聚焦中考陕西地区2017年中考数学总复习考点跟踪训练二十二一次函数的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数的应用
1.(2015·甘南州)某酒厂每天生产A ,B 两种品牌的白酒共600瓶,A ,B 两种品牌的白酒每瓶的成本和利润如下表:
A B 成本(元/瓶)
50 35 利润(元/瓶) 20 15
设每天生产A 种品牌白酒x 瓶,每天获利y 元.
(1)请写出y 关于x 的函数关系式;
(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?
解:(1)A 种品牌白酒x 瓶,则B 种品牌白酒(600-x )瓶,依题意,得y =20x +15(600-x )=5x +9000 (2)A 种品牌白酒x 瓶,则B 种品牌白酒(600-x )瓶,依题意,得50x +35(600-x )≥26400,解得x≥360,∴每天至少获利y =5x +9000=10800
2.为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.
(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y 关于x 的函数解析式;
(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱? 解:(1)方案一:y =0.95x ;方案二:y =0.9x +300 (2)当x =5880时, 方案一:y =0.95x =5586(元), 方案二:y =0.9x +300=5592(元),∵5586<5592,∴所以选择方案一更省钱
3.(导学号 30042277)甲、乙两人同时从相距90千米的A 地前往B 地,甲乘汽车,乙骑摩托车,甲到达B 地停留半小时后返回A 地.如图是他们离A 地的距离y(千米)与时间x(小时)之间的函数关系图象.
(1)求甲从B 地返回A 地的过程中,y 与x 之间的函数关系式,并写出自变量x 的取值范围;
(2)若乙出发后2小时和甲相遇,求乙从A 地到B 地用了多长时间?
解:(1)设甲从B 地返回A 地的过程中,y 与x 之间的函数关系式为y =kx +b ,根据题意得:⎩⎪⎨⎪⎧3k +b =0,1.5k +b =90,解得⎩
⎪⎨⎪⎧k =-60,b =180.∴y =-60x +180(1.5≤x≤3) (2)当x =2时,y =-60×2+180=60.∴骑摩托车的速度为60÷2=30(千米/时),∴乙从A 地到B 地用时为
90÷30=3(小时)
4.(导学号30042278)(2016·陕西模拟)服装店准备购进甲、乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元,计划购进两种服装共100件,其中甲种服装不少于65件.
(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?
(2)在(1)条件下,该服装店在5月1日当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?
解:(1)设购进甲种服装x件,由题意可知:80x+60(100-x)≤7500,解得:x≤75,答:甲种服装最多购进75件
(2)设总利润为w元,因为甲种服装不少于65件,所以65≤x≤75,w=(40-a)x+30(100-x)=(10-a)x+3000.方案1:当0<a<10时,10-a>0,w随x的增大而增大,所以当x=75时,w有最大值,则购进甲种服装75件,乙种服装25件;方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以;方案3:10<a<20时,10-a<0,w随x 的增大而减小,所以当x=65时,w有最大值,则购进甲种服装65件,乙种服装35件。