初中数学阅读理解题
八年级数学阅读理解题集
八年级数学阅读理解题集题目1:小明和小红共有20块糖果,小明的糖果数是小红的两倍。
问小明有多少块糖果?解析:设小红有x块糖果,则小明有2x块糖果。
根据题意得到方程2x + x = 20,解方程可得x = 5,所以小明有10块糖果。
题目2:某商店折扣价售卖一款原价为200元的电脑,打折后降价为原价的80%。
小明购买了这款电脑,他需要支付多少钱?解析:原价为200元,打折后为200 * 80% = 160元。
所以小明需要支付160元。
题目3:一个边长为3cm的正方形,内部有一条延长线,将该正方形分成一大角和三小角。
大角的度数是小角度数的两倍,求小角的度数。
解析:设小角的度数为x度,则大角的度数为2x度。
根据正方形内角和为360度,得到方程2x + 3x = 360,解方程可得x = 60,所以小角的度数为60度。
题目4:甲、乙两个人同时从两个不同的地点出发,相向而行,两人相距100km。
甲的速度是乙的两倍,乙每小时行驶的距离是多少?解析:设乙每小时行驶的距离为x km,则甲每小时行驶的距离为2x km。
根据题意得到方程x + 2x = 100,解方程可得x = 25,所以乙每小时行驶25km。
题目5:一个数乘以4再减去5等于17,这个数是多少?解析:设这个数为x,则根据题意得到方程4x - 5 = 17,解方程可得x = 6,所以这个数是6。
题目6:某书店有300本书,其中3/5是数学书,其余是故事书。
故事书的数量是数学书的几分之一?解析:数学书的数量为3/5 * 300 = 180本。
故事书的数量为300 - 180 = 120本。
所以故事书的数量是数学书的1/180。
通过以上题目的解析,我们可以发现在数学中,应用数学知识解决问题是非常重要的。
希望大家能够掌握数学的基础知识,提高自己的数学能力。
初中数学题阅读理解类练习
初中数学题阅读理解类1.【实践探索】某校数学综合实践活动课上利用三角形纸片进行拼图探究活动.(1)某小组用一幅三角板按如图①摆放,则图中∠1=;(2)某小组利用两块大小不同等腰直角三角板△ABC和△EBD按图②摆放,点A、C、E在一直线上,连接CD交BE于点F,经小组同学探索发现CD⊥AE,请你证明此结论;【拓展研究】(3)课后,某小组自制了两块三角形纸片△ABC和△DEF(如图③),其中∠A=∠D,AB=DE,∠C+∠F=180°,他们把两块三角形纸片的AB与DE重叠在一起(A与D重合,B与E重合),C、F在AB两侧,过点B作BM⊥AC,垂足为M(如图④),经实践小组探索发现,线段AC、CM、AF之间存在某种数量关系,请你探究此关系并加以证明.2.新定义:对非负数“四舍五入”到个位的值记为[x]即当n为非负整数时,若n-21≤x<n+21,则[x]=n;如:[0]= [0.48]=0,[0.64]=[1.493]=1,[2]=2,[3.5]=[4.12]=4试解决下列问题:(1)填空①[π]=________;②若[x]=3,则实x的取值范围为________;(2)在关于x、y的方程组⎩⎨⎧=++=+22312yxmyx中,若未知数x、y满足2725<+≤yx,求[m]的值(3)当[2x-1]=4时,若y=4x-9,求y的最小值;(4)求满足[x]= x23的所有非负实数x的值,请直接写出答案.13.(2019•天水)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC ⊥BD.试证明:AB2+CD2=AD2+BC2;(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结CE、BG、GE.已知AC=4,AB=5,求GE的长.4.(2015•黔西南州)求不等式0)3)(12(>+-xx的解集.解:根据“同号两数相乘,积为正”可得:①⎩⎨⎧>+>-312xx或②⎩⎨⎧<+<-312xx.解①得21>x ;解②得3-<x.∴不等式的解集为21>x或3-<x.请你仿照上述方法解决下列问题:(1)求不等式0)1)(32(<+-xx的解集.(2)求不等式02131≥+-xx的解集.25.请阅读下列材料问题:如图1,在等边三角形ABC内有一点P,且PA=2, PB=,PC=1.求∠BPC 度数的大小和等边三角形ABC 的边长.李明同学的思路是:将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2).连接PP′,可得△P′P B是等边三角形,而△PP′A 又是直角三角形(由勾股定理的逆定理可证).