径是cm.17.如图,半圆O的直径AB=10cm,PO=8cm,DC=2PC,则PC=cm.18.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3,若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为.19.如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=38°,则∠P=°.20.如图,在平面直角坐标系xOy中,一次函数y=﹣2x+4的图象与x轴、y轴分别交于A、B两点,点P在线段AB上,⊙P与x轴交于A、C两点,当⊙P与y轴相切时,AC的长度是.三.解答题(共7小题,满分60分)21.AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF,BF,求∠ABF的度数.22.如图,△ABC内接于⊙O,∠B=60°,点E在直径CD的延长线上,且AE=AC.(1)试判断AE与⊙O的位置关系,并说明理由;(2)若AC=6,求阴影部分的面积.23.如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB(1)求证:DC为⊙O的切线;(2)若∠DAB=60°,⊙O的半径为3,求线段AC的长24.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC,垂足为点E.(1)求证:△ABD≌△ACD;(2)判断直线DE与⊙O的位置关系,并说明理由.25.如图,PA,PB是⊙O的切线,A,B为切点,AC是⊙O的直径,∠BAC=25°.求∠P的度数.26.如图,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点,BP的延长线交⊙O 于点Q,过点Q的⊙O的切线交OA延长线于点R.(Ⅰ)求证:RP=RQ;(Ⅱ)若OP=PA=1,试求PQ的长.27.如图,已知△ABC,以AB为直径的⊙O交AC于点D,连接BD,∠CBD的平分线交⊙O于点E,交AC于点F,且AF=AB.(1)判断BC所在直线与⊙O的位置关系,并说明理由;(2)若tan∠FBC=,DF=2,求⊙O的半径.参考答案与试题解析一.选择题(共10小题,满分30分)1.解:∵⊙O的半径为3,圆心O到直线l的距离为2,∵3>2,即:d<r,∴直线l与⊙O的位置关系是相交.故选:A.2.解:过C作CD⊥AB于D,在Rt△ACB中,由勾股定理得:AB==5,由三角形面积公式得:×3×4=×5×CD,CD=2.4,即C到AB的距离等于⊙C的半径长,∴⊙C和AB的位置关系是相切,故选:A.3.解:连接OP、OQ.∵PQ是⊙O的切线,∴OQ⊥PQ;根据勾股定理知PQ2=OP2﹣OQ2,∵当PO⊥AB时,线段PQ最短;又∵A(﹣3,0),B(0,3),∴OA=OB=3,∴AB==6,∴OP=AB=3,∴PQ==2.故选:B.4.解:如图,连接OD,交BC于点F,连接OC,∵D为弧BC的中点,∴OD⊥BC,且CF=BF,又∵AB为⊙O的直径,DE⊥AE,∴∠BCE=∠DEC=∠CFD=90°,∴四边形CEDF为矩形,∴OD⊥DE,∴DE为⊙O的切线,故①正确;∴DF=CE=2cm,CF=DE=6cm,∴BC=2CF=12cm,设半径为rcm,则OF=(r﹣2)cm,在Rt△OCF中,由勾股定理可得OC2=OF2+CF2,即r2=(r﹣2)2+62,解得r=10cm,∴AB=20cm,故②正确;在Rt△ABC中,BC=12cm,AB=20cm,∴AC===16(cm),故③不正确;若C为弧AD的中点,则AC=CD,在Rt△CDE中,CE=2cm,DE=6cm,由勾股定理可求得CD=2cm≠AC,故④不正确;综上可知正确的为①②,故选:C.5.解:∵直线MN切⊙O于C点,∴∠BCN=∠BAC,∠ACM=∠D=∠B,∵AB为⊙O的直径,∴∠ACB=90°,∴∠BCN+∠ACM=90°,∠B+∠BCN=90°,∠D+∠BCN=90°.故选:C.6.解:∵PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D,∴AC=EC,DE=DB,PA=PB∵△PCD的周长等于3,∴PA+PB=3,∴PA=.故选:A.7.解:根据切线长定理可得:PA=PB,FA=FE,GE=GB;所以△PFG的周长=PF+FG+PG,=PF+FE+EG+PG,=PF+FA+GB+PG,=PA+PB=16cm,故选:C.8.