2019学年高二数学下学期期末联考试题 理(含解析)
2019学年高二数学下学期期末考试试题 理(含解析)(新版)新人教版
学习资料专题2019学年度第二学期期末考试高二理数一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合要求的,请你将符合要求的项的序号填在括号内)1. 设是虚数单位,复数为纯虚数,则实数的值为()A. B. C. D.【答案】A【解析】为纯虚数,所以,故选A.2. 下列说法中正确的是()①相关系数用来衡量两个变量之间线性关系的强弱,越接近于,相关性越弱;②回归直线一定经过样本点的中心;③随机误差满足,其方差的大小用来衡量预报的精确度;④相关指数用来刻画回归的效果,越小,说明模型的拟合效果越好.A. ①②B. ③④C. ①④D. ②③【答案】D【解析】【分析】运用相关系数、回归直线方程等知识对各个选项逐一进行分析即可【详解】①相关系数用来衡量两个变量之间线性关系的强弱,越接近于,相关性越强,故错误②回归直线一定经过样本点的中心,故正确③随机误差满足,其方差的大小用来衡量预报的精确度,故正确④相关指数用来刻画回归的效果,越大,说明模型的拟合效果越好,故错误综上,说法正确的是②③故选【点睛】本题主要考查的是命题真假的判断,运用相关知识来进行判断,属于基础题3. 某校为了解高三学生学习的心理状态,采用系统抽样方法从800人中抽取40人参加某种测试,为此将他们随机编号为1,2,…,800,分组后在第一组采用简单随机抽样的方法抽到的号码为18,抽到的40人中,编号落在区间[1,200]的人做试卷A,编号落在[201,560]的人做试卷B,其余的人做试卷C,则做试卷C的人数为()A. 10B. 12C. 18D. 28【答案】B【解析】,由题意可得抽到的号码构成以为首项,以为公差的等差数列,且此等差数列的通项公式为,落入区间的人做问卷,由,即,解得,再由为正整数可得,做问卷的人数为,故选B.4. 某程序框图如图所示,则该程序运行后输出的值是()学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...A. 0B. -1C. -2D. -8【答案】B【解析】根据流程图可得:第1次循环:;第2次循环:;第3次循环:;第4次循环:;此时程序跳出循环,输出 .本题选择B选项.5. 在正方体中,过对角线的一个平面交于,交于得四边形,则下列结论正确的是()A. 四边形一定为菱形B. 四边形在底面内的投影不一定是正方形C. 四边形所在平面不可能垂直于平面D. 四边形不可能为梯形【答案】D【解析】对于A,当与两条棱上的交点都是中点时,四边形为菱形,故A错误;对于B, 四边形在底面内的投影一定是正方形,故B错误;对于C, 当两条棱上的交点是中点时,四边形垂直于平面,故C错误;对于D,四边形一定为平行四边形,故D正确.故选:D6. 已知随机变量满足,,且,若,则()A. ,且B. ,且C. ,且D. ,且【答案】B【解析】分析:求出,,从而,由,得到,,从而,进而得到. 详解:随机变量满足,,,,,,解得,,,,,,故选B.点睛:本题主要考查离散型随机变量的分布列、期望公式与方差公式的应用以及作差法比较大小,意在考查学生综合运用所学知识解决问题的能力,计算能力,属于中档题.7. 某空间几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.【答案】B【解析】试题分析:由三视图可知,该几何体是一个四棱锥挖掉半个圆锥所得,所以体积为.考点:三视图.8. 有一个偶数组成的数阵排列如下:2 4 8 14 22 32 …6 10 16 24 34 … …12 18 26 36 … … …20 28 38 … … … …30 40 … … … … …42 …… … … … …… … … … … … …则第20行第4列的数为()A. 546B. 540C. 592D. 598【答案】A【解析】分析:观察数字的分布情况,可知从右上角到左下角的一列数成公差为2的等差数列,想求第20行第4列的数,只需求得23行第一个数再减去即可,进而归纳每一行第一个数的规律即可得出结论.详解:顺着图中直线的方向,从上到下依次成公差为2的等差数列,要想求第20行第4列的数,只需求得23行第一个数再减去即可.观察可知第1行的第1个数为:;第2行第1个数为:;第3行第1个数为:.……第23行第1个数为:.所以第20行第4列的数为.故选A.点睛:此题考查归纳推理,解题的关键是通过观察得出数字的排列规律,是中档题.9. 已知一袋中有标有号码的卡片各一张,每次从中取出一张,记下号码后放回,当三种号码的卡片全部取出时即停止,则恰好取次卡片时停止的概率为()A. B. C. D.【答案】B【解析】分析:由题意结合排列组合知识和古典概型计算公式整理计算即可求得最终结果.详解:根据题意可知,取5次卡片可能出现的情况有种;由于第5次停止抽取,所以前四次抽卡片中有且只有两种编号,所以总的可能有种;所以恰好第5次停止取卡片的概率为.本题选择B选项.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.10. 已知单位圆有一条长为的弦,动点在圆内,则使得的概率为()A. B. C. D.【答案】A【解析】建立直角坐标系,则,设点坐标为,则,故,则使得的概率为,故选A.点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.11. 已知是椭圆和双曲线的公共焦点,是它们的一个公共点,且,则椭圆和双曲线的离心率乘积的最小值为()A. B. C. 1 D.【答案】B【解析】设椭圆的长半轴长为,双曲线的实半轴常为,故选B.12. 已知定义在R上的函数f(x)的导函数为,(为自然对数的底数),且当时, ,则 ()A. f(1)<f(0)B. f(2)>e f(0)C. f(3)>e3f(0)D. f(4)<e4f(0)【答案】C【解析】【分析】构造新函数,求导后结合题意判断其单调性,然后比较大小【详解】令,,时,,则,在上单调递减即,,,,故选【点睛】本题主要考查了利用导数研究函数的单调性以及导数的运算,构造新函数有一定难度,然后运用导数判断其单调性,接着进行赋值来求函数值的大小,有一定难度二、填空题(本大题共4小题,每小题5分,共20分)13. 从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)【答案】16【解析】分析:首先想到所选的人中没有女生,有多少种选法,再者需要确定从6人中任选3人总共有多少种选法,之后应用减法运算,求得结果.详解:根据题意,没有女生入选有种选法,从6名学生中任意选3人有种选法,故至少有1位女生入选,则不同的选法共有种,故答案是16.点睛:该题是一道关于组合计数的题目,并且在涉及到“至多、至少”问题时多采用间接法,一般方法是得出选3人的选法种数,间接法就是利用总的减去没有女生的选法种数,该题还可以用直接法,分别求出有1名女生和有两名女生分别有多少种选法,之后用加法运算求解.14. 已知离散型随机变量服从正态分布,且,则__________.【答案】【解析】∵随机变量X服从正态分布,∴μ=2,得对称轴是x=2.∵,∴P(2<ξ<3)==0.468,∴P(1<ξ<3)=0.468=.故答案为:.点睛:关于正态曲线在某个区间内取值的概率求法①熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.②充分利用正态曲线的对称性和曲线与x轴之间面积为1.15. 已知展开式中只有第4项的二项式系数最大,则展开式中常数项为_______.【答案】61【解析】分析:根据题设可列出关于的不等式,求出,代入可求展开式中常数项为.详解:的展开式中,只有第4项的二项式系数最大,即最大,,解得,又,则展开式中常数项为.点睛:在二项展开式中,有时存在一些特殊的项,如常数项、有理项、系数最大的项等等,这些特殊项的求解主要是利用二项展开式的通项公式.16. 已知函数,存在,则的最大值为____.【答案】【解析】试题分析:由题意得,,因为存在,,所以,所以令,所以,所以函数在上单调递增,在上单调递减,所以时,函数取得最大值,所以的最大值为.考点:分段函数的性质及利用导数求解函数的最值.【方法点晴】本题主要考查了分段函数的图象与性质、利用导数研究函数的单调性与极值、最值,着重考查了学生分析、解答问题的能力,同时考查了转化与化归的思想方法的应用,属于中档试题,本题的解答中,先确定的范围,构造新函数,求解新函数的单调性及其极值、最值,即可求解结论的最大值.三、解答题(本大题共6个小题,共70分)17. 2019年6月14日,第二十一届世界杯足球赛将在俄罗斯拉开帷幕.为了了解喜爱足球运动是否与性别有关,某体育台随机抽取100名观众进行统计,得到如下列联表.(1)将列联表补充完整,并判断能否在犯错误的概率不超过0.001的前提下认为喜爱足球运动与性别有关?(2)在不喜爱足球运动的观众中,按性别分别用分层抽样的方式抽取6人,再从这6人中随机抽取2人参加一台访谈节目,求这2人至少有一位男性的概率.【答案】(1) 在犯错误的概率不超过0.001的前提下认为喜爱足球运动与性别有关. (2)【解析】分析:读懂题意,补充列联表,代入公式求出的值,对照表格,得出结论;(2)根据古典概型的特点,采用列举法求出概率。
2019-2020年高二数学下学期期末考试试题 理(含解析)新人教A版
2019-2020年高二数学下学期期末考试试题理(含解析)新人教A版【试卷综析】本试卷是高二理科期末试卷,本试卷以基础知识和基本技能为载体,以能力测试为主导,在注重考查学科核心知识的同时,突出考查考纲要求的基本能力,重视学生科学素养的考查.知识考查注重基础、注重常规、注重主干知识,兼顾覆盖面.试题重点考查:不等式性质、基本不等式、绝对值不等式、不等式的证明、概率、离散随机变量的分布列、期望与方差、二项式定理、独立性检验思想、回归方程的建立与回归分析、正态分布、排列组合、导数的综合应用、复数等;考查学生解决实际问题的综合能力,是份较好的试卷.一.选择题:(每小题5分,共40分,每题只有一个选项正确)1.在复平面上,复数的对应点所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限【知识点】复数的代数运算、复数的几何意义【答案解析】C解析:因为=-1-2i,所以对应的点在第三象限,则选C.【思路点拨】复数的代数运算是高考常考考点之一,熟记复数的代数运算规则是解题的关键.2. ,则=( )A. 0.1B. 0.2C. 0.3D. 0.4【知识点】正态分布【答案解析】A解析:由正态分布的性质得P(-2≤ξ≤2)=2 P(-2≤ξ≤0)=0.8,所以= =0.1,则选A【思路点拨】因为正态分布的对称轴为y轴,可由正态分布图像的性质解答.3. 在验证吸烟与否与患肺炎与否有关的统计中,根据计算结果,认为这两件事情无关的可能性不足1%,那么的一个可能取值为()【知识点】独立性检验【答案解析】C解析:由表格知,则的取值应大于6.635,所以选C【思路点拨】本题可先结合表格找出认为这两件事情无关的可能性为1%时对应的的值,再对选项与此参考值进行比较即可.4.5人站成一排,甲乙两人必须站在一起的不同站法有()A.12种B.24种 C.48种D.60种【知识点】排列的应用【答案解析】C解析:可先排甲乙两人有种排法,再把甲乙两人与其他人做排列有=24种排法,由分步乘法原理得一共有2×24=48种排法,所以选C.【思路点拨】本题属于相邻排列问题,可先排必须相邻的元素,再把排好的相邻元素看成一个元素与剩余的元素一起做全排列即可.5. 一个袋中装有大小相同的5个白球和3个红球,现在不放回的取2次球,每次取出一个球,记“第1次拿出的是白球”为事件,“第2次拿出的是白球”为事件,则事件与同时发生的概率是(A.B.C.D.【知识点】概率的求法【答案解析】D解析:因为从袋中不放回的取2次球,一共有种方法,其中两次都为白球有种取法,所以所求的概率为,则选D.【思路点拨】本题主要考查的是古典概型的求法,利用古典概型计算公式,只需分别求出总的情况种数与所求事件包含的基本事件个数,代入公式即可.6.下列各式中,最小值是2的是( )A.B.C.D.2-3x-【知识点】基本不等式【答案解析】C解析:因为A,B选项中的式子的值可以取负值,故排除,又而不成立,所以等号不成立,不能得到最小值为2,故排除,所以选C.【思路点拨】在应用基本不等式求最值时,必须注意满足三个要素:一正,二定,三相等,本题通过三个要素用排除法即可确定选项.7.圆上有10个点,过每三个点画一个圆内接三角形,则一共可以画的三角形个数为()A.720 B.360 C.240 D.120【知识点】组合数的应用【答案解析】D解析:因为圆上任意三点不共线,所以任过三点都可以画一个圆内接三角形,则一共可以画的三角形个数为=120个,所以选D.【思路点拨】通过分析条件,把实际问题归结为组合数问题是解题的关键.8.设曲线在点处的切线与直线垂直,则()A. 2B.C.D.【知识点】导数的应用【答案解析】B解析:因为所以切线的斜率为,因为在点处的切线与直线垂直,则有,得a=-2,所以选B.【思路点拨】借助于导数的几何意义,即可求出切线斜率,再利用直线垂直的条件即可求出a值.二、填空题(本大题共7小题,考生作答6小题,每小题5分,共30分,把答案填在答题卡相应横线上)(一)必做题(9~13题)9.的展开式中的常数项是。
高中高二数学下学期期末试卷答案
高中2019年高二数学下学期期末试卷答案高中2019年高二数学下学期期末试卷答案【】查字典数学网高中频道的编辑就为您准备了高中2019年高二数学下学期期末试卷答案二、解答题15.解:由得:时成立,解得(5分)由得:解得(7分)中有且只有一个为真命题真假或假真若真假,(10分)若假真,则(13分)满足条件的的取值范围为或(14分)16.解(1) (1分)(5分)(2)当,即时,,满足(6分)当,即时,,或,解得(9分)当,即时,,或,解得或(12分)综上,满足条件的的取值范围为或(14分)17.解法1:设当水深hcm时圆锥横截面半径为rcm,对应体积为V可知,又当时,且,即,当时,.答:当水深为4cm时,水面升高的瞬时变化率为.解法2:由得于是又当时,故.答:当水深为4cm时,水面升高的瞬时变化率为.解法3:易知当水深为4时,水面直径为3,设经秒后水面上升为,则此时水的增量近似地(看成圆柱)为.答:当水深为4cm时,水面升高的瞬时变化率为.18令t=log2x,(1) h(x)=(4-2log2x)log2x=-2(t-1)2+2,∵ x[1,2],t[0,1],h(x)的值域为[0,2]. (4分)(2) M(x)=gx,fxgx,fx,fxf(x)-g(x)=3(1-log2x),当02时,f(x)M(x)=log2x,02,当0当x2时,M(x)1.综上:当x=2时,M(x)取到最大值为1. (10分)(3)(3-4 )(3- )①当(没说明单调性的扣2分)综述,16分19解:(1)次品数为:正品数:(3分)(8分)(2)令,则,(9分)(10分)(13分)当且仅当,即时取得最大盈利,此时. (15分)本文导航1、首页2、高二数学下学期期末试卷答案-23、高二数学下学期期末试卷答案-3故为获得最大盈利,该厂的日产量应定为件.(16分)(利用导数相应给分)20解:(1) 不是( )型函数,因为不存在实数对使得,即对定义域中的每一个都成立;........2分(2) 由,得,所以存在实数对,如,使得对任意的都成立;.........................4分(3) 由题意得,,所以当时,,其中,而时,,其对称轴方程为. ..........................6分①当,即时,在上的值域为,即,则在上的值域为,由题意得,从而;........................9分②当,即时,的值域为,即,则在上的值域为,则由题意,得且,解得; (12)分③当,即时,的值域为,即,则在上的值域为,即,则,解得............15分“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。
福建省2019学年高二下学期期末考理科数学试卷【含答案及解析】
福建省2019学年高二下学期期末考理科数学试卷【含答案及解析】姓名 ____________ 班级 _______________ 分数 ____________题号-二二三总分得分、选择题3. 曲线在点I 丨丨「处的切线方程是()A. <■ | ■■■ | ■- -B. f | •; : 一 :C. ■■: v 1 1 一”'D.4. 已知函数1 )A>1, 是f (血刖-(k/3 A. — B.色C £D.2 1 21. 已知集合 =一、:,® ;的取值范围是( ) A. - - B.: I C.芒•-仁T 丁—讥二「:,若 「罠八-'D. —I,则实数22 寸P3-© *A.1B.2 C.N 或fl■r33\ 3\2. 已知离散型随机变量 X 的分布列如图,则常数5. 已知为实数,为虚数单位,若复数- ----------- ,则“••”是“复1 + r数在复平面上对应的点在第四象限”的(A. 充分不必要条件____________B. 必要不充分条件6. 下面给出四种说法:①用相关指数R2来刻画回归效果,R 2越小,说明模型的拟合效果越好;②命题P: “ ? x 0 € R x 0 2 - x 0 - 1> 0” 的否定是「P: “ ?x€ R x 2 - x-K 0”;③设随机变量X服从正态分布N(0,1),若P (x> 1)=p则P (- 1v X V0)= 1- p2④回归直线一定过样本点的中心(F罰).其中正确的说法有(A.①②③B. ①②④C.②③④D. ①②③④7. 6名同学合影留念,站成两排三列,则其中甲乙两人不在同一排也不在同一列的概率为()]2 4 14A. B. C. D.55958. 富华中学的一个文学兴趣小组中,三位同学张博源、高家铭和刘雨恒分别从莎士比亚、雨果和曹雪芹三位名家中选择了一位进行性格研究,并且他们选择的名家各不相同•三位同学一起来找图书管理员刘老师,让刘老师猜猜他们三人各自的研究对象•刘老师猜了三句话:“①张博源研究的是莎士比亚;②刘雨恒研究的肯定不是曹雪芹;③高家铭自然不会研究莎士比亚•”很可惜,刘老师的这种猜法,只猜对了一句,据此可以推知张博源、高家铭和刘雨恒分别研究的是(A.曹雪芹、莎士比亚、雨果 ____________B.雨果、莎士比亚、曹雪芹C.C.莎士比亚、雨果、曹雪芹 ____________D.曹雪芹、雨果、莎士比亚的图象大致是(A.B.1D.cj—r 1若记 咎、分别为需、的方差,则( )A. 砖> 碍一B.=D 乙.C.咎v D 二D.D :与的大小关系与 口口口耳 的取值有关.f!11. 已知函数廿炽 -严* 百曲 , 右丹毛(0 ]. frcns 20 + .^insinOi■+ ft 細m 恒成立,则实数 m 的取值范围是 ( )11L f1A.1-丁 5B .(P ’JC.D.[丁 十对12. 对于定义域为R 的函数 fifp , 若满足①fftn -o ;②当KER ,且K 」}时,都的概率也为0277有率均为0.2,随机变量 •取值10.设:加J.、":"严让卜三—芒.随机变量取值 的概比 +也 也 +耳2 飞+ 兀 耳丄+ 也 也 +兀]9…「 ;③当••,且时,数”.,则称 I 为“偏对称函现给出四个函数:1 1 ,-IMx = m-*(X) = - X 亠 JB. 3C. 2D. 1则其中是“偏对称函数”的函数个数为(A. 4、填空题13.12丫十、:1-j?)收= ________ .\a14. kl+axHl 的展开式中以 的系数是20,则实数玉一 ____________________16. 如图所示的 “数阵” 的特点是:毎行每列都成等差数列,则数字:「在图中出现的次数为 ___________ .r*4 6 735 7 9:1 134J10 1316 19 (5)9 13 17 21 25一 6 11 压 21 2&31 … J1S 19 2S厂37 … …—-……三、解答题17.已知函数「「二-.一 ....■,.:./ f r ) r > 0(1 )若..-.-,-一,且 ‘I 「,求 /U'-l--/(认厂0的值;(2 )若口三1匚二0 ,且在区间 Q1] 上恒成立,试求 b 的取值范围15.已知函数2V163』 1 r < i上I-,则24 百20]?的值为18. 如图,在三棱柱 ABC - A 1 B 1 C 1 BC= 1, BB 1= 2,Z BCC 1 =.(1) 求证:C 1 B 丄平面ABC ;设CE -XCC, (0 <入< 1),且平面中,已魚B 丄侧面BB 1 C 1 C , AB =AB 1 E 与BB 1 E 所成的锐二面角的大小为试求入的值.19. 某市政府为了引导居民合理用水,决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价:若用水量不超过12吨时,按4元/吨计算水费;若用水量超过12吨且不超过14吨时,超过12吨部分按6.60元/吨计算水费;若用水量超过14吨时,超过14吨部分按7.80元/吨计算水费•为了了解全市居民月用水量的分布情况,通过抽样,获得了100户居民的月用水量(单位:吨),将数据按照讥门||产加,…,乔而分成8组,制成了如图1所示的频率分布直方图.(I)假设用抽到的100户居民月用水量作为样本估计全市的居民用水情况.(i )现从全市居民中依次随机抽取5户,求这5户居民恰好3户居民的月用水用量都超过12吨的概率;(ii)试估计全市居民用水价格的期望(精确到0.01 );(H)如图2是该市居民李某2016年1〜6月份的月用水费(元)与月份的散点图,其拟合的线性回归方程是■- - 2- I ;•:.若李某2016年1〜7月份水费总支出为294.6元, 试估计李某7月份的用水吨数.20. 已知椭圆1卫「[=1估小丸)的右焦点Ml剧,椭圆I「的左,右顶点分别为a' b:蘭.捕.过点F的直线H与椭圆交于匕力两点,且•••的面积是I,-的面积的3倍.(1)求椭圆亍的方程;(n)若而与轴垂直,亿飞是椭圆冋上位于直线Fr:1两侧的动点,且满足-| :' - ■:' I ,试问直线的斜率是否为定值,请说明理由.2 ]21. 已知函数f (x) = (t+1 ) Inx ,,其中t € R.(1 )若t=1,求证:当x> 1时,f (x) > 0成立;(2)若t > ,判断函数g (x) =x[f (x) +t+1]的零点的个数.第3题【答案】22. 选修.■::坐标系与参数方程已知曲线C的极坐标方程为p - 4cos 0 +3p sin 2 0 =0,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l过点M( 1, 0),倾斜角为6(I)求曲线C的直角坐标方程与直线I的参数方程;(D)若曲线C经过伸缩变换汽-其后得到曲线C,且直线I与曲线C交于A, B■V =两点,求|MA|+|MB| •23. 选修『日:不等式选讲已知函数 f (x) =|2x+3|+|2x - 1| •(I)求不等式f (x )v 8的解集;(□)若关于x的不等式f (x) < |3m+1|有解,求实数m的取值范围.参考答案及解析第1题【答案】C【解析】第2题【答案】A【解析】由随机变量的分布列耙c t 3 Be - 1 - c * - f故选A .第6题【答案】第4题【答案】Di 1 航 农垠阵-tl-2)二孑£)=迥=-y 1故选D.不一M【思路点睛】本题主要考查分段函数的解析式、属于简单题.对于分段函数解析式的考查杲 命題的动向之一,这类问题的特点是综合性强,对抽象思维能力墓求高,因此解决这类题 —定要层诙清岀「思路清晰中本题解答分两个层次 首先密出兀吨r 的套 进而得到 叫畀的值. ^第5题【答案】們+21 (珥十2)十(2- w )11十1— 2时,2-w<4 .复数二在复平面上对应的点不一定在第四象限,充分性不成立:而复数 二在真平面上对应的点在第四象限-则也42 >0_2-??r{0=>耐2涓足心-]?必要性成巨选乩点睛:本题重点考查复魏的基本运算和复魏的概念,雇于基本範苜先对于复数的四贝蜓鼠要切实拿 握其运算技巧和常规思路』如(杆加)(盼旳=(衣-站)+3?+加)认心区皿丘町・其次要熟悉 复数相关基本柢念,如复数口+扮(乩旅应)的实部为朴、虛却为白、模为如+押、对应点为 (必).共觇为「肚【解析】D【解析】则切线的斜率是f ⑴- £【解析】对于①*用相关指数P刻画回归效果珅越尢说明模型的拟合效果Wi ■'■①错误■对于②,命题时%ER卅衍2 2的否定是-p:叫刊后賈E <(f ,②正确尸对于③『根拆正态分布N®l)的性质可得,若P(X= i)-p,则P(X< l)-p , MX-l<X<l) = i-2p.»F(-l<X<0)-- p 『③正确;对于①”回归直线—定过样本点的中心&),④正确;综上所述②③⑥正就故选「.第7题【答案】&【解析】考査这誌同学的站队方法,根据题意,分3步进彳亓寸论:h先安排甲,在&个位宣中任选一个即可「有「;-丘种选袪°2、在与甲所选位置不在同一排也不在同一列的2个位萱中任选一个•安排乙有瑪刃种选注4将余的4■个人安排在其余的山个位置,有A: - 24种安排方迭,则这6名同学的站队方法肓“2 h 24=2盹种iTtw y由古典概型公式:P ;'■:.C! >第8题【答案】第11题【答案】紀聖需矗家铭自然不会研究毡士比亚"也是正嘯亂这不符嚳爲翟n 費幽陛护誥% 曙即香淀鶴鶴是袪士比亚②不正确即刘比题利用排除法*对于洞于助一个不满足』胡非除B ;对于匚用足①孰古対非除匚- 紗第-句话正确,推理其它两句话正确与否,脱“老师疇对了第9题【答案】C【解析】■//(—x)= —-— cos(—x)= -——COST = _/(x).'