一元二次方程应用提高 - 副本
一元二次方程的应用(提高篇)教学内容
数学专题一元二次方程的应用(提高篇)1.某书店老板去批发市场购买某种图书,1.第一次购用100元,按该书定价2.8元现售,并快售完.由于该书畅销,第二次购书时,每本的批发价已比第一次高0.5元,用去了150元,所购数量比第一次多10本.当这批书售出45时,出现滞销,便以定价的5折售完剩余的图书,试问该老板第二次售书是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?,若赚钱,赚多少?2.随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2006年底拥有家庭轿车64辆,2008年底家庭轿车的拥有量达到100辆. (1)若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2009年底家庭轿车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.3.2009年4月7日,国务院公布了《医药卫生体制改革近期重点实施方案(2009~2011年》,某市政府决定2009年投入6000万元用于改善医疗卫生服务,比2008年增加了1250万元.投入资金的服务对象包括“需方”(患者等)和“供方”(医疗卫生机构等),预计2009年投入“需方”的资金将比2008年提高30%,投入“供方”的资金将比2008年提高20%.(1)该市政府2008年投入改善医疗卫生服务的资金是多少万元?(2)该市政府2009年投入“需方”和“供方”的资金各多少万元?(3)该市政府预计2011年将有7260万元投入改善医疗卫生服务,若从2009~2011年每年的资金投入按相同的增长率递增,求2009~2011年的年增长率4.有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.依此类推,即每多买一台则所买各台单价均再减20元,但最低不能低于每台440元;乙公司一律按原售价的75%促销.某单位需购买一批图形计算器:(1)若此单位需购买6台图形计算器,应去哪家公司购买花费较少?(2)若此单位恰好花费7 500元,在同一家公司购买了一定数量的图形计算器,请问是在哪家公司购买的,数量是多少?5. 随着城市人口的不断增加,美化城市、改善人们的居住环境,已成为城市建设的一项重要内容,•某城市到2006年要将该城市的绿地面积在2004年的基础上增加44%,同时,要求该城市到2006年人均绿地的占有量在2004年基础上增加21%,•为保证实验这个目标,这两年该城市人口的平均增长率应控制在多少以内?(精确1%)6.国家为了加强对香烟产销的宏观管理,对销售香烟实行征收附加税政策. 现在知道某种品牌的香烟每条的市场价格为70元,不加收附加税时, 每年产销100万条,若国家征收附加税,每销售100元征税x元(叫做税率x%), 则每年的产销量将减少10x万条.要使每年对此项经营所收取附加税金为168万元,并使香烟的产销量得到宏观控制,年产销量不超过50万条,问税率应确定为多少?7. 随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭,成为居民消费新的增长点.据某市交通部门统计,2007年底全市汽车拥有量为180万辆,而截止到2009年底,全市的汽车拥有量已达216万辆.(1)求2007年底至2009年底该市汽车拥有量的年平均增长率;(2)为保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2011年底全市汽车拥有量不超过231.96万辆;另据估计,从2010年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%.假定每年新增汽车数量相同,请你计算出该市每年新增汽车数量最多不能超过多少万辆.8. 某商场试销一种成本为60元/件的T 恤,规定试销期间单价不低于成本单价,又获利不得高于40%,经试销发现,销售量y (件)与销售单价x (元/件)符合一次函数y kx b =+,且70x =时,50y = ;80x =时,40y =;(1)写出销售单价x 的取值范围;(2)求出一次函数的解析式;(3)若该商场获得利润为w 元,试写出利润w 与销售单价x 之间的关系式,销售单价定为多少时,商场可获得最大利润,最大利润是多少? 9. 如图所示,我海军基地位于A 处,在其正南方向200海里处有一重要目标B ,在B 的正东方向200海里处有一重要目标C ,小岛D 恰好位于AC 的中点,岛上有一补给码头;小岛F 位于BC 上且恰好处于小岛D 的正南方向,一艘军舰从A 出发,经B 到C 匀速巡航.一艘补给船同时从D 出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.(1)小岛D 和小岛F 相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B 到C 的途中与补给船相遇于E 处,那么相遇时补给船航行了多少海里?(精确到0.1海里)10.财政预计,三峡工程投资需2039亿元,由静态投资901亿元,贷款利息成本a 亿元,物价上涨价差(a +360)亿元三部分组成。
一元二次方程的解法(十字交叉法)及韦达定理 - 副本 - 副本
(2)已知方程 2 x 4 x 3 0 的两个根分别是 x1 , x2 ,不解方程直接完成下列各小题
2
1
① x1 x2
, x1.x2
。 ②
1 1 x1 x2
③
3x1 x1 x2 3x2
④ x12 x22
四、达标检测: (1)方程 x x 6 0 的根是
课 题
一元二次方程的解法(十字交叉法)及韦达定理 1. 学习用十字交叉法解形如 x 2 ( p q) x pq 0 的一元二次方程 2. 掌 握 由 一 元 二 次 方 程 的 求 根 公 式 推 出 一 元 二 次 方 程
学习标
ax2 bx c 0(a 0) 中的两个根 x1 , x 2 的和(积)与它的系数之间的关
系(韦达定理)
重点:1.掌握用十字交叉法解形如 x 2 ( p q) x pq 0 的一元二次方程 重点难点 2.一元二次方程 ax2 bx c 0(a 0) 的两个根 x1 , x 2 的和(积)与它的系数 之间的关系(韦达定理)及运用 学习过程: 一、课前检测 分解因式① x 7 x 12 =
2
(2)方程 x x 6 0 的解是
2
( 3 )若 x1 , x2 是方程 x 3x 5 =0 的两个根 x1 x2
2
, x1.x2
。
1 1 x1 x2
2
, ( x1 1)( x2 1)
(4)知方程 2 x kx 6 0 的一个根是—3,求方程的另一个根及 k 的值
2
。② m 2m 15 =
2
二 、合作探究: 3. 活动一:结合上面两个自测题小组讨论形如 x 2 ( p q) x pq 的二次三项式怎样分 解因式,从而理解怎样解形如 x ( p q) x pq 0 的一元二次方程
一元二次方程、分式方程的解法及应用(能力提升)-中考数学基础知识复习和专题巩固提升训练含答案
考向07一元二次方程、分式方程的解法及应用—能力提升【知识梳理】考点一、一元二次方程 1.一元二次方程的定义只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程. 它的一般形式为20ax bx c ++=(a ≠0). 2.一元二次方程的解法(1)直接开平方法:把方程变成2x m =的形式,当m >0时,方程的解为x =;当m =0时,方程的解1,20x =;当m <0时,方程没有实数解.(2)配方法:通过配方把一元二次方程20ax bx c ++=变形为222424b b ac x a a -⎛⎫+=⎪⎝⎭的形式,再利用直接开平方法求得方程的解.(3)公式法:对于一元二次方程20ax bx c ++=,当240b ac -≥时,它的解为x =.(4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解.方法指导:直接开平方法和因式分解法是解一元二次方程的特殊方法,配方法和公式法是解一元二次方程的一般方法.3.一元二次方程根的判别式一元二次方程根的判别式为ac 4b 2-=∆.△>0⇔方程有两个不相等的实数根; △=0⇔方程有两个相等的实数根; △<0⇔方程没有实数根.上述由左边可推出右边,反过来也可由右边推出左边. 方法指导: △≥0⇔方程有实数根. 4.一元二次方程根与系数的关系如果一元二次方程0c bx ax 2=++(a ≠0)的两个根是21x x 、,那么acx x a b x x 2121=⋅-=+,.考点二、分式方程 1.分式方程的定义分母中含有未知数的有理方程,叫做分式方程. 方法指导:(1)分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量. (2)分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程.2.分式方程的解法 去分母法,换元法.3.解分式方程的一般步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程; (2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根.口诀:“一化二解三检验”. 方法指导:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.考点三、一元二次方程、分式方程的应用 1.应用问题中常用的数量关系及题型 (1)数字问题(包括日历中的数字规律)关键会表示一个两位数或三位数,对于日历中的数字问题关键是弄清日历中的数字规律.(2)体积变化问题关键是寻找其中的不变量作为等量关系.(3)打折销售问题其中的几个关系式:利润=售价-成本价(进价),利润率=利润成本价×100%.明确这几个关系式是解决这类问题的关键.(4)关于两个或多个未知量的问题重点是寻找到多个等量关系,能够设出未知数,并且能够根据所设的未知数列出方程.(5)行程问题对于相遇问题和追及问题是列方程解应用题的重点问题,也是易出错的问题,一定要分析其中的特点,同向而行一般是追及问题,相向而行一般是相遇问题.注意:追及和相遇的综合题目,要分析出哪一部分是追及,哪一部分是相遇.(6)和、差、倍、分问题增长量=原有量×增长率;现有量=原有量+增长量;现有量=原有量-降低量.2.解应用题的步骤(1)分析题意,找到题中未知数和题给条件的相等关系;(2)设未知数,并用所设的未知数的代数式表示其余的未知数;(3)找出相等关系,并用它列出方程;(4)解方程求出题中未知数的值;(5)检验所求的答数是否符合题意,并做答.方法指导:方程的思想,转化(化归)思想,整体代入,消元思想,分解降次思想,配方思想,数形结合的思想用数学表达式表示与数量有关的语句的数学思想.注意:①设列必须统一,即设的未知量要与方程中出现的未知量相同;②未知数设出后不要漏棹单位;③列方程时,两边单位要统一;④求出解后要双检,既检验是否适合方程,还要检验是否符合题意.