解:(1)连接CO,DO,∵PC与⊙O相切,切点为C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,∴PD与⊙O相切,故(1)正确;(2)由(1)得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),∴BC=BD,∴PC=PD=BC=BD,∴四边形PCBD是菱形,故(2)正确;(3)连接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直径,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),∴PO=AB,故(3)正确;(4)∵四边形PCBD是菱形,∠CPO=30°,∴DP=DB,则∠DPB=∠DBP=30°,∴∠PDB=120°,故(4)正确;正确个数有4个,故选:A.9.解:连接OD,OC∵D是弧BC的中点,则OD⊥BC,∴DE是圆的切线.故A正确;∴DE2=CE•AE(连接CD,AD,延长DO交⊙O于T,连接CT,先证明∠EDC=∠T,再证明∠EAD=∠T,可得∠EDC=∠EAD,由∠E=∠E,∠EDC=∠EAD,可得△EDC ∽△EAD,可得结论),即:36=2AE,∴AE=18,则AC=AE﹣CE=18﹣2=16cm.故C正确;∵AB是圆的直径.∴∠ACB=90°,∵DE垂直于AC的延长线于E.D是弧BC的中点,则OD⊥BC,∴四边形CFDE是矩形.∴CF=DE=6cm.BC=2CF=12cm.在直角△ABC中,根据勾股定理可得:AB===20cm.故B正确;在直角△ABC中,AC=16,AB=20,则∠ABC≠30°,而D是弧BC的中点.∴弧AC≠弧CD.故D错误.故选:D.10.解:设圆的半径为r,点O到直线l的距离为d,∵d=6,r=5,∴d>r,∴直线l与圆相离.故选:C.二.填空题(共10小题,满分30分)11.解:∵⊙O的半径为5,圆心O到直线L的距离为3,∵5>3,即:d<r,∴直线L与⊙O的位置关系是相交.故答案为:相交.12.解:∵⊙O的直径为8,∴半径=4,∵圆心O到直线l的距离为4,∴圆心O到直线l的距离=半径∴直线l与⊙O相切.故答案为:相切.13.解:连接OB,∵AB与⊙O相切于点B,∴∠OBA=90°,∴∠OBC=∠ABC﹣∠ABO=30°,∵OB=OC,∴∠C=∠B=30°,∴∠BOC=120°,∴弧BC的长==2π,故答案为:2π.14.解:∵∠BOC=2∠A=50°,∠OCB=40°,∴在△OBC中,∠OBC=180°﹣50°﹣40°=90度.∴直线BC与⊙O相切.15.解:∵AB=2,OA=,∴cos∠BAO==,∴∠OAB=30°,∠OBA=60°;∵OC是⊙M的切线,∴∠BOC=∠BAO=30°,∴∠ACO=∠OBA﹣∠BOC=30°.故答案为:30.16.解:∵∠CAD=60°,∴∠CAB=120°,∵AB和AC与⊙O相切,∴∠OAB=∠OAC,∴∠OAB=∠CAB=60°∵AB=3cm,∴OA=6cm,∴由勾股定理得OB=3cm,∴光盘的直径是6cm.故答案为:6.17.解:∵AB=10cm,∴OA=5cm,∴PA=PO﹣OA=3cm;设PC=x,则DC=2x,PD=3x;根据割线定理得PC•PD=PA•PB,即x•3x=39,x=cm;故PC=cm.18.解:如图,连接OM,作OH⊥AB于H,CK⊥AB于K.∵OH⊥MN,∴MH=HN,∴MN=2MH=2,∵∠DCE=90°,OD=OE,∴OC=OD=OE=OM=,∴欲求MN的最大值,只要求出OH的最小值即可,∵OC=,∴点O的运动轨迹是以C为圆心为半径的圆,在Rt△ACB中,∵BC=3,AC=4,∴AB=5,∵•AB•CK=•AC•BC,∴CK=,当C,O,H共线,且与CK重合时,OH的值最小,∴OH的最小值为﹣=,∴MN的最大值=2=,故答案为.19.解:∵PA,PB是⊙O的切线,∴PA=PB,PA⊥OA,∴∠PAB=∠PBA,∠OAP=90°,∴∠PBA=∠PAB=90°﹣∠OAB=90°﹣38°=52°,∴∠P=180°﹣52°﹣52°=76°;故答案为:76.20.解:∵一次函数y=﹣2x+4的图象与x轴、y轴分别交于A、B两点,∴A(2,0),B(0,4),∴OA=2,OB=4,如图,设⊙P与y轴相切于点D,连接PD,∴PD⊥OB,∵OA⊥OB,∴PD∥OA,∴==,设PD=PC=x,则BD=2x,∴OD=OB﹣BD=4﹣2x,作PE⊥OA于点E,∴四边形OEPD是矩形,∴PD=OE=x,PE=OD=4﹣2x,∴AE=CE=OA﹣OE=2﹣x,∴PC2=PE2+CE2,∴x2=(4﹣2x)2+(2﹣x)2,解得x=,∵>2,不符合题意舍去,∴x=,∵PE⊥AC,根据垂径定理,得AC=2AE=2(2﹣x)=4﹣(5﹣)=﹣1.