.去掉A*B ;丁所臥选e —1 -I\U第10题【答案】【解析】 由已知棗件可得EG )hE (S,又弋X 弋三二芒九咗心冬1『氏玉戈丑弋芒玉弋祗韦12 ,所以变12 ' 23 2 2 2 量侪比变重右的液动大.即句曹 两为 S 其顺 _npM个雨 那究 的研 了恒 £ 戟曹拓究芹W 雪能曹只沁辭舍翦利题售疋 ,此g 件SIJ 法假条看話雨士舉/■>么W 选 & 9- SW 口E 家雨 是即亚都,比I肯么^J7J究「故本题正确答案対:第12题【答案】【解丰斤】由题意知忖=-宀J ZwK-!t)业址誤汀+ x-siiHt = -fM兀訂是奇函数:瑰曰=201 丁存汁I 4冷竄< 0 .可得血〕单调递减・二f(cos~0 f■札3m 2)F^fifcrjft'O I I 2) :* C<IA^0f .ImsinO < Im 卜2人I sinfl) > cns^O 2 t'• 6 E (0, > - ]-sin8 > 0 则钿〉------ 令F - 1 siiiO t F (0, ])- (,inii - I 1 ,设I f i 椚2 齐2g(t)---------------- =T —+ 2 "甘⑴二-卑调诵减■■- 1 即m3- t 综上所述'I ( [- 二笞选A・'使WW镰查髀髓聲騎身殳餾I爨峯贏奩骗髓陰勰... ............. .. ...... ....... .......使用分离参数法.离参数法不是万能的,如果分离參数后「得岀的函数解析式较为复杂「性质很难硏究,就不要第12题【答案】【解析】经检脸,諏)"hj(砂切[町揪却都满足条件①」即条件②等价于ffiBRx)在区间〔口0)上单调递减,在区间® I x)上单谓递壇,而容易验证泪】是奇函数「由及函数的W虧可禺8«在区间〔心①和® J对上单调性相同,故虫刃不满足条件②,由冥合函数的单调性法则知爪)在区间("⑴单调递獄显然在〔厂刈上单调递増P故卜仪)j 龊条件②,4>1(x) 尿七-J?+3X2=-3X2(X-1)>当"I 时,< 0 ,故啊◎不鬲足条■件②f cp\¥)= e x-1 ,XQ1 (xj = y(e x-1)、满足条件②,对于側‘不妨设円“ J , fllJH讪I 0-吗F 2為I旳)-X1I 1) I 2JLJ<0t所以hft) 满足㉛对于讽和,*}=4i *丽在(血i町上递爲桦〉在3 I旳上递增,所以卜㈤-帕<1 呎刈戸b f F(x) = /+ -2>Q f递增‘ F(^)> F(0)- lleW> <p( y) f e不妨设X严叫『则呎坷}_W啊吋f5 j吟」I打弋所以曲満足③,所以抿偏对称函数"的函数个数为—故选「”第13题【答案】第14题【答案】 2 I 解析】T 已知\U +巫)〔1 +XJ 5-(1 + «xi + c|x+ C5X 1 + CjK 3+ C J X 3}.展开式中2 的系数为煤 + aC : = 20'求得厂2,故答案为2.【方法点晴】本题主要琴查二项展开式定理的通项与系数,属于简单题.二顶展幵式定理 的冋题也杲高考命题热点之一,关于二项式定理的命题方向比较明确,主曼从以下几个方 面命题;〔1 )考查二项展开式的通项公式T 「]YF 讦,(可以考查某一顶,也可考查 某一项的系数)① 考查各项系数和和各项的二项式系数和;(J 二项展开式定理的应第15题【答案】【解析】 ” (2x + G应填答秦"昇【解析】第16题【答案】【解析】37 = 2-35x1 = 3-17x2^4 + 11x3 = 5-Sx4 = 7-5x6^10+3x9 = 13+2x12 = 19+1x18= J7+0X36共勺个第17题【答案】⑴ £;⑵[-2.0].【解析】试题分析:(D由已知匸二】,f(7、=Q、解得b = 2 ,所^/(.v)的解析式,从而得到尸⑴,EMT求解F(2)*F(T)的值;C2) ®|/(i )|<l在区间(0,1] ±恒威立,等价于—心十+H亡1在((M]上恒成立,得出g丄n且b>---x在01]上叵成立,在利fflEm^Cv)=--x的性质,即可求解&的取值范1 x x围.7t匪禅析:⑴由已知1、/(-O=a-i + r = 0 ,解得2 2 、所^/(x) = (x + l);耐』(巧“丫丫,附F(2)+F(-2)* + l八「_卜2 + 1)卡£-(,x< 0 L」⑵由题青知,畑二宀验』原命题等价于在©1]上恒成立,即b<--x且b芒一丄一*在(0.1]上恒成立,X X由于娶(T>三-'X在(0-1]上递减;A(X)= ^-^X在01]上递増,X X所以当时,丄P的最小值为黑⑴M : -丄•工的最大值卯⑴"2 ,岸X所以,故&的取値范围S[-2.O].第18题【答案】(1)见解析C2> 1【解析】试题分析’ (1 )先由线面垂直的性质证明AB丄"J,再根据余玄定理及勾股定浬证明敢‘丄利用直妄勻平面垂直的判断定理证明2丄平面ABC ; (2)通过两两垂直以B为原点,BC.BA.BC, 所在直线xyz轴建立空间直角坐标系.求岀相关点的坐标,求出平面AB忙的一个法向量,平面8印囲一个法向量,通过向量的数量积,推岀I的方程,求解艮卩可.试题解析:(1)证明:因为M丄侧面8®C iC , 8Ci c侧面加iCiC, 5W8±8C I.在△8CO中,BC=1 #CC =88^=2 f拾CO = J rSCI =SC + CCf - 25CCC-ccsZSCCi = 12 + 22 - 2X 1 x 2X C os| =3.所以8Ci = >/3 ,故3。
2019学年高二数学下学期期末考试试题 理(含解析)
亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……2019学年度第二学期期末考试高二理科数学试卷第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则()A. B. C. D.【答案】C【解析】分析:先化简集合B,再求,再求.详解:由题得B={x|x>2},所以={x|≤2},所以=.故答案为:C.点睛:(1)本题主要考查集合的化简和集合的交集补集运算,意在考查学生对这些知识的掌握水平.(2)化简集合B时,注意它表示函数的定义域,不是函数的值域.2. 已知复数满足(为虚数单位),为的共轭复数,则()A. 2B.C.D. 4【答案】B【解析】分析:先求复数z,再求,再求.详解:由题得,所以故答案为:B.点睛:(1)本题主要考查复数的运算和复数的共轭复数和模,意在考查学生对这些知识的掌握水平.(2) 复数的共轭复数复数的模.3. 已知是公差为2的等差数列,为数列的前项和,若,则()A. 50B. 60C. 70D. 80【答案】D【解析】分析:由是公差为的等差数列,,可得,解得,利用等差数列求和公式求解即可.详解:是公差为的等差数列,,,解得,则,故选D.点睛:本题主要考查等差数列的通项公式、等差数列的前项和公式,属于中档题. 等差数列基本量的运算是等差数列的一类基本题型,数列中的五个基本量一般可以“知二求三”,通过列方程组所求问题可以迎刃而解.4. 设,向量,且,则()A. 5B. 25C.D. 10【答案】A【解析】分析:首先根据向量垂直的充要条件求出的坐标,进一步求出,利用向量模的坐标表示可得结果.详解:已知,由于,,解得,,,,故选A.点睛:利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.5. 函数的部分图象可能是()A. B. C. D.【答案】B【解析】分析:先求函数的奇偶性,排除A,C,再排除D.详解:由题得,所以函数f(x)是奇函数,所以排除A,C.当x=0.0001时,,所以排除D,故答案为:B.点睛:(1)本题主要考查函数的图像和性质,考查函数的奇偶性,意在考查学生对这些知识的掌握水平和分析推理能力.(2)对于类似这种根据解析式找函数的图像,一般先找差异,再验证.6. 某几何体的三视图及尺寸大小如图所示,则该几何体的体积为()A. 6B. 3C. 2D. 4【答案】C【解析】分析:先通过三视图找几何体原图,再求几何体的体积.详解:由三视图可知原几何体是一个四棱锥,底面是一个上底为1,下底为2,高为2的直角梯形,四棱锥的高为2,所以几何体的体积为故答案为:C. 点睛:(1)本题主要考查三视图找几何体原图,考查几何体的体积的计算,意在考查学生对这些知识的掌握水平和空间想象能力. (2)通过三视图找几何体原图常用方法有直接法和模型法.7. 某单位为了落实“绿水青山就是金山银山”理念,制定节能减排的目标,先调查了用电量(单位:度)与气温(单位:℃)之间的关系,随机选取了4天的用电量与当天气温,并制作了以照表:(单位:)(单位:度)由表中数据得线性回归方程:,则由此估计:当气温为时,用电量约为()A. 56度 B. 62度 C. 64度 D. 68度【答案】A【解析】分析:先求样本中心点,再求的值,再预测当气温为时的用电量.详解:由题得因为回归直线经过样本中心点,所以40=-20+,所以=60.所以回归方程为,当x=2时,y=56. 故答案为:A.点睛:(1)本题主要考查回归方程,意在考查学生对这些知识的掌握水平.(2) 回归直线经过样本中心点,这是回归方程的一个重要性质..................................8. 数学猜想是推动数学理论发展的强大动力,是数学发展中最活跃、最主动、最积极的因素之一,是人类理性中最富有创造性的部分.1927年德车汉堡大学的学生考拉兹提出一个猜想:对于每一个正整数,如果它是奇数,对它乘3再加1,如果它是偶数,对它除以2,这样循环,最终结果都能得到1.下面是根据考拉兹猜想设计的一个程序框图,则输出的为()A. 5B. 6C. 7D. 8【答案】B【解析】执行程序框图可得:不成立,是奇数,不成立不成立,是奇数,不成立不成立,是奇数,不成立不成立,是奇数,成立不成立,是奇数,成立成立,故输出,结束算法故选9. 已知函数最小正周期为,则函数的图象()A. 关于直线对称B. 关于直线对称C. 关于点对称D. 关于点对称【答案】D【解析】分析:先化简函数f(x)=,再根据周期求出w,再讨论每一个选项的真假. 详解:由题得f(x)=,因为对于选项A,把代入函数得,所以选项A是错误的;对于选项B, 把代入函数得,所以选项B是错误的;对于选项C,令无论k取何整数,x都取不到,所以选项C 是错误的.对于选项D, 令当k=1时,,所以函数的图像关于点对称.故答案为:D.点睛:(1)本题主要考查三角恒等变换和三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)对于三角函数图像和性质的判断,要灵活,不要死记硬背.10. 设圆上的动点到直线的距离为,则的取值范围是()A. B. C. D.【答案】C【解析】分析:先求圆心和半径,再求圆心到直线的距离,再根据数形结合得到d的取值范围. 详解:由题得所以圆心为(2,-2),半径为1.所以圆心到直线的距离为,所以动点P到直线的最短距离为4-1=3,最大距离为4+1=5,故答案为:C.点睛:(1)本题主要考查圆的方程和点到直线的距离,意在考查学生对这些知识的掌握水平和数形结合的思想方法. (2)解答本题的关键是数形结合思想的灵活运用.11. 已知双曲线的一条渐近线截圆为弧长之比为1:2的两部分,则此双曲线的离心率等于()A. 2B.C.D. 3【答案】A【解析】分析:先通过已知条件求出双曲线的渐近线的倾斜角和斜率,再求双曲线的离心率. 详解:圆的标准方程为,所以圆心坐标为(0,2),半径为2,且过原点.因为双曲线的一条渐近线经过坐标原点,截圆为弧长之比为1:2的两部分,所以双曲线的一条渐近线的倾斜角为,所以所以故答案为:A点睛:(1)本题主要考查双曲线和圆的几何性质,考查双曲线的离心率的求法,意在考查学生对这些知识的掌握水平和分析推理能力.(2)求离心率常用的方法有直接法和方程法.12. 已知是定义在上的偶函数,且满足,若当时,,则函数在区间上零点的个数为()A. 2018B. 2019C. 4036D. 4037【答案】D【解析】分析:先把问题转化为函数的图像与函数y=的图像的交点的个数,再求函数f(x)的周期为2,再作出两个函数的图像观察图像得到零点个数.详解:函数在区间上零点的个数函数的图像与函数y=的图像的交点的个数,因为函数f(x)是定义在 R上的偶函数,且满足,即f(-x)=f(x),又因为f(x+1)=f(1-x),所以f(x)是周期为2的偶函数,当时,,作出函数f(x)与y=的图像如下图,可知每个周期内有两个交点,所以函数在区间上零点的个数为2018×2+1=4037.故答案为:D.点睛:(1)本题主要考查函数的图像和性质,考查利用函数的图像研究零点个数,意在考查学生对这些知识的掌握水平和分析推理数形结合的能力.(2)本题解答的关键有两点,其一是转化为函数的图像与函数y=的图像的交点的个数,其二是能准确作出两个函数的图像.第Ⅱ卷二、填空题(本题共4个小题,每题5分,满分20分,将答案填在答题纸上)13. 曲线在处的切线方程为__________.【答案】【解析】∵,∴∴曲线在点P(0,3)处的切线的斜率为:,∴曲线在点P(0,3)处的切线的方程为:y=2x+3,故答案为y=2x+3.点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点及斜率,其求法为:设是曲线上的一点,则以的切点的切线方程为:.若曲线在点的切线平行于轴(即导数不存在)时,由切线定义知,切线方程为.14. 已知变量满足约束条件,则的最大值与最小值的积为__________.【答案】-8【解析】分析:作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.解析:作出不等式组对应的平面区域如图:(阴影部分ABC)由得,平移直线,由图象可知当直线经过点A时,直线的截距最大,即z最大.由,解得,即.将代入,得,即的最大值为2.故答案为:2.点睛:线性规划问题的解题步骤:(1)作图——画出约束条件所确定的平面区域和目标函数所表示的平行直线系中过原点的那一条直线;(2)平移——将l平行移动,以确定最优解的对应点的位置;(3)求值——解方程组求出对应点坐标(即最优解),代入目标函数,即可求出最值.15. 展开式的常数项为80,则实数的值为__________.【答案】-2【解析】分析:先利用二项式展开式的通项求常数项,再令常数项为0,解之即得实数a的值. 详解:二项式的展开式中的通项公式为T k+1=C5k•a k•x10﹣2.5k,∵二项式的展开式中的常数项为80,∴当10﹣2.5k=0时,得k=4,此时常数项为C54•a4=80,即5a4=80,解得a=±2,因为a<0,所以a=-2.故答案为:-2.点睛:(1)本题主要考查二项式定理的应用,考查利用二项式定理求特定项,意在考查学生对这些知识的掌握水平和基本的计算能力.(2) 求出展开式的通项公式和化简是解决本题的关键.16. 设抛物线的焦点为,准线为,为上一点,以为圆心,为半径的圆交于两点,若,且的面积为,则此抛物线的方程为__________.【答案】【解析】分析:根据抛物线的定义可得,是等边三角形,由的面积为可得从而得进而可得结果.详解:因为以为圆心,为半径的圆交于两点,,由抛物线的定义可得,是等边三角形,,的面积为,到准线的距离为此抛物线的方程为,故答案为.点睛:本题主要考查抛物线的标准方程、定义和几何性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,角所对的边分别为,满足.(1)求角的大小;(2)若,且,求的面积.【答案】(1);(2).【解析】分析:(Ⅰ)由,利用正弦定理可得,从而得,进而可得结果;(Ⅱ)结合(Ⅰ)由余弦定理可得,,即,.详解:(I)由题意得:.,即又,(Ⅱ),,即点睛:以三角形为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.18. 已知正项等比数列的前项和为,若,且.(1)求数列的通项公式;(2)设,数列的前项和为,求证:.【答案】(1);(2)证明见解析.【解析】分析:(1)利用且得到关于的方程组,解方程组即得,再写出数列的通项公式.(2)先求得,再利用裂项相消求,再证明. 详解:(1)由题意得:∵,∴,即,解得:或(舍去)又∵,∴,∴;(2)∵,∴,∴,又∵为递增数列,的最小值为:∴.点睛:(1)本题主要考查等比数列通项的求法,考查裂项相消法求和,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2) 类似(其中是各项不为零的等差数列,为常数)的数列、部分无理数列等.用裂项相消法求和.19. 高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:(1)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,由以上数据完成下列2×2列联表,并判断能否在犯错误的概率不超过0.005的前提下,认为“移动支付活跃用户”与性别有关?(2)把每周使用移动支付6次及6次以上的用户称为“移动支付达人”,视频率为概率,在我市所有“移动支付达人”中,随机抽取4名用户.为了鼓励男性用户使用移动支付,对抽出的男“移动支付达人”每人奖励300元,记奖励总金额为,求的分布列及数学期望.附公式及表如下:【答案】(1)能;(2)400元.【解析】分析:(1)先根据已知的数据完成2×2列联表,再计算判断在犯错误概率不超过0.005前提下,能认为“移动支付活跃用户”与性别有关.(2)利用二项分布求的分布列及数学期望.详解:(1)由表格数据可得2×2列联表如下:将列联表中的数据代入公式计算得:所以在犯错误概率不超过0.005前提下,能认为“移动支付活跃用户”与性别有关.(2)视频率为概率,在我市“移动支付达人”中,随机抽取1名用户,该用户为男“移动支付达人”的概率为,女“移动支付达人”的概率为,记抽出的男“移动支付达人”人数为,则,由题意得,∴,;,所以的分布列为所以的分布列为由,得的数学期望元(或元)点睛:(1)本题主要考查独立性检验,考查随机变量的分布列和期望,意在考查学生对这些知识的掌握水平和分析推理能力.(2)若~则20. 如图,在正三棱柱(底面为正三角形的直棱柱)中,已知,点为的中点.(1)求证:平面平面;(2)求直线与平面所成角的正切值.【答案】(1)证明见解析;(2).【解析】分析:(1)先证明A平面,再证明平面平面.(2)利用向量法求直线与平面所成角的正切值.详解:(1)由题意知:为的中点,∴,由平面得:,∵平面,且,∴平面,又∵平面,∴平面平面;(2)建立如图所示的空间直角坐标系.因为,所以,因此.设为平面的一个法向量,则,即,取,则,,设直线与平面所成角为,则,∵,∴∴,所以直线与平面所成角的正切值为.点睛:(1)本题主要考查空间直线平面位置关系的证明,考查直线和平面所成的角的计算,意在考查学生对这些知识的掌握水平和空间想象能力转化能力及计算能力.(2) 直线和平面所成的角的求法方法一:(几何法)找作(定义法)证(定义)指求(解三角形),其关键是找到直线在平面内的射影作出直线和平面所成的角和解三角形.方法二:(向量法),其中是直线的方向向量,是平面的法向量,是直线和平面所成的角. 21. 已知椭圆的离心率为,且椭圆上的一点与两个焦点构成的三角形周长为.(1)求椭圆的方程;(2)已知直线与椭圆相交于两点.①若线段中点的横坐标为,求的值;②在轴上是否存在点,使为定值?若是,求点的坐标;若不是,请说明理由. 【答案】(1);(2)①,②.【解析】分析:(1)先根据已知得到a,c的两个方程,解方程即得椭圆的方程.(2) ①,先联立直线与椭圆的方程得到韦达定理=2×,即得k的值. ②假设存在定点使得为定值,设点,先求,再分析得到,即得m的值.详解:(1)由题意得:① ,②,由①②解得:,∴,∴椭圆的方程为.(2)由消去得,,设,则,①∵线段的中点的横坐标为,所以,即,所以;②假设存在定点使得为定值,设点,所以为定值,即,故,解得:,所以当时为定值,定值为.点睛:(1)本题主要考查椭圆方程的求法和椭圆的几何性质,考查直线和椭圆的位置关系,考查椭圆中的定值问题,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2)本题的解题关键有两点,其一是计算出,其二是分析得到.22. 已知函数(为自然对数的底数).(1)讨论函数的单调性;(2)记函数的导函数,当且时,证明:.【答案】(1)当时,在上单调递减;当时,在上单调递增;在上单调递减;(2)证明见解析.【解析】分析:(1)先求导,再对m分类讨论,求函数f(x)的单调性.(2)先把问题等价转化,,再构造函数设函数求即得证.详解:(1)的定义域为,①当时,;②当时,令,得,令,得,综上所述:当时,在上单调递减;当时,在上单调递增;在上单调递减.(2)当时,,设函数,则,记,,则,当变化时,的变化情况如下表:由上表可知而,由,知,所以,所以,即,所以在内为单调递增函数,所以当时,即当且时,,所以当且时,总有.点睛:(1)本题主要考查利用导数求函数的单调性和最值,考查利用导数证明不等式,意在考查学生对这些知识的掌握水平和分析转化推理能力.(2)解答本题的关键有两点,其一是转化,,其二是构造函数设函数求。
最新2019学年高二数学下学期期末联考试题 理
2019学年高二下期末联考理科数学试卷满分:150分考试时间:120分钟一、选择题(本大题共12小题,每小题5分,共60分。
每小题有且只有一项是符合题目要求的) 1.已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C AB =( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x << 2.“0<a <1”是“ax 2+2ax +1>0的解集是R”的 ( ) A .充分而非必要条件 B .必要而非充分条件 C .充要条件 D .既非充分也非必要条件 3.下列函数中,既不是奇函数,也不是偶函数的是 ( ) A .sin 2y x x =+B .2cos y x x =- C .122x xy =+D .2sin y x x =+ 4.已知132a -=,21211log ,log 33b c ==,则( )A .a b c >>B .a c b >>C .c a b >>D .c b a >>5. 2()ln(34)f x x x =--函数的单调递减区间是( )A .31,2(-)B .3(,4)2C .,1)-∞-(D .(4,)+∞ 6. 已知函数()1x f x e =-,2()43g x x x =-+-,若存在()()f a g b =,则实数b 的取值范围为( )A .[0,3]B .(1,3) C.[2 D.(2 7.已知m ∈R ,“函数y =2x+m -1有零点”是“函数y =log m x 在(0,+∞)上为减函数”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件8.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( ) A.y =⎣⎢⎡⎦⎥⎤x 10B.y =⎣⎢⎡⎦⎥⎤x +310 C.y =⎣⎢⎡⎦⎥⎤x +410D.y =⎣⎢⎡⎦⎥⎤x +5108.函数sin21cos xy x=-的部分图像大致为 ( )10.设()27x f x x =+-,0x 是函数()f x 的一个正数零点,且0(,1)x a a ∈+,其中a N ∈, 则a =( )A.1B.2C.3D.411.如果函数f (x )对任意的实数x ,都有f (1+x )=f (-x ),且当x ≥12时,f (x )=log 2(3x -1),那么函数f (x )在[-2,0]上的最大值与最小值之和为( ) A. -1B. 2C. 3D. 412.设A 是自然数集的一个非空子集,对于k A ∈,如果2k A ∉A ,那么k 是A 的一个“酷元”,给定2lg(49)|3x S x N y x ⎧⎫-=∈=⎨⎬-⎩⎭,设集合M 由集合S 中的两个元素构成,且集合M 中的两个元素都是集合M 的“酷元”,那么这样的集合M 有( ) A .3个B .4个C .5个D .6个二、 填空题(本大题共4小题,每小题5分,共20分)13.已知集合A ={x |x 2-2x +a >0},且1∉A ,则实数a 的取值范围是 .14.已知f (x )=⎩⎪⎨⎪⎧log 2x ,x ≥1,x 2-x ,x <1,则满足()2f a >的a 的取值范围是 .15. 已知奇函数()f x 的定义域为[]2,2-,且在区间[]2,0-上递减,不等式 2(1)(1)0f m f m -+-<的解集是 .16.已知()f x 是以2为周期的偶函数,当[]0,1x ∈时,()f x x =,那么在区间[]1,3-内,关于x 的 方程()1f x kx k =++(其中k 为不等于1的实数)有四个不同的实根,则k 的取值范围是 .三、解答题:(本大题共5小题,共70分)17.在曲线1C :1cos (sin x y θθθ=+⎧⎨=⎩为参数),在曲线1C 求一点,使它到直线2C:12(112x t t y t ⎧=-⎪⎪⎨⎪=-⎪⎩为参数)的距离最小,并求出该点坐标和最小距离.(1)当5a =-时,求函数()f x 的定义域;(2)若函数()f x 的定义域为R ,试求a 的取值范围.19. 已知1()log (0,1)1axf x a a x+=>≠- (1)求()f x 的定义域;(2)判断()f x 的奇偶性并给与证明; (3)求使()0f x >成立的x 的取值范围。
西安中学高二数学下学期期末考试试题理含解析
当 时, 。
当 时,原不等式等价于 ,解得 ,∴ ;
②当 时,原不等式等价于 ,
=2(2 1
≥3+4 7.