所以∠AP′B=1500,而∠BPC=∠AP′B=150°.进而求出等边△ABC的边长为.问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=,BP=,PC=1.求∠BPC度数的大小和正方形ABCD的边长.6.(10分)(2020•天水)性质探究如图(1),在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC 的长度之比为.理解运用(1)若顶角为120°的等腰三角形的周长为4+2,则它的面积为;(2)如图(2),在四边形EFGH中,EF=EG=EH,在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=20,求线段MN的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为.(用含α的式子表示)375237.(2020•湘潭)阅读材料:三角形的三条中线必交于一点,这个交点称为三角形的重心.(1)特例感知:如图(一),已知边长为2的等边△ABC的重心为点O,求△OBC与△ABC的面积.(2)性质探究:如图(二),已知△ABC的重心为点O,请判断、是否都为定值?如果是,分别求出这两个定值;如果不是,请说明理由.(3)性质应用:如图(三),在正方形ABCD中,点E是CD的中点,连接BE交对角线AC于点M.①若正方形ABCD的边长为4,求EM的长度;②若S△CME =1,求正方形ABCD的面积.8.(2020•北京)小云在学习过程中遇到一个函数y=|x|(x2﹣x+1)(x≥﹣2).下面是小云对其探究的过程,请补充完整:(1)当﹣2≤x<0时,对于函数y1=|x|,即y1=﹣x,当﹣2≤x<0时,y1随x的增大而,且y1>0;对于函数y2=x2﹣x+1,当﹣2≤x<0时,y2随x的增大而,且y2>0;结合上述分析,进一步探究发现,对于函数y,当﹣2≤x<0时,y随x的增大而.(2)当x≥0时,对于函数y,当x≥0时,y与x的几组对应值如下表:x 0 1 2 3 …y 0 1 …结合上表,进一步探究发现,当x≥0时,y随x的增大而增大.在平面直角坐标系xOy中,画出当x≥0时的函数y的图象.(3)过点(0,m)(m>0)作平行于x轴的直线l,结合(1)(2)的分析,解决问题:若直线l与函数y=|x|(x2﹣x+1)(x≥﹣2)的图象有两个交点,则m的最大值是.49.(2020•深圳)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A 按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且,AE =4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.5610.【教材呈现】下面是某数学教材中的部分内容例4:如图,在△ABC 中,D 是BC 的中点,过点C 画直线CE , 使CE ∥AB,交AD 的延长线于点E,求证:AD=ED. 证明:∵CE ∥AB (已知)∴∠ABD=∠ECD, ∠BAD=∠CED(两直线平行,内错角相等)在△ABD 和△ECD 中,⎪⎩⎪⎨⎧=∠=∠∠=∠BD BD CED BAD ECD ABD∴△ABD ≌△ECD(AAS)∴AD=ED(全等三角形的对应边相等)【方法运用】在△ABC 中,AB=4,AC=2,点D 在边BC 上. (1)(2分)如图①,当点D 是BC 的中点时,AD 的取值范围是 ;(2) (6分)如图②,若BD:DC=1:2,求AD 的取值范围.【拓展提升】(4分)如图③,在△ABC 中,点D ,F 分别在边BC ,AB 上,线段AD ,CF 相交于点E ,且BD:DC=1:2,AE:ED=3:5,若△ACF 的面积为2,则△ABC 的面积为11.(2020•怀化)定义:对角线互相垂直且相等的四边形叫做垂等四边形.(1)下面四边形是垂等四边形的是 ;(填序号) ①平行四边形; ②矩形; ③菱形; ④正方形(2)图形判定:如图1,在四边形ABCD 中,AD ∥BC ,AC ⊥BD ,过点D 作BD 垂线交BC 的延长线于点E ,且∠DBC =45°,证明:四边形ABCD 是垂等四边形.(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形ABCD 内接于⊙O 中,∠BCD =60°.求⊙O 的半径.12.(2020•齐齐哈尔)综合与实践在线上教学中,教师和学生都学习到了新知识,掌握了许多新技能.