【能力提升训练】一、选择题1. 已知方程20x bx a ++=有一个根是(0)a a -≠,则下列代数式的值恒为常数的是( ) A .ab B .abC .a b +D .a b - 2.方程x 2+ax+1=0和x 2﹣x ﹣a=0有一个公共根,则a 的值是( ) A .0B .1C .2D .33.若方程2310x x --=的两根为1x 、2x ,则1211x x +的值为( ). A .3B .-3C .13 D .13- 4.如果关于x 的方程2313x mx m -=--有增根,则的值等于()A. -3B. -2C. -1D. 35.如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为( )A .1米B .1.5米C .2米D .2.5米6.关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( ) A .6B .7C .8D .9二、填空题 7.方程﹣1=的解为8.关于x 的一元二次方程2(1)10m x mx --+=有两个不相等的实数根,则m 的取值范围是 .9.已知x 1=-1是方程052=-+mx x 的一个根,则m 的值为 ;方程的另一根x 2= .10.某市政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价,由每盒72元调至56元.若每次平均降价的百分率为x ,由题意可列方程为_____ ___.11.若关于x的方程 11-+x ax -1=0有增根,则a的值为 . 12.当 k 的值是 时,方程 1-x x =xx xk --22 只有一个实数根.三、解答题13.解下列分式方程: (1);(2).14. 若关于x 的方程 12-x k - xx x -2 =x kx 1+ 只有一个解,试求k值与方程的解.15.某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2010年,A 市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2012年该市计划投资“改水工程”1176万元.(1)求A 市投资“改水工程”的年平均增长率;(2)从2010年到2012年,A 市三年共投资“改水工程”多少万元?16. 从甲、乙两题中选做一题,如果两题都做,只以甲题计分.题甲:若关于x 的一元二次方程012)2(222=++--k x k x 有实数根βα、. (1)求实数k 的取值范围; (2)设kt βα+=,求t 的最小值.题乙:如图(16),在矩形ABCD 中,P 是BC 边上一点,连结DP 并延长,交AB 的延长线于点Q .(1)若31=PC BP ,求AQ AB 的值;(2)若点P 为BC 边上的任意一点,求证1==BQABBP BC .我选做的是_______题.答案与解析一、选择题 1.【答案】D ;【解析】将-a 代入20x bx a ++=中,则a 2-ab+a=0,则a -b+1=0∴a-b=-1(恒为常数).2.【答案】C ;【解析】∵方程x 2+ax+1=0和x 2﹣x ﹣a=0有一个公共根, ∴(a+1)x+a+1=0, 解得x=﹣1, 当x=﹣1时, a=2,故选C . 3.【答案】B ; 【解析】121212113=31x x x x x x ++==--. 4.【答案】B ;【解析】把方程两边都乘以x x m x m -=--∴=+3235,得.若方程有增根,则x=3,即5+m=3,m=-2. 5.【答案】A ;【解析】如图将路平移,设路宽为x 米,可列方程为:(30-x )(20-x )=551, 解得:x=1或者x=49(舍去).6.【答案】C ;【解析】由题意得方程有实数根,则分两种情况, 当a -6=0时,a=6,此时x=34, 当a -6≠0时,△=b 2-4ac≥0,解得a≤263, 综合两种情况得整数a 的最大值是8.二、填空题 7.【答案】x=;【解析】方程的两边同乘2(3x ﹣1),得4﹣2(3x ﹣1)=3,解得x=. 检验:把x=代入2(3x ﹣1)=1≠0. ∴原方程的解为:x=. 8.【答案】2m ≠且1m ≠; 【解析】 △>0且m-1≠0. 9.【答案】m=-4;x 2=5;【解析】由题意得:05)1()1(2=-⨯-+-m 解得m=-4 当m=-4时,方程为0542=--x x 解得:x 1=-1 x 2=5 所以方程的另一根x 2=5. 10.【答案】272(1)56x -=;【解析】平均降低率公式为(1)na xb -= (a 为原来数,x 为平均降低率,n 为降低次数,b 为降低后的量.)11.【答案】-1;【解析】原方程可化为:(a-1)x=-2. ∵分式方程有增根, ∴ x=1 把x=1代入整式方程有a=-1. 12.【答案】 -1,0,3;【解析】原方程可化为:x2+2x-k=0当⊿=22+4k=0,即k=-1时,x1=x2=-1当⊿=22+4k>0,即k>-1时,方程有两个不等实数根.由题意可知: ① 当增根x=0时,代入二次方程有k =0,方程唯一解为x=-2;② 当增根x=1时,代入二次方程有k =3,方程唯一解为x=-3. 所以k=-1,0,3. 三、解答题 13.【答案与解析】解:(1)方程的两边同乘(x+1)(x ﹣1),得2﹣(x+1)=(x+1)(x ﹣1), 解得x=﹣2或1.检验:把x=1代入(x+1)(x ﹣1)=0. x=1是原方程的增根,把x=﹣2代入(x+1)(x ﹣1)=3≠0. ∴原方程的解为:x=﹣2. (2)方程的两边同乘x 2,得 2(x+1)2+x (x+1)﹣6x 2=0, 解得x=﹣或2.检验:把x=﹣代入x 2=≠0. 把x=2代入x 2=4≠0.∴原方程的解为:x 1=﹣,x 2=2. 14.【答案与解析】原方程可化为:kx2-(3k-2)x-1=0 当k=0时,原方程有唯一解 x=21当k≠0时,⊿=(3k -2)2+4k=5k 2+4(k -1)2>0,知方程必有两个不等实数根. 此时由题意可知:一元二次方程两根,一根是分式方程的根,另一根是分式方程的增根0或1. 当x=0时,不符合舍去;当x=1时,代入得k=21,分式方程的解是x=-2. 所以当k=0时,原方程有唯一解x=21;当k=21时,原方程有唯一解x=-2.15.【答案与解析】(1)设A 市投资“改水工程”年平均增长率是x ,则 2600(1)1176x +=.解之,得0.4x =或 2.4x =-(不合题意,舍去). 所以,A 市投资“改水工程”年平均增长率为40%. (2)600+600×1.4+1176=2616(万元).A 市三年共投资“改水工程”2616万元.16.【答案与解析】题甲:(1)∵一元二次方程012)2(222=++--k x k x 有实数根βα、, ∴0≥∆,即0)12(4)2(422≥---k k ,解得2-≤k .(2)由根与系数的关系得:k k 24)]2(2[-=---=+βα, ∴2424-=-=+=kk k k t βα, ∵2-≤k ,∴0242<-≤-k, ∴2244-<-≤-k , 即t 的最小值为-4.题乙:(1)四边形ABCD 为矩形,∵AB =CD ,AB ∥DC ,∴△DPC ∽△QPB , ∴31==CP PB DC BQ , ∴BQ DC 3=, ∴4333=+=BQ BQ BQ BQ AB . (2)证明:由△DPC ∽△QPB , 得BPPC BQ DC =, ∴BP PC BQ AB =,11=-+=-+=-BQ AB BP PC BQ AB BP PC BP BQ AB BP BC .。
一元二次方程综合提高题
一元二次方程根的综合提高一、一元二次方程根的符号或根的分布例1 实数k 取何值时,一元二次方程042)32(2=-+--k x k x ,(1)有两个正根;(2)有两个异号根,并且正根的绝对值较大;(3)一根大于3,一根小于3.变式训练1.已知二次方程2(23)100x k x k --+-=的两根都是负数,求k 的取值范围?2.关于x 的二次方程)0(04)1(22≠=---m x m mx 的两根一个比1大,另一个比1小,求m 的取值范围?3. 已知关于x 的方程0141)1(22=+++-k x k x 的两根是一个矩形两邻边的长.(1)求k 的取值范围;(2)当矩形的对角线长为5时,求k 的值.二、求根公式法分解因式 分解因式⑴21664x x -+ ⑵ 2215x x -- ⑶2673x x -- ⑷ 221x x +-韦达定理:如果一元二次方程20(0)axbx c a ++=≠有两根12,x x ,那么两根之和12_____x x +=,两根之积:12____x x ⋅=由此可将多项式2axbx c ++分解因式:222121212()()()()b c ax bx c a x x a x x x x x x a aa x x x x ⎡⎤++=++=-++⎣⎦=--这种方法就叫求根公式法分解因式。
例2 分解因式: ⑴ 244x x +- ⑵ 2241x x +-变式训练:分解因式:⑴221x x -- ⑵ 2234x x -- ⑶ 2361x x --三、一元二次方程与三角形综合问题例3.已知关于x 的方程x 2-(2m -1)x +2(m -1)=0。
(1)求证:无论m 为何值,这个方程总有实数根。
(2)如果等腰三角形的一边a =8,另两边b 和c 恰好是这个方程的两个根,求这个三角形的周长。
变式训练1. 已知等腰△ABC 的一边a =8,另两边b 和c 恰好是方程:2120x kx -+=的两根,求△ABC 的周长。
第二章 一元二次函数、方程和不等式 本章总结 - 副本(1)
2. 已知2<a<3,-2<b<-1,求ab,a的取值范围。
要点二一元二次不等式的解法1. 已知函数y=4x+x(x>0,a>0)在x=3 时取得最小值,则a=________ 。
第二章章末复习专题要点一不等式的性质【例1】(2019·浙江高考)若a>0,b>0,则“a+b≤4”是“ab≤4”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【变式训练1】1 如果a,b,c满足c<b<a且ac<0,那么下列选项中不一定成立的是( )A.ab>ac B.c(b-a)>0C.cb2 <ab2 D.ac(a-c)<02【例2】 1.解关于x的不等式ax2 -(2a+3)x+6>0(a∈R) 。
【变式训练2】1. 已知常数a∈R,解关于x的不等式ax2-2x+a<0 。
2. (2021·四川德阳·高一期末) 若关于的不等式的解集为,则的取值范围为( )A.B.(0,1) C.D.(-1,0)例31. (2021·安徽省定远中学高一阶段练习) 已知关于的不等式的解集为,则不等式的解集是( ) A.或B.C.或D.2. (2022·江西宜春) 已知,q:方程有两个不相等的实数根,则p是q的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【变式训练3】1. (2022·江苏·高一 ) 已知关于x的不等式的解集是,则关于x的不等式的解集是 ( )2. (2022·广东·汕头市潮阳区河溪中学高一期中) (多选)已知关于x的不等式的解集为则( )B.不等式D.不等式基本不等式的应用a【变式训练4】已知实数x,y满足x2-xy+y2=1,则x+y的最大值为________ 。