当且仅当x ,y=4取得最小值7.
故选C.
【点睛】本题考查基本不等式的运用:求最值,注意乘1法和满足的条件:一正二定三等,考查运算能力,属于中档题.
11。 已知函数 ,则不等式 的解集为( )
A。 B. C。 D.
【答案】C
【解析】
【分析】
根据条件先判断函数是偶函数,然后求函数的导数,判断函数在 , 上的单调性,结合函数的奇偶性和单调性的关系进行转化求解即可.
所以 ,
令 所以函数g(x)在(0,+∞)上单调递增,
由题得
所以函数g(x)是奇函数,所以函数在R上单调递增.
因为对 ,不等式 恒成立,
所以 ,
因为a〉0,所以当x≤0时,显然成立。
当x>0时, ,
所以 ,所以函数h(x)在(0,1)单调递减,在(1,+∞)单调递增。
所以 ,
所以a<e,
所以正整数 的最大值为2.
14。 设 .若曲线 与直线 所围成封闭图形的面积为 ,则 ______。
【答案】:
【解析】
试题分析:因为,曲线 与直线 所围成封闭图形的面积为 ,所以, = = ,解得, .评:简单题,利用定积分的几何意义,将面积计算问题,转化成定积分计算.
15. 直线 与曲线 相切,则 的值为________.
A. 己申年B. 己酉年C. 庚酉年D。 庚申年
【答案】B
【解析】
【分析】
由题意可得数列天干是以10为等差的等差数列,地支是以12为公差的等差数列,以1949年的天干和地支分别为首项,即可求出答案.
精品2019学年高二数学下学期期末考试试题理(含解析)新人教版
2019学年度第二学期期末教学质量检测高二理科数学第Ⅰ卷(选择题共60分)一、选择题(共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.1.已知复数满足,则()A. B. C. D.【答案】C【解析】分析:根据复数的除法法则求解可得结果.详解:∵,∴.故选C.点睛:本题考查复数的除法运算,考查学生的运算能力,解题时根据法则求解即可,属于容易题.2.2.有一段“三段论”推理是这样的:对于可导函数,如果,那么是函数的极值点,因为函数在处的导数值,所以,是函数的极值点.以上推理中()A. 大前提错误B. 小前提错误C. 推理形式错误D. 结论正确【答案】A【解析】分析:根据极值定义得导数为零的点不一定为极值点,得大前提错误.详解:因为根据极值定义得导数为零的点不一定为极值点,所以如果 f ' (x0)=0,那么x=x0不一定是函数f(x)的极值点,即大前提错误.选A.点睛:本题考查极值定义以及三段论概念,考查对概念理解与识别能力.3.3.在回归分析中,的值越大,说明残差平方和()A. 越小B. 越大C. 可能大也可能小D. 以上都不对【答案】A【解析】分析:根据的公式和性质,并结合残差平方和的意义可得结论.详解:用相关指数的值判断模型的拟合效果时,当的值越大时,模型的拟合效果越好,此时说明残差平方和越小;当的值越小时,模型的拟合效果越差,此时说明残差平方和越大.故选A.点睛:主要考查对回归分析的基本思想及其初步应用等知识的理解,解题的关键是熟知有关的概念和性质,并结合条件得到答案.4.4.用火柴棒摆“金鱼”,如图所示,按照上面的规律,第个“金鱼”图需要火柴棒的根数为()A. B. C. D.【答案】C【解析】由题意得,第1个“金鱼”需要火柴棒的根数为;第2个“金鱼”需要火柴棒的根数为;第3个“金鱼”需要火柴棒的根数为,构成首项为,公差为的等差数列,所以第个“金鱼”需要火柴棒的根数为,故选 C.5.5.如果函数y=f(x)的图象如图所示,那么导函数y=f′(x)的图象可能是( )A. B. C. D.【答案】A【解析】试题分析:由原函数图像可知函数单调性先增后减再增再减,所以导数值先正后负再正再负,只有A正确考点:函数导数与单调性及函数图像6.6.某产品的广告费用万元与销售额万元的统计数据如下表:根据以上数据可得回归直线方程,其中,据此模型预报广告费用为6万元时,销售额为65.5万元,则,的值为()A. ,B. ,C. ,D. ,【答案】C【解析】分析:根据回归直线过样本中心和条件中给出的预测值得到关于,的方程组,解方程组可得所求.详解:由题意得,又回归方程为,由题意得,解得.故选C.点睛:线性回归方程过样本中心是一个重要的结论,利用此结论可求回归方程中的参数,也可求样本数据中的参数.根据回归方程进行预测时,得到的数值只是一个估计值,解题时要注意这一点.7.7.利用数学归纳法证明不等式的过程中,由变到时,左边增加了()A. 1项B. 项C. 项D. 项【答案】C【解析】分析:先表示出、,通过对比观察由变到时,项数增加了多少项.详解:因为,所以当,当,所以由变到时增加的项数为.点睛:本题考查数学归纳法的操作步骤,解决本题的关键是首先观察出分母连续的整数,当,,由此可得变化过程中左边增加了多少项,意在考查学生的基本分析、计算能力.8.8.如图,用、、三类不同的元件连接成一个系统.当正常工作且、至少有一个正常工作时,系统正常工作,已知、、正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为()A. 0.960B. 0.864C. 0.720D. 0.576【答案】B【解析】试题分析:系统正常工作当①正常工作,不能正常工作,②正常工作,不能正常工作,③正常工作,因此概率.考点:独立事件的概率.9.9.设复数,若,则的概率为()A. B. C. D.【答案】D【解析】若则,则的概率为:作出如图,则概率为直线上方与圆的公共部分的面积除以整个圆的面积,即:10.10.设函数的定义域为,若对于给定的正数,定义函数,则当函数,时,定积分的值为()A. B. C. D.【答案】D【解析】分析:根据的定义求出的表达式,然后根据定积分的运算法则可得结论.详解:由题意可得,当时,,即.所以.故选D.点睛:解答本题时注意两点:一是根据题意得到函数的解析式是解题的关键;二是求定积分时要合理的运用定积分的运算性质,可使得计算简单易行.11.11.已知等差数列的第项是二项式展开式的常数项,则()A. B. C. D.【答案】C【解析】试题分析:二项式展开中常数项肯定不含,所以为,所以原二项式展开中的常数项应该为,即,则,故本题的正确选项为 C.考点:二项式定理.12.12.已知函数的定义域为,为的导函数,且,若,则函数的取值范围为()A. B. C. D.【答案】B【解析】分析:根据题意求得函数的解析式,进而得到的解析式,然后根据函数的特征求得最值.详解:由,得,∴,设(为常数),∵,∴,∴,∴,∴,∴当x=0时,;当时,,故当时,,当时等号成立,此时;当时,,当时等号成立,此时.综上可得,即函数的取值范围为.故选B.点睛:解答本题时注意从所给出的条件出发,并结合导数的运算法则利用构造法求出函数的解析式;求最值时要结合函数解析式的特征,选择基本不等式求解,求解时注意应用不等式的条件,确保等号能成立.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.13.已知随机变量服从正态分布,若,则等于__________.【答案】0.36【解析】.14.14.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有__________种不同的选法.(用数字作答)【答案】660【解析】【详解】第一类,先选女男,有种,这人选人作为队长和副队有种,故有种;第二类,先选女男,有种,这人选人作为队长和副队有种,故有种,根据分类计数原理共有种,故答案为.15.15.的展开式中的系数是__________.【答案】243【解析】分析:先得到二项式的展开式的通项,然后根据组合的方式可得到所求项的系数.详解:二项式展开式的通项为,∴展开式中的系数为.点睛:对于非二项式的问题,解题时可转化为二项式的问题处理,对于无法转化为二项式的问题,可根据组合的方式“凑”出所求的项或其系数,此时要注意考虑问题的全面性,防止漏掉部分情况.16.16.已知是奇函数,当时,,(),当时,的最小值为1,则的值等于__________.【答案】1【解析】试题分析:由于当时,的最小值为,且函数是奇函数,所以当时,有最大值为-1,从而由,所以有;故答案为:1.考点:1.函数的奇偶性;2.函数的导数与最值.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.17.复数,,若是实数,求实数的值.【答案】【解析】分析:由题意求得,进而得到的代数形式,然后根据是实数可求得实数的值.详解:.∵是实数,∴,解得或,∵,∴,∴.点睛:本题考查复数的有关概念,解题的关键是求出的代数形式,然后根据该复数的实部不为零虚部为零得到关于实数的方程可得所求,解题时不要忽视分母不为零的限制条件.18.18.某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次0 1 2 3 4数保费设该险种一续保人一年内出险次数与相应概率如下:一年内出险次0 1 2 3 4数概率0.30 0.15 0.20 0.20 0.10 0.05(1)求一续保人本年度的保费高于基本保费的概率;(2)已知一续保人本年度的保费高于基本保费,求其保费比基本保费高出的概率.【答案】(1)0.55(2)【解析】分析:(1)将保费高于基本保费转化为一年内的出险次数,再根据表中的概率求解即可.(2)根据条件概率并结合表中的数据求解可得结论.详解:(1)设表示事件:“一续保人本年度的保费高于基本保费”,则事件发生当且仅当一年内出险次数大于1,故.(2)设表示事件:“一续保人本年度的保费比基本保费高出”,则事件发生当且仅当一年内出险次数大于3,故.又,故,因此其保费比基本保费高出的概率为.点睛:求概率时,对于条件中含有“在……的条件下,求……发生的概率”的问题,一般为条件概率,求解时可根据条件概率的定义或利用古典概型概率求解.19.19.在数列,中,,,且,,成等差数列,,,成等比数列().(1)求,,及,,;(2)根据计算结果,猜想,的通项公式,并用数学归纳法证明.【答案】(1) ,,,,, (2) 猜想,,证明见解析【解析】分析:(1)根据条件中,,成等差数列,,,成等比数列及所给数据求解即可.(2)用数学归纳法证明.详解:(1)由已知条件得,,由此算出,,,,,.(2)由(1)的计算可以猜想,,下面用数学归纳法证明:①当时,由已知,可得结论成立.②假设当(且)时猜想成立,即,.则当时,,,因此当时,结论也成立.由①②知,对一切都有,成立.点睛:用数学归纳法证明问题时要严格按照数学归纳法的步骤书写,特别是对初始值的验证不可省略,有时可能要取两个(或两个以上)初始值进行验证,初始值的验证是归纳假设的基础;第二步的证明是递推的依据,证明时必须要用到归纳假设,否则就不是数学归纳法.20.20.学校为了对教师教学水平和教师管理水平进行评价,从该校学生中选出300人进行统计.其中对教师教学水平给出好评的学生人数为总数的,对教师管理水平给出好评的学生人数为总数的,其中对教师教学水平和教师管理水平都给出好评的有120人.(1)填写教师教学水平和教师管理水平评价的列联表:对教师管理水平不满合计对教师管理水平好评意对教师教学水平好评对教师教学水平不满意合计请问是否可以在犯错误概率不超过0.001的前提下,认为教师教学水平好评与教师管理水平好评有关?(2)若将频率视为概率,有4人参与了此次评价,设对教师教学水平和教师管理水平全好评的人数为随机变量.①求对教师教学水平和教师管理水平全好评的人数的分布列(概率用组合数算式表示);②求的数学期望和方差.0.15 0.10 0.05 0.025 0.010 0.005 0.0012.072 2.7063.841 5.024 6.635 7.879 10.828(,其中)【答案】(1) 可以在犯错误概率不超过0.001的前提下,认为教师教学水平好评与教师管理水平好评有关. (2) ①见解析②,【解析】分析:(1)由题意得到列联表,根据列联表求得的值后,再根据临界值表可得结论.(2)①由条件得到的所有可能取值,再求出每个取值对应的概率,由此可得分布列.②由于,结合公式可得期望和方差.详解:(1)由题意可得关于教师教学水平和教师管理水平评价的列联表:对教师管理水平好评对教师管理水平不满意合计对教师教学水平好评120 60 180对教师教学水平不满意105 15 120合计225 75 300由表中数据可得,所以可以在犯错误概率不超过0.001的前提下,认为教师教学水平好评与教师管理水平好评有关.(2)①对教师教学水平和教师管理水平全好评的概率为,且的取值可以是0,1,2,3,4,其中;;;;,所以的分布列为:0 1 2 3 4②由于,则,.点睛:求离散型随机变量的均值与方差关键是确定随机变量的所有可能值,写出随机变量的分布列,正确运用均值、方差公式进行计算,对于二项分布的均值和方差可根据公式直接计算即可.21.21.已知函数,(为自然对数的底数,).(1)判断曲线在点处的切线与曲线的公共点个数;(2)当时,若函数有两个零点,求的取值范围.【答案】(1)见解析(2)【解析】分析:(1)根据导数的几何意义可得切线方程,然后根据切线方程与联立得到的方程组的解的个数可得结论.(2)由题意求得的解析式,然后通过分离参数,并结合函数的图象可得所求的范围.详解:(1)∵,∴,∴.又,∴曲线在点处的切线方程为.由得.故,所以当,即或时,切线与曲线有两个公共点;当,即或时,切线与曲线有一个公共点;当,即时,切线与曲线没有公共点.(2)由题意得,由,得,设,则.又,所以当时,单调递减;当时,单调递增.所以.又,,结合函数图象可得,当时,方程有两个不同的实数根,故当时,函数有两个零点.点睛:函数零点个数(方程根的个数、两函数图象公共点的个数)的判断方法:(1)结合零点存在性定理,利用函数的性质确定函数零点个数;(2)构造合适的函数,判断出函数的单调性,利用函数图象公共点的个数判断方程根的个数或函数零点个数.请考生在22~23两题中任选一题作答,如果多做,则按所做的第一题记分.22.22.在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.已知点的直角坐标为,曲线的极坐标方程为,直线过点且与曲线相交于,两点.(1)求曲线的直角坐标方程;(2)若,求直线的直角坐标方程.【答案】(1) (2) 直线的直角坐标方程为或【解析】分析:(1)根据极坐标和直角坐标间的转化公式可得所求.(2)根据题意设出直线的参数方程,代入圆的方程后得到关于参数的二次方程,根据根与系数的关系和弦长公式可求得倾斜角的三角函数值,进而可得直线的直角坐标方程.详解:(1)由,可得,得,∴曲线的直角坐标方程为.(2)由题意设直线的参数方程为(为参数),将参数方程①代入圆的方程,得,∵直线与圆交于,两点,∴.设,两点对应的参数分别为,,则,∴,化简有,解得或,∴直线的直角坐标方程为或.点睛:利用直线参数方程中参数的几何意义解题时,要注意使用的前提条件,只有当参数的系数的平方和为1时,参数的绝对值才表示直线上的动点到定点的距离.同时解题时要注意根据系数关系的运用,合理运用整体代换可使得运算简单.23.23.已知函数的定义域为.(1)若,解不等式;(2)若,求证:.【答案】(1) (2)见解析【解析】分析:(1)由可得,然后将不等式中的绝对值去掉后解不等式可得所求.(2)结合题意运用绝对值的三角不等式证明即可.详解:(1),即,则,∴,∴不等式化为.①当时,不等式化为,解得;②当时,不等式化为,解得.综上可得.∴原不等式的解集为.(2)证明:∵,∴.又,∴.点睛:含绝对值不等式的常用解法(1)基本性质法:当a>0时,|x|<a?-a<x<a,|x|>a?x<-a或x>a.(2)零点分区间法:含有两个或两个以上绝对值符号的不等式,可用零点分区间法去掉绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解.(3)几何法:利用绝对值的几何意义,画出数轴,将绝对值转化为数轴上两点的距离求解.(4)数形结合法:在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解.。
[精品]2019学年高二数学下学期期末考试试题 理(含解析)新人教版 新 版
2019学年度下学期期末考试高二数学(理)试卷一、选择题(在每小题给出的四个选项中,只有一个正确.每小题5分,共60分)1.1.设全集U={1,3,5,7},集合M={1,|a-5|},M U,M={5,7},则实数a的值为 ( )A. 2或-8B. -8或-2C. -2或8D. 2或8【答案】D【解析】分析:利用全集,由,列方程可求的值.详解:由,且,又集合,实数的值为或,故选D.点睛:本题考查补集的定义与应用,属于简单题. 研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系.2.2.已知命题,则命题的否定为 ( )A. B.C. D.【答案】D【解析】分析:根据全称命题的否定是特称命题即可得结果.详解:因为全称命题的否定是特称命题,所以命题的否定为,故选D.点睛:本题主要考查全称命题的否定,属于简单题.全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词、存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论即可.3.3.函数,则的定义域为 ( )A. B. C. D.【答案】B【解析】试题分析:由题意知,,∴的定义域是,故:且,解得或,故选B.考点:对数的运算性质.4.4.已知幂函数的图象关于y轴对称,且在上是减函数,则()A. -B. 1或2C. 1D. 2【答案】C【解析】分析:由为偶数,且,即可得结果.详解:幂函数的图象关于轴对称,且在上是减函数,为偶数,且,解得,故选C.点睛:本题考查幂函数的定义、幂函数性质及其应用,意在考查综合利用所学知识解决问题的能力.5.5.方程至少有一个负实根的充要条件是()A.B.C.D. 或【答案】C【解析】试题分析:①时,显然方程没有等于零的根.若方程有两异号实根,则;若方程有两个负的实根,则必有.②若时,可得也适合题意.综上知,若方程至少有一个负实根,则.反之,若,则方程至少有一个负的实根,因此,关于的方程至少有一负的实根的充要条件是.故答案为:C考点:充要条件,一元二次方程根的分布6.6.已知定义域为R的函数满足:对任意实数有,且,若,则= ( )A. 2B. 4C.D.【答案】B【解析】分析:令,可求得,再令,可求得,再对均赋值,即可求得.详解:,令,得,又,再令,得,,令,得,故选B.点睛:本题考查利用赋值法求函数值,正确赋值是解题的关键,属于中档题.7.7.已知A=B={1,2,3,4,5},从集合A到B的映射满足:①;②的象有且只有2个,求适合条件的映射的个数为 ( )A. 10B. 20C. 30D. 40【答案】D【解析】分析:将元素按从小到大的顺序排列,然后按照元素在中的象有且只有两个进行讨论.详解:将元素按从小到大的顺序排列,因恰有两个象,将元素分成两组,从小到大排列,有一组;一组;一组;一组,中选两个元素作象,共有种选法,中每组第一个对应集合中的较小者,适合条件的映射共有个,故选D.点睛:本题考查映射问题并不常见,解决此类问题要注意:()分清象与原象的概念;()明确对应关系.8.8.函数的大致图象为()A. B. C. D.【答案】B【解析】分析:利用函数的解析式,判断大于时函数值的符号,以及小于时函数值的符号,对比选项排除即可.详解:当时,函数,排除选项;当时,函数,排除选项,故选B.点睛:本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.9.9.函数是定义在R上的奇函数,函数的图象与函数的图象关于直线对称,则的值为()A. 2B. 1C. 0D. 不能确定【答案】A【解析】试题分析:∵函数是定义在上的奇函数,∴,令代入可得,函数关于对称,由函数的图象与函数的图象关于直线对称,函数关于对称从而有,故选A.考点:奇偶函数图象的对称性.【思路点睛】利用奇函数的定义可把已知转化为,从而可得函数关于对称,函数的图象与函数的图象关于直线对称,则关于对称,代入即可求出结果.10.10.若函数在区间内单调递增,则a的取值范围是()A. B. C. D.【答案】B【解析】设由,可得,函数在上单调递增,在上单调递减,当时,函数在上单调递减,不合题意,当时,函数在上单调递增,函数,在区间内单调递增,,,a 的取值范围是,故选B.11.11.对于三次函数,给出定义:设是函数的导数,是的导数,若方程有实数解,则称点为函数的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数,则( )A. 2016B. 2017C. 2018D. 2019【答案】C【解析】分析:对已知函数求两次导数可得图象关于点对称,即,利用倒序相加法即可得到结论.详解:函数,函数的导数,,由得,解得,而,故函数关于点对称,,故设,则,两式相加得,则,故选C.点睛:本题主要考查初等函数的求导公式,正确理解“拐点”并利用“拐点”求出函数的对称中心是解决本题的关键,求和的过程中使用了倒序相加法,属于难题.12.12.已知函数,函数有四个不同的零点,且满足:,则的取值范围是()A. B. C. D.【答案】D【解析】分析:结合函数图象可得,,可化为,换元后利用单调性求解即可.详解:作出的解析式如图所示:根据二次函数的对称性知,且,,,因为所以当时,函数等号成立,又因为在递减,在递增,所以,所以的取值范围是,故选D.点睛:本题考查函数的图象与性质,函数的零点以及数形结合思想的应用,属于难题. 数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.二、填空题(本大题共4小题,每小题5分,满分20分)13.13.已知条件:;条件:,若是的必要不充分条件,则实数的取值范围是________________【答案】【解析】分析:条件化为,化为,由是的必要不充分条件,根据包含关系列不等式求解即可. 详解:条件,化为,解得,,解得,若是的必要不充分条件,则是的充分不必要条件,,解得,则实数的取值范围是,故答案为.点睛:本题主要考查绝对值不等式的解法、一元二次不等式的解法以及充分条件与必要条件的定义,意在考查综合运用所学知识解决问题的能力,属于简单题.14.14.已知函数,对任意,都有,则____________【答案】-20【解析】分析:令,知,,从而可得,进而可得结果.详解:令,知,,,,,,故答案为.点睛:本题主要考查赋值法求函数的解析式,令,求出的值,从而求出函数解析式,是解题的关键,属于中档题.15.15.已知函数,则函数的值域为__________【答案】【解析】【分析】化为,时,,时,,从而可得结果.【详解】,当时,,当时,,函数,则函数的值域为,故答案为.【点睛】本题考查函数的值域,属于中档题. 求函数值域的常见方法有①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②换元法:常用代数或三角代换法,用换元法求值域时需认真分析换元参数的范围变化;③不等式法:借助于基本不等式求函数的值域,用不等式法求值域时,要注意基本不等式的使用条件“一正、二定、三相等”;④单调性法:首先确定函数的定义域,然后准确地找出其单调区间,最后再根据其单调性求凼数的值域,⑤图象法:画出函数图象,根据图象的最高和最低点求最值.16.16.设是定义在R上的奇函数,在上单调递减,且,给出下列四个结论:①;②是以2为周期的函数;③在上单调递减;④为奇函数.其中正确命题序号为____________________【答案】①②④【解析】分析:①由,用赋值法求解即可;②由奇函数和,可得;③可得函数关于对称,可得在上单调递增;④结合②,可得为奇函数.