例如教材八年级下册的数学活动﹣﹣折纸,就引起了许多同学的兴趣.在经历图形变换的过程中,进一步发展了同学们的空间观念,积累了数学活动经验.实践发现:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;再一次折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM,把纸片展平,连接AN,如图①.(1)折痕BM (填“是”或“不是”)线段AN的垂直平分线;请判断图中△ABN是什么特殊三角形?答:;进一步计算出∠MNE=°;(2)继续折叠纸片,使点A落在BC边上的点H处,并使折痕经过点B,得到折痕BG,把纸片展平,如图②,则∠GBN=°;拓展延伸:(3)如图③,折叠矩形纸片ABCD,使点A落在BC边上的点A'处,并且折痕交BC边于点T,交AD边于点S,把纸片展平,连接AA'交ST 于点O,连接AT.求证:四边形SATA'是菱形.解决问题:(4)如图④,矩形纸片ABCD中,AB=10,AD=26,折叠纸片,使点A落在BC边上的点A'处,并且折痕交AB边于点T,交AD边于点S,把纸片展平.同学们小组讨论后,得出线段AT的长度有4,5,7,9.请写出以上4个数值中你认为正确的数值.713.如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接BE,点M、N、P分别为DE、BE、BC的中点.(1)观察猜想.图1中,线段NM、NP的数量关系是,∠MNP的大小为.(2)探究证明把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP 面积的最大值.14.已知,在△ABC中,∠BAC=900,∠ABC=900,D为直线BC上一动点(不与点B、C重合),以AD为边作正方形ADEF,连接CF.(1)如图①,当点D在线段BC上时, BC,CD,CF三条线段之间的数量关系为;(2)如图②,当点D在线段BC的延长线上时,其他条件不变,请写出CF,BC,CD三条线段之间的关系,并证明;(3)如图③,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;求CF,BC,CD三条线段之间的关系.8参考答案1.2.93. 【解答】解:(1)四边形ABCD是垂美四边形.证明:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)猜想结论:垂美四边形的两组对边的平方和相等.如图2,已知四边形ABCD中,AC⊥BD,垂足为E,求证:AD2+BC2=AB2+CD2证明:∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2;故答案为:AD2+BC2=AB2+CD2.(3)连接CG、BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC=3,CG=4,BE=5,∴GE2=CG2+BE2﹣CB2=73,∴GE=.10114.(1)根据“异号两数相乘,积为负”可得 ①⎩⎨⎧<+>-01032x x 或 ② ⎩⎨⎧>+<-01032x x ……………………………(3分)解不等式组①得无解,解不等式组②得231<<-x ………………………………(4分) ∴原不等式的解集为231<<-x ……………………………………………(6分) (2)依题意可得①⎪⎩⎪⎨⎧>+≥-020131x x 或 ②⎪⎩⎪⎨⎧<+≤-020131x x ……………………………(3分)解①得x ≥3,解②得x<-2……………………………………………………(4分)∴原不等式的解集为x ≥3或x<-2…………………………………………(6分)5. 如图,将△BPC 绕点B 逆时针旋转90°, 得△BP ′A ,则△BPC ≌△BP ′A . ∴AP ′=PC =1,BP =BP ′=. 连结PP ′,在Rt △BP ′P 中, ∵ BP =BP ′=,∠PBP ′=90°, ∴ PP ′=2,∠BP ′P =45°. 在△AP ′P 中, AP ′=PC =1,PP ′=2,AP =,∵ 12 +22 =(5) 2 ,即AP ′2 +PP ′2 =AP 2 .∴ △AP ′P 是直角三角形,即∠AP ′P =90°. ∴∠AP ′B =∠AP ′P +∠BP ′P =135°. ∴ ∠BPC =∠AP ′B =135°.过点B 作BE ⊥AP ′交AP ′的延长线于点E . 则∠EP ′B =45°,∴ EP ′=BE =BP ′=1,∴AE =2.6.