初三-第6讲一元二次方程的应用(提高)-教案
第06讲 一元二次方程的应用温故知新解下列关于x 方程:(1)0542=-+x x (2) 05422=+-x x (3)x 2-2x=-1【解答】 :(1)(2)无实数解 (3)121==x x课堂导入1、初一学过一元一次方程的应用,实际上是据实际题意,设未知数,列出一元一次方程求解,从而得到问题的解决.但有的实际问题,列出的方程不是一元一次方程,是一元二次方程,这就是我们本节课所研究的问题-------一元二次方程的应用。
2、从列方程解应用题的方法来说,列出的一元二次方程解应用题与列出一元一次方程解应用题类似,都是根据问题中的相等关系列出方程、解方程、判断根是否适合题意、作出正确的答案.列出一元二次方程解应用问题3、列方程解应用问题的步骤:①审题;②找相等关系;③设未知数;④列方程;⑤解方程;⑥答。
一元二次方程数字问题1、两位数表示:十位数字 × 10 + 个位数字2、三位数字:百位数字 × 100 + 十位数字 × 10 +个位数字3、三个连续偶数:2,,2+-x x x 三个连续整数:1,,1+-x x x典例分析例1.有两个连续整数,它们的平方和为25,求这两个数。
举一反三1、一个两位数,十位数字与个位数字之和是6,把这个数的个位数字与十位数字对调后,所得的新两位数与原来的两位数的积是1008,求这个两位数.【解答】解:设原两位数的个位数字为x ,十位数字为(6-x ),根据题意可知,[10(6-x )+x][10x+(6-x )]=1008,即x2-6x+8=0,解得x1=2,x2=4,∴6-x=4,或6-x=2, ∴10(6-x )+x=42或10(6-x )+x=24, 答:这个两位数是42或24知识要点一1、矩形面积= 长 × 宽2、三角形面积 =2高底⨯ 3、梯形面积=21× (上底 + 下底)× 高 4、圆的面积= R R (2π为半径)典例分析例1.有一块长方形的铝皮,长24cm 、宽18cm ,在四角都截去相同的小正方形,折起来做成一个没盖的盒子,使底面积是原来面积的一半,求盒子的高. 【解答】解:设盒子高是xcm .列方程得(24-2x )•(18-2x )=0.5×24×18, 解得x=3或x=18(不合题意,舍去). 答:盒子高是3cm .例2.如图,利用一面墙(墙的长度不超过45m ),用80m 长的篱笆围一个矩形场地. ⑴怎样围才能使矩形场地的面积为750m2?⑵能否使所围矩形场地的面积为810m2,为什么?【解答】解:⑴设所围矩形ABCD 的长AB 为x 米,则宽AD 为米.依题意,得 即,解此方程,得∵墙的长度不超过45m ,∴不合题意,应舍去. 当时,一元二次方程的面积问题知识要点二所以,当所围矩形的长为30m、宽为25m时,能使矩形的面积为750m2.⑵不能.因为由得又∵=(-80)2-4×1×1620=-80<0,∴上述方程没有实数根.因此,不能使所围矩形场地的面积为810m2举一反三1、如图,在一块长为32m,宽为20m长方形的土地上修筑两条同样宽度的道路,余下部分作为耕地要使耕地的面积是540m2,求小路宽的宽度.【解答】解:设道路的宽为x米.依题意得:(32-x)(20-x)=540,解之得x1=2,x2=50(不合题意舍去).答:道路宽为2m.2.如图,在△ABC中,∠B=90°,AB=6厘米,BC=8厘米.点P从A点开始沿AB边向点B以1厘米/秒的速度移动(到达点B即停止运动),点Q从B点开始沿BC边向点C以2厘米/秒的速度移动(到达点C即停止运动).(1)如果P、Q分别从A、B两点同时出发,经过几秒钟,△PBQ的面积等于△ABC的三分之一?(2)如果P、Q两点分别从A、B两点同时出发,而且动点P从A点出发,沿AB移动(到达点B即停止运动),动点Q从B出发,沿BC移动(到达点C即停止运动),几秒钟后,P、Q相距6厘米?【解答】解:(1)设t秒后,△PBQ的面积等于是△ABC的三分之一,根据题意得:×2t(6﹣t)=××6×8,解得:t=2或4.答:2秒或4秒后,△PBQ的面积等于是△ABC的三分之一.(2)设x秒时,P、Q相距6厘米,根据题意得:(6﹣x)2+(2x)2=36,解得:x=0(舍去)或x=.答:秒时,P、Q相距6厘米3.如图,有长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC上用其他材料造了宽为1米的两个小门.(1)设花圃的宽AB为x米,请你用含x的代数式表示BC的长(24﹣3x)米;(2)若此时花圃的面积刚好为45m2,求此时花圃的宽.【解答】解:(1)BC=22+2﹣3x=24﹣3x.故答案为(24﹣3x);(2)x(24﹣3x)=45,化简得:x2﹣8x+15=0,解得:x1=5,x2=3.当x=5时,24﹣3x=9<14,符合要求;当x=3时,24﹣3x=15>14,不符合要求,舍去.答:花圃的宽为5米一元二次方程的利润问题1、每件利润=售价 - 进价 总利润=每件利润 × 销售量 利润率 =%100⨯进价每件利润利润 = 进价 × 利润率 售价 = 进价 × 利润率)+1(典例分析例1.某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元? (2)要使商场平均每天赢利最多,请你帮助设计方案. 解:设每天利润为w 元,每件衬衫降价x 元,根据题意得w=(40-x )(20+2x )=-2x2+60x+800=-2(x-15)2+1250 (1)当w=1200时,-2x2+60x+800=1200, 解之得x1=10,x2=20.根据题意要尽快减少库存,所以应降价20元. 答:每件衬衫应降价20元.(2)解:商场每天盈利(40-x )(20+2x )=-2(x-15)2+1250. 当x=15时,商场盈利最多,共1250元. 答:每件衬衫降价15元时,商场平均每天盈利最多.知识要点三举一反三1.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台,商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?【解答】解:设每台冰箱应降价x元 ,那么(8+×4) ×(2400-x-2000)=4800 所以(x - 200)(x - 100)=0x = 100或200所以每台冰箱应降价100或200元.2.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价O.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利2O0元,应将每千克小型西瓜的售价降低多少元?【解答】解:设应将每千克小型西瓜的售价降低x元根据题意,得:解得:=0.2,=0.3答:应将每千克小型西瓜的售价降低0.2或0.3元。
一元二次方程(能力提升)(原卷版)
专题2.1 一元二次方程(能力提升)(原卷版)一、选择题。
1.(2021秋•龙沙区期末)若m是方程x2﹣x﹣1=0的一个根,则m2﹣m+2020的值为()A.2019B.2020C.2021D.20222.(2022春•霍邱县期末)将一元二次方程5x2﹣1=4x化成一般形式后,二次项的系数和一次项系数分别是()A.5,﹣1B.5,4C.5,﹣4D.5,13.(2021秋•揭阳期末)若一元二次方程ax2+bx+c=0有一个根为﹣1,则下列等式成立的是()A.a+b+c=1B.a﹣b+c=0C.a+b+c=0D.a﹣b+c=1 4.(2022春•惠民县期末)若关于x的一元二次方程ax2+bx+5=0(a≠0)的一个解是x=1,则2021﹣a﹣b的值是()A.2016B.2020C.2025D.20265.(2021秋•长汀县校级月考)若m是方程x2﹣x﹣1=0的一个根,则2m2﹣2m+2020的值为()A.2019B.2020C.2021D.2022 6.(2021•阳东区模拟)若方程x2﹣4x+c=0的一个实数根是3,则c的值是()A.c=﹣3B.c=3C.c=5D.c=0 7.(2021•宣州区校级自主招生)已知三个关于x的一元二次方程ax2+bx+c=0,bx2+cx+a=0,cx2+ax+b=0恰有一个公共实数根,则的值为()A.0B.1C.2D.38.(2021秋•长安区校级期中)下列方程中,属于一元二次方程的是()A.﹣3x+2=0B.2x2+y﹣1=0C.2x﹣3y+1=0D.x2﹣x﹣3=09.(2021•江油市模拟)关于x的方程(m﹣1)x2+x+m2+2m﹣3=0的一个根是0,则m的值是()A.7B.﹣3C.1或﹣3D.010.(2022春•淄川区期中)若关于x的一元二次方程ax2+bx+5=0(a≠0)有一根为2022,则方程a(x+1)2+b(x+1)=﹣5必有根为()A.2022B.2020C.2019D.2021二、填空题。
一元二次方程提高篇教案设计
本教案的目标学习者为初中或高中学生及初学者。
课程主要围绕着一元二次方程展开,旨在帮助学生理解如何求解、绘制和分析一元二次方程。
本教案包括了以下几个部分:一. 教学目标1. 理解一元二次方程的定义和基本概念;2. 掌握一元二次方程的求解方法;3. 能够使用一元二次方程绘制和分析图像;4. 熟练掌握一元二次方程在实际问题中的应用。
二. 教学内容1. 一元二次方程的定义和基本概念;2. 一元二次方程的求解;3. 一元二次方程的图像绘制和分析;4. 一元二次方程在实际问题中的应用。
三. 教学方法本课程采用“教学与实践相结合”的教学方法,以问题为中心,让学生通过实践的方式来理解知识点。
具体包括:1. 课堂讲解:对知识点进行详细解析,帮助学生建立系统的知识框架和认识模式;2. 英语阅读:通过对相关英文文献的阅读学习,让学生增强英语综合能力;3. 题目练习:多种类型的题目练习,从而深化知识并加深印象;4. 课外作业:进一步巩固知识点,拓展思维,创新思考,将所学知识运用到实际生活中。
四. 教学步骤本课程分次进行教学,具体步骤如下:1. 第一次课堂讲解(1)讲解一元二次方程的定义和基本概念,如何表示一元二次方程,它们的常见形式和性质。
(2)对齐次方程进行介绍,讲解如何通过齐次方程来推导含常数项的一元二次方程。
(3)讲解如何通过“配方法”和“求根公式”来求解一元二次方程。
2. 第二次课堂讲解(1)讲解一元二次方程的图像绘制和分析,如何根据一元二次方程方程找到它的图像。
(2)讲解如何通过图像分析一元二次方程的特殊性质。
(3)引导学生尝试不同的系数,观察不同系数下图像的形状和变化。
3. 第三次课堂讲解(1)讲解一元二次方程在实际问题中的应用,如何用一元二次方程来描述物理运动、经济问题和其他实际问题。
(2)通过解决实际问题的例子,让学生真正理解并掌握一元二次方程在实际问题中的应用。
(3)引导学生设计自己的问题,并将其表示为一元二次方程。
九年级数学一元二次方程(提升篇)(Word版 含解析)
(1)点C的坐标为;
(2)①设△BCD的面积为S,用含m的式子表示S,并写出m的取值范围;
②当S=6时,求点B的坐标(直接写出结果即可).