详解:①函数是定义在上的奇函数,,又,,正确.②奇函数和,,,函数的周期是,正确.③是奇函数,,,即函数关于对称,因为在上单调递减,所以在上单调递增,不正确.④是奇函数, 函数的周期是,所以,所以是奇函数,正确, 故答案为①②④.点睛:本题主要通过对多个命题真假的判断,主要综合考查函数的单调性、函数的奇偶性、函数的图象与性质,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.三、解答题(共70分)17.17.已知集合P=,函数的定义域为Q.(Ⅰ)若P Q,求实数的范围;(Ⅱ)若方程在内有解,求实数的范围.【答案】(1) (2)【解析】分析:(1)只需即可;(2)在有解,即求,的范围就是函数的值域,求出函数值域即可.详解:(1)P=,P Q,不等式在上有解,由得,而,(2)在有解,即求的值域,点睛:(1)是一个存在性的问题,此类题求参数一般转化为求最值,若是存在大于函数的值成立,一般令其大于函数的最小值;(2)也是一个存在性的问题,其与(1)不一样的地方是其为一个等式,故应求出解析式对应函数的值域,让该参数是该值域的一个元素即可保证存在性.18.18.如图,三棱柱中,侧棱平面,为等腰直角三角形,,且分别是的中点.(Ⅰ)求证:平面;(Ⅱ)求锐二面角的余弦值.【答案】(Ⅰ)见解析;(Ⅱ);【解析】试题分析:(Ⅰ)本题考查线面垂直的判定定理.可由勾股定理证明;另外平面即可;(Ⅱ)过程为作---证---算.根据二面角的定义找到角,注意不要忽略了证明的过程.试题解析:(Ⅰ)证明:由条件知平面,令,经计算得,即,又因为平面;(Ⅱ)过作,连结由已知得平面就是二面角的平面角经计算得,考点:1.线面垂直的判定定理;2.二面角;19.19.某保险公司针对企业职工推出一款意外险产品,每年每人只要交少量保费,发生意外后可一次性获赔50万元.保险公司把职工从事的所有岗位共分为、、三类工种,根据历史数据统计出三类工种的每赔付频率如下表(并以此估计赔付概率).(Ⅰ)根据规定,该产品各工种保单的期望利润都不得超过保费的20%,试分别确定各类工种每张保单保费的上限;(Ⅱ)某企业共有职工20000人,从事三类工种的人数分布比例如图,老板准备为全体职工每人购买一份此种保险,并以(Ⅰ)中计算的各类保险上限购买,试估计保险公司在这宗交易中的期望利润.【答案】(Ⅰ)见解析;(Ⅱ)元.【解析】试题分析:(I)设工种每份保单的保费,则需赔付时,收入为,根据概率分布可计算出保费的期望值为,令解得.同理可求得工种保费的期望值;(II)按照每个工种的人数计算出份数然后乘以(1)得到的期望值,即为总的利润.试题解析:(Ⅰ)设工种的每份保单保费为元,设保险公司每单的收益为随机变量,则的分布列为保险公司期望收益为根据规则解得元,设工种的每份保单保费为元,赔付金期望值为元,则保险公司期望利润为元,根据规则,解得元,设工种的每份保单保费为元,赔付金期望值为元,则保险公司期望利润为元,根据规则,解得元.(Ⅱ)购买类产品的份数为份,购买类产品的份数为份,购买类产品的份数为份,企业支付的总保费为元,保险公司在这宗交易中的期望利润为元.20.20.已知二次函数,设方程有两个实根(Ⅰ)如果,设函数的图象的对称轴为,求证:;(Ⅱ)如果,且的两实根相差为2,求实数的取值范围.【答案】(1)见解析(2)【解析】分析:(1)有转化为有两根:一根在与之间,另一根小于,利用一元二次方程的根分布可证;(2)先有,知两根同号,在分两根均为正和两根均为负两种情况的讨论,再利用两个之和与两根之积列不等式可求的取值范围.详解:(1)设,且,则由条件x1<2< x2<4得(2),又或综上:点睛:利用函数的零点求参数范围问题,通常有两种解法:一种是利用方程中根与系数的关系或利用函数思想结合图象求解;二种是构造两个函数分别作出图象,利用数形结合求解,此类题目也体现了函数与方程,数形结合的思想.21.21.已知函数的图象关于原点对称.(Ⅰ)求,的值;(Ⅱ)若函数在内存在零点,求实数的取值范围.【答案】(1),;(2)【解析】试题分析:(Ⅰ)题意说明函数是奇函数,因此有恒成立,由恒等式知识可得关于的方程组,从而可解得;(Ⅱ)把函数化简得,这样问题转化为方程在内有解,也即在内有解,只要作为函数,求出函数的值域即得.试题解析:(Ⅰ)函数的图象关于原点对称,所以,所以,所以,即,所以,解得,;(Ⅱ)由,由题设知在内有解,即方程在内有解.在内递增,得.所以当时,函数在内存在零点.22.22.(本小题满分12分)已知,函数.(I)当为何值时,取得最大值?证明你的结论;(II)设在上是单调函数,求的取值范围;(III)设,当时,恒成立,求的取值范围.【答案】(Ⅰ)答案见解析;(Ⅱ);(Ⅲ).【解析】试题分析:(I)求得f’(x)=[-x2+2(a-1)x+2a]e x,取得-x2+2(a-1)x+2a=0的根,即可得到数列的单调性,进而求解函数的最大值.(II)由(I)知,要使得在[-1,1]上单调函数,则:,即可求解a的取值范围;(III)由,分类参数得,构造新函数(x≥1),利用导数求得函数h(x)的单调性和最值,即得到a的取值范围.试题解析:(I)∵,,∴,由得,则,∴在和上单调递减,在上单调递增,又时,且在上单调递增,∴,∴有最大值,当时取最大值.(II)由(I)知:,或,或;(III)当x≥1时f(x)≤g(x),即(-x2+2ax)e x,,令,则,∴h(x)在上单调递增,∴x≥1时h(x)≥h(1)=1,,又a≥0所以a的取值范围是.点睛:本题主要考查导数在函数中的应用,不等式的恒成立问题求得,考查了转化与化归思想、逻辑推理能力与计算能力.导数是研究函数的单调性、极值(最值)最有效的工具,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,求解曲线在某点处的切线方程; (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数; (3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题; (4)考查数形结合思想的应用.。
2019学年高二数学下学期期末考试试题 理(含解析)
2019学年高二数学下学期期末考试试题 理(含解析)考试时间:120分,满分150分一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,将答案填在答题卡上)1.已知全集{}1,2,3,4U =,集合{}1,2A =,{}2,3B =,则()U AB ð等于(). A .{}1,2,3,4B .{}3,4C .{}3D .{}4【答案】{}1,2,3AB =∴{}()4U A B =ð. 选D .2.命题“若一个正数,则它的平方是正数”的逆命题是(). A .“若一个数是正数,则它的平方不是正数” B .“若一个数的平方是正数,则它是正数” C .“若一个数不是正数,则它的平方不是正数” D .“若一个数的平方不是正数,则它不是正数” 【答案】B【解析】逆命题为条件、结论互换,选B .3.设函数21,()2,1,x x f x x x⎧+⎪=⎨>⎪⎩≤1,,则((3))f f =().A .15B .3C .139D .23【答案】C 【解析】2(3)3f =2413((3))1399f f f ⎛⎫=== ⎪⎝⎭+.选C .4.设0a b <<,则下列不等式中不成立的是(). A .11a b> B .11a b a>-C .a b >-D【答案】不妨令2a =-,1b =-,B :111212=->--+不成立,选B .5.已知函数11,1()2,1x f x xx a x ⎧->⎪⎨⎪-+⎩≤在R 上满足:对任意12x x ≠,都有12()()f x f x ≠,则实数a 的取值范围是(). A .(],2-∞B .(],2-∞-C .[)2,+∞D .[)2,-+∞【答案】C 、【解析】按题意()f x 在R 上单调,而11x-在1x >时为减函数,∴()f x 为减函数, 1x =时,121x a x--≥+,2a -≥0+, ∴2a ≥. 选C . 6.复数2i12i+-的共轭复数是(). A .3i 5-B .3i 5C .i -D .i【答案】C 【解析】2i (2i)(12i)i 12i (12i)(12i)==--++++, ∴共轭复数为i -.选C .7.由直线π3x =-,π3x =,0y =与曲线cos y x =所围成的封闭图形的面积为().AB .1C .12D【答案】A【解析】π3π3π3cos d sin π3S x x x-⎛=⋅==-= ⎝⎭-⎰ 选A .8.函数()y f x =的图象是圆心在原点的单位圆的两段弧(如图),则不等式()()f x f x x <-+的解集为().A .|0x x ⎧⎪<<⎨⎪⎩或1x ⎫⎪<⎬⎪⎭≤B .|1x x ⎧⎪-<<⎨⎪⎩1x ⎫⎪<⎬⎪⎭≤ C .|1x x ⎧⎪-<<⎨⎪⎩0x <<⎪⎭D.|x x ⎧⎪<<⎨⎪⎩}0x ≠ 【答案】A【解析】显然()f x 为奇数, ∴可等价转换为1()2f x x <,当1x =时,1()02f x =<.当01x <<时,()f x ∴22114x x -<,1x <.当10x -<≤时,12x,∴0x <, 综上:|0x x ⎧⎪<<⎨⎪⎩1x ⎫⎪<⎬⎪⎭≤.二、填空题(本大题共6小题,每小题5分,共30分,将答案填在答题卡的横线上) 9.已知等差数列{}n a ,3510a a +=,2621a a =,则n a =__________. 【答案】1n a n =+【解析】设1(1)n a a n d =-+, ∴1111(2)(4)10()(5)21a d a d a d a d =⎧⎨=⎩++++, 解得:12a =1a =, ∴1n a n =+.10.已知二次函数2()4f x x ax =-+,若(1)f x +是偶函数,则实数a 的值为__________. 【答案】2a =【解析】2(1)(1)(1)4f x x a x =-++++ 2(2)5x a x a =--++为偶函数,有22()(2)5(2)5x a x a x a x a ----=--+++,2a =.11.若“1x m <-或1x m >+”是“2230x x -->”的必要不充分条件,则实数m 的取值范围为__________. 【答案】【解析】(1)2230x x -->,得:3x >或1x <-, 若1x m <-或1x m >+为2230x x -->的必要不充分条件. 则1311m m ⎧⎨--⎩≤≥+,即20m m ⎧⎨⎩≤≥, ∴02m ≤≤.12.已知定义在R 上的奇函数()f x 满足(2)()f x f x -=,且当[]1,2x ∈时,2()32f x x x =-+,则(6)f = __________;12f ⎛⎫= ⎪⎝⎭__________.【答案】【解析】(2)()f x f x -=可知周期为2, (6)(2)0f f ==, ()f x 为奇函数, 113122224f f f ⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴答案为0,14.13.直线11x t y t =+⎧⎨=-+⎩(t 为参数)与曲线2cos 2sin x y αα=⎧⎨=⎩(α为参数)的位置关系是__________.【答案】【解析】121x tx y y t =⎧⇒-=⎨=-⎩++, 222cos 42sin x x y y αα=⎧⇒=⎨=⎩+,2x =.∴2d =.14.已知数列{}n a 中,n a =4S =__________.【答案】 【解析】n a12⎡⎤=⋅⎣⎦12n =⋅12⎡=⋅⎣ 12⎡=⋅⎣,∴1234110112a a a a ⎡+=-⎣+++ 1(32=.三、解答题(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤) 15.(本小题满分13分)已知数列{}n a 是等比数列,其前n 项和是n S ,1220a a +=,4218S S -=. (Ⅰ)求数列{}n a 的通项公式. (Ⅱ)求满足116n a ≥的n 的值. 【答案】【解析】(1)设11n n a a q -= 1220a a =+,2112a q a ==-, 4218S S -=,41111211112812a a ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦--= ⎪⎛⎫⎝⎭-- ⎪⎝⎭,11a =, ∴112n n a -⎛⎫=- ⎪⎝⎭.(2)116n a ≥, 111216n -⎛⎫- ⎪⎝⎭≥. 当n 为偶数不成立, 当n 为奇数,141122n -⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭≥ ∴5n ≤. 又∵*n ∈N , ∴{}1,3,5n =.16.(本小题满分13分)已知数列32()(,)f x ax x bx a b =++∈R ,g()()()x f x f x '=+是奇函数. (Ⅰ)求()f x 的表达式.(Ⅱ)讨论()g x 的单调性,并求()g x 在区间[]1,2上的最大值与最小值. 【答案】【解析】(1)2()32f x ax x b '=++32()()()(31)(2)g x f x f x ax a x b x b '==++++++.∵()()g x g x -=-,∴对x ∀有3232()(31)()(2)()(31)(2)a x a x b x b ax a x b x b ---=-++++++++++. 解得:13a =-,0b =.17.(本小题满分13分)设m ∈R ,不等式2(31)2(1)0mx m x m -+++>的解集记为集合P . (Ⅰ)若{}|12P x x =-<<,求m 的值. (Ⅱ)当0m >时,求集合P . 【答案】,【解析】(1){}12P x x =-<<,∴1-,2为2(31)2(1)0mx m x m -=+++两根, ∴1x =-代入2(1)(31)2(1)0m m m -=++++, 12m =-.(2)[](2)(1)0x mx m -->+, 两根为2,1m m+, ①12m m=+,1m =时,2x ≠. ②12m m >+,01m <<时2x <或1m x m >+. ③12m m <+,1m >时,1m x m<+或2x >. 综上:01m <<时,{|2P x x =<或1}m x m>+, 1m =时,{},2P x x x =∈≠R , 1m >时,1{|m P x x m=<+或2}m >.18.(本小题满分13分)已知等差数列{}n a 的前n 项和为n S ,且满足32a =-,74S a =.(Ⅰ)1a =__________,d =__________,n a =__________,当n =__________时,n S 取得取小值,最小值为__________.(Ⅱ)若数列{}n a 中相异..的三项6a ,6m a +,6n a +成等比数列,求n 的最小值. 【答案】【解析】(1)1(1)n a a n d =-+, 3122a a d -==+,1711(6)772132a a d S a d a d ===++++,∴11122618030a d a d a d =-⎧⎨=⇒=⎩+++, 解得2d =,16a =-, ∴6(1)228n a n n =--⋅=-+. 1(628)2n S n n =⋅--+27,*n n n =-∈N ,∴min 92112S =-=.(2)[][]22(6)842(6)8m n -=-++ 2(24)24m n =++,21(2)22n m =-+,6060m n +>⎧⎨+>⎩2m =-,2n =-, 13m -=-,n =分数, 04m =,0n =, 15m =-,n =分数, 26m --,6n =. 4 4- 4 6a 8a12a4 816综上,2m =时,n 的最小值6.19.(本小题满分13分)若实数x ,y ,m 满足x m y m -<-,则称x 比y 靠近m . (Ⅰ)若1x +比x -靠近1-,求实数x 有取值范围.(Ⅱ)(i )对0x >,比较ln(1)x +和x 哪一个更靠近0,并说明理由. (ii )已知函数{}n a 的通项公式为112n n a -=+,证明:1232e n a a a a <.【答案】【解析】(1)|1(1)||(1)|x x --<---+ 22|2||1|(2)(1)x x x x <-⇔<-++, ∴12x <-.(2)①∵0x >,∴ln(1)0x >+, ∴|ln(1)0||0|ln(1)x x x x ---=-++, 记()ln(1)f x x x =-+, (0)0f =. 1()1011x f x x x-'=-=<++, ∴()f x 在(0,)∞+单减.∴()2(0)0f x f =,即ln(1)x x <+, ∴ln(1)x +比x 靠近0. ②120n ->, 由①得: 2323ln()ln ln ln n n a a a a a a =+++12111ln(12)ln(12)ln(12)22n n -----=+++<+++++111112(12)211212n ------=<=--,∴23e n a a a <.又∵12a =, ∴1232e n a a a a <.20.(本小题满分14分)已知函数()f x 的图象在[],a b 上连续不断,定义:{}1()min ()|f x f t a t x =≤≤[](,)x a b ∈, {}2()max ()|f x f t a t x =≤≤[](,)x a b ∈,其中,{}min ()|f x x ∈D 表示函数()f x 在D 上的最小值,{}max ()|f x x ∈D 表示函数()f x 在D 上最大值.若存在最小正整数k ,使21()()()f x f x k x a =-≤对任意的[],x a b ∈成立,则称函数()f x 为[],a b 上的“k 阶收缩函数”. (Ⅰ)若()cos f x x =,[]0,πx ∈,试写出1()f x ,2()f x 的表达式.(Ⅱ)已知函数2()f x x =,[]1,4x ∈-,试判断()f x 是否为[]1,4-上的“k 阶收缩函数”,如果是,求出对应的k ,如果不是,请说明理由.(Ⅲ)已知0b >,函数32()3f x x x =-+是[]0,b 上的2阶收缩函数,求b 的取值范围. 【答案】【解析】(1)1()cos f x x =,[]0,πx ∈,2()1f x =,[]0,πx ∈. (2)21,[1,0]()0,[0,4]x x f x x ⎧∈-=⎨∈⎩,221,[1,1)(),[1,4]x f x x x ∈-⎧=⎨∈⎩,22121,[1,0)()()1,[0,1),[1,4]x x f x f x x x x ⎧-∈-⎪-=∈⎨⎪∈⎩,当[1,0)x ∈-,21(1)x k x -≤+,∴12k x -≥≥, (0,1]x ∈,1(1)k x ≤+,∴11k x ≥+, ∴1k ≥,[1,4]x ∈,2(1)x k x ≤+,21x k x ≥+ 综上,165k ≥. 即存在4k =,使()f x 是[1,4]-上4阶收缩函数.(3)2()363(2)f x x x x x '=-=--+,10x =,22x =,令()0f x =,3x =或0.(ⅰ)2b ≤时,()f x 在[]0,b 单调,∴2()()3f x f x x x ==-+, 1()(0)0f x f ==,因32()3f x x x =-+是[]0,b 上2阶收缩函数.①∴21()()2(0)f x f x x --≤对[]0,x b ∈恒成立. ②[]0,x b ∈,使21()()f x f x x ->成立. ①即3232x x x -≤+对[]0,b 恒成立. 解得01x ≤≤或2x ≥, ∴有01b <≤.②即[]0,x b ∃∈使2(31)0x x x -<+ ∴0x <x <, 只需b ,- 11 - (ⅱ)2b >时,显然[]30,2b ∈∴()f x 在[]0,2上单调递增, 232728f ⎛⎫== ⎪⎝⎭,1302f ⎛⎫= ⎪⎝⎭, ∴2133273232282f f ⎛⎫⎛⎫-=>⨯= ⎪ ⎪⎝⎭⎝⎭,此时21()()2(0)f x f x x --≤不成立. 综(ⅰ)1b ≤.。
2019-2020年高二下学期期末数学试卷(理科) 含解析