【分析】性质探究:如图1中,过点C 作CD ⊥AB 于D .解直角三角形求出AB (用AC 表示)即可解决问题.理解运用:①利用性质探究中的结论,设CA =CB =m ,则AB =m ,构建方程求出m 即可解决问题.②如图2中,连接FH .求出FH ,利用三角形中位线定理解决问题即可. 类比拓展:利用等腰三角形的性质求出AB 与AC 的关系即可. 【解答】解:性质探究:如图1中,过点C 作CD ⊥AB 于D . ∵CA =CB ,∠ACB =120°,CD ⊥AB , ∴∠A =∠B =30°,AD =BD , ∴AB =2AD =2AC •cos30°=AC ,∴AB :AC =:1. 故答案为:1.理解运用:(1)设CA =CB =m ,则AB =m ,由题意2m +m =4+2,∴m =2,∴AC =CB =2,AB =2,∴AD =DB =,CD =AC •sin30°=1,∴S △ABC =•AB •CD =.故答案为.(2)如图2中,连接FH . ∵∠FGH =120°,EF =EG =EH , ∴∠EFG =∠EGF ,∠EHG =∠EGH ,∴∠EFG+∠EHG=∠EGF+∠EGH=∠FGH=120°,∵∠FEH+∠EFG+∠EHG+∠FGH=360°,∴∠FEH=360°﹣120°﹣120°=120°,∵EF=EH,∴△EFH是顶角为120°的等腰三角形,∴FH=EF=20,∵FM=MG.GN=GH,∴MN=FH=10.类比拓展:如图1中,过点C作CD⊥AB于D.∵CA=CB,∠ACB=2α,CD⊥AB,∴∠A=∠B=30°,AD=BD,∠ACD=∠BCD=α∴AB=2AD=2AC•sinα∴AB:AC=2sinα:1.故答案为2sinα:1.【点评】本题属于三角形综合题,考查了等腰三角形的性质,解直角三角形,三角形的中位线定理等知识,解题的关键是学会利用等腰三角形的三线合一的性质解决问题,学会构造三角形的中位线解决问题,属于中考常考题型.7.【分析】(1)连接DE,利用相似三角形证明,运用勾股定理求出AD 的长,运用三角形面积公式求解即可;(2)根据(1)的证明可求解;(3)①证明△CME∽△ABM,得,再运用勾股定理求出BE的长即可解决问题;②分别求出S△BMC和S△ABM即可求得正方形ABCD的面积.【解答】解:(1)连接DE,如图,∵点O是△ABC的重心,∴AD,BE是BC,AC边上的中线,∴D,E为BC,AC边上的中点,∴DE为△ABC的中位线,∴DE∥AB,DE=AB,∴△ODE∽△OAB,∴=,∵AB=2,BD=1,∠ADB=90°,∴AD=,OD=,∴,=;(2)由(1)可知,,是定值;点O到BC的距离和点A到BC的距离之比为1:3,则△OBC和△ABC的面积之比等于点O到BC的距离和点A到BC的距离之比,故=,是定值;(3)①∵四边形ABCD是正方形,∴CD∥AB,AB=BC=CD=4,∴△CME~△AMB,∴,12∵E为CD的中点,∴,∴,∴,∴,即;②∴S△CME=1,且,∴S△BMC=2,∵,∴,∴S△AMB=4,∴S△ABC=S△BMC+S△ABM=2+4=6,又S△ADC=S△ABC,∴S△ADC=6,∴正方形ABCD的面积为:6+6=12.【点评】本题是一道相似形综合题目,主要考查的是三角形重心的性质、全等三角形的判定与性质、勾股定理及相似三角形的判定与性质,解答此题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.8.【分析】(1)利用一次函数或二次函数的性质解决问题即可.(2)利用描点法画出函数图象即可.(3)观察图象可知,x=﹣2时,m的值最大.【解答】解:(1)当﹣2≤x<0时,对于函数y1=|x|,即y1=﹣x,当﹣2≤x<0时,y1随x的增大而减小,且y1>0;对于函数y2=x2﹣x+1,当﹣2≤x<0时,y2随x的增大而减小,且y2>0;结合上述分析,进一步探究发现,对于函数y,当﹣2≤x<0时,y随x的增大而减小.故答案为:减小,减小,减小.(2)函数图象如图所示:(3)∵直线l与函数y=|x|(x2﹣x+1)(x≥﹣2)的图象有两个交点,观察图象可知,x=﹣2时,m的值最大,最大值m=×2×(4+2+1)=,故答案为【点评】本题考查二次函数与不等式,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.9【分析】(1)由正方形的性质得出AE=AF,∠EAG=90°,AB=AD,∠BAD =90°,得出∠EAB=∠GAD,证明△AEB≌△AGD(SAS),则可得出结论;(2)由菱形的性质得出AE=AG,AB=AD,证明△AEB≌△AGD(SAS),由全等三角形的性质可得出结论;(3)方法一:过点E作EM⊥DA,交DA的延长线于点M,过点G作GN⊥AB 交AB于点N,求出AG=6,AD=12,证明△AME∽△ANG,设EM=2a,AM =2b,则GN=3a,AN=3b,则BN=8﹣3b,可得出答案;方法二:证明△EAB∽△GAD,得出∠BEA=∠AGD,则A,E,G,Q四点共圆,得出∠GQP=∠P AE=90°,连接EG,BD,由勾股定理可求出答案.