【答案】(1)C(8,8);(2)①S=0.5m2﹣4m(m>8),或S=﹣0.5m2+4m(0<m<8);②点B的坐标为(4+2 ,0)或(2,0)或(6,0).
(2)当点P运动到边BC上时,试求出使AP长为 时运动时间t的值;
(3)当点P运动到边AC上时,是否存在点P,使△CDP是等腰三角形?若存在,请求出运动时间t的值;若不存在,请说明理由.
【答案】(1) AB=3,BC=4;(2) t=4;(3)t为10秒或9.5秒或 秒时,△CDP是等腰三角形.
【解析】
3.为了满足师生的阅读需求,某校图书馆的藏书从2016年底到2018年底两年内由5万册增加到7.2万册.
(1)求这两年藏书的年均增长率;
(2)经统计知:中外古典名著的册数在2016年底仅占当时藏书总量的5.6%,在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书的年均增长率,那么到2018年底中外古典名著的册数占藏书总量的百分之几?
3= ,解得:m=6
则点C(6,3)
∵A(9,0)
将点A,C代入一次函数 得:
解得:k=-1,b=9
∴一次函数解析式为:y=-x+9PQ=
∵要使
∴0<
解得: 或
(3)在△PQC中,以PQ的长为底,则点C到PQ的距离为高,设为h
第(2)已知:PQ=
一元二次方程应用题(提高)
个性化教学辅导教案学科:数学 年级:九年级 任课教师: 授课时间: 2018 年 秋季班 第 周 教学课题一元二次方程应用题 教学目标 1、判别式的应用2、韦达定理的应用3、一元二次方程实际应用教学 重难点 重点:两个定理的应用,利用一元二次方程解应用题难点:一元二次方程应用题的解题思路教学过程【知识要点】1、一元二次方程的解法:① 直接开平方法② 配方法:用配方法解一元二次方程的一般步骤是:化、移、配、开③ 公式法:一元二次方程的求根公式是()042422≥--±-=ac b a ac b b x ④ 因式分解法(十字相乘法):(1)将方程右边化为0; (2)将方程左边分解为两个一次因式的乘积;2、一元二次方程()002≠=++a c bx ax 根的判别式:ac b 42-=∆ ①当0>∆时⇔方程有两个不相等的实数根;②当0=∆时⇔方程有两个相等的实数根; ③ 当0<∆时⇔方程没有实数根。
3、韦达定理(根与系数的关系):如果()002≠=++a c bx ax 的两根是21x x 、,则满足:ac x x a b x x =⋅-=+2121,。
注意:①韦达定理只在一元二次方程当中可用;②在一元二次方程中,方程必须有根,即0≥∆可用。
4、一般应用题的解题步骤(1)审题;(2)设未知数,包括直接设未知数和间接设未知数两种;(3)找等量关系列方程;(4)解方程;(5)判断解是否符合题意;(6)写出正确的解.【例题解析】例1、用恰当的方法解下列一元二次方程(1)x 2-10x +25=7; (2)x 2-5x +2=0;(3)(x+2)(x-1)=2-2x;(4)(2x+3)2=x2-6x+9.例2、(泰州中考)已知:关于x的方程x2+2mx+m2-1=0.(1)不解方程,判别方程的根的情况;(2)若方程有一个根为3,求m的值.例3、(南充中考)已知关于x的一元二次方程x2-22x+m=0有两个不相等的实数根.(1)求实数m的最大整数值;(2)在(1)的条件下,方程的实数根是x1,x2,求代数式x21+x22-x1x2的值.平均增长率问题例4、某电脑公司20015年的各项经营收入中,经营电脑配件的收入为600万元,占全年经营总收入的40%,该公司预计2017年经营总收入要达到2160万元,且计划从2015年到2017年,每年经营总收入的年增长率相同,问2016年预计经营总收入为多少万元?平均下降率问题例5、某产品原来每件600元,由于连续两次降价,现价为384元,如果两个降价的百分数相同,求每次降价百分之几?商品销售问题常用关系式:①售价—进价=利润②一件商品的利润×销售量=总利润③单价×销售量=销售额)例6、商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元,据此规律,请回答:(1)商场日销售量增加______件,每件商品盈利_____元(用含x的代数式表示);(2)在上述条件不变、销售正常的情况下,每件商品降价多少元时,商场日盈利可达到2 100元?【分析】售价/元成本/元利润/元销量/件【压轴题训练】1.在直角梯形OABC中,CB//OA,∠COA=90°,CB=3,OA=6,BA=35,分别以OA、OC边所在直线为x轴、y轴建立如图1所示的平面直角坐标系.(1)求点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD=5,E点横坐标为2,直线DE交x轴于点F.求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点,点N是直线OB上的一个动点,若使以A、C、M、N为顶点的四边形是平行四边形,试求出M、N的坐标。
九年级数学上册 一元二次方程(提升篇)(Word版 含解析)
九年级数学上册 一元二次方程(提升篇)(Word 版 含解析)一、初三数学 一元二次方程易错题压轴题(难)1.如图1,平面直角坐标系xOy 中,等腰ABC ∆的底边BC 在x 轴上,8BC =,顶点A在y 的正半轴上,2OA =,一动点E 从(3,0)出发,以每秒1个单位的速度沿CB 向左运动,到达OB 的中点停止.另一动点F 从点C 出发,以相同的速度沿CB 向左运动,到达点O 停止.已知点E 、F 同时出发,以EF 为边作正方形EFGH ,使正方形EFGH 和ABC ∆在BC 的同侧.设运动的时间为t 秒(0t ≥).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH 与ABC ∆重叠面积为S ,请问是存在t 值,使得9136S =?若存在,求出t 值;若不存在,请说明理由;(3)如图2,取AC 的中点D ,连结OD ,当点E 、F 开始运动时,点M 从点O 出发,以每秒25OD DC CD DO ---运动,到达点O 停止运动.请问在点E 的整个运动过程中,点M 可能在正方形EFGH 内(含边界)吗?如果可能,求出点M 在正方形EFGH 内(含边界)的时长;若不可能,请说明理由.【答案】(1)t=1;(2)存在,143t =,理由见解析;(3)可能,3455t ≤≤或4533t ≤≤或35t ≤≤理由见解析 【解析】 【分析】(1)用待定系数法求出直线AC 的解析式,根据题意用t 表示出点H 的坐标,代入求解即可;(2)根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,用待定系数法求出直线AB 的解析式,求出点H 落在BC 边上时的t 值,求出此时重叠面积为169﹤9136,进一步求出重叠面积关于t 的表达式,代入解t 的方程即可解得t 值;(3)由已知求得点D (2,1),AC=结合图形分情况讨论即可得出符合条件的时长. 【详解】(1)由题意,A(0,2),B(-4,0),C(4,0), 设直线AC 的函数解析式为y=kx+b , 将点A 、C 坐标代入,得:402k b b +=⎧⎨=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩, ∴直线AC 的函数解析式为122y x =-+, 当点H 落在AC 边上时,点E(3-t ,0),点H (3-t ,1), 将点H 代入122y x =-+,得: 11(3)22t =--+,解得:t=1;(2)存在,143t =,使得9136S =. 根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4, 设直线AB 的函数解析式为y=mx+n , 将点A 、B 坐标代入,得:402m n n -+=⎧⎨=⎩,解得:122m n ⎧=⎪⎨⎪=⎩, ∴直线AC 的函数解析式为122y x =+, 当t ﹥4时,点E (3-t ,0)点H (3-t ,t-3),G(0,t-3), 当点H 落在AB 边上时,将点H 代入122y x =+,得: 13(3)22t t -=-+,解得:133t =;此时重叠的面积为221316(3)(3)39t -=-=, ∵169﹤9136,∴133﹤t ﹤5, 如图1,设GH 交AB 于S ,EH 交AB 于T,将y=t-3代入122y x =+得:1322t x -=+, 解得:x=2t-10, ∴点S(2t-10,t-3),将x=3-t 代入122y x =+得:11(3)2(7)22y t t =-+=-, ∴点T 1(3,(7))2t t --, ∴AG=5-t ,SG=10-2t ,BE=7-t ,ET=1(7)2t -, 211(7)24BET S BE ET t ∆==-, 21(5)2ASGS AG SG t ∆==- 所以重叠面积S=AOB BET ASG S S S ∆∆∆--=4-21(7)4t --2(5)t -=2527133424t t -+-, 由2527133424t t -+-=9136得:1143t =,29215t =﹥5(舍去), ∴143t =;(3)可能,35≤t≤1或t=4. ∵点D 为AC 的中点,且OA=2,OC=4, ∴点D (2,1),AC=255 易知M 点在水平方向以每秒是4个单位的速度运动; 当0﹤t ﹤12时,M 在线段OD 上,H 未到达D 点,所以M 与正方形不相遇; 当12﹤t ﹤1时, 12+12÷(1+4)=35秒, ∴t =35时M 与正方形相遇,经过1÷(1+4)=15秒后,M 点不在正方行内部,则3455t ≤≤; 当t=1时,由(1)知,点F 运动到原E 点处,M 点到达C 处; 当1≤t≤2时,当t=1+1÷(4-1)=43秒时,点M 追上G 点,经过1÷(4-1)=13秒,点M 都在正方形EFGH 内(含边界),4533t ≤≤ 当t=2时,点M 运动返回到点O 处停止运动,当 t=3时,点E 运动返回到点O 处, 当 t=4时,点F 运动返回到点O 处, 当35t ≤≤时,点M 都在正方形EFGH 内(含边界), 综上,当3455t ≤≤或4533t ≤≤或35t ≤≤时,点M 可能在正方形EFGH 内(含边界).