2019-2020年高二下学期期末数学试卷(理科)含解析一、选择题(本大题共12个小题,每小题5分,在每小题中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2] D.[﹣2,1]2.已知复数=i,则实数a=()A.﹣1 B.﹣2 C.1 D.23.将点M的极坐标(4,)化成直角坐标为()A.(2,2)B.C.D.(﹣2,2)4.在同一平面的直角坐标系中,直线x﹣2y=2经过伸缩变换后,得到的直线方程为()A.2x′+y′=4 B.2x′﹣y′=4 C.x′+2y′=4 D.x′﹣2y′=45.如图,曲线f(x)=x2和g(x)=2x围成几何图形的面积是()A.B.C.D.46.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为()A.B.C.D.7.下列说法中,正确说法的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”;②“x>1”是“|x|>1”的充分不必要条件;③集合A={1},B={x|ax﹣1=0},若B⊆A,则实数a的所有可能取值构成的集合为{1}.A.0 B.1 C.2 D.38.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()9.在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,则取出的3件产品中一等品件数多于二等品件数的概率()A. B.C.D.10.函数f(x)=e﹣x+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(2,+∞)D.[2,+∞)11.函数y=e sinx(﹣π≤x≤π)的大致图象为()A.B. C. D.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+1二、填空题(本大题共4个小题,每小题5分,共20分)13.已知随机变量X服从正态分布X~N(2,σ2),P(X>4)=0.3,则P(X<0)的值为.14.若函数f(x)=x2﹣alnx在x=1处取极值,则a=.15.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第10行中第2个数是.16.在平面直角坐标系xOy中,直线1与曲线y=x2(x>0)和y=x3(x>0)均相切,切点分别为A(x1,y1)和B(x2,y2),则的值为.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤)17.在平面直角坐标系xOy中,圆C的参数方程为(φ为参数),直线l过点(0,2)且倾斜角为.(Ⅰ)求圆C的普通方程及直线l的参数方程;(Ⅱ)设直线l与圆C交于A,B两点,求弦|AB|的长.18.在直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ2(1+sin2θ)=2.(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点M的直角坐标为(1,2),直线l与曲线C 的交点为A、B,求|MA|•|MB|的值.19.生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100)元件甲8 12 40 32 8元件乙7 18 40 29 6(Ⅰ)试分别估计元件甲,乙为正品的概率;(Ⅱ)在(Ⅰ)的前提下,记X为生产1件甲和1件乙所得的正品数,求随机变量X的分布列和数学期望.20.设函数f(x)=x3﹣+6x.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若对∀x∈[1,4]都有f(x)>0成立,求a的取值范围.21.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数女性驾驶员人数合计(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.150 0.100 0.050 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.82822.已知函数f(x)=﹣alnx+1(a∈R).(1)若函数f(x)在[1,2]上是单调递增函数,求实数a的取值范围;(2)若﹣2≤a<0,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤m||恒成立,求m的最小值.2015-2016学年吉林省东北师大附中净月校区高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,在每小题中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2] D.[﹣2,1]【考点】交集及其运算.【分析】先化简集合A,解绝对值不等式可求出集合A,然后根据交集的定义求出A∩B即可.【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}∴A∩B={x|﹣2≤x≤2}∩{x|x≤1,x∈R}={x|﹣2≤x≤1}故选D.2.已知复数=i,则实数a=()A.﹣1 B.﹣2 C.1 D.2【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数,再根据复数相等的充要条件列出方程组,求解即可得答案.【解答】解:===i,则,解得:a=1.故选:C.3.将点M的极坐标(4,)化成直角坐标为()A.(2,2)B.C.D.(﹣2,2)【考点】简单曲线的极坐标方程.【分析】利用x=ρcosθ,y=ρsinθ即可得出直角坐标.【解答】解:点M的极坐标(4,)化成直角坐标为,即.故选:B.4.在同一平面的直角坐标系中,直线x﹣2y=2经过伸缩变换后,得到的直线方程为()A.2x′+y′=4 B.2x′﹣y′=4 C.x′+2y′=4 D.x′﹣2y′=4【考点】伸缩变换.【分析】把伸缩变换的式子变为用x′,y′表示x,y,再代入原方程即可求出.【解答】解:由得,代入直线x﹣2y=2得,即2x′﹣y′=4.故选B.5.如图,曲线f(x)=x2和g(x)=2x围成几何图形的面积是()A.B.C.D.4【考点】定积分在求面积中的应用.【分析】利用积分的几何意义即可得到结论.【解答】解:由题意,S===4﹣=,故选:C.6.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为()A.B.C.D.【考点】条件概率与独立事件.【分析】根据题意,易得在第一次抽到次品后,有2件次品,7件正品,由概率计算公式,计算可得答案.【解答】解:根据题意,在第一次抽到次品后,有2件次品,7件正品;则第二次抽到次品的概率为故选:C.7.下列说法中,正确说法的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”;②“x>1”是“|x|>1”的充分不必要条件;③集合A={1},B={x|ax﹣1=0},若B⊆A,则实数a的所有可能取值构成的集合为{1}.A.0 B.1 C.2 D.3【考点】命题的真假判断与应用.【分析】①根据逆否命题的定义进行判断②根据充分条件和必要条件的定义进行判断,③根据集合关系进行判断.【解答】解:①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”正确,故①正确,②由|x|>1得x>1或x<﹣1,则“x>1”是“|x|>1”的充分不必要条件;故②正确,③集合A={1},B={x|ax﹣1=0},若B⊆A,当a=0时,B=∅,也满足B⊆A,当a≠0时,B={},由=1,得a=1,则实数a的所有可能取值构成的集合为{0,1}.故③错误,故正确的是①②,故选:C8.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()【考点】n次独立重复试验中恰好发生k次的概率.【分析】根据题意,P(ε=3)即第3次首次取到正品的概率,若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,由相互独立事件的概率计算可得答案.【解答】解:根据题意,P(ε=3)即第3次首次取到正品的概率;若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,则P(ε=3)=()2×();故选C.9.在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,则取出的3件产品中一等品件数多于二等品件数的概率()A. B.C.D.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,再求出取出的3件产品中一等品件数多于二等品件数包含的基本事件个数,由此能求出取出的3件产品中一等品件数多于二等品件数的概率.【解答】解:∵在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,基本事件总数n==120,取出的3件产品中一等品件数多于二等品件数包含的基本事件个数m==22,∴取出的3件产品中一等品件数多于二等品件数的概率p===.故选:C.10.函数f(x)=e﹣x+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(2,+∞)D.[2,+∞)【考点】利用导数研究曲线上某点切线方程.【分析】利用在切点处的导数值是切线的斜率,令f′(x)=2有解;利用有解问题即求函数的值域问题,求出值域即a的范围.【解答】解:f′(x)=﹣e﹣x+a据题意知﹣e﹣x+a=2有解即a=e﹣x+2有解∵e﹣x+2>2∴a>2故选C11.函数y=e sinx(﹣π≤x≤π)的大致图象为()A.B. C. D.【考点】抽象函数及其应用.【分析】先研究函数的奇偶性知它是非奇非偶函数,从而排除A、D两个选项,再看此函数的最值情况,即可作出正确的判断.【解答】解:由于f(x)=e sinx,∴f(﹣x)=e sin(﹣x)=e﹣sinx∴f(﹣x)≠f(x),且f(﹣x)≠﹣f(x),故此函数是非奇非偶函数,排除A,D;又当x=时,y=e sinx取得最大值,排除B;故选:C.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+1【考点】利用导数求闭区间上函数的最值.【分析】当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,一方面0<1+ln(x2﹣m)≤,.利用lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.可得1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,可得m≥x﹣e x﹣e,利用导数求其最大值即可得出.【解答】解:当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,∴0<1+ln(x2﹣m)≤,∴.∵lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.∴1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,化为m≥x﹣e x﹣e,x>m+.令f(x)=x﹣e x﹣e,则f′(x)=1﹣e x﹣e,可得x=e时,f(x)取得最大值.∴m≥e﹣1.故选:C.二、填空题(本大题共4个小题,每小题5分,共20分)13.已知随机变量X服从正态分布X~N(2,σ2),P(X>4)=0.3,则P(X<0)的值为0.3.【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据随机变量X服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得P (X<0).【解答】解:∵随机变量X服从正态分布N(2,o2),∴正态曲线的对称轴是x=2∵P(X>4)=0.3,∴P(X<0)=P(X>4)=0.3.故答案为:0.3.14.若函数f(x)=x2﹣alnx在x=1处取极值,则a=2.【考点】利用导数研究函数的极值.【分析】求出函数的导数,得到f′(1)=0,得到关于a的方程,解出即可.【解答】解:∵f(x)=x2﹣alnx,x>0,∴f′(x)=2x﹣=,若函数f(x)在x=1处取极值,则f′(1)=2﹣a=0,解得:a=2,经检验,a=2符合题意,故答案为:2.15.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第10行中第2个数是46.【考点】归纳推理.【分析】由三角形阵可知,上一行第二个数与下一行第二个数满足等式a n +1=a n +n ,利用累加法可求.【解答】解:设第一行的第二个数为a 1=1,由此可得上一行第二个数与下一行第二个数满足等式a n +1=a n +n ,即a 2﹣a 1=1,a 3﹣a 2=2,a 4﹣a 3=3,…a n ﹣1﹣a n ﹣2=n ﹣2,a n ﹣a n ﹣1=n ﹣1, ∴a n =(a n ﹣a n ﹣1)+(a n ﹣1﹣a n ﹣2)+…+(a 4﹣a 3)+(a 3﹣a 2)+(a 2﹣a 1)+a 1 =(n ﹣1)+(n ﹣2)+…+3+2+1+1 =+1=,∴a 10==46.故答案为:46.16.在平面直角坐标系xOy 中,直线1与曲线y=x 2(x >0)和y=x 3(x >0)均相切,切点分别为A (x 1,y 1)和B (x 2,y 2),则的值为.【考点】抛物线的简单性质.【分析】求出导数得出切线方程,即可得出结论.【解答】解:由y=x 2,得y ′=2x ,切线方程为y ﹣x 12=2x 1(x ﹣x 1),即y=2x 1x ﹣x 12, 由y=x 3,得y ′=3x 2,切线方程为y ﹣x 23=3x 22(x ﹣x 2),即y=3x 22x ﹣2x 23, ∴2x 1=3x 22,x 12=2x 23, 两式相除,可得=.故答案为:.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤) 17.在平面直角坐标系xOy 中,圆C 的参数方程为(φ为参数),直线l 过点(0,2)且倾斜角为.(Ⅰ)求圆C 的普通方程及直线l 的参数方程;(Ⅱ)设直线l 与圆C 交于A ,B 两点,求弦|AB |的长. 【考点】参数方程化成普通方程. 【分析】(Ⅰ)圆C 的参数方程为(φ为参数),利用cos 2φ+sin 2φ=1消去参数可得圆C 的普通方程.由题意可得:直线l 的参数方程为.(Ⅱ)依题意,直线l的直角坐标方程为,圆心C到直线l的距离d,利用|AB|=2即可得出.【解答】解:(Ⅰ)圆C的参数方程为(φ为参数),消去参数可得:圆C的普通方程为x2+y2=4.由题意可得:直线l的参数方程为.(Ⅱ)依题意,直线l的直角坐标方程为,圆心C到直线l的距离,∴|AB|=2=2.18.在直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ2(1+sin2θ)=2.(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点M的直角坐标为(1,2),直线l与曲线C 的交点为A、B,求|MA|•|MB|的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)直线l:(t为参数),消去参数t可得普通方程.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,把ρ2=x2+y2,y=ρsinθ代入可得直角坐标方程.(Ⅱ)把代入椭圆方程中,整理得,设A,B对应的参数分别为t1,t2,由t得几何意义可知|MA||MB|=|t1t2|.【解答】解:(Ⅰ)直线l:(t为参数),消去参数t可得普通方程:l:x﹣y+1=0.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,可得直角坐标方程:x2+y2+y2=2,即.(Ⅱ)把代入中,整理得,设A,B对应的参数分别为t1,t2,∴,由t得几何意义可知,.19.生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100)元件甲8 12 40 32 8元件乙7 18 40 29 6(Ⅰ)试分别估计元件甲,乙为正品的概率;(Ⅱ)在(Ⅰ)的前提下,记X为生产1件甲和1件乙所得的正品数,求随机变量X的分布列和数学期望.【考点】离散型随机变量的期望与方差;古典概型及其概率计算公式;离散型随机变量及其分布列.【分析】(Ⅰ)利用等可能事件概率计算公式能求出元件甲,乙为正品的概率.(Ⅱ)随机变量X的所有取值为0,1,2,分别求出相应的概率,由此能求出随机变量X的分布列和数学期望.【解答】解:(Ⅰ)元件甲为正品的概率约为:,元件乙为正品的概率约为:.(Ⅱ)随机变量X的所有取值为0,1,2,,,,所以随机变量X的分布列为:X 0 1 2P所以:.20.设函数f(x)=x3﹣+6x.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若对∀x∈[1,4]都有f(x)>0成立,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)问题转化为在区间[1,4]上恒成立,令,根据函数的单调性求出a的范围即可.【解答】解:(Ⅰ)函数的定义域为R,当a=1时,f(x)=x3﹣x2+6x,f′(x)=3(x﹣1)(x﹣2),当x<1时,f′(x)>0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0,∴f(x)的单调增区间为(﹣∞,1),(2,+∞),单调减区间为(1,2).(Ⅱ)即在区间[1,4]上恒成立,令,故当时,g(x)单调递减,当时,g(x)单调递增,时,∴,即.21.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数401555女性驾驶员人数202545合计6040100(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.150 0.100 0.050 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828【考点】离散型随机变量的期望与方差;独立性检验;离散型随机变量及其分布列.【分析】(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.求出Χ2,即可判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率,X可取值是0,1,2,3,,求出概率得到分布列,然后求解期望即可.【解答】解:(Ⅰ)平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数40 15 55女性驾驶员人数20 25 45合计60 40 100因为,所以有99.5%的把握认为平均车速超过100km/h与性别有关.…(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率为.X可取值是0,1,2,3,,有:,,,,分布列为X 0 1 2 3P.…22.已知函数f(x)=﹣alnx+1(a∈R).(1)若函数f(x)在[1,2]上是单调递增函数,求实数a的取值范围;(2)若﹣2≤a<0,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤m||恒成立,求m的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)求出函数的导数,问题转化为a≤x2,求出a的范围即可;(2)问题可化为,设,求出函数的导数,问题等价于m≥x3﹣ax在[1,2]上恒成立,求出m的最小值即可.【解答】解:(1)∵在[1,2]上是增函数,∴恒成立,…所以a≤x2…只需a≤(x2)min=1…(2)因为﹣2≤a<0,由(1)知,函数f(x)在[1,2]上单调递增,…不妨设1≤x1≤x2≤2,则,可化为,设,则h(x1)≥h(x2).所以h(x)为[1,2]上的减函数,即在[1,2]上恒成立,等价于m≥x3﹣ax在[1,2]上恒成立,…设g(x)=x3﹣ax,所以m≥g(x)max,因﹣2≤a<0,所以g'(x)=3x2﹣a>0,所以函数g(x)在[1,2]上是增函数,所以g(x)max=g(2)=8﹣2a≤12(当且仅当a=﹣2时等号成立).所以m≥12.即m的最小值为12.…2016年10月17日。
2019-2020学年陕西省西安中学高二下学期期末(理科)数学试卷 (解析版)
2019-2020学年陕西西安中学高二第二学期期末数学试卷(理科)一、选择题(共12小题).1.设集合A={x|x2﹣5x+6>0},B={x|x﹣1<0},则A∩B=()A.(﹣∞,1)B.(﹣2,1)C.(﹣3,﹣1)D.(3,+∞)2.已知a为实数,若复数z=(a2﹣1)+(a+1)i为纯虚数,则=()A.i B.﹣i C.1D.﹣13.已知a=,b=4,c=,则a,b,c的大小关系为()A.a>b>c B.c>a>b C.c>b>a D.b>c>a4.如图,y=f(x)是可导函数,直线L:y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),g′(x)是g(x)的导函数,则g′(3)=()A.﹣1B.0C.2D.45.天干地支纪年法,源于中国中国自古便有十天干与十二地支十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸,十二地支即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如说第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”…依此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”“乙亥”,之后地支回到“子”重新开始,即“丙子”…依此类推已知1949年为“己丑”年,那么到新中国成立80周年时,即2029年为()A.己丑年B.己酉年C.壬巳年D.辛未年6.若函数f(x)=kx﹣lnx在区间(1,+∞)为增函数,则实数k的取值范围是()A.B.C.[1,+∞)D.(﹣∞,1]7.若a>b>1,﹣1<c<0,则()A.ab c<ba c B.a c>b cC.log a|c|<log b|c|D.b log a|c|>a log b|c|8.已知函数f(x)=,则y=f(x)的图象大致为()A.B.C.D.9.若实数x,y满足,则z=2x+y﹣1的最小值()A.1B.3C.4D.910.已知x>0,y>0,且,则x+y的最小值为()A.3B.5C.7D.911.已知函数f(x)=x sin x+cos x+,则不等式f(2x+3)﹣f(1)<0的解集为()A.(﹣2,+∞)B.(﹣1,+∞)C.(﹣2,﹣1)D.(﹣∞,﹣1)12.已知函数g(x)=a﹣x2(≤x≤e,e为自然对数的底数)与h(x)=2lnx的图象上存在关于x轴对称的点,则实数a的取值范围是()A.[1,+2]B.[1,e2﹣2]C.[+2,e2﹣2]D.[e2﹣2,+∞)二、填空题:本大题共4小题,每小题5分.13.欧拉公式e iθ=cosθ+i sinθ把自然对数的底数e,虚数单位i,三角函数cosθ和sinθ联系在一起,充分体现了数学的和谐美,被誉为“数学的天桥”.若复数z满足(e iπ+i)•z=i,则|z|=.14.设a>0,若曲线y=与直线x=a,y=0所围成封闭图形的面积为a2,则a=.15.直线y=﹣x+1与曲线y=﹣e x﹣a相切,则a的值为.16.已知函数y=f(x)在R上的图象是连续不断的一条曲线,并且关于原点对称,其导函数f'(x)为,当x>0时,有不等式x2f'(x)>﹣2xf(x)成立,若对∀x∈R,不等式e2x f(e x)﹣a2x2f(ax)>0恒成立,则正整数a的最大值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(Ⅰ)已知不等式x2﹣ax+a﹣2>0(a>2)的解集为(﹣∞,x1)∪(x2,+∞),求的最小值.(Ⅱ)若正数a、b、c满足a+b+c=2,求证:.18.已知椭圆C:=1,直线l:(t为参数).(Ⅰ)写出椭圆C的参数方程及直线l的普通方程;(Ⅱ)设A(1,0),若椭圆C上的点P满足到点A的距离与其到直线l的距离相等,求点P的坐标.19.已知函数f(x)=e x cos x﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.20.设函数f(x)=|x+1|+|x﹣2|,g(x)=﹣x2+mx+1.(1)当m=﹣4时,求不等式f(x)<g(x)的解集;(2)若不等式f(x)<g(x)在[﹣2,﹣]上恒成立,求实数m的取值范围.21.如图,有一种赛车跑道类似“梨形”曲线,由圆弧和线段AB,CD四部分组成,在极坐标系Ox中,A(2,),B(1,),C(1,),D(2,﹣),弧所在圆的圆心分别是(0,0),(2,0),曲线M1是弧,曲线M2是弧.(1)分别写出M1,M2的极坐标方程:(2)点E,F位于曲线M2上,且,求△EOF面积的取值范围.22.已知函数f(x)=lnx﹣x.(1)若函数y=f(x)+m﹣2x+x2在上恰有两个零点,求实数m的取值范围;(2)记函数,设x1,x2(x1<x2)是函数g(x)的两个极值点,若,且g(x1)﹣g(x2)≥k恒成立,求实数k的最大值.参考答案一、选择题(共12小题).1.设集合A={x|x2﹣5x+6>0},B={x|x﹣1<0},则A∩B=()A.(﹣∞,1)B.(﹣2,1)C.(﹣3,﹣1)D.(3,+∞)【分析】根据题意,求出集合A、B,由交集的定义计算可得答案.解:根据题意,A={x|x2﹣5x+6>0}={x|x>3或x<2},B={x|x﹣1<0}={x|x<1},则A∩B={x|x<1}=(﹣∞,1);故选:A.2.已知a为实数,若复数z=(a2﹣1)+(a+1)i为纯虚数,则=()A.i B.﹣i C.1D.﹣1【分析】根据纯虚数的定义求出a的值,结合复数的运算法则进行化简即可.解:∵z=(a2﹣1)+(a+1)i为纯虚数,∴,即,即a=1,则z=2i,则====i,故选:A.3.