【解答】(1)证明:∵四边形AEFG为正方形,∴AE=AF,∠EAG=90°,又∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠EAB=∠GAD,∴△AEB≌△AGD(SAS),∴BE=DG;(2)当∠EAG=∠BAD时,BE=DG,13理由如下:∵∠EAG=∠BAD,∴∠EAB=∠GAD,又∵四边形AEFG和四边形ABCD为菱形,∴AE=AG,AB=AD,∴△AEB≌△AGD(SAS),∴BE=DG;(3)解:方法一:过点E作EM⊥DA,交DA的延长线于点M,过点G作GN⊥AB交AB于点N,由题意知,AE=4,AB=8,∵=,∴AG=6,AD=12,∵∠EMA=∠ANG,∠MAE=∠GAN,∴△AME∽△ANG,设EM=2a,AM=2b,则GN=3a,AN=3b,则BN=8﹣3b,∴ED2=(2a)2+(12+2b)2=4a2+144+48b+4b2,GB2=(3a)2+(8﹣3b)2=9a2+64﹣48b+9b2,∴ED2+GB2=13(a2+b2)+208=13×4+208=260.方法二:如图2,设BE与DG交于Q,∵,AE=4,AB=8∴AG=6,AD=12.∵四边形AEFG和四边形ABCD为矩形,∴∠EAG=∠BAD,∴∠EAB=∠GAD,∵,∴△EAB∽△GAD,∴∠BEA=∠AGD,∴A,E,G,Q四点共圆,∴∠GQP=∠P AE=90°,∴GD⊥EB,连接EG,BD,∴ED2+GB2=EQ2+QD2+GQ2+QB2=EG2+BD2,∴EG2+BD2=42+62+82+122=260.【点评】本题是相似形综合题,考查了正方形的性质,菱形的性质,矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理等知识,熟练掌握特殊平行四边形的性质是解题的关键.10. (1)1<AD<3;(2) 2<AD<310;(3)711.【解答】解:(1)①平行四边形的对角线互相平分但不垂直和相等,故不是垂等四边形;②矩形对角线相等但不垂直,故不是垂等四边形;③菱形的对角线互相垂直但不相等,故不是垂等四边形;④正方形的对角线互相垂直且相等,故正方形是垂等四边形;故选:④;(2)∵AC⊥BD,ED⊥BD,∴AC∥DE,又∵AD∥BC,∴四边形ADEC是平行四边形,∴AC=DE,又∵∠DBC=45°,∴△BDE是等腰直角三角形,∴BD=DE,∴BD=AC,又∵BD⊥AC,∴四边形ABCD是垂等四边形;14(3)如图,过点O作OE⊥BD,∵四边形ABCD是垂等四边形,∴AC=BD,又∵垂等四边形的面积是24,∴AC•BD=24,解得,AC=BD=4,又∵∠BCD=60°,∴∠DOE=60°,设半径为r,根据垂径定理可得:在△ODE中,OD=r,DE=,∴r===4,∴⊙O的半径为4.【点评】本题是一道圆的综合题,主要考查了平行四边形的性质、菱形的性质、矩形的性质、正方形的性质、新定义、圆周角定理、垂径定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用新定义解答问题.12.【分析】(1)由折叠的性质可得AN=BN,AE=BE,∠NEA=90°,BM 垂直平分AN,∠BAM=∠BNM=90°,可证△ABN是等边三角形,由等边三角形的性质和直角三角形的性质可求解;(2)由折叠的性质可得∠ABG=∠HBG=45°,可求解;(3)由折叠的性质可得AO=A'O,AA'⊥ST,由“AAS”可证△ASO≌△A'TO,可得SO=TO,由菱形的判定可证四边形SATA'是菱形;(4)先求出AT的范围,即可求解.