故答案为:﹣1.三.解答题(共7小题,满分60分)21.(1)证明:连接OB∵OB=OA,CE=CB,∴∠A=∠OBA,∠CEB=∠ABC又∵CD⊥OA∴∠A+∠AED=∠A+∠CEB=90°∴∠OBA+∠ABC=90°∴OB⊥BC∴BC是⊙O的切线.(2)解:连接OF,AF,BF,∵DA=DO,CD⊥OA,∴AF=OF,∵OA=OF,∴△OAF是等边三角形,∴∠AOF=60°∴∠ABF=∠AOF=30°22.(1)证明:连接OA、AD,如图,∵CD为⊙O的直径,∴∠DAC=90°,又∵∠ADC=∠B=60°,∴∠ACE=30°,又∵AE=AC,OA=OD,∴△ADO为等边三角形,∴∠AEC=30°,∠ADO=∠DAO=60°,∴∠EAD=30°,∴∠EAD+∠DAO=90°,∴∠EAO=90°,即OA⊥AE,∴AE为⊙O的切线;(2)解:由(1)可知△AEO为直角三角形,且∠E=30°,∴OA=2,AE=6,∴阴影部分的面积为×6×2﹣=6﹣2π.故阴影部分的面积为6﹣2π.23.(1)证明:连接CO,∵AO=CO,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴CO∥AD,AD⊥CD,∴CO⊥CD,∴DC为⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠DAB=60°,AC平分∠DAB,∴∠BAC=∠DAB=30°,∵⊙O的半径为3,∴AB=6,∴AC=AB=3.24.(1)证明:∵AB为⊙O的直径,∴AD⊥BC,在Rt△ADB和Rt△ADC中,∴Rt△ABD≌Rt△ACD(HL);(2)直线DE与⊙O相切,理由如下:连接OD,如图所示:由△ABD≌△ACD知:BD=DC,又∵OA=OB,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE与⊙O相切.25.解:∵PA、PB是⊙O的切线,∴PA=PB,∴∠PAB=∠PBA,∵AC是⊙O的直径,PA是⊙O的切线,∴AC⊥AP,∴∠CAP=90°,∵∠BAC=25°,∴∠PBA=∠PAB=90°﹣25°=65°,∴∠P=180°﹣∠PAB﹣∠PBA=180°﹣65°﹣65°=50°.26.(Ⅰ)证法一:连接OQ;∵RQ是⊙O的切线,∴∠OQB+∠BQR=90°.∵OA⊥OB,∴∠OPB+∠B=90°.又∵OB=OQ,∴∠OQB=∠B.∴∠PQR=∠BPO=∠RPQ.∴RP=RQ.证法二:作直径BC,连接CQ;∵BC是⊙O的直径,∴∠B+∠C=90°.∵OA⊥OB,∴∠B+∠BPO=90°.∴∠C=∠BPO.又∠BPO=∠RPQ,∴∠C=∠RPQ.又∵RQ为⊙O的切线,∴∠PQR=∠C.∴∠PQR=∠RPQ.∴RP=RQ.(Ⅱ)解法一:作直径AC,∵OP=PA=1,∴PC=3.由勾股定理,得BP==由相交弦定理,得PQ•PB=PA•PC.即PQ×=1×3,∴PQ=.解法二:作直径AE,过R作RF⊥BQ,垂足为F,设RQ=RP=x;由切割线定理,得:x2=(x﹣1),(x+3)解得:x=,又由△BPO∽△RPF得:,∴PF=,由等腰三角形性质得:PQ=2PF=.27.解:(1)BC所在直线与⊙O相切;理由:∵AB为⊙O的直径,∴∠ADB=90°,∵AB=AF,∴∠ABF=∠AFB,∵BF平分∠DBC,∴∠DBF=∠CBF,∴∠ABD+∠DBF=∠CBF+∠C,∴∠ABD=∠C,∵∠A+∠ABD=90°,∴∠A+∠C=90°,∴∠ABC=90°,∴AB⊥BC,∴BC是⊙O的切线;(2)∵BF平分∠DBC,∴∠DBF=∠CBF,∴tan∠FBC=tan∠DBF==,∵DF=2,∴BD=6,设AB=AF=x,∴AD=x﹣2,∵AB2=AD2+BD2,∴x2=(x﹣2)2+62,解得:x=10,∴AB=10,∴⊙O的半径为5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《直线与圆》单元测试题(1)班级 学号 姓名一、选择题:1. 直线20x y --=的倾斜角为( )A .30︒B .45︒ C. 60︒ D. 90︒2.