已知a=,b=4,c=,则a,b,c的大小关系为()A.a>b>c B.c>a>b C.c>b>a D.b>c>a【分析】可得出,然后可比较a2,b2和c2的大小关系,从而可得出a,b,c的大小关系.解:,∵,且,∴b2>c2>a2,∴b>c>a.故选:D.4.如图,y=f(x)是可导函数,直线L:y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),g′(x)是g(x)的导函数,则g′(3)=()A.﹣1B.0C.2D.4【分析】先从图中求出切线过的点,再求出直线L的方程,利用导数在切点处的导数值为切线的斜率,最后结合导数的概念求出g′(3)的值.解:∵直线L:y=kx+2是曲线y=f(x)在x=3处的切线,∴f(3)=1,又点(3,1)在直线L上,∴3k+2=1,从而k=,∴f′(3)=k=,∵g(x)=xf(x),∴g′(x)=f(x)+xf′(x)则g′(3)=f(3)+3f′(3)=1+3×()=0,故选:B.5.天干地支纪年法,源于中国中国自古便有十天干与十二地支十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸,十二地支即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如说第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”…依此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”“乙亥”,之后地支回到“子”重新开始,即“丙子”…依此类推已知1949年为“己丑”年,那么到新中国成立80周年时,即2029年为()A.己丑年B.己酉年C.壬巳年D.辛未年【分析】由题意可得数列天干是以10为等差的等差数列,地支是以12为公差的等差数列,以1949年的天干和地支分别为首项,即可求出答案.解:天干是以10为公差构成的等差数列,地支是以12为公差的等差数列,从1949年到2029年经过80年,且1949年为“己丑”年,以1949年的天干和地支分别为首项,则80÷10=8,则2029的天干为己,80÷12=6余8,则2029的地支为酉,故选:B.6.若函数f(x)=kx﹣lnx在区间(1,+∞)为增函数,则实数k的取值范围是()A.B.C.[1,+∞)D.(﹣∞,1]【分析】求出导函数f′(x),由于函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,可得f′(x)≥0在区间(1,+∞)上恒成立.解出即可.解:f′(x)=k﹣,∵函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,∴f′(x)≥0在区间(1,+∞)上恒成立.∴k≥,而y=在区间(1,+∞)上单调递减,∴k≥1.故选:C.7.若a>b>1,﹣1<c<0,则()A.ab c<ba c B.a c>b cC.log a|c|<log b|c|D.b log a|c|>a log b|c|【分析】运用对数函数的单调性和不等式的可乘性,即可得到所求大小关系.解:由﹣1<c<0得0<|c|<1,又a>b>1,可得log|c|a<log|c|b<0,则0>log a|c|>log b|c|,0<﹣log a|c|<﹣log b|c|,a>b>1>0,可得﹣a|log b|c|>﹣b log a|c|,即为b log a|c|>a|log b|c|,故选:D.8.已知函数f(x)=,则y=f(x)的图象大致为()A.B.C.D.【分析】利用函数的定义域与函数的值域排除B,D,通过函数的单调性排除C,推出结果即可.解:令g(x)=x﹣lnx﹣1,则,由g'(x)>0,得x>1,即函数g(x)在(1,+∞)上单调递增,由g'(x)<0得0<x<1,即函数g(x)在(0,1)上单调递减,所以当x=1时,函数g(x)有最小值,g(x)min=g(0)=0,于是对任意的x∈(0,1)∪(1,+∞),有g(x)≥0,故排除B、D,因函数g(x)在(0,1)上单调递减,则函数f(x)在(0,1)上递增,故排除C,故选:A.9.若实数x,y满足,则z=2x+y﹣1的最小值()A.1B.3C.4D.9【分析】将目标函数变形画出相应的直线,将直线平移至A(1,2)时纵截距最大,z 最小解:画出实数x,y满足的可行域,作直线y=﹣2x﹣1+z,再将其平移至A(1,2)时,直线的纵截距最小,z最小为3故选:B.10.已知x>0,y>0,且,则x+y的最小值为()A.3B.5C.7D.9【分析】将x+1+y=2(+)(x+1+y)的形式,再展开,利用基本不等式,注意等号成立的条件.解:∵x>0,y>0,且,∴x+1+y=2(+)(x+1+y)=2(1+1++)≥2(2+2)=8,当且仅当=,即x=3,y=4时取等号,∴x+y≥7,故x+y的最小值为7,故选:C.11.已知函数f(x)=x sin x+cos x+,则不等式f(2x+3)﹣f(1)<0的解集为()A.(﹣2,+∞)B.(﹣1,+∞)C.(﹣2,﹣1)D.(﹣∞,﹣1)【分析】根据条件先判断函数是偶函数,然后求函数的导数,判断函数在[0,+∞)上的单调性,结合函数的奇偶性和单调性的关系进行转化求解即可.解:f(﹣x)=﹣x sin(﹣x)+cos(﹣x)+=x sin x+cos x+=f(x),则f(x)是偶函数,f′(x)=sin x+x cos x﹣sin x+x=x+x cos x=x(1+cos x),当x≥0时,f′(x)≥0,即函数在[0,+∞)上为增函数,则不等式f(2x+3)﹣f(1)<0得f(2x+3)<f(1),即f(|2x+3|)<f(1),则|2x+3|<1,得﹣1<2x+3<1,得﹣2<x<﹣1,即不等式的解集为(﹣2,﹣1),故选:C.12.已知函数g(x)=a﹣x2(≤x≤e,e为自然对数的底数)与h(x)=2lnx的图象上存在关于x轴对称的点,则实数a的取值范围是()A.[1,+2]B.[1,e2﹣2]C.[+2,e2﹣2]D.[e2﹣2,+∞)【分析】由已知,得到方程a﹣x2=﹣2lnx⇔﹣a=2lnx﹣x2在上有解,构造函数f(x)=2lnx﹣x2,求出它的值域,得到﹣a的范围即可.解:由已知,得到方程a﹣x2=﹣2lnx⇔﹣a=2lnx﹣x2在上有解.设f(x)=2lnx﹣x2,求导得:f′(x)=﹣2x=,∵≤x≤e,∴f′(x)=0在x=1有唯一的极值点,∵f()=﹣2﹣,f(e)=2﹣e2,f(x)极大值=f(1)=﹣1,且知f(e)<f(),故方程﹣a=2lnx﹣x2在上有解等价于2﹣e2≤﹣a≤﹣1.从而a的取值范围为[1,e2﹣2].故选:B.二、填空题:本大题共4小题,每小题5分.13.欧拉公式e iθ=cosθ+i sinθ把自然对数的底数e,虚数单位i,三角函数cosθ和sinθ联系在一起,充分体现了数学的和谐美,被誉为“数学的天桥”.若复数z满足(e iπ+i)•z=i,则|z|=.【分析】利用欧拉公式可得:e iπ=cosπ+i sinπ=﹣1.代入(e iπ+i)•z=i,化简可得z,再利用模的运算性质即可得出.解:e iπ=cosπ+i sinπ=﹣1.∵(e iπ+i)•z=i,∴(﹣1+i)z=i,∴z=,则|z|===.故答案为:.14.设a>0,若曲线y=与直线x=a,y=0所围成封闭图形的面积为a2,则a=.【分析】利用定积分表示图形的面积,从而可建立方程,由此可求a的值.解:由题意,曲线y=与直线x=a,y=0所围成封闭图形的面积为==,∴=a2,∴a=.故答案为:.15.直线y=﹣x+1与曲线y=﹣e x﹣a相切,则a的值为2.【分析】求出原函数的导函数,设直线y=﹣x+1与曲线y=﹣e x﹣a相切于(),得到函数在x=x0处的导数,再由题意列关于x0与a的方程组求解.解:由y=﹣e x﹣a,得y′═﹣e x﹣a,设直线y=﹣x+1与曲线y=﹣e x﹣a相切于(),则.∴,解得.∴a的值为2.故答案为:2.16.已知函数y=f(x)在R上的图象是连续不断的一条曲线,并且关于原点对称,其导函数f'(x)为,当x>0时,有不等式x2f'(x)>﹣2xf(x)成立,若对∀x∈R,不等式e2x f (e x)﹣a2x2f(ax)>0恒成立,则正整数a的最大值为2.【分析】可得函数f(x)为R上的奇函数.令g(x)=x2f(x),则g(x)为奇函数.可得g(x)在[0,+∞)单调递增.函数g(x)在R上单调递增.对∀x∈R,不等式e2x f(e x)﹣a2x2f(ax)>0恒成立,⇔e2x f(e x)>a2x2f(ax)﹣ax⇔g(e x)>g(ax).即只需e x>ax.进而得出答案解:定义在R上的函数f(x)关于原点对称,∴函数f(x)为R上的奇函数.令g(x)=x2f(x),则g(x)为奇函数.g′(x)=x2f'(x)+2xf(x),当x>0时,不等式g′(x)>0,g(x)在[0,+∞)单调递增.∴函数g(x)在R上单调递增.不等式e2x f(e x)﹣a2x2f(ax)>0恒成立,⇔e2x f(e x)>a2x2f(ax)﹣ax⇔g(e x)>g (ax).∴e x>ax.当x>0时,a<=h(x),则h′(x)=,可得x=1时,函数h(x)取得极小值即最小值,h(1)=e.∴a<e.此时正整数a的最大值为2.a=2对于x≤0时,e x>ax恒成立.综上可得:正整数a的最大值为2.故答案为:2.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(Ⅰ)已知不等式x2﹣ax+a﹣2>0(a>2)的解集为(﹣∞,x1)∪(x2,+∞),求的最小值.(Ⅱ)若正数a、b、c满足a+b+c=2,求证:.【分析】(Ⅰ)利用根与系数的关系及基本不等式求解的最小值;(Ⅱ)方法一:直接利用基本不等式结合a+b+c=2证明;方法二:由已知结合柯西不等式证明.【解答】(Ⅰ)解:a>2时,△=a2﹣4(a﹣2)>0,∵不等式x2﹣ax+a﹣2>0(a>2)的解集为(﹣∞,x1)∪(x2,+∞),∴方程x2﹣ax+a﹣2=0的两根为x1,x2,由韦达定理可得x1+x2=a,x1x2=a﹣2,∵a>2,∴a﹣2>0,则,当且仅当a=3时取等号.故的最小值为4;(Ⅱ)证法一:由a、b、c为正数且a+b+c=2,由基本不等式,有,三式相加可得:,∴,即(当且仅当a=b=c时等号成立);证法二:由a、b、c为正数且a+b+c=2,由柯西不等式,∴,即(当且仅当a=b=c时等号成立).18.已知椭圆C:=1,直线l:(t为参数).(Ⅰ)写出椭圆C的参数方程及直线l的普通方程;(Ⅱ)设A(1,0),若椭圆C上的点P满足到点A的距离与其到直线l的距离相等,求点P的坐标.【分析】(Ⅰ)直接利用三角代换写出椭圆C的参数方程,消去此时t可得直线l的普通方程;(Ⅱ)利用两点间距离公式以及点到直线的距离公式,通过椭圆C上的点P满足到点A 的距离与其到直线l的距离相等,列出方程,即可求点P的坐标.解:(Ⅰ)椭圆C:(θ为为参数),l:x﹣y+9=0.…(Ⅱ)设P(2cosθ,sinθ),则|AP|==2﹣cosθ,P到直线l的距离d==.由|AP|=d得3sinθ﹣4cosθ=5,又sin2θ+cos2θ=1,得sinθ=,cosθ=﹣.故P(﹣,).…19.已知函数f(x)=e x cos x﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.【分析】(1)求出f(x)的导数,可得切线的斜率和切点,由点斜式方程即可得到所求方程;(2)求出f(x)的导数,再令g(x)=f′(x),求出g(x)的导数,可得g(x)在区间[0,]的单调性,即可得到f(x)的单调性,进而得到f(x)的最值.解:(1)函数f(x)=e x cos x﹣x的导数为f′(x)=e x(cos x﹣sin x)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)函数f(x)=e x cos x﹣x的导数为f′(x)=e x(cos x﹣sin x)﹣1,令g(x)=e x(cos x﹣sin x)﹣1,则g(x)的导数为g′(x)=e x(cos x﹣sin x﹣sin x﹣cos x)=﹣2e x•sin x,当x∈[0,],可得g′(x)=﹣2e x•sin x≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f(x)在区间[0,]上的最大值为f(0)=e0cos0﹣0=1;最小值为f()=cos﹣=﹣.20.设函数f(x)=|x+1|+|x﹣2|,g(x)=﹣x2+mx+1.(1)当m=﹣4时,求不等式f(x)<g(x)的解集;(2)若不等式f(x)<g(x)在[﹣2,﹣]上恒成立,求实数m的取值范围.【分析】(1)求出f(x)的分段函数的形式,代入m的值,求出g(x)的解析式,通过讨论x的范围,解不等式求出不等式的解集即可;(2)问题等价于g(x)>3恒成立,即g(x)min>3,求出m的范围即可.解:(1)f(x)=|x+1|+|x﹣2|,∴f(x)=,当m=﹣4时,g(x)=﹣x2﹣4x+1,①当x≤﹣1时,原不等式等价于x2+2x<0,解得:﹣2<x<0,故﹣2<x≤﹣1;②当﹣1<x<2时,原不等式等价于x2+4x+2<0,解得:﹣2﹣<x<﹣2+,故﹣1<x<﹣2+;③x≥2时,g(x)≤g(2)=﹣11,而f(x)≥f(2)=3,故不等式f(x)<g(x)的解集是空集;综上,不等式f(x)<g(x)的解集是(﹣2,﹣2+);(2)①当﹣2≤x≤﹣1时,f(x)<g(x)恒成立等价于mx>x2﹣2x,又x<0,故m<x﹣2,故m<﹣4;②当﹣1<x≤﹣时,f(x),g(x)恒成立等价于g(x)>3恒成立,即g(x)min>3,只需即可,即,综上,m∈(﹣∞,﹣).21.如图,有一种赛车跑道类似“梨形”曲线,由圆弧和线段AB,CD四部分组成,在极坐标系Ox中,A(2,),B(1,),C(1,),D(2,﹣),弧所在圆的圆心分别是(0,0),(2,0),曲线M1是弧,曲线M2是弧.(1)分别写出M1,M2的极坐标方程:(2)点E,F位于曲线M2上,且,求△EOF面积的取值范围.【分析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用三角形的面积公式和极径的应用及三角函数关系式的恒等变换和正弦型函数的性质的应用求出结果.曲线是弧,解:(1)由题意可知:M1的极坐标方程为.记圆弧AD所在圆的圆心(2,0)易得极点O在圆弧AD上.设P(ρ,θ)为M2上任意一点,则在△OO1P中,可得ρ=4cosθ().所以:M1,M2的极坐标方程为和ρ=4cosθ().(2)设点E(ρ1,α),点F(),(),所以ρ1=4cosα,.所以==.由于,所以.故.22.已知函数f(x)=lnx﹣x.(1)若函数y=f(x)+m﹣2x+x2在上恰有两个零点,求实数m的取值范围;(2)记函数,设x1,x2(x1<x2)是函数g(x)的两个极值点,若,且g(x1)﹣g(x2)≥k恒成立,求实数k的最大值.【分析】(1)由题意得函数y=f(x)+m﹣2x+x2=x2﹣3x+lnx+m(x>0),令h(x)=x2﹣3x+lnx+m(x>0),求导,列表分析随着x的变化f′(x),f(x)变化情况,得当x=1时,h(x)的极小值为h(1)=m﹣2,,h(2)=m﹣2+ln2.若函数y=f(x)+m﹣2x+x2在上恰有两个零点,则即解得m的取值范围.(2)由题意得,求导,令g'(x)=0得x2﹣(b+1)x+1=0的两个根是x1,x2,结合韦达定理得x1+x2=b+1,x1x2=1,因为,所解得:,所以g(x1)﹣g(x2)=2lnx1﹣(x12﹣),(0<x1≤),令,求导,分析单调性,得F(x)min,k≤F(x)min,即可得出答案.解:(1)f(x)=lnx﹣x,∴函数y=f(x)+m﹣2x+x2=x2﹣3x+lnx+m(x>0),令h(x)=x2﹣3x+lnx+m(x>0),则,令h'(x)=0得,x2=1,列表得:x1(1,2)2 h'(x)0﹣0+h(x)单调递减极小值单调递增m﹣2+ln2∴当x=1时,h(x)的极小值为h(1)=m﹣2,又,h(2)=m﹣2+ln2.∵函数y=f(x)+m﹣2x+x2在上恰有两个零点∴即,解得.(2)∵,∴,令g'(x)=0得x2﹣(b+1)x+1=0,∵x1,x2是g(x)的极值点,∴x1+x2=b+1,x1x2=1,∴,∵,∴解得:,∴,=令,则,∴F(x)在上单调递减;∴当时,∴k的最大值为.。
2019学年高二数学下学期期末考试试题 理 人教版新版
2019学年下学期期末考试 高二数学(理科)试卷一、选择题(本大题共12小题,共60分)1、设集合 A ={x|-1<x <2},集合 B ={x|1<x <3},则 A ∪B 等于( ) A .{x|-1<x <3} B .{x|-1<x <1} C .{x|1<x <2} D .{x|2<x <3} 2.复数512ii=-( ) A. 2i - B. 12i - C. 2i -+ D. 12i -+3.点P 的直角坐标为(-2,2),那么它的极坐标可表示为( ).A.⎝ ⎛⎭⎪⎫2,π4B.⎝⎛⎭⎪⎫2,3π4C.⎝⎛⎭⎪⎫2,5π4D.⎝⎛⎭⎪⎫2,7π4 4曲线的极坐标方程ρ=4sin θ化成直角坐标方程为( ). A .x 2+(y +2)2=4 B .x 2+(y -2)2=4 C .(x -2)2+y 2=4D .(x +2)2+y 2=45.把一枚硬币任意掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”, 则P (B/A )= ( ) A.14 B.13 C.12 D.236.把曲线C 1:⎩⎨⎧==θθsin 2cos 2y x (θ为参数)上各点的横坐标压缩为原来的,纵坐标压缩为原来的,得到的曲线C 2为( )A.12x 2+4y 2=1 B.4x 2=1 C.x 2+=1 D.3x 2+4y 2=47甲、乙两歼击机的飞行员向同一架敌机射击,设击中的概率分别为0.4、 0.5,则恰有一人击中敌机的概率为( )A .0.9B .0.2C .0.7D .0.58.若f (x )=xcosx ,则函数f (x )的导函数等于( )A .1﹣sinxB .x ﹣sinxC .sinx+xcosxD .cosx ﹣xsinx 9.圆ρ=r 与圆ρ=-2rsin (θ+)(r >0)的公共弦所在直线的方程为( )A.2ρ(sin θ+cos θ)=rB.2ρ(sin θ+cos θ)=-rC.ρ(sin θ+cos θ)=r D.ρ(sin θ+cos θ)=-r10.在82x ⎛ ⎝的展开式中,常数项是 ( ) A.7 B.-7 C.28D.-2811.曲线f (x )=x 2+2x ﹣e x 在点(0,f (0))处的切线的方程为( ) A .y=2x+1 B .y=x+1 C .y=2x ﹣1 D .y=x ﹣112.的展开式中各项系数的和为2,则该展开式中常数项为( )A.-20B.-10C.10D.20二、填空题(本大题共4小题,共20分) 13.函数21)(--=x x x f 的定义域为_______________ 14.若直线的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =2-3t (t 为参数),则直线的斜率为 __________15.从5名男公务员和4名女公务员中选出3人,分别派到西部的三个不同地区,要求3人中既有男公务员又有女公务员,则不同的选派方法种数是 ______ . 16.设随机变量ξ的分布列为P (ξ=k )=,k =1,2,3,c 为常数,则P (0.5<ξ<2.5)= ______ .三、解答题(本大题共6小题,共70分) 17.(10分)已知(x +)n 展开式的二项式系数之和为256(1)求n ;(2)若展开式中常数项为,求m 的值;18.(12分)某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为和,且各株大树是否成活互不影响.求移栽的4株大树中:(1)两种大树各成活1株的概率; (2)成活的株数ξ的分布列.19.(12分)在平面直角坐标系中,曲线C 的参数方程为)(sin cos 5为参数ααα⎩⎨⎧==y x .以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为2)4cos(=+πθρ.l 与C 交于B A ,两点.(Ⅰ)求曲线C 的普通方程及直线l 的直角坐标方程; (Ⅱ)设点)2,0(-P ,求|PB ||PA |+的值.20. (本题12分)已知a 为实数,4x =是函数2()ln 12f x a x x x =+-的一个极值点. (Ⅰ)求a 的值;(Ⅱ)求函数()f x 的单调区间;21.(12分)某高中社团进行社会实践,对[25,55]岁的人群随机抽取n 人进行了一次是否开通“微博”的调查,若开通“微博”的称为“时尚族”,否则称为“非时尚族”,通过调查分别得到如图所示统计表和各年龄段人数频率分布直方图:完成以下问题:(Ⅰ)补全频率分布直方图并求n ,a ,p 的值;(Ⅱ)从[40,50)岁年龄段的“时尚族”中采用分层抽样法抽取18人参加网络时尚达人大赛,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁的人数为X,求X的分布列22.(12分)在直角坐标系x O y中,已知点P(,1),直线l的参数方程为(t为参数)若以O为极点,以O x为极轴,选择相同的单位长度建立极坐标系,则曲线C的极坐标方程为ρ=cos(θ-)(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设直线l与曲线C相交于A,B两点,求点P到A,B两点的距离之积.答案:ACBBC BDDDA DC[1,2)∪(2,+∞), -3/2, 420, 8/917.解:(1)∵(x+)n展开式的二项式系数之和为256,∴2n=256,解得n=8.(2)的通项公式:T r+1==m r x8-2r,令8-2r=0,解得r=4.∴m4=,解得m=.18.解:设A k表示甲种大树成活k株,k=0,1,2B l表示乙种大树成活1株,1=0,1,2则A k,B l独立.由独立重复试验中事件发生的概率公式有P(A k)=C2k()k()2-k,P(B l)=C21()l()2-l.据此算得P(A0)=,P(A1)=,P(A2)=.P(B0)=,P(B1)=,P(B2)=.(1)所求概率为P(A1•B1)=P(A1)•P(B1)=×=.(2)ξ的所有可能值为0,1,2,3,4,且P(ξ=0)=P(A0•B0)=P(A0)•P(B0)=×=,P(ξ=1)=P(A0•B1)+P(A1•B0)=×+×=,P(ξ=2)=P(A0•B2)+P(A1•B1)+P(A2•B0)=×+×+×=,P(ξ=3)=P(A1•B2)+P(A2•B1)=×+×=.P(ξ=4)=P(A2•B2)=×=.综上知ξ有分布列ξ0 1 2 3 4P2:-=x y l ....5分得:........8分......10分20.解:(Ⅰ)()'212af x x x=+-,由'(4)0f =得, 81204a+-=,解得16a =.(Ⅱ)由(Ⅰ)知,()()216ln 12,0,f x x x x x =+-∈+∞,()2'2(68)2(2)(4)x x x x f x x x-+--==.当()0,2x ∈时,()'0f x >;当()2,4x ∈时,()'0f x <;()4,x ∈+∞时,()'0f x >.所以()f x 的单调增区间是()()0,2,4,+∞;()f x 的单调减区间是()2,4.21.解:(Ⅰ)第二组的频率为1-(0.04+0.04+0.03+0.02+0.01)×5=0.3, 所以高为.频率直方图如下:(2分)第一组的人数为,频率为0.04×5=0.2,所以.由题可知,第二组的频率为0.3,所以第二组的人数为1000×0.3=300,所以.第四组的频率为0.03×5=0.15,所以第四组的人数为1000×0.15=150,所以a=150×0.4=60.(5分)(Ⅱ)因为[40,45)岁年龄段的“时尚族”与[45,50)岁年龄段的“时尚族”的比值为60:30=2:1,所以采用分层抽样法抽取18人,[40,45)岁中有12人,[45,50)岁中有6人.(6分)随机变量X服从超几何分布.,,,.所以随机变量X的分布列为X 0 1 2 3P22.解:(I)由直线l的参数方程,消去参数t,可得=0;由曲线C的极坐标方程ρ=cos(θ-)展开为,化为ρ2=ρcosθ+ρsinθ,∴曲线C的直角坐标方程为x2+y2=x+y,即=.(II)把直线l的参数方程代入圆的方程可得=0,∵点P(,1)在直线l上,∴|PA||PB|=|t1t2|=.。