【解答】解:(1)如图①∵对折矩形纸片ABCD,使AD与BC重合,∴EF垂直平分AB,∴AN=BN,AE=BE,∠NEA=90°,∵再一次折叠纸片,使点A落在EF上的点N处,∴BM垂直平分AN,∠BAM=∠BNM=90°,∴AB=BN,∴AB=AN=BN,∴△ABN是等边三角形,∴∠EBN=60°,∴∠ENB=30°,∴∠MNE=60°,故答案为:是,等边三角形,60;(2)∵折叠纸片,使点A落在BC边上的点H处,∴∠ABG=∠HBG=45°,∴∠GBN=∠ABN﹣∠ABG=15°,故答案为:15°;(3)∵折叠矩形纸片ABCD,使点A落在BC边上的点A'处,∴ST垂直平分AA',∴AO=A'O,AA'⊥ST,∵AD∥BC,∴∠SAO=∠TA'O,∠ASO=∠A'TO,∴△ASO≌△A'TO(AAS)∴SO=TO,∴四边形ASA'T是平行四边形,又∵AA'⊥ST,∴边形SATA'是菱形;(4)∵折叠纸片,使点A落在BC边上的点A'处,∴AT=A'T,在Rt△A'TB中,A'T>BT,∴AT>10﹣AT,∴AT>5,∵点T在AB上,∴当点T与点B重合时,AT有最大值为10,∴5<AT≤10,∴正确的数值为7,9,故答案为:7,9.【点评】本题是四边形综合题,考查了矩形的性质,菱形的判定,全等三角形的判定和性质,旋转的性质,等边三角形的判定和性质等知识,灵活运用这些性质进行推理是本题的关键.1513.【分析】(1)先证明由AB=AC,AD=AE,得BD=CE,再由三角形的中位线定理得NM与NP的数量关系,由平行线性质得∠MNP的大小;(2)先证明△ABD≌△ACE得BD=CE,再由三角形的中位线定理得NM=NP,由平行线性质得∠MNP=60°,再根据等边三角形的判定定理得结论;(3)由BD≤AB+AD,得MN≤2,再由等边三角形的面积公式得△MNP的面积关于MN的函数关系式,再由函数性质求得最大值便可.【解答】解:(1)∵AB=AC,AD=AE,∴BD=CE,∵点M、N、P分别为DE、BE、BC的中点,∴MN=BD,PN=CE,MN∥AB,PN∥AC,∴MN=PN,∠ENM=∠EBA,∠ENP=∠AEB,∴∠MNE+∠ENP=∠ABE+∠AEB,∵∠ABE+∠AEB=180°﹣∠BAE=60°,∴∠MNP=60°,故答案为:NM=NP;60°;(2)△MNP是等边三角形.理由如下:由旋转可得,∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE,∵点M、N、P分别为DE、BE、BC的中点.∴MN=BD,PN=CE,MN∥BD,PN∥CE,∴MN=PN,∠ENM=∠EBD,∠BPN=∠BCE,∴∠ENP=∠NBP+∠NPB=∠NBP+∠ECB,∵∠EBD=∠ABD+∠ABE=∠ACE+∠ABE,∴∠MNP=∠MNE+∠ENP=∠ACE+∠ABE+∠EBC+∠EBC+∠ECB=180°﹣∠BAC=60°,∴△MNP是等边三角形;(3)根据题意得,BD≤AB+AD,即BD≤4,∴MN≤2,∴△MNP的面积==,∴△MNP的面积的最大值为.14.(1)证明:如图1,∵在△ABC中,∠BAC=90°,∠ABC=45°,∴∠ACB=45°,∴∠ACB=∠ABC,∴AB=AC.∵四边形ADEF为正方形,∴AD=DE=EF=AF,∠FAD=90°,∴∠BAC=∠FAD,∴∠BAC-∠DAC=∠FAD-∠DAC,∴∠BAD=∠CAF....(1)由等腰直角三角形和正方形的性质可以得出△ABD ≌△ACF ,就可以得出BD=CF,就可以得出结论;(2)如图2,通过证明△ABD≌△ACF,就可以得出BD=CF,就可以得出CF=BC+CD;(3)如图3,通过证明△ABD≌△ACF,就可以得出BD=CF,就可以得出CD=BC+CF.16。
初中数学阅读理解题
1. 阅读理解 一、 选择题1. (2016·深圳)给出一种运算:对于函数y =x n ,规定y′=nx n -1.例如:若函数y =x 4,则有y′=4x 3.已知函数y =x 3,则方程y′=12的解是( )A. x 1=4,x 2=-4B. x 1=2,x 2=-2C. x 1=x 2=0D. x 1=23,x 2=-2 32. (2016·湖州)定义:若点P(a ,b)在函数y =1x 的图象上,将以a 为二次项系数,b为一次项系数构造的二次函数 y =ax 2+bx 称为函数y =1x 的一个“派生函数”.例如:点⎝⎛⎭⎫2,12在函数y =1x 的图象上,则函数y =2x 2+12x 称为函数y =1x 的一个“派生函数”.现给出以下两个命题:① 存在函数y =1x 的一个“派生函数”,其图象的对称轴在y 轴的右侧;② 函数y =1x 的所有“派生函数”的图象都经过同一点.下列判断正确的是( )A. 命题①与命题②都是真命题B. 命题①与命题②都是假命题C. 命题①是假命题,命题②是真命题D. 