【点睛】本题考查了一次函数与几何图形的综合,涉及求一次函数的解析式、正方形的性质、直角三角形的性质、不规则图形的面积、解一元二次方程等知识,解答的关键是认真审题,提取相关信息,利用待定系数法、数形结合法等解题方法确定解题思路,进而推理、探究、发现和计算.2.如图,在平面直角坐标系中,()4,0A -,()0,4B ,四边形ABCO 为平行四边形,4,03D ⎛⎫- ⎪⎝⎭在x 轴上一定点,P 为x 轴上一动点,且点P 从原点O 出发,沿着x 轴正半轴方向以每秒43个单位长度运动,已知P 点运动时间为t . (1)点C 坐标为________,P 点坐标为________;(直接写出结果,可用t 表示) (2)当t 为何值时,BDP ∆为等腰三角形;(3)P 点在运动过程中,是否存在t ,使得ABD OBP ∠=∠,若存在,请求出t 的值,若不存在,请说明理由!【答案】(1)(4,4),(43t ,0);(2)1101-,4; (3)存在,3109t【解析】 【分析】(1)利用平行四边形的性质和根据P 点的运动速度,利用路程公式求解即可; (2)分三种情况:①当BD BP 时,②当BD DP =时,③当BP DP =时,分别讨论求解,即可得出结果; (3)过D 点作DF BP 交BP 于点F ,设OP x =,则可得224BPx ,43DPx ,453DF,利用1122BDPS DP BO BP DF ,即可求出OP 的长,利用路程公式可求得t 的值。
一元二次方程(提高) - 副本
《一元二次方程》全章复习与巩固—知识讲解(提高)【典型例题】类型二、一元二次方程的解法2.解下列一元二次方程. (1)224(3)25(2)0x x ---=; (2)225(3)9x x -=-;(3)2(21)4(21)40x x ++++=. 【答案与解析】(1)原方程可化为:22[2(3)][5(2)]0x x ---=, 即(2x-6)2-(5x-10)2=0,∴ (2x-6+5x-10)(2x-6-5x+10)=0, 即(7x-16)(-3x+4)=0,∴ 7x-16=0或-3x+4=0,∴ 1167x =,243x =. (2)25(3)(3)(3)x x x -=+-, 25(3)(3)(3)0x x x --+-=,∴ (x-3)[5(x-3)-(x+3)]=0,即(x-3)(4x-18)=0,∴ x-3=0或4x-18=0,∴ 13x =,292x =. (3)2(21)4(21)40x x ++++=,∴ 2(212)0x ++=.即2(23)0x +=,∴ 1232x x ==-. 【总结升华】 (1)方程左边可变形为22[2(3)][5(2)]x x ---,因此可用平方差公式分解因式;(2)中方程右边分解后为(x-3)(x+3),与左边中的(x-3)2有公共的因式, 可移项后提取公因式(x-3)后解题;(3)的左边具有完全平方公式的特点,可用公式变为(2x+1+2)2=0再求解.举一反三:【变式】解方程: (1)3x+15=-2x 2-10x ; (2)x 2-3x =(2-x)(x-3). 【答案】(1)移项,得3x+15+(2x 2+10x)=0,∴ 3(x+5)+2x(x+5)=0, 即(x+5)(3+2x)=0,∴ x+5=0或3+2x =0,∴15x=-,23 2x=-.(2)原方程可化为x(x-3)=(2-x)(x-3),移项,x(x-3)-(2-x)(x-3)=0,∴ (x-3)(2x-2)=0,∴ x-3=0或2x-2=0,∴13x=,21x=.类型三、一元二次方程根的判别式的应用类型四、一元二次方程的根与系数的关系类型五、一元二次方程的应用6.甲、乙两人分别骑车从A、B两地相向而行,甲先行1小时后,乙才出发,又经过4小时两人在途中的C地相遇,相遇后两人按原来的方向继续前进.乙在由C地到达A地的途中因故停了20分钟,结果乙由C地到达A地时比甲由C地到达B地还提前了40分钟,已知乙比甲每小时多行驶4千米,求甲、乙两人骑车的速度.【答案与解析】设甲的速度为x千米/时,则乙的速度为(x+4)千米/时.根据题意,得54(4)2040460 x xx x++=-+解之,得x1=16,x2=-2.经检验:x1=16,x2=-2都是原方程的根,但x2=-2不合题意,舍去.∴当x=16时,x+4=20.答:甲每小时行驶16千米,乙每小时行驶20千米.【总结升华】注意解题的格式,解分式方程应用题要双检验,即验根、符合题意.举一反三:【变式】某工程队在我市实施棚户区改造过程中承包了一项拆迁工程。
中考数学专题之一元二次方程提高篇
APB xO中考数学专题之一元二次方程提高篇(附答案)综合题1、已知抛物线 2363=++y x bx 经过A (2,0). 设顶点为点P ,与x 轴的另一交点为点B .(1)求b 的值和点P 、B 的坐标;(2)如图,在直线3=y x 上是否存在点D ,使四边形OPBD 为平行四边形?若存在,求出点D 的坐标;若不存在,请说明理由;(3)在x 轴下方的抛物线上是否存在点M ,使△AMP ≌△AMB ?如果存在, 试举例验证你的猜想;如果不存在,试说明理由.综合题2 如图所示,过点F (0,1)的直线y=kx+b 与抛物线y=14x 2交于M (x 1,y 1)和N (x 2,y 2)两点(其中x 1<0,x 2>0). (1)求b 的值. (2)求x 1•x 2的值.(3)分别过M ,N 作直线l :y=﹣1的垂线,垂足分别是 M 1和N 1.判断△M 1FN 1的形状,并证明你的结论.(4)对于过点F 的任意直线MN ,是否存在一条定直线 m ,使m 与以MN 为直径的圆相切.如果有,请求出这条直线m 的解析式;如果没有,请说明理由.答案与提示综合题1.【答案】解:(1)∵抛物线经过A (2,0), ∵,----------------------------------------------------------1分 解得, ∵抛物线的解析式为.--------------------------------2分 将抛物线配方,得, ∵顶点P 的坐标为(4,-2). ----------------------------------------------3分令y =0,得,解得. ---------------------4分∵点B 的坐标是(6,0). --------------------------------------------------------5分 (2)在直线 y=x 上存在点D ,使四边形OPBD 为平行四边形. ------------6分 理由如下:设直线PB 的解析式为+b ,把B (6,0),P (4,-2)分别代入,得解得∵直线PB 的解析式为.------------------------------------------------------7分 又∵直线OD 的解析式为,∵直线PB ∥OD .解法一:设直线OP 的解析式为,把P (4,-2)代入,得,解得36232++=bx x y 3624230++⨯=b 34-=b 3634232+-=x x y ()324232--=x y 3()0324232=--x 6,221==x x 3kx y =3⎪⎩⎪⎨⎧-=+=+.324,06b k b k ⎪⎩⎪⎨⎧-==.36,3b k 363-=x y x y 3=mx y =3324-=m.如果OP ∥BD ,那么四边形OPBD 为平行四边形. ---------------------------------------8分 设直线BD 的解析式为,将B (6,0)代入,得0=, ∵--------------------------------------------------------------------------------------9分∵直线BD 的解析式为,解方程组得 ∵D 点的坐标为(2,2)-----------------------------------------------------------------10分解法二:过点P 作x 轴的垂线,垂足为点C ,则PC =2,AC =2,由勾股定理,可得AP =4,PB =4,又∵AB =4,∵△APB 是等边三角形∵PBA=∵DOB=60°, 设点D 的坐标为(x ,3x ),得x =122=OD ,323=x ∵D 点的坐标为(2,2)(3)符合条件的点M 存在. ----------------------------------------------------------------11分 验证如下:过点P 作x 轴的垂线,垂足为点C ,则PC =2,AC =2,由勾股定理,可得AP =4,PB =4,-----------------------------------------------------12分又∵AB =4,∵△APB 是等边三角形,作∠PAB 的平分线交抛物线于M 点,连接PM ,BM ,由于AM =AM , ∠PAM =∠BAM ,AB =AP ,-------------------------------------------------------------------13分 ∵△AMP ≌△AMB.因此即存在这样的点M ,使△AMP ≌△AMB. -------------------------------------------14分综合题2.【答案】解:(1)把点F(0,1)坐标代入y=kx+b 中得b=1 .... ( 3分)23-=m n x y +-=23n +-3333=n n x y +-=23⎪⎩⎪⎨⎧+-==.3323,3x y x y ⎪⎩⎪⎨⎧==.32,2y x 3333APB xy OC M D。
一元二次方程提高培优
1、一元二次方程的一般式:20 (0)ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项。