2018-2019学年高二(下)期末数学试卷(含答案)
高二(下)期末数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1.()A. 5B. 5iC. 6D. 6i2.( )B.3.某校有高一学生n名,其中男生数与女生数之比为6:5,为了解学生的视力情况,若样本中男生比女生多12人,则n=()A. 990B. 1320C. 1430D. 15604.(2,k(6,4是()A. (1,8)B. (-16,-2)C. (1,-8)D. (-16,2)5.某几何体的三视图如图所示,则该几何体的体积为()A. 3πB. 4πC. 6πD. 8π6.若函数f(x)a的取值范围为()A. (-5,+∞)B. [-5,+∞)C. (-∞,-5)D. (-∞,-5]7.设x,y z=x+y的最大值与最小值的比值为()A. -1B.C. -28.x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为()A. 2B. 1 D. 49.等比数列{a n}的前n项和为S n,若S10=10,S30=30,则S20=()A. 20B. 10C. 20或-10D. -20或1010.当的数学期望取得最大值时,的数学期望为()A. 211.若实轴长为2的双曲线C:4个不同的点则双曲线C的虚轴长的取值范围为( )12.已知函数f(x)=2x3+ax+a.过点M(-1,0)引曲线C:y=f(x)的两条切线,这两条切线与y轴分别交于A,B两点,若|MA|=|MB|,则f(x)的极大值点为()二、填空题(本大题共4小题,共20.0分)13.(x7的展开式的第3项为______.14.已知tan(α+β)=1,tan(α-β)=5,则tan2β=______.15.287212,也是著名的数学家,他最早利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C的对称轴为坐标轴,焦点在y轴上,且椭圆C面积则椭圆C的标准方程为______.16.已知高为H R的球O的球面上,若二面4三、解答题(本大题共6小题,共70.0分)17.nn的通项公式.18.2019年春节档有多部优秀电影上映,其中《流浪地球》是比较火的一部.某影评网站统计了100名观众对《流浪地球》的评分情况,得到如表格:(1)根据以上评分情况,试估计观众对《流浪地球》的评价在四星以上(包括四星)的频率;(2)以表中各评价等级对应的频率作为各评价等级对应的概率,假设每个观众的评分结果相互独立.(i)若从全国所有观众中随机选取3名,求恰有2名评价为五星1名评价为一星的概率;(ii)若从全国所有观众中随机选取16名,记评价为五星的人数为X,求X的方差.19.在△ABC中,角A,B,C所对的边分别是a,b,c,已知b sin A cos C+a sin C cos B A.(1)求tan A的值;(2)若b=1,c=2,AD⊥BC,D为垂足,求AD的长.20.已知B(1,2)是抛物线M:y2=2px(p>0)上一点,F为M的焦点.(1,M上的两点,证明:|FA|,|FB|,|FC|依次成等比数列.(2)若直线y=kx-3(k≠0)与M交于P(x1,y1),Q(x2,y2)两点,且y1+y2+y1y2=-4,求线段PQ的垂直平分线在x轴上的截距.21.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠ABC=60°,PB=PC,E为线段BC的中点,F为线段PA上的一点.(1)证明:平面PAE⊥平面BCP.(2)若PA=AB,二面角A-BD=F求PD与平面BDF所成角的正弦值.22.已知函数f(x)=(x-a)e x(a∈R).(1)讨论f(x)的单调性;(2)当a=2时,F(x)=f(x)-x+ln x,记函数y=F(x1)上的最大值为m,证明:-4<m<-3.答案和解析1.【答案】A【解析】故选:A.直接利用复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,是基础题.2.【答案】C【解析】【分析】本题考查元素与集合的关系,子集与真子集,并集及其运算,属于基础题.先分别求出集合A与集合B,再判别集合A与B的关系,以及元素和集合之间的关系,以及并集运算得出结果.【解答】解:A={x|x2-4x<5}={x|-1<x<5},B={2}={x|0≤x<4},∴∉A,B,B⊆A,A∪B={x|-1<x<5}.故选C.3.【答案】B【解析】解:某校有高一学生n名,其中男生数与女生数之比为6:5,样本中男生比女生多12人,设男生数为6k,女生数为5k,解得k=12,n=1320.∴n=1320.故选:B.设男生数为6k,女生数为5k,利用分层抽样列出方程组,由此能求出结果.本题考查高一学生数的求法,考查分层抽样等基础知识,考查运算求解能力,是基础题.4.【答案】B【解析】解:∴k=-3;∴(-16,-2)与共线.k=-3考查向量垂直的充要条件,向量坐标的加法和数量积的运算,共线向量基本定理.5.【答案】A【解析】解:由三视图知,几何体是一个简单组合体,左侧是一个半圆柱,底面的半径是1,高为:4,右侧是一个半圆柱,底面半径为1,高是2,∴,故选:A.几何体是一个简单组合体,左侧是一个半圆柱,底面的半径是1,高为:4,右侧是一个半圆柱,底面半径为1,高是2,根据体积公式得到结果.本题考查由三视图求几何体的体积,考查由三视图还原直观图,本题是一个基础题,题目的运算量比较小,若出现是一个送分题目.6.【答案】B【解析】解:函数f(x)x≤1时,函数是增函数,x>1时,函数是减函数,由题意可得:f(1)=a+4≥,解得a≥-5.故选:B.利用分段函数的表达式,以及函数的单调性求解最值即可.本题考查分段函数的应用,函数的单调性以及函数的最值的求法,考查计算能力.7.【答案】C【解析】解:作出不等式组对应的平面区域如图:A(2,5),B-2)由z=-x+y,得y=x+z表示,斜率为1纵截距为Z的一组平行直线,平移直线y=x+z,当直线y=x+z经过点A时,直线y=x+z的截距最大,此时z最大值为7,经过B时则z=x+y的最大值与最小值的比值为:.故选:C.作出不等式对应的平面区域,利用z的几何意义,利用直线平移法进行求解即可.本题主要考查线性规划的基本应用,利用z的几何意义是解决线性规划问题的关键,注意利用数形结合来解决.【解析】解:由题意,对任意的∈R,都有f(x1)≤f(x)≤f(x2)成立,∴f(x1)=f(x)min=-3,f(x2)=f(x)max=3.∴|x1-x2|min∵T=4.∴|x1-x2|min=.故选:A.本题由题意可得f(x1)=f(x)min,f(x2)=f(x)max,然后根据余弦函数的最大最小值及周期性可知|x1-x2|min本题主要考查余弦函数的周期性及最大最小的取值问题,本题属中档题.9.【答案】A【解析】解:由等比数列的性质可得:S10,S20-S10,S30-S20成等比数列,(30-S20),解得S20=20,或S20=-10,∵S20-S10=q10S10>0,∴S20>0,∴S20=20,故选:A.由等比数列的性质可得:S10,S20-S10,S30-S20成等比数列,列式求解.本题考查了等比数列的通项公式和前n项和及其性质,考查了推理能力与计算能力,属于中档题.10.【答案】D【解析】解:∴EX取得最大值.此时故选:D.利用数学期望结合二次函数的性质求解期望的最值,然后求解Y的数学期望.本题考查数学期望以及分布列的求法,考查计算能力.11.【答案】C【解析】【分析】本题考查了双曲线的性质,动点的轨迹问题,考查了转化思想,属于中档题.设P i(x,y)⇒x2+y2(x2。
哈尔滨师范大学附属中学2019_2020学年高二数学下学期期末考试试题理含解析
【详解】解:(Ⅰ)设 , 两条生产线的产品质量指标值的平均数分别为 , ,由直方图可得 ,
同理 , ,因此 生产线的质量指标值更好.
(Ⅱ) 生产线的产品质量指标值的众数为80
由 生产线的产品质量指标值频率分布直方图,前两组频率为
前三组频率为
,
所以 在 上递增,在 上递减,
所以 的极大值为 ,极小值为
注意到当 时, ,
所以由 有 个极值点,可得 。
所以实数 的取值范围是 。
故答案为: ;
【点睛】本小题主要考查利用导数研究函数的极值点,属于中档题.
三、解答题
17。在直角坐标系 中,圆C的参数方程 ( 为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系。
A. , B。 ,
C , D。 ,
【答案】D
【解析】
试题分析:均值为 ;
方差为
,故选D。
考点:数据样本的均值与方差。
10.已知函数 ,则 ( )
A。 B。eC。 D。 1
【答案】C
【解析】
【分析】
先求导,再计算出 ,再求 .
【详解】由题得 ,
所以 .
故选:C.
【点睛】本题主要考查导数的计算,意在考查学生对该知识的掌握水平和基本的计算能力,属基础题。
【详解】涉及函数定义域为 ,
设 ,则 ,
∵ ,∴ ,∴ 在 上单调递增,
不等式 可化为 ,即 ,所以 , ,又 ,得 ,
∴原不等式的解为 .
故选:A.
【点睛】本题考查用导数解不等式,解题关键是构造新函数,利用新函数的单调性解不等式,新函数需根据已知条件和需要解的不等式确定,简单的有 , , , ,等等,复杂点的如 ,或 ,象本题 难度更大.注意平时的积累.
2019学年高二数学下学期期末联考试题 理 新版-人教版
2019期末联考 高二(理科)数学(全卷满分:150分 考试用时:120分钟)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各式的运算结果为纯虚数的是( )A.2(1)i i +B. 2(1)i i -C. 2(1)i +D. (1)i i +2.已知某随机变量X 的分布如下(p ,q ∈R )且X 的数学期望1()2E X =,那么X 的方差()D X 等于( )A.2B.4C.12D. 13.若1021001210(2)x a a x a x a x -=++++,则12310a a a a ++++=( )A. 1B. -1C. 1023D. -10234.下列求导运算正确的是( )A.(cos )sin x x '=B. 3(3)3log x x e'=C. 1(lg )ln10x x '=D. 2(cos )2sin x x x x '=-5.已知(2,0)M -,(2,0)N ,4PM PN -= ,则动点P 的轨迹是( )A. 一条射线B. 双曲线C. 双曲线左支D. 双曲线右支6.已知m ,n ∈R ,则“0m n ⋅<”是“方程221x y m n+=表示双曲线”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分又不必要条件7.由曲线2y x =,y =围成的封闭图形的面积为( )A.16B. 1C.23D.138.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则(/)P B A =( )A.18B.14C.25D.129.在区间[]0,1上随机取两个数x ,y ,记P 为事件“23x y +≤”的概率,则P =( ) A.23B.12C.49D. 2910.设双曲线22221(0,0)x y a b a b-=>>的离心率是3,则其渐近线的方程为( )A. 0x ±=B. 0y ±=C. 80x y ±=D. 80x y ±=11.图1是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到14次的考试成绩依次记为A 1,A 2,…,A 14,图2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图,那么算法流程图输出的结果是( )A. 7B. 8C. 9D. 1012.已知命题p :[]1,2x ∀∈,使得0x e a -≥,若p ⌝是假命题,则实数a 的取值范围为( )A. 2(,]e -∞B. (,]e -∞C.[,)e +∞D. 2[,)e +∞二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡题中横线上. 13.设随机变量X ~2(2,)N σ,且(4)0.2P X ≥=,则(04)P X <<=______14.设x ,y 满足约束条件3310x y x y y +≤⎧⎪-≥⎨⎪≥⎩,则z x y =+的最大值为_____15.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,根据收集到的数据(如表),由最小二乘法求得回归方0.6754.9y x ∧=+现发现表中有一个数据模糊看不清,请你推断出该数据的值为______16.观察下列式子:213122+<,221151233++<,222111712344+++< ,…,根据以上式子可以猜想:2221111232013++++<______.三、解答题:本大题共6小题,共70分.解答时应写出文字说明,证明过程或演算步骤. 17.(12分)已知二次函数2()2f x ax ax b =+-,其图象过点(2, -4),且(1)3f '=-. (1)求a ,b 的值;(2)设函数()ln ()h x x x f x =+,求曲线h (x )在x =1处的切线方程.18.(12分)某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败.(1)求图中a 的值;(2)根据已知条件完成下表,并判断能否有85%的把握认为“晋级成功”与性别有关?(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为X ,求X 的分布列与数学期望E (X ).(参考公式:22()()()()()n ad bc k a b c d a c b d -=++++,其中d c b a n +++=)19.(12分)如图,设P 是圆2225x y +=上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且45MD PD =. (1)当P 在圆上运动时,求点M 的轨迹C 的方程 (2)求过点(3,0),且斜率为45的直线被C 所截线段的长度20.(12分)已知函数2()ln f x x a x =+. (1)当2a =-时,求函数()f x 的单调区间和极值; (2)若2()()g x f x x=+在[1,+∞)上是单调增函数,求实数a 的取值范围.21.(12分)已知圆C :221(1)4x y -+=,一动圆与直线12x =-相切且与圆C 外切. (1)求动圆圆心P 的轨迹T 的方程;(2)若经过定点Q (6,0)的直线l 与曲线T 相交于A 、B 两点,M 是线段AB 的中点,过M 作x 轴的平行线与曲线T 相交于点N ,试问是否存在直线l ,使得NA NB ⊥,若存在,求出直线l 的方程,若不存在,说明理由.选考题(10分)请考生在22,23题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目的题号涂黑。
2019年最新高二 数学下学期期末联考试题
高二数学下学期期末联考试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试用时120分钟.祝各位同学考试顺利!第Ⅰ卷一、选择题:每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若),0(,∞+∈b a ,则“122<+b a ”是“b a ab +>+1”的( ). (A )必要非充分条件; (B )充分非必要条件;(C )充要条件; (D )既不充分也不必要条件. 2.经过点(0,0),且与以(2,-1)为方向向量的直线垂直的直线方程为( ). (A )02=+y x ; (B )02=-y x ; (C )02=+y x ; (D )02=-y x . 3.已知动点P (x ,y )满足y x yx +=+-22)1(,则点P 的轨迹是( ).(A )椭圆; (B )双曲线; (C )抛物线; (D )两相交直线. 4.(文科)给出以下四个命题:①如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行;②如果一条直线和一个平面内的两条直线都垂直,那么这条直线垂直于这个平面; ③如果两条直线都平行于一个平面,那么这两条直线互相平行; ④如果两条直线同垂直一个平面,那么这两条直线平行. 其中真命题的个数是( ).(A )4; (B )3; (C )2; (D )1.(理科)对于任意的直线l 与平面α,在平面α内必有直线m ,使m 与l ( ). (A )平行; (B )相交; (C )垂直; (D )互为异面直线.5.若关于x 的不等式a x x <++-11的解集为∅,则实数a 的取值范围为( ). (A ))2,(-∞; (B )]2,(-∞; (C )),2(∞+; (D )),2[∞+. 6.已知直线l :2+=ax y 与以A (1,4)、B (3,1)为端点的线段相交,则实数a 的取值范围是( ).(A )31-≤a ; (B )231≤≤-a ; (C )2≥a ; (D )31-≤a 或2≥a . 7.已知圆C :4)2()(22=-+-y a x )0(>a 及直线l :03=+-y x .当直线l 被圆C 截得的弦长为32时,则=a ( ).(A )2; (B )22-; (C )12-; (D )12+. 8.已知点A (3,2),F 为抛物线x y 22=的焦点,点P 在抛物线上移动,当PF PA +取得最小值时,点P 的坐标是( ).(A )(0,0); (B )(2,2); (C )(-2,-2) (D )(2,0).9.(文科)已知0>a ,0>b ,121=+ba ,则b a +的最小值是( ). (A )24; (B )223+; (C ) 22; (D )5.(理科)已知4≥x ,则42542-+-=x x x y 有( ).(A )最大值45; (B )最小值45; (C )最大值1; (D )最小值1. 10.点P 是双曲线112422=-y x 上的一点,1F 和2F 分别是双曲线的左、右焦点,021=⋅PF ,则21PF F ∆的面积是( ). (A )24; (B )16; (C )8; (D )12. 11.如图1,PA ⊥平面ABC ,∠ACB =90,且PA =AC =BC =a ,则异面直线PB 与AC 所成的角是( ).(A )21arctan; (B )2arctan ; (C )32arctan; (D )3arctan . 图1 12.(文科)已知椭圆)0(12222>>=+b a by a x 的左,右焦点分别为1F 、2F ,点P在椭圆上,且213PF PF =,则此椭圆的离心率的最小值为( ).(A )32; (B )21; (C )31; (D )41. (理科)已知E 、F 是椭圆12422=+y x 的左、右焦点,l 是椭圆的一条准线,点P在l 上,则∠EPF 的最大值是( ).(A )15; (B )30; (C )45; (D )60.第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.m ,n 是空间两条不同直线,,αβ是两个不同平面,下面有四个命题: ①若α⊥m ,β//n ,βα//,则n m ⊥; ②若n m ⊥,βα//,α⊥m ,则β//n ; ③若n m ⊥,βα//,α//m ,则β⊥n ; ④若α⊥m ,n m //,βα//,则β⊥n .其中真命题的编号是 .(写出所有真命题的编号)14.对于圆1)1(22=-+y x 上任一点),(y x P ,不等式0≥++m y x 恒成立,则实数m 的取值范围 .15.设y x ,满足约束条件:⎪⎩⎪⎨⎧≤-≥-≤+,02,02,1y x y x y x 则目标函数y x z +=2的最大值是 .16.已知抛物线088222=--+-y x y xy x 的对称轴为0=-y x ,焦点为(1,1),则此抛物线的准线方程是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(12分)设0>a ,解关于x 的不等式:11)2(<--x x a .18.(12分)过抛物线px y 22=经过点A 和抛物线顶点的直线交准线于点M .求证:(Ⅰ)2p y y B A -=;(Ⅱ)直线MB 平行于抛物线的对称轴. 19.(12分)如图2,已知四边形ABCD 为矩形,PA ⊥平面ABCD ,M 、N 分别为AB 、PC 的中点.(Ⅰ)求证:MN ⊥CD .(Ⅱ)在棱PD 上是否存在一点E ,使得 图2AE ∥平面PMC ?若存在,请确定点E20.(12分)如图3,过圆222R y x =+上的动点P 向圆222r y x =+(0>>r R )引两条切线 PA 、PB ,切点分别为A 、B ,直线AB 与x 轴、y 轴分别交于M 、N 两点,求△MON 面积的最小值.21.(12分)已知R b a ∈,,1>x , 求证:22222)()1(b a b x x a x +≥-+. 22.(14分)文科做(Ⅰ)、(Ⅱ)已知点B (2,0),)22,0(=,O为坐标原点,动点P 满足34=++.(Ⅰ)求点P 的轨迹C 的方程;(Ⅱ)当m 为何值时,直线l :m x y +=3与轨迹C 相交于不同的两点M 、N ,且满足BN BM =?(Ⅲ)是否存在直线l :)0(≠+=k m kx y 与轨迹C 相交于不同的两点M 、N ,且满足BN BM =?若存在,求出m 的取值范围;若不存在,请说明理由.答案与提示:一、选择题1—5 BDBCB ; 6—12 BCBBD BB . 提示:1.由0)1)(1(10,10122>--⇒<<<<⇒<+b a b a b a b a ab +>+⇒1; 反之由0)1)(1(>--b a 不能推得10,10<<<<b a .故“122<+b a ”是“b a ab +>+1”的充分非必要条件.选(B ). 2.由题设知已知直线的斜率为21-,∴所求直线的斜率为2; 又所求直线过原点,故02=-y x 为所求.选(D ).3.由题设知动点P 到定点(1,0)的距离和它到定直线0=+y x 的距离的比是常数2,根据双曲线的第二定义可得点P 的轨迹为双曲线.选(B ).4.(文科)①、④正确,选(C ).