命题①是真命题,命题②是假命题 3. (导学号23432160)(2016·杭州)设a 、b 是实数,定义关于@的一种运算如下:a@b =(a +b)2-(a -b)2,则下列结论:① 若a@b =0,则a =0或b =0;② a@(b +c)=a@b +a@c ;③ 不存在实数a 、b ,满足a@b =a 2+5b 2;④ 设a 、b 是矩形的长和宽,若该矩形的周长固定,则当a =b 时,a@b的值最大.其中正确的是( )A. ②③④B. ①③④C. ①②④D. ①②③ 二、 填空题4. (2016·娄底)当a 、b 满足条件a>b>0时,x 2a 2+y 2b 2=1表示焦点在x 轴上的椭圆.若x 2m +2+y 22m -6=1表示焦点在x 轴上的椭圆,则m 的取值范围是________.5. (2016·常德)平面直角坐标系中有两点M(a ,b)、N(c ,d),规定(a ,b)⊕(c ,d)=(a +c ,b +d),则称点Q(a +c ,b +d)为M 、N 的“和点”.若以坐标原点O 与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”,现有点A(2,5)、B(-1,3),若以O 、A 、B 、C 四点为顶点的四边形是“和点四边形”,则点C 的坐标是________.6. (2016·泰安)如图,在平面直角坐标系中,直线l :y =x +2交x 轴于点A ,交y 轴于点A 1,点A 2、A 3……在直线l 上,点B 1、B 2、B 3……在x 轴的正半轴上,若△A 1OB 1、△A 2B 1B 2、△A 3B 2B 3……依次均为等腰直角三角形,直角顶点都在x 轴上,则第n 个等腰直角三角形A n B n -1B n 的顶点B n 的横坐标为________.第6题第7题7. (2016·德州)如图,在平面直角坐标系中,函数y=2x和y=-x的图象分别为直线l1、l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4……依次进行下去,则点A2017的坐标为________.8. (导学号23432161)(2016·永州)如图,给定一个半径为2的圆,圆心O到水平直线l的距离为d,即OM=d.我们把圆上到直线l的距离等于1的点的个数记为m.如d =0时,l为经过圆心O的一条直线,此时圆上有四个到直线l的距离等于1的点,即m=4.由此可知:(1) 当d=3时,m=________;(2) 当m=2时,d的取值范围是________.第8题三、解答题9. (2016·济宁)已知点P(x0,y0)和直线y =kx+b,则点P到直线y=kx+b的距离可用公式d=|kx0-y0+b|1+k2计算.例如:求点P(-1,2)到直线y=3x+7的距离.解:∵直线y=3x+7,其中k=3,b =7.∴点P(-1,2)到直线y=3x+7的距离d=|kx0-y0+b|1+k2=|3×(-1)-2+7|1+32=210=105.根据以上材料,解答下列问题:(1) 求点P(1,-1)到直线y=x-1的距离;(2) 已知⊙Q的圆心Q的坐标为(0,5),半径r为2,判断⊙Q与直线y=3x+9的位置关系,并说明理由;(3) 已知直线y=-2x+4与y=-2x-6平行,求这两条直线之间的距离.10. (2016·绥化)阅读下面的解题过程.解一元二次不等式:x2-5x>0.解:设x2-5x=0,解得x1=0,x2=5,则抛物线y=x2-5x与x轴的交点坐标为(0,0)和(5,0).画出二次函数y=x2-5x的大致图象(如图所示),由图象可知,当x<0或x>5时函数图象位于x轴上方,此时y>0,即x2-5x>0,所以一元二次不等式x2-5x>0的解集为x<0或x>5.通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:(1) 上述解题过程中,渗透了下列数学思想中的________和________(填序号);①转化思想②分类讨论思想③数形结合思想(2) 一元二次不等式x2-5x<0的解集为________;(3) 用类似的方法解一元二次不等式:x2-2x-3>0. 第10题11. (2016·咸宁)阅读理解我们知道,四边形具有不稳定性,容易变形,如图①,一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把1sin α的值叫做这个平行四边形的变形度.(1) 若矩形发生变形后的平行四边形有一个内角是120°,则这个平行四边形的变形度是________.猜想证明(2) 设矩形的面积为S1,其变形后的平行四边形的面积为S2,试猜想S1、S2、1sin α之间的数量关系,并说明理由.