2、一元二次方程的解法(1) 直接开平方法 (也可以使用因式分解法)①2(0)x a a =≥ 解为:x =②2()(0)x a b b +=≥ 解为:x a +=③2()(0)ax b c c +=≥ 解为:ax b +=④22()()()ax b cx d a c +=+≠ 解为:()ax b cx d +=±+(2) 因式分解法:提公因式分,平方公式,平方差,十字相乘法如:20(,0)()0ax bx a b x ax b +=≠⇔+= 此类方程适合用提供因此,而且其中一个根为0 290(3)(3)0x x x -=⇔+-= 230(3)0x x x x -=⇔-=3(21)5(21)0(35)(21)0x x x x x ---=⇔--=注意:提取整个因式的方法非常常见,解题的过程中一定要认真观察。
22694(3)4x x x -+=⇔-= 2241290(23)0x x x -+=⇔-=24120(6)(2)0x x x x --=⇔-+= 225120(23)(4)0x x x x +-=⇔-+=十字相乘法非常实用,注意在解题的过程中多考虑。
(3) 配方法①二次项的系数为“1”的时候:直接将一次项的系数除于2进行配方,如下所示:2220()()022P P x Px q x q ++=⇔+-+= 示例:22233310()()1022x x x -+=⇔--+= ②二次项的系数不为“1”的时候:先提取二次项的系数,之后的方法同上:22220 (0)()0 ()()022b b b ax bx c a a x x c a x a c a a a++=≠++=⇒-⇒++=g 222224()()2424b b b b ac a x c x a a a a -⇒+=-⇒+= 示例: 22221111210(4)10(2)2102222x x x x x --=⇔--=⇔--⨯-=备注:实际在解方程的过程中,一般也只是针对1a =±且b 为偶数时,才使用配方法,否则可以考虑使用公式法来更加简单。
九年级上册数学 一元二次方程(提升篇)(Word版 含解析)
九年级上册数学 一元二次方程(提升篇)(Word 版 含解析)一、初三数学 一元二次方程易错题压轴题(难)1.已知:在平面直角坐标系xoy 中,直线k y x b =+分别交x 、y 轴于点A 、B 两点,OA=5,∠OAB=60°.(1)如图1,求直线AB 的解析式;(2)如图2,点P 为直线AB 上一点,连接OP ,点D 在OA 延长线上,分别过点P 、D 作OA 、OP 的平行线,两平行线交于点C ,连接AC,设AD=m,△ABC 的面积为S,求S 与m 的函数关系式; (3)如图3,在(2)的条件下,在PA 上取点E ,使PE=AD, 连接EC,DE,若∠ECD=60°,四边形ADCE 的周长等于22,求S 的值.【答案】(1)直线解析式为353y x =-+(2)S=5325322m +;(3)203S =. 【解析】 【分析】(1)先求出点B 坐标,设AB 解析式为y kx b =+,把点A(5,0),B(0,3分别代入,利用待定系数法进行求解即可;(2)由题意可得四边形ODCP 是平行四边形,∠OAB=∠APC=60°,则有PC=OD=5+m ,∠PCH=30°,过点C 作CH ⊥AB ,在Rt △PCH 中 利用勾股定理可求得CH=)352m +,再由S=12AB •CH 代入相关数据进行整理即可得; (3) 先求得∠PEC=∠ADC ,设∠OPA=α,则∠OPC= ∠ADC= ∠PEC=60°+α,在BA 延长线上截取AK=AD ,连接OK ,DK ,DE ,证明△ADK 是等边三角形,继而证明△PEC ≌△DKO ,通过推导可得到OP=OK=CE=CD ,再证明△CDE 是等边三角形,可得CE=CD=DE ,连接OE ,证明△OPE ≌△EDA ,继而可得△OAE 是等边三角形,得到OA=AE=5 ,根据四边形ADCE 的周长等于22,可得ED=172m -,过点E 作EN ⊥OD 于点N ,则DN=52m +,由勾股定理得222EN DN DE +=, 可得关于m 的方程,解方程求得m 的值后即可求得答案.【详解】(1)在Rt △ABO 中OA=5,∠OAB=60°, ∴∠OBA=30°,AB=10 , 由勾股定理可得OB=53,∴B(0,53),设AB解析式为y kx b=+,把点A(5,0),B(0,53)分别代入,得0553k bb=+⎧⎪⎨=⎪⎩,∴353kb⎧=-⎪⎨=⎪⎩,∴直线解析式为353y x=-+;(2)∵CP//OD,OP//CD,∴四边形ODCP是平行四边形,∠OAB=∠APC=60°,∴PC=OD=5+m,∠PCH=30°,过点C作CH⊥AB,在Rt△PCH中 PH=52m+,由勾股定理得CH=()35m+,∴S=12AB•CH=135325310(5)2m m⨯⨯+=+;(3) ∵∠ECD=∠OAB=60°,∴∠EAD+∠ECD=180°,∠CEA+∠ADC=180°,∴∠PEC=∠ADC,设∠OPA=α,则∠OPC= ∠ADC= ∠PEC=60°+α,在BA延长线上截取AK=AD,连接OK,DK,DE,∵∠DAK=60°,∴△ADK是等边三角形,∴AD=DK=PE,∠ODK=∠APC,∵PC=OD,∴△PEC≌△DKO,∴OK=CE,∠OKD=∠PEC=∠OPC=60°+α,∠AKD= ∠APC=60°,∴∠OPK= ∠OKB,∴OP=OK=CE=CD,又∵∠ECD=60°,∴△CDE是等边三角形,∴CE=CD=DE ,连接OE ,∵ ∠ADE=∠APO ,DE=CD=OP , ∴△OPE ≌△EDA , ∴AE=OE , ∠OAE=60°, ∴△OAE 是等边三角形, ∴OA=AE=5 ,∵四边形ADCE 的周长等于22, ∴AD+2DE=17, ∴ED=172m-, 过点E 作EN ⊥OD 于点N ,则DN=52m +, 由勾股定理得222EN DN DE +=, 即22253517()()()22m m -++=, 解得13m =,221m =-(舍去), ∴S=153253+=203.【点睛】本题考查的四边形综合题,涉及了待定系数法,平行四边形的判定与性质,勾股定理,全等三角形的判定与性质,等边三角形的判定与性质,解一元二次方程等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.2.已知关于x 的一元二次方程kx 2﹣2(k +1)x +k ﹣1=0有两个不相等的实数根x 1,x 2. (1)求k 的取值范围; (2)是否存在实数k ,使1211x x -=1成立?若存在,请求出k 的值;若不存在,请说明理由.【答案】(1)k >﹣13且k ≠0;(2)存在,7k =±详见解析 【解析】 【分析】(1)根据一元二次方程的根的判别式,建立关于k 的不等式,求得k 的取值范围. (2)利用根与系数的关系,根据21121211,x x x x x x --=即可求出k 的值,看是否满足(1)中k 的取值范围,从而确定k 的值是否存在. 【详解】解:(1)由题意知,k ≠0且△=b 2﹣4ac >0 ∴b 2﹣4ac =[﹣2(k +1)]2﹣4k (k ﹣1)>0, 即4k 2+8k +4﹣4k 2+4k >0, ∴12k >﹣4 解得:k >13-且k ≠0(2)存在,且7k =±理由如下:∵12122(1)1,,k k x x x x k k+-+== 又有211212111,x x x x x x --== 2112,x x x x ∴-=22222121122,x x x x x x ∴-+=22121212()4(),x x x x x x ∴+-=2222441()(),k k k k k k+--∴-= 22(22)(44)(1),k k k k ∴+--=- 21430,k k ∴--= 1,14,3,a b c ==-=-24208,b ac ∴∆=-=7k ∴==± k >13-且k ≠0,172130.21,3-≈--> 17.3+-∴满足条件的k 值存在,且7k =± .【点睛】本题考查的是一元二次方程根的判别式,一元二次方程根与系数的关系,掌握以上知识是解题的关键.3.如图,在△ABC 中,∠B=90°,AB=12 cm,BC=16 cm.点 P从点 A 开始沿 AB 边向点 B 以1 cm/s的速度移动,点 Q从点 B开始沿 BC 边向点 C以 2 cm/s的速度移动.如果 P、 Q分别从 A、B同时出发,当一个点到达终点时,另一个点也随之停止运动.设运动的时间为 t 秒.(1)当 t 为何值时,△PBQ的面积等于 35cm2?(2)当 t 为何值时,PQ的长度等82cm?(3)若点 P,Q的速度保持不变,点 P在到达点 B后返回点 A,点 Q在到达点 C后返回点B,一个点停止,另一个点也随之停止.问:当 t为何值时,△PCQ的面积等于 32cm2?【答案】(1)t为5或7;(2)t为45或4;(3)t为4或16【解析】【分析】(1)分别用含t的代数式表示PB,BQ的长,利用面积公式列方程求解即可.(2)分别用含t的代数式表示PB,BQ的长,利用勾股定理列方程求解即可.(3)分段要清楚,,P,Q都没有返回,表示好PB,CQ的长,用面积公式列方程,,P不返回,Q返回,表示好PB,CQ的长,用面积公式列方程,,两点都返回,表示好PB,CQ的长,用面积公式列方程即可得到答案.【详解】解:(1),.根据三角形的面积公式,得,即,整理,得,解得,.故当为5或7时,的面积等于35.(2)根据勾股定理,得,整理,得,解得,.故当为或4时,的长度等于.(3)①当时,,,由题意,得,解得:,(舍去).②当时,,,由题意,得,次方程无解. ③当时,,,由题意,得, 解得:(舍去),.综上所述,当为4或16时,的面积等于. 【点睛】本题考查的是在运动过程中应用一元二次方程解决实际问题,建立正确情境下的几何模型是解决问题的关键,特别是最后一问,关键是弄懂分段的时间界点,才能正确的表示PB ,CQ 的长.4.