(理科)对于任意的直线l 与平面α,若l 在平面α内,则存在直线m ⊥l ; 若l 不在平面α内,且l ⊥α,则平面α内任意一条直线都垂直于l ;若l 不在平面α内,且l 与α不垂直,则它的射影在平面α内为一条直线,在平面α内必有直线m 垂直于它的射影,则m ⊥l .故选(C ).5.由2)1()1(11=++-≥++-x x x x 知2≤a .选(B ).6.由A (1,4)、B (3,1)在直线l 上或其异侧得0)13)(2(≤+-a a . 解得231≤≤-a .选(B ). 7.设截得的弦为AB ,圆心为)2,(a C ,作AB CH ⊥于H ,则由平几知识得1=CH .由此得1232=+-=a CH ,解得12-=a .选(C ).8.点A 在抛物线含焦点区域,过A 作AP 垂直于抛物线的准线交抛物线于点P ,则由抛物线的定义知点P (2,2)为所求点.选(B ).9.(文科)22323)21)((+≥++=++=+abb a b a b a b a ,选(B ). (理科)令)2(2≥-=t x t ,则)1(214254)(2tt x x x t f +=-+-=.)(t f 在),2[+∞上是单调递增函数,故y 的最小值是45)2(=f .选(B ). 10.由021=⋅PF PF 6442==+c 42±=±=-a .∴2121=∆PF F S 12.选(D ). 11.如图,过B 作BD ∥CA ,且满足BD =CA , 则∠PBD 为PB 与AC 所成的角. 易得四边形ADBC 为正方形, 由PA ⊥平面ABC 得BD ⊥PD . 在Rt △PDB 中,a PD 2=,a DB =,2tan ==∠DBPDPBD .选(B ). 12.(文科)由题设和焦半径公式得)(442221P ex a PF PF PF a -==+=.a x P ≤<0.∴ea ex a P 22≤=.即21≥e .选(B ). (理科)不妨设右准线l 交x 轴于点A ,由平几知识知过E 、F 的圆且与l 相切于点P 时,∠EPF 最大.由圆幂定理得62232=⋅=⋅=AF AE AP.易得∠FPA =30,∠EPA =60,从而∠EPF =30为所求最大值,故选(B ). 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.①、④; 14.∞+-,12[); 15.35; 16.02=++y x . 提示:13.②、③为假命题;①、④为真命题.14.设点)sin 1,(cos θθ+P ,由题设得0sin 1cos ≥+++m θθ. 即θθsin 1cos ++=≤-u m 恒成立.而211)4sin(2-≥++=πx u ,∴21-≤-m .故m 的取值范围为∞+-,12[). 15.如图,作出不等式表示的可行域(阴影部分)和直线l :02=+y x ,将l 向右上方平行移动,使其经过可行域内的点A)31,32(时,y x z +=2取得最大值. 故当32=x ,31=y 时,35max =z .16.对称轴0=-y x 与抛物线的交点(0,0)为抛物线的顶点,且抛物线的准线垂直于对称轴,焦点(1,1)关于顶点(0,0)的对称点(-1,-1)在准线上,故所求准线方程为02=++y x .三、解答题17.不等式整理得01)12()1(<----x a x a .当1≠a 时,不等式为01)112)(1(<-----x a a x a .……………(3分) ①当10<<a 时,1112<--a a ,原不等式解集为 ),1()112,(∞+⋃---∞a a ;……………(6分)②当1=a 时,不等式解集为),1(∞+;……………(9分)③当1>a 时,1112>--a a ,原不等式解集为)112,1(--a a .……………(12分) 18.(Ⅰ)AB 方程为2p my x +=,代入抛物线px y 22=方程得0222=--p pmy y .……………(3分)由韦达定理得2p y y B A -=.……………(5分) (Ⅱ)OA 方程为x x y y A A =,与准线方程联立解得M )2,2(AAx py p --.………(8分)∴B BA A A A A My y pp y p y y p x py y =--=-=-=-=222222.……………(11分) 故直线MB 平行于抛物线的对称轴.……………(12分) 19.(Ⅰ)取AC 的中点O ,连结NO ,MO ,由N 为PC 的中点得NO ∥PA .……………(2分)又PA ⊥平面ABCD ,∴NO ⊥平面ABCD .……………(4分) 又∵OM ⊥AB ,由三垂线定理得AB ⊥MN .又∵CD ∥AB ,∴MN ⊥CD .……………(6分) (Ⅱ)存在点E ,使得AE ∥平面PMC . 此时点E 为PD 的中点.……………(8分)证明如下:取PD 的中点E ,连结NE , 由N 是PC 的中点得NE ∥CD ,CD NE 21=. 又 MA ∥CD ,CD MA 21=, ∴MA ∥NE ,MA =NE .由此可知四边形MNEA 是平行四边形, ∴AE ∥MN .由⊂MN 平面PMC ,⊄AE 平面PMC , ∴AE ∥平面PMC .……………(12分)20.设),(00y x P 为圆222R y x =+上任一点,则θcos 0R x =,θsin 0R y =.由题设知O 、A 、P 、B 在以OP 为直径的圆上,该方程为220202020)2()2()2(y x y y x x +=-+-.……………(4分)而AB 是圆222r y x =+和以OP 为直径的圆的公共弦,将这两圆方程相减得 直线AB 的方程为200r y y x x =+.∴)0,(02x r M ,),0(02y r N .……………(8分)242440042sin sin cos 2221R r R r R R r y x r ON OM S MON≥=⋅==⋅=∆θθθ. 故△MON 面积的最小值为24Rr .……………(12分)21.∵22222)()1(b a b x x a x +--+ab b x x a x 2)1(12)1(2222---+-=,……(3分)∵1>x ,∴11)1(1222----x x x 0)1)(1(222>-+=x x x ,即11)1(1222->--x x x .……………(6分) ∴ab b x x a x 2)1(12)1(2222---+-ab b x a x 211)1(2222--+-≥ 022211)122222≥-=--⋅-≥ab ab ab b x a x ,……………(11分) 故22222)()1(b a b x x a x +≥-+.……………(12分) 22.(Ⅰ)设点),(y x P ,则)22,(+=+y x ,)22,(-=-y x . 由题设得34)22()22(2222=-++++y x y x .………(3分)即点P 到两定点(0,22)、(0,-22)的距离之和为定值34,故轨迹C 是以(0,22±)为焦点,长轴长为34的椭圆,其方程为112422=+y x .……(6分) (Ⅱ)设点M ),(11y x 、N ),(22y x ,线段MN 的中点为),(000y x M , 由BN BM =得0BM 垂直平分MN . 联立⎪⎩⎪⎨⎧=++=.123,322y x m x y 消去y 得01232622=-++m mx x .由0)12(24)32(22>--=∆m m 得6262<<-m .………(10分) ∴322210mx x x -=+=,2)32(30m m m y =+-=.即)2,32(0m m M -. 由0BM ⊥MN 得1323220-=⋅--=⋅m mk k MN BM .故32=m 为所求.………(14分)(Ⅲ)若存在直线l 与椭圆C 相交于不同的两点M ),(11y x 、N ),(22y x ,且满足BN BM =,令线段MN 的中点为),(000y x M ,则0BM 垂直平分MN .联立⎪⎩⎪⎨⎧=+=+.123,12322222121y x y x两式相减得))(())((321212121y y y y x x x x -+-=-+. ∴k y x y y x x x x y y k MN =-=++-=--=021*******)(3.又由0BM ⊥MN 得kx y k BM 12000-=-=.∴10-=x ,k y 30=.即)3,1(0kM -.………(10分) 又点0M 在椭圆C 的内部,故1232020<+y x .即12)3()1(322<+-⋅k.解得1>k .又点)3,1(0kM -在直线l 上,∴m k k +-=3.∴3233≥+=+=kk k k m (当且仅当3=k 时取等号). 故存在直线l 满足题设条件,此时m 的取值范围为 ),∞+⋃--∞32[]32,(.………(14分)。
精品2019学年高二数学下学期期末联考试题理人教版新版
2019学年下期期末联考高二数学试题(理科)注意:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,时间120分钟。
2.全部答案在答题卡上完成,答在本试题上无效。
3.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
第Ⅰ卷一.选择题(本大题共12小题,每题5分,共60分,每题只有一个正确的选项,请把正确的选项填到答题卡上)1.下列关于残差图的描述错误的是()A.残差图的横坐标可以是编号B.残差图的横坐标可以是解释变量和预报变量C.残差点分布的带状区域的宽度越窄相关指数越小D.残差点分布的带状区域的宽度越窄残差平方和越小2.已知随机变量X 的分布列如下表所示:X 1 2 3 4 5 P 0.10.2b0.20.1则(25)E X 的值等于()A.1B.2C.3D.4 3.在一次试验中,测得()x y ,的四组值分别是A (1,2),B (3,4),C (5,6)D (7,8),则y 与x 之间的回归直线方程为()A.1y x B.2yxC.21yxD.1y x 4.随机变量服从二项分布~p n B ,,且,200,300DE则p 等于()A.32 B.31 C. 1 D.05某个命题与正整数n 有关,如果当)(N k k n 时命题成立,那么可推得当1k n 时命题也成立. 现已知当n=8时该命题不成立,那么可推得()A .当n=7时该命题不成立B .当n=7时该命题成立C.当n=9时该命题不成立D.当n=9时该命题成立6.口袋中放有大小相等的2个红球和1个白球,有放回地每次摸取一个球,定义数列{}n a:1,1,nnan第次摸取红球第次摸取白球,如果nS为数列{}n a前n项和,则73S的概率等于()A.525712()()33C B.225721()()33C C.525711()()33C D.334712()()33C 7 若曲线C:ax axxy 2223上任意点处的切线的倾斜角都是锐角,那么整数a =( )A.-2B.0C.1D.-1 8.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是()A .男生2人,女生6人 B.男生3人,女生5人C .男生5人,女生3人 D .男生6人,女生2人.9.抛掷甲、乙两颗骰子,若事件A :“甲骰子的点数大于4”;事件B :“甲、乙两骰子的点数之和等于7”,则(|)P B A 的值等于()A.13B.118C.16D.1910.从不同号码的5双鞋中任取4只,其中恰好有1双的取法种数为()A .120B .240C .280D .6011.若42341234(23)xa a x a xa xa x ,则2202413()()a a a a a 的值为()A.1 B .1 C .0 D .212.已知定义在R 上的函数()f x 满足:对任意x ∈R ,都有(1)(1)f x f x 成立,且当(,1)x时,(1)()0x f x (其中()f x 为()f x 的导数).设(0),af 1(),2bf (3)cf ,则a ,b ,c 三者的大小关系是()A .a b cB .c a b C .cb a D .bc a第Ⅱ卷二、填空题:本大题共4小题,每题5分。
2019年高中高二数学下学期期末考试试卷解析
2019年高中高二数学下学期期末考试试卷解析
各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢
xxxx年高中高二数学下学期期末考试试卷答案解析
[编辑推荐]高中学生在学习中或多或少有一些困惑,中国()的编辑为大家总结了xxxx年高中高二数学下学期期末考试试卷答案解析,各位考生可以参考。
因为存在,使得,所以不等式有解.
即,解得:或.-------------------------6分
因为“或为真”,“且为假”,所以与一真一假.--------
由得,因为------------------9分
所以是以为首项,以8为公比的等比数列,所以----12分
或,即原不等式的解集为.------------------12分
20.解:,由条件知,故.-------2分
21.解:因为函数的定义域为,,
当时,,-------------------2分
若,则;若,则.
所以是上的减函数,是上的增函数,故,
故函数的减区间为,增区间为,极小值为,无极大值.---6分
所以是上的增函数,是上的减函数.
故当且仅当时等号成立.
所以当且仅当时,成立,即为所求.--------14分
以上就是xxxx年高中高二数学下学期期末考试试卷答案解析的全部内容,更多高中学习资讯请继续关注中国()!
各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年度第二学期期末联考试题高二数学(理)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设复数,则复数的共轭复数是( )A. B. C. D.【答案】B【解析】分析:根据复数模的定义化简复数,再根据共轭复数概念求结果.详解:因为,所以,所以复数的共轭复数是,选B.点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为2. 已知为正整数用数学归纳法证明时,假设时命题为真,即成立,则当时,需要用到的与之间的关系式是( )A. B.C. D.【答案】C【解析】分析:先根据条件确定式子,再与相减得结果.详解:因为,所以,所以,选C.点睛:本题考查数学归纳法,考查数列递推关系.3. 某村庄对改村内50名老年人、年轻人每年是否体检的情况进行了调查,统计数据如表所示:已知抽取的老年人、年轻人各25名.则完成上面的列联表数据错误的是( )A. B. C. D.【答案】D【解析】分析:先根据列联表列方程组,解得a,b,c,d,e,f,再判断真假.详解:因为,所以选D.点睛:本题考查列联表有关概念,考查基本求解能力.4. 已知双曲线的两个焦点分别为,过右焦点作实轴的垂线交双曲线于,两点,若是直角三角形,则双曲线的离心率为( )A. B. C. D.【答案】B【解析】分析:由题意结合双曲线的结合性质整理计算即可求得最终结果.详解:由双曲线的对称性可知:,则为等腰直角三角形,故,由双曲线的通径公式可得:,据此可知:,即,整理可得:,结合解方程可得双曲线的离心率为:.本题选择B选项.点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=c2-a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).5. 甲、乙两名同学参加2018年高考,根据高三年级一年来的各种大、中、小型数学模拟考试总结出来的数据显示,甲、乙两人能考140分以上的概率分别为和,甲、乙两人是否考140分以上相互独立,则预估这两个人在2018年高考中恰有一人数学考140 分以上的概率为( )A. B. C. D.【答案】A【解析】分析:根据互斥事件概率加法公式以及独立事件概率乘积公式求概率.详解:因为这两个人在2018年高考中恰有一人数学考140 分以上的概率为甲考140 分以上乙未考到140 分以上事件概率与乙考140 分以上甲未考到140 分以上事件概率的和,而甲考140 分以上乙未考到140 分以上事件概率为,乙考140 分以上甲未考到140 分以上事件概率为,因此,所求概率为,选A.点睛:本题考查互斥事件概率加法公式以及独立事件概率乘积公式,考查基本求解能力.6. 在“新零售”模式的背景下,自由职业越来越流行,诸如:淘宝网店主、微商等等.现调研某自由职业者的工资收入情况.记表示该自由职业者平均每天工作的小时数,表示平均每天工作个小时的月收入.(小时)(千元)假设与具有线性相关关系,则关于的线性回归方程必经过点( )A. B. C. D.【答案】C【解析】分析:先求均值,再根据线性回归方程性质得结果.详解:因为,所以线性回归方程必经过点,选C.点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求,写出回归方程,回归直线方程恒过点.7. 已知的二项展开式中含项的系数为,则( )A. B. C. D.【答案】C【解析】分析:先根据二项式定展开式通项公式求m,再求定积分.详解:因为的二项展开式中,所以,因此选C.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.8. 已知一列数按如下规律排列:,则第9个数是( )A. -50B. 50C. 42D. —42【答案】A【解析】分析:根据规律从第3个数起,每一个数等于前两个数之差,确定第9个数.详解:因为从第3个数起,每一个数等于前两个数之差,所以第9个数是,选A.点睛:由前几项归纳数列通项的常用方法为:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.9. 《九章算术》中,将底面是直角三角形的直三梭柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,则该“堑堵”的表面积为( )A. B. C. D.【答案】D【解析】分析:先还原几何体,再根据棱柱各面形状求面积.详解:因为几何体为一个以俯视图为底面的三棱柱,底面直角三角形的两直角边长为2和,所以棱柱表面积为,选D.点睛:空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(3)旋转体的表面积问题注意其侧面展开图的应用.10. 从中不放回地依次取2个数,事件“第一次取到的数可以被3整除”,“第二次取到的数可以被3整除”,则( )A. B. C. D.【答案】C【解析】分析:先求,,再根据得结果.详解:因为,所以,选C.点睛:本题考查条件概率,考查基本求解能力.11. 中国古典数学有完整的理论体系,其代表我作有《周髀算经》《九章算术》《孙子算经》《数书九章》等,有5位年轻人计划阅读这4本古典数学著作,要求每部古典数学著作至少有1人阅读,则不同的阅读方案的总数是( )A. 480B. 240C. 180D. 120【答案】B【解析】分析:先根据条件确定有且仅有一本书是两人阅读,再根据先选后排求排列数.详解:先从5位年轻人中选2人,再进行全排列,所以不同的阅读方案的总数是选B.点睛:求解排列、组合问题常用的解题方法:(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法.12. 体育课上,小红、小方、小强、小军四位同学都在进行足球、篮球、羽毛球、乒乓球等四项体自运动中的某-种,四人的运动项目各不相同,下面是关于他们各自的运动项目的一些判断:①小红没有踢足球,也没有打篮球;②小方没有打篮球,也没有打羽毛球;③如果小红没有打羽毛球,那么小军也没有踢足球;④小强没有踢足球,也没有打篮球.已知这些判断都是正确的,依据以上判断,请问小方同学的运动情况是( )A. 踢尼球B. 打篮球C. 打羽毛球D. 打乒乓球【答案】A【解析】分析:由题意结合所给的逻辑关系进行推理论证即可.详解:由题意可知:小红、小方、小强都没有打篮球,故小军打篮球;则小军没有踢足球,且已知小红、小强都没有踢足球,故小方踢足球.本题选择A选项.点睛:本题主要考查学生的推理能力,意在考查学生的转化能力和计算求解能力.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 命题的否定是__________.【答案】【解析】分析:特称命题的否定是全称命题,即的否定为.详解:因为特称命题的否定是全称命题,所以命题的否定是.点睛:对全称(存在性)命题进行否定的两步操作:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定. 的否定为,的否定为.14. 若满足约束条件则的最大值为__________.【答案】6【解析】分析:首先绘制出可行域,然后结合目标函数的几何意义整理计算即可求得最终结果.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A坐标为:,据此可知目标函数的最大值为:.点睛:求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.15. 已知随机变量服从正态分布,若,,则.【答案】0.8【解析】分析:先根据正态分布曲线对称性求,再根据求结果.详解:因为正态分布曲线关于对称,所以,因此点睛:利用正态分布密度曲线的对称性研究相关概率问题,涉及的知识主要是正态曲线关于直线x=μ对称,及曲线与x轴之间的面积为1.16. 已知函数,且过原点的直线与曲线相切,若曲线与直线轴围成的封闭区域的面积为,则的值为__________.【答案】【解析】分析:先根据导数几何意义求切点以及切线方程,再根据定积分求封闭区域的面积,解得的值. 详解:设切点,因为,所以所以当时封闭区域的面积为因此,当时,同理可得,即点睛:利用定积分求曲边图形面积时,一定要找准积分上限、下限及被积函数.当图形的边界不同时,要分不同情况讨论.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 若,(Ⅰ)求证:;(Ⅱ)求证:;(Ⅲ)在(Ⅱ)中的不等式中,能否找到一个代数式,满足所求式?若能,请直接写出该代数式;若不能,请说明理由.【答案】(1)见解析;(2)见解析;(3)见解析.【解析】分析:(Ⅰ)由题意结合绝对值不等式的性质即可证得题中的结论;(Ⅱ)由不等式的性质可证得.则.(Ⅲ)利用放缩法可给出结论:,或.详解:(Ⅰ)因为,且,所以,所以(Ⅱ)因为,所以.又因为,所以由同向不等式的相加性可将以上两式相加得.所以.所以.(i)因为,所以由同向不等式的相加性可将以上两式相加得.所以(ii)所以由两边都是正数的同向不等式的相乘性可将以上两不等式(i)(ii)相乘得.(Ⅲ)因为,,所以,或.(只要写出其中一个即可)点睛:本题主要考查不等式的性质,放缩法及其应用等知识,意在考查学生的转化能力和计算求解能力. 18. 如图,底面,四边形是正方形,.(Ⅰ)证明:平面平面;(Ⅱ)求直线与平面所成角的余弦值.【答案】(1)见解析;(2)直线与平面所成角的余弦值为.【解析】分析:(1)先根据线面平行判定定理得平面,平面.,再根据面面平行判定定理得结论,(2)先根据条件建立空间直角坐标系,设立各点坐标,根据方程组解得平面的一个法向量,利用向量数量积求得向量夹角,最后根据线面角与向量夹角互余关系得结果.详解:(Ⅰ)因为,平面,平面,所以平面.同理可得,平面.又,所以平面平面.(Ⅱ)(向量法)以为坐标原点,所在的直线分别为轴,轴,轴建立如下图所示的空间直角坐标系,由已知得,点,,,.所以,.易证平面,则平面的一个法向量为.设直线与平面所成角为,则。