Ch2,巨磁电阻(GMR)效应本节内容

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

薄膜上的量子阱态
铁磁金属薄膜(自旋极化的)量子阱
s-d散射机制
薄膜Cu(100)在fcc Co(100)基底上
自旋极化的 光发射谱 (下左图)
能带结构图 (下右图)
层间耦合的理论
• 计算不同的NM厚度、不同的自旋状态的总能量。 • 比较哪个磁状态有利? • 总能量→库仑作用→DOS→波函数→非磁层厚度、铁磁层 自旋状态。 • 注意:长程静磁(偶极)耦合!
铁磁FM层之间的耦合能量,随非磁层厚度增加而振荡 振荡周期(波矢)为 (与自由电子气比较) 各种3d、4d金属的结果相近? 11—12A
反铁磁金属量子阱
60
AFM/NM /AFM 蔡健旺等
NiFe/ FeMn/ Cu / FeMn
Exchange bias (Oe)
50
28A 26A
困难: 反铁磁体的 “磁化特性” 方法: 交换偏置表征 振荡周期: 加倍(21A)
低温电阻率(Spin-flip 散射 0 )

Mott模型和GMR效应(1)
Mott模型和GMR效应(2)
按Mott模型(看上图) 1,电子自旋与所在层磁矩 相同时, s电子与(Majority)d 电子散射弱, 电子自旋与所在层磁矩 相反时, s电子与(Minority)d 电子散射强。
交换作用
(1)氢分子 三重态或单态←交换作用符号 ←电子云(波函数)的重叠情况←电子波函数性质 (2)RKKY作用 铁磁或反铁磁态←交换作用的振荡 ←f 电子自旋之间,通过s 电子间接交换作用 ← f 电子局域波函数+ s 电子平面波波函数 振荡周期决定于 s电子Fermi波长
铁磁金属量子阱
FM/NM/FM中, 铁磁层间的振荡耦合
*平均自由程λ (10-30纳米) 自旋弛豫长度Ls(100-500纳米)
巨磁电阻(GMR)பைடு நூலகம்应
Fert (1988) Fe/Cr 超晶格? Grunberg (1986) 相邻磁矩 反铁磁排列 MBE优质材料
Mott两流体模型 (1)
N.H.Mott,Proc.Roy.Soc. A153,699(1936) 近似:电子与(热激发)自旋波散射可以忽略, (低于居里点) 只考虑电子与磁性离子自旋间的散射。 (s-d散射) 约定:与磁矩同方向的电子处于主要子带(majority) 相反方向自旋电子处于次要子带(minority)
R R
R R
Mott模型和GMR效应(3) 2,如果,平均自由程
R 1 1 R R
1
t (单层厚度)
R
R

R
4
磁电阻比率
R MR

R
R
2
R

R
2
R
2 1
Fe/Cr/Fe
FM层间的振荡耦合――普适现象
Parkin 的贡献
(1990) Co/Ru, 振荡周期 约12埃
Co/Cu“困扰”
FM层间的振荡耦合――直接观察(SEMPA)
Unguiris等 (1991) Fe 单晶/ Cr 尖劈/ Fe薄膜
FM层间的振荡耦合――SMOKE
丘子强等 1992 Fe/Mo/Fe
40
30
20
10
0 10 20 30 40 50
Thickness of Cu spacer (A)
第二次(11月10日)
上一次 的 内容 (1)FM/NM多层膜中, 相邻FM层之间的耦合 随NM层厚度变化→振荡衰减 (2)单层厚度为若干纳米 (3)NM层中电子处于“磁性量子阱”
问题(1)多层膜的磁滞回线? 答:a,M―H关系: H之下,体系的磁化状态 由总自由能量极小条件确定
1
1 1



R
2
2
其中,
R
R
1
结束
FM层间的振荡耦合――VSM
阎明朗等 1994, NiFe/Mo/NiFe
2,多层膜中,电子的状态
真空中的金属薄膜 行波――平行方向 电子连续谱 E(k// )=k// 2 驻波――垂直方向 电子分立谱 E (k⊥) 波函数是由包络函数调制的快振荡的 Bloch函数 Bloch函数 的波长 = 2a (a 晶格常数) 包络函数波长由薄膜厚度决定。 (厚度是半波长整数倍)
c,FM排列时, 外场能+磁晶各向异性能(几个奥) d,反铁磁排列时, 外场能+磁晶各向异性能(几个奥) +层间反铁磁耦合能(几百奥)
问题2 单层膜厚度 t 的限制
金属:t(≈2nm )《 λ (≈20nm)《 Ls (≈200nm)
MR ( R0 RH ) R0
a,增大分子。需远小于”自旋弛豫长度“。两流体近似。 b,减小分母。需远小于”平均自由程“。弹性散射。
Ch 2, 巨磁电阻(GMR)效应
本节内容 1,振荡的层间耦合(1986) 2,金属量子阱中的自旋极化 3,GMR效应(1988) 重点:Mott的两流体模型
1,层间耦合
问题的提出? 相邻FM层间的耦合作用与中间NM分隔 层的厚度有关? 多层膜中的电子的本征状态?
Grunberg (1986) 布里渊散射
电导的自旋相关因子
两流体模型(3)
α测量值:Co和Ni大;Fe较小;Cu为零 I.A.Cammpbell and A.Fert (1982)
Mott两流体模型(4) 计入Spin-flip 散射(热自旋波散射), 高温电阻率
[ ] 4
两流体模型(2)
散射过程中没有自旋反转 S↑电子未被d ↑( majority )电子散射,对电导贡献大 (d ↑在Fermi面没有状态) S↓ 电子 被d ↓(minority )电子散射,对电导贡献小 ( d ↓有效质量太大)
结果:

1
相关文档
最新文档