已知关于x 的方程24832x nx n --=和()223220x n x n -+-+=,是否存在这样的n 值,使第一个方程的两个实数根的差的平方等于第二个方程的一整数根?若存在,请求出这样的n 值;若不存在,请说明理由?【答案】存在,n=0. 【解析】 【分析】在方程①中,由一元二次方程的根与系数的关系,用含n 的式子表示出两个实数根的差的平方,把方程②分解因式,建立方程求n ,要注意n 的值要使方程②的根是整数. 【详解】 若存在n 满足题意.设x1,x2是方程①的两个根,则x 1+x 2=2n ,x 1x 2=324n +-,所以(x 1-x 2)2=4n 2+3n+2, 由方程②得,(x+n-1)[x-2(n+1)]=0, ①若4n 2+3n+2=-n+1,解得n=-12,但1-n=32不是整数,舍.②若4n 2+3n+2=2(n+2),解得n=0或n=-14(舍), 综上所述,n=0.5.已知关于x 的一元二次方程x 2﹣x +a ﹣1=0. (1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值. 【答案】(1)123,4x x =-=(2)54a ≤(3)-4 【解析】 【分析】(1)根据一元二次方程的解法即可求出答案; (2)根据判别式即可求出a 的范围; (3)根据根与系数的关系即可求出答案. 【详解】(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0, (x +3)(x ﹣4)=0, x +3=0或x ﹣4=0, ∴x 1=﹣3,x 2=4;(2)∵方程有两个实数根12x x ,, ∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0, 解得54a ≤:; (3)∵12x x ,是方程的两个实数根,222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,. ∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦, 把22112211x x a x x a -=--=-,代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9, 解得:a =﹣4,a =2(舍去), 所以a 的值为﹣4.点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.6.如图,已知AB 是⊙O 的弦,半径OA=2,OA 和AB 的长度是关于x 的一元二次方程x 2﹣4x+a=0的两个实数根. (1)求弦AB 的长度; (2)计算S △AOB ;(3)⊙O 上一动点P 从A 点出发,沿逆时针方向运动一周,当S △POA =S △AOB 时,求P 点所经过的弧长(不考虑点P 与点B 重合的情形).【答案】(1)AB=2;(2)S △AOB 33)当S △POA =S △AOB 时,P 点所经过的弧长分别是43π、83π、103π. 【解析】试题分析:(1)OA 和AB 的长度是一元二次方程的根,所以利用一元二次方程的根与系数的关系即可求出AB 的长度;(2)作出△AOB 的高OC ,然后求出OC 的长度即可求出面积; (3)由题意知:两三角形有公共的底边,要面积相等,即高要相等. 试题解析:(1)由题意知:OA 和AB 的长度是x 2﹣4x+a=0的两个实数根, ∴OA+AB=﹣41-=4, ∵OA=2, ∴AB=2;(2)过点C 作OC⊥AB 于点C ,∵OA=AB=OB=2,∴△AOB 是等边三角形,∴AC=12AB=1, 在Rt△ACO 中,由勾股定理可得:3△AOB =12AB ﹒OC=1233; (3)延长AO 交⊙O 于点D ,由于△AOB 与△POA 有公共边OA , 当S △POA =S △AOB 时,∴△AOB 与△POA 高相等,由(2)可知:等边△AOB 3P 到直线OA 3,这样点共有3个 ①过点B 作BP 1∥OA 交⊙O 于点P 1,∴∠BOP 1=60°, ∴此时点P 经过的弧长为:1202180π⨯=43π, ②作点P 2,使得P 1与P 2关于直线OA 对称,∴∠P 2OD=60°, ∴此时点P 经过的弧长为:2402180π⨯=83π, ③作点P 3,使得B 与P 3关于直线OA 对称,∴∠P 3OP 2=60°, ∴此时P 经过的弧长为:3002180π⨯ =103π, 综上所述:当S △POA =S △AOB 时,P 点所经过的弧长分别是43π、83π、103π.【点睛】本题主要考查了一元二次方程与圆的综合知识.涉及等边三角形性质,圆的对称性等知识,能综合运用所学知识,选择恰当的方法进行解题是关键.7.如图,在平面直角坐标系中,正方形ABCD的顶点A在y轴正半轴上,顶点B在x轴正半轴上,OA、OB的长分别是一元二次方程x2﹣7x+12=0的两个根(OA>OB).(1)求点D的坐标.(2)求直线BC的解析式.(3)在直线BC上是否存在点P,使△PCD为等腰三角形?若存在,请直接写出点P的坐标;若不存在,说明理由.【答案】(1)D(4,7)(2)y=3944x (3)详见解析【解析】试题分析:(1)解一元二次方程求出OA、OB的长度,过点D作DE⊥y于点E,根据正方形的性质可得AD=AB,∠DAB=90°,然后求出∠ABO=∠DAE,然后利用“角角边”证明△DAE 和△ABO全等,根据全等三角形对应边相等可得DE=OA,AE=OB,再求出OE,然后写出点D的坐标即可;(2)过点C作CM⊥x轴于点M,同理求出点C的坐标,设直线BC的解析式为y=kx+b (k≠0,k、b为常数),然后利用待定系数法求一次函数解析式解答;(3)根据正方形的性质,点P与点B重合时,△PCD为等腰三角形;点P为点B关于点C 的对称点时,△PCD为等腰三角形,然后求解即可.试题解析:(1)x2﹣7x+12=0,解得x1=3,x2=4,∵OA>OB,∴OA=4,OB=3,过D作DE⊥y于点E,∵正方形ABCD,∴AD=AB,∠DAB=90°,∠DAE+∠OAB=90°,∠ABO+∠OAB=90°,∴∠ABO=∠DAE,∵DE⊥AE,∴∠AED=90°=∠AOB,∵DE⊥AE∴∠AED=90°=∠AOB,∴△DAE≌△ABO(AAS),∴DE=OA=4,AE=OB=3,∴OE=7,∴D(4,7);(2)过点C作CM⊥x轴于点M,同上可证得△BCM≌△ABO,∴CM=OB=3,BM=OA=4,∴OM=7,∴C(7,3),设直线BC的解析式为y=kx+b(k≠0,k、b为常数),代入B(3,0),C(7,3)得,,解得,∴y=x﹣;(3)存在.点P与点B重合时,P1(3,0),点P与点B关于点C对称时,P2(11,6).考点:1、解一元二次方程;2、正方形的性质;3、全等三角形的判定与性质;4、一次函数8.在等腰三角形△ABC 中,三边分别为a 、b 、c ,其中ɑ=4,若b 、c 是关于x 的方程x 2﹣(2k +1)x +4(k ﹣12)=0的两个实数根,求△ABC 的周长. 【答案】△ABC 的周长为10.【解析】【分析】分a 为腰长及底边长两种情况考虑:当a=4为腰长时,将x=4代入原方程可求出k 值,将k 值代入原方程可求出底边长,再利用三角形的周长公式可求出△ABC 的周长;当a=4为底边长时,由根的判别式△=0可求出k 值,将其代入原方程利用根与系数的关系可求出b+c 的值,由b+c=a 可得出此种情况不存在.综上即可得出结论.【详解】当a =4为腰长时,将x =4代入原方程,得:()214421402k k ⎛⎫-++-= ⎪⎝⎭ 解得:52k =当52k =时,原方程为x 2﹣6x +8=0, 解得:x 1=2,x 2=4,∴此时△ABC 的周长为4+4+2=10;当a =4为底长时,△=[﹣(2k +1)]2﹣4×1×4(k ﹣12)=(2k ﹣3)2=0, 解得:k =32, ∴b +c =2k +1=4.∵b +c =4=a ,∴此时,边长为a ,b ,c 的三条线段不能围成三角形.∴△ABC 的周长为10.【点睛】本题考查了根的判别式、根与系数的关系、一元二次方程的解、等腰三角形的性质以及三角形的三边关系,分a 为腰长及底边长两种情况考虑是解题的关键.9.已知:如图,在平面直角坐标系中,矩形AOBC 的顶点C 的坐标是(6,4),动点P 从点A 出发,以每秒1个单位的速度沿线段AC 运动,同时动点Q 从点B 出发,以每秒2个单位的速度沿线段BO 运动,当Q 到达O 点时,P ,Q 同时停止运动,运动时间是t 秒(t >0).(1)如图1,当时间t = 秒时,四边形APQO 是矩形;(2)如图2,在P ,Q 运动过程中,当PQ =5时,时间t 等于 秒; (3)如图3,当P ,Q 运动到图中位置时,将矩形沿PQ 折叠,点A ,O 的对应点分别是D ,E ,连接OP ,OE ,此时∠POE =45°,连接PE ,求直线OE 的函数表达式.【答案】(1)t =2;(2)1或3;(3)y =12x . 【解析】【分析】 先根据题意用t 表示AP 、BQ 、PC 、OQ 的长.(1)由四边形APQO 是矩形可得AP =OQ ,列得方程即可求出t .(2)过点P 作x 轴的垂线PH ,构造直角△PQH ,求得HQ 的值.由点H 、Q 位置不同分两种情况讨论用t 表示HQ ,即列得方程求出t .根据t 的取值范围考虑t 的合理性. (3)由轴对称性质,对称轴PQ 垂直平分对应点连线OC ,得OP =PE ,QE =OQ .由∠POE =45°可得△OPE 是等腰直角三角形,∠OPE =90°,即点E 在矩形AOBC 内部,无须分类讨论.要求点E 坐标故过点E 作x 轴垂线MN ,易证△MPE ≌△AOP ,由对应边相等可用t 表示EN ,QN .在直角△ENQ 中利用勾股定理为等量关系列方程即求出t .【详解】∵矩形AOBC 中,C (6,4)∴OB =AC =6,BC =OA =4依题意得:AP =t ,BQ =2t (0<t≤3)∴PC =AC ﹣AP =6﹣t ,OQ =OB ﹣BQ =6﹣2t(1)∵四边形APQO 是矩形∴AP =OQ∴t =6﹣2t解得:t =2故答案为2.