将直线3y x =绕原点逆时针旋转90︒,再向右平移1个单位,所得到的直线为( ) A.1133y x =-+ B. 113y x =-+ C.33y x =- D.31y x =+30y m -+=与圆22220x y x +--=相切,则实数m 等于( )A .-B .- D .或4.过点(0,1)的直线与圆224x y +=相交于A ,B 两点,则AB 的最小值为( )A .2B .C .3D .5.若圆C 的半径为1,圆心在第一象限,且与直线034=-y x 和x 轴都相切,则该圆的标准方程是( )A. 1)37()3(22=-+-y x B. 1)1()2(22=-+-y x C. 1)3()1(22=-+-y x D. 1)1()23(22=-+-y x6.已知圆1C :2(1)x ++2(1)y -=1,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的方程为( )A.2(2)x ++2(2)y -=1 B.2(2)x -+2(2)y +=1 C.2(2)x ++2(2)y +=1 D.2(2)x -+2(2)y -=17.已知圆C 与直线0=-y x 及04=--y x 都相切,圆心在直线0=+y x 上,则圆C 的 方程为( )A.22(1)(1)2x y ++-= B. 22(1)(1)2x y -++= C. 22(1)(1)2x y -+-= D. 22(1)(1)2x y +++=8.设A 在x 轴上,它到点P 的距离等于到点(0,1,1)Q -的距离的两倍,那么A 点的坐标是( )A.(1,0,0)和( -1,0,0)B.(2,0,0)和(-2,0,0)C.(12,0,0)和(12-,0,0) D.(2-,0,0)和(2,0,0)9.直线012=--y x 被圆2)1(22=+-y x 所截得的弦长为( )B D10.若直线y x b =+与曲线3y =有公共点,则b 的取值范围是( )A.[1-1+1,3] C.[-1,1+1-3] 二、填空题:11.设若圆422=+y x 与圆)0(06222>=-++a ay y x 的公共弦长为32,则a =______.12.已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线1:-=x y l 被该圆所截得的弦长为,则圆C 的标准方程为_________ ___.13.已知圆C 的圆心与点(21)P -,关于直线1y x =+对称.直线34110x y +-=与圆C 相交于A B ,两点,且6AB =,则圆C 的方程为 . 14.已知直线2310x y +-=与直线40x ay += 平行,则a = .15.直线m 被两平行线12:10:30l x y l x y -+=-+=与所截得的线段的长为22,则m 的 倾斜角可以是①15;②30;③45;④60;⑤75. 其中正确答案的序号是 .三、解答题:16(1).已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,求圆C 的方程..(2)求与圆014222=++-+y x y x 同心,且与直线012=+-y x 相切的圆的方程.17.已知圆22:(3)(4)4C x y -+-=,(Ⅰ)若直线1l 过定点A (1,0),且与圆C 相切,求1l 的方程;(Ⅱ) 若圆D 的半径为3,圆心在直线2l :20x y +-=上,且与圆C 外切,求圆D 的方程.18.在平面直角坐标系xOy 中,已知圆C 1:(x +3)2+(y -1)2=4和圆C 2:(x -4)2+(y -5)2=9. (1)判断两圆的位置关系;(2)求直线m 的方程,使直线m 被圆C 1截得的弦长为4,与圆C 2截得的弦长是6.19.已知圆C :,25)2()1(22=-+-y x 直线)(47)1()12(:R m m y m x m l ∈+=+++ (1)证明:不论m 取何实数,直线l 与圆C 恒相交;(2)求直线l 被圆C 所截得的弦长的最小值及此时直线l 的方程;20.已知以点C ⎝⎛⎭⎪⎫t ,2t (t ∈R,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△AOB 的面积为定值;(2)设直线2x +y -4=0与圆C 交于点M 、N ,若OM =ON ,求圆C 的方程;21.在平面直角坐标系xOy 中,已知圆2212320x y x +-+= 的圆心为Q ,过点(02)P ,且斜率为k 的直线与圆Q 相交于不同的两点A B ,.