(2)过点P 作PH ⊥x 轴于点H∴四边形APHO 是矩形∴PH =OA =4,OH =AP =t ,∠PHQ =90°∵PQ =5∴HQ 22PQ PH 3-=①如图1,若点H 在点Q 左侧,则HQ =OQ ﹣OH =6﹣3t∴6﹣3t =3解得:t =1②如图2,若点H 在点Q 右侧,则HQ =OH ﹣OQ =3t ﹣6∴3t﹣6=3解得:t=3故答案为1或3.(3)过点E作MN⊥x轴于点N,交AC于点M∴四边形AMNO是矩形∴MN=OA=4,ON=AM∵矩形沿PQ折叠,点A,O的对应点分别是D,E∴PQ垂直平分OE∴EQ=OQ=6﹣2t,PO=PE∵∠POE=45°∴∠PEO=∠POE=45°∴∠OPE=90°,点E在矩形AOBC内部∴∠APO+∠MPE=∠APO+∠AOP=90°∴∠MPE=∠AOP在△MPE与△AOP中PME OAP90MPE AOPPE0P︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴△MPE≌△AOP(AAS)∴PM=OA=4,ME=AP=t∴ON=AM=AP+PM=t+4,EN=MN﹣ME=4﹣t∴QN=ON﹣OQ=t+4﹣(6﹣2t)=3t﹣2∵在Rt△ENQ中,EN2+QN2=EQ2∴(4﹣t)2+(3t﹣2)2=(6﹣2t)2解得:t1=﹣2(舍去),t2=43∴AM=43+4=163,EN=4﹣43=83∴点E坐标为(163,83)∴直线OE的函数表达式为y=12x.【点睛】本题考查了矩形的判定和性质,勾股定理,轴对称的性质,全等三角形的判定和性质,解一元一次和一元二次方程.在动点题中要求运动时间t的值,常规做法是用t表示相关线段,再利用线段相等或勾股定理作为等量关系列方程求值.要注意根据t的取值范围考虑方程的解的合理性.10.如图,某农家拟用已有的长为8m的墙或墙的一部分为一边,其它三边用篱笆围成一个面积为12m2的矩形园子.设园子中平行于墙面的篱笆长为ym(其中y≥4),另两边的篱笆长分别为xm.(1)求y关于x的函数表达式,并求x的取值范围.(2)若仅用现有的11m长的篱笆,且恰好用完,请你帮助设计围制方案.【答案】(1)y=;1.5≤x≤3;(2)长为8m,宽为1.5m.【解析】【分析】(1)由矩形的面积公式可得出y关于x的函数表达式,结合4≤y≤8可求出x的取值范围;(2)由篱笆的长可得出y=(11﹣2x)m,利用矩形的面积公式结合矩形园子的面积,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】(1)∵矩形的面积为12m2,∴y=.∵4≤y≤8,∴1.5≤x≤3.(2)∵篱笆长11m,∴y=(11﹣2x)m.依题意,得:xy=12,即x(11﹣2x)=12,解得:x1=1.5,x2=4(舍去),∴y=11﹣2x=8.答:矩形园子的长为8m,宽为1.5m.【点睛】本题考查了一元二次方程的应用以及反比例函数的应用,解题的关键是:(1)利用矩形的面积公式,找出y关于x的函数表达式;(2)找准等量关系,正确列出一元二次方程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精锐教育学科教师辅导教案
学员编号: 年 级:8 课 时 数: 3 学员姓名:王嘉雯 辅导科目:数学 学科教师:陈 授课类型 C 一元二次方程的运用与
根与系数的关系
C 例题精讲、巩固
T 能力提升 星 级 ★★
★★★
★★★
教学目标
见各模块具体教学目标
教学内容
—— 一元二次方程运用与根与系数关系运用
1、建立一元二次方程的数学模型,解决如何全面地比较几个对象的变化状况.
2、掌握建立数学模型以解决如何全面地比较几个对象的变化状况的问题.
3、复习一种对象变化状况的解题过程,引入两种或两种以上对象的变化状况的解题方法.
某种出租车的收费标准是:起步价7元(即行驶距离不超过3km 都需付7元车费);超过3km 以后,
每增加1km ,加收2.4元(不足1km 按1km 计),某人乘出租车从甲地到乙地共支付车费19元,则此人从甲地到乙地经过的路程( ).
A .正好8km
B .最多8km
C .至少8km
D .正好7km
某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了
尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,•商场要想平均每天盈利120元,每张贺年卡应降价多少元? 设每张贺年卡应降价x 元,•则每件平均利润应是(0.3-x )元,总件数应是(500+0.1
x
×100)
春秋旅行社为吸引市民组团去某风景区旅游,推出了如下收费标准:
某单位组织员工去该风景区旅游,共支付给春秋旅行社旅游费用27000元,请问该单位这次共有多少员工去了该风景区旅游?
某工程队再我市实施棚户区改造过程中承包了一项拆迁工程。
原计划每天拆迁1250m2,因为准备工
作不足,第一天少拆迁了20%。
从第二天开始,该工程队加快了拆迁速度,第三天拆迁了1440m2。
求:(1)该工程队第一天拆迁的面积;
(2)若该工程队第二天、第三天每天的拆迁面积比前一天增加的百分数相同,求这个百分数。
如图,在ΔABC中,∠B=90º,AB=4cm,BC=10cm,点P从点B出发,沿BC以1cm/s的速度向点C 移动,问:经过多少秒后,点P到点A的距离的平方比点P到点B的距离的8倍大1?
如果人数不超过
25人,人均旅游
费用为1000元
如果人数超过25人,
每增加1人,人均旅
游费用降低20元,
但人均旅游费用不
得低于700元
在矩形ABCD 中,AB=6 cm ,BC=12 cm ,点P 从点A 沿边AB 向点B 以1cm/s 的速度移动;同时,点
Q 从点B 沿边BC 向点C 以2cm/s 的速度移动,问几秒后△PBQ 的面积等于8 cm 2?
自主探究题 如图(a )、(b )所示,在△ABC 中∠B=90°,AB=6cm ,BC=8cm ,点P 从点A •开始沿AB 边向点B 以1cm/s 的速度运动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度运动.
(1)如果P 、Q 分别从A 、B 同时出发,经过几秒钟,使S △PBQ =8cm 2.
(2)如果P 、Q 分别从A 、B 同时出发,并且P 到B 后又继续在BC 边上前进,Q 到C •后又继续在CA 边上前进,经过几秒钟,使△PCQ 的面积等于12.6cm 2.(友情提示:过点Q •作DQ ⊥CB ,垂足为D ,则:
DQ CQ
AB AC
) (a)
B
A
C
Q
P
(b)
B A
C
Q
D
P
思维拓展题
1、利用因式分解思想解下列问题:
(1)写出一个一元二次方程,使这个方程一个根为1,另一个根是2 的一元二次方程为:__________________。
(2)写出一个根为-2,另一个根x 满足20<<x 的一元二次方程为:__________________。
(3)写出一个一元二次方程,使这个方程的二次项系数为2,一个根为-3,另一个根x 满足31<<x 的一元二次方程为:__________________。
自主探究题
2、已知下列n (n 为正整数)个关于x 的一元二次方程:
()x x x x x x n x n n 222210120
2230310
-=<>+-=<>+-=<>+--=<>
……
(1)请解上述一元二次方程<1>、<2>、<3>、<n>;
(2)请你指出这n 个方程的根具有什么共同特点,写出一条即可。
3、(四川绵阳)已知x 1,x 2 是关于x 的方程(x -2)(x -m )=(p -2)(p -m )的两个实数根.
(1)求x 1,x 2 的值;
(2)若x 1,x 2 是某直角三角形的两直角边的长,问当实数m ,p 满足什么条件时,此直角三角形的面积最大?并求出其最大值.
思维拓展题
4、某玩具厂有4个车间,某周是质量检查周,现每个车间都原有a(a>0)个成品,且每个车间每天都生产b(b>0)个成品,质量科派出若干名检验员周一、•周二检验其中两个车间原有的和这两天生产的所有成品,然后,周三到周五检验另外两个车间原有的和本周生产的所有成品,假定每名检验员每天检验的成品数相同.
(1)这若干名检验员1天共检验多少个成品?(用含a、b的代数式表示)
(2)若一名检验员1天能检验4
5
b个成品,则质量科至少要派出多少名检验员?
5、某商场礼品柜台春节期间购进甲、乙两种贺年卡,甲种贺年卡平均每天可售出500张,每张盈利0.3元,乙种贺年卡平均每天可售出200张,每张盈利0.75元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果甲种贺年卡的售价每降价0.1元,那么商场平均每天可多售出100张;如果乙种贺年卡的售价每降价0.25元,•那么商场平均每天可多售出34•张.•如果商场要想每种贺年卡平均每天盈利120元,那么哪种贺年卡每张降价的绝对量大.
解:
6.(满分10分)把一边长为60cm的正方形硬纸板,进行适当的剪裁,折成一个长方体盒子(纸板的厚度忽略不计). (1)如图1,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.
①要使折成的长方体盒子的底面积为576cm2,那么剪掉的正方形的边长为多少?
②折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说
明理由.
(2)如图2,若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分正好折成一个有盖的长方体盒子.若折成的一个长方体盒子的表面积为2800cm2,求此时长方体盒子的长、宽、高(只需求出符合要求的一种情况).
(5分钟)
总结下本课涉及到的知识点:
1、
2、
3、
4、
别裁伪体亲风雅,转益多师是汝师!
教师:本专题你有哪些收获和感悟?。