(Ⅰ)求k 的取值范围;(Ⅱ)以OA,OB 为邻边作平行四边形OADB,是否存在常数k ,使得直线OD 与PQ 平行如果存在,求k 值;如果不存在,请说明理由.参考答案:一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 答案 B AABBBBADD二、填空题11. _1__. 12.4)3(22=+-y x . 13.18)1(22=++y x . 14. 6 15. ①⑤ .三、解答题(本大题共6小题,共70分,解答应写出文字说明.证明过程或演算步骤)16.解:(1)(x -2)2+y 2=10 ;(2)5)2()1(22=++-y x ;17.(Ⅰ)①若直线1l 的斜率不存在,即直线是1x =,符合题意.②若直线1l 斜率存在,设直线1l 为(1)y k x =-,即0kx y k --=. 由题意知,圆心(3,4)到已知直线1l 的距离等于半径2,即2= 解之得 34k =.所求直线方程是1x =,3430x y --=. (Ⅱ)依题意设(,2)D a a -,又已知圆的圆心(3,4),2C r =, 由两圆外切,可知5CD =∴可知5, 解得 2,3-==a a 或, ∴ (3,1)D -或(2,4)D -,∴ 所求圆的方程为9)4()29)1()32222=-++=++-y x y x 或((. 18.解 (1)圆C 1的圆心C 1(-3,1),半径r 1=2;圆C 2的圆心C 2(4,5),半径r 2=2.∴C 1C 2=72+42=65>r 1+r 2, ∴两圆相离;(2)由题意得,所求的直线过两圆的圆心,即为连心线所在直线,易得连心线所在直线方程为:4x -7y +19=0.19.解:(1)证明:直线)(47)1()12(:R m m y m x m l ∈+=+++可化为:04)72(=-++-+y x y x m ,由此知道直线必经过直线072=-+y x 与04=-+y x 的交点,解得:⎩⎨⎧==13y x ,则两直线的交点为A (3,1),而此点在圆的内部,故不论m 为任何实数,直线l 与圆C 恒相交。

(2)联结AC ,过A 作AC 的垂线,此时的直线与圆C 相交于B 、D 两点,根据圆的几何性质可得,线段BD 为直线被圆所截得最短弦,此时|AC|5=,|BC|=5,所以|BD|=45。

即最短弦为45;又直线AC 的斜率为21-,所求的直线方程为)3(21-=-x y ,即052=--y x20. (1)证明 由题设知,圆C 的方程为(x -t )2+⎝⎛⎭⎪⎫y -2t 2=t 2+4t2,化简得x 2-2tx +y 2-4ty =0,当y =0时,x =0或2t ,则A (2t,0);当x =0时,y =0或4t,则B ⎝ ⎛⎭⎪⎫0,4t ,∴S △AOB =12OA ·OB =12|2t |·⎪⎪⎪⎪⎪⎪4t =4为定值. (2)解 ∵OM =ON ,则原点O 在MN 的中垂线上,设MN 的中点为H , 则CH ⊥MN ,∴C 、H 、O 三点共线,则直线OC 的斜率k =2t t =2t 2=12,∴t =2或t =-2.∴圆心为C (2,1)或C (-2,-1),∴圆C 的方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5,由于当圆方程为(x +2)2+(y +1)2=5时,直线2x +y -4=0到圆心的距离d >r ,此时不满足直线与圆相交,故舍去,∴圆C 的方程为(x -2)2+(y -1)2=5. 21.解:(Ⅰ)圆的方程可写成22(6)4x y -+=,所以圆心为(60)Q ,,过(02)P ,且斜率为k 的直线方程为2y kx =+. 代入圆方程得22(2)12320x kx x ++-+=, 整理得22(1)4(3)360k x k x ++-+=. ①直线与圆交于两个不同的点AB ,等价于 2222[4(3)]436(1)4(86)0k k k k ∆=--⨯+=-->,解得304k -<<,即k 的取值范围为304⎛⎫- ⎪⎝⎭,. (Ⅱ)设1122()()A x y B x y ,,,,则1212()OA OB x x y y +=++,, 由方程①,1224(3)1k x x k -+=-+ ②又1212()4y y k x x +=++. ③而(02)(60)(62)P Q PQ =-,,,,,.所以OA OB +与PQ 共线等价于1212()6()x x y y +=+,将②③代入上式,解得34k=-.由(Ⅰ)知34k⎛⎫∈ ⎪⎝⎭,,故没有符合题意的常数k.。

相关文档
最新文档