拓展探究(3) 如图②,在矩形ABCD中,E是边AD上的一点,且AB2=AE·AD,这个矩形发生变形后为平行四边形A1B1C1D1,E1为E的对应点,连接B1E1、B1D1.若矩形ABCD的面积为4m(m>0),平行四边形A1B1C1D1的面积为2m(m>0),试求∠A1E1B1+∠A1D1B1的度数.第11题12. (2016·贵阳)(1) 阅读理解如图①,在△ABC中,若AB=10,AC=6,求边BC上的中线AD的取值范围.解决此问题可以用如下方法:延长AD 到点E,使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE 中,利用三角形三边的关系即可判断.中线AD的取值范围是________.(2) 问题解决如图②,在△ABC中,D是边BC上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF.(3) 问题拓展如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以点C为顶点作一个70°角,角的两边分别交AB、AD于E、F两点,连接EF,探索线段BE、DF、EF之间的数量关系,并说明理由.第12题13. (导学号23432162)(2016·大连)阅读下面材料:小明遇到这样一个问题,如图①,在△ABC中,AB=AC,点D在边BC上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图②),使问题得到解决.(1) 根据阅读材料回答:△ABF与△BAE全等的条件是________(填“SSS”“SAS”“ASA”“AAS”或“HL”);参考小明思考问题的方法,解答下面的问题:(2) 如图③,在△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC ,若CF =2,求AB 的长;(3) 如图④,在△ABC 中,AB =AC ,∠BAC =120°,点D 、E 分别在边AB 、AC 上,且AD =kDB(其中0<k<33),∠AED =∠BCD ,求AEEC的值(用含k 的式子表示).第13题1. 阅读理解一、 1. B 2. C 3. C二、 4. 3<m<8 5.(1,8)或(-3,-2)或(3,2) 6. 2n +1-2 7.(21008,21009) 8.(1) 1(2) 1<d<3三、 9.(1) ∵ 直线y =x -1,其中k =1,b =-1,∴点P(1,-1)到直线 y =x -1的距离d =|kx 0-y 0+b|1+k 2=|1×1-(-1)+(-1)|1+12=12=22 (2) ⊙Q 与直线y =3x +9相切理由:∵ 圆心Q(0,5)到直线y =3x +9的距离d =|3×0-5+9|1+(3)2=42=2,而⊙Q 的半径r=2,即d =r ,∴⊙Q 与直线y =3x +9相切. (3) 当x =0时,y =-2x +4=4,即点(0,4)在直线y =-2x +4上,点(0,4)到直线y =-2x -6的距离d =|0×(-2)-4-6|1+(-2)2=105=25,∵直线y =-2x +4与y =-2x -6平行,∴这两条直线之间的距离为2 510.(1) ① ③ (2) 0<x<5 点拨:由图象可知,当0<x<5时函数图象位于x 轴下方,此时y<0,即x 2-5x<0,∴一元二次不等式 x 2-5x<0的解集为0<x<5. (3) 设x 2-2x -3=0,解得x 1=3,x 2=-1,∴抛物线y =x 2-2x -3与x 轴的交点坐标为(3,0)和(-1,0).画出二次函数y =x 2-2x -3的大致图象(如图所示),由图象可知,当x<-1或x>3时函数图象位于x 轴上方,此时y>0,即x 2-2x -3>0.∴ 一元二次不等式x 2-2x -3>0的解集为x<-1或x>3第10题11.(1) 233 (2) 1sin α=S 1S 2理由:如图,设矩形的长和宽分别为a 、b ,变形后的平行四边形的高为h ,∴ S 1=ab ,S 2=ah ,sin α=h b .∴S 1S 2=ab ah =b h .∵1sin α=b h ,∴S 1S 2=1sin α. (3) ∵AB 2=AE·AD ,∴ A 1B 21=A 1E 1·A 1D 1,即A 1B 1A 1D 1=A 1E 1A 1B 1.∵∠B 1A 1E 1=∠D 1A 1B 1,∴△B 1A 1E 1∽△D 1A 1B 1.∴∠A 1B 1E 1=∠A 1D 1B 1.∵ 在平行四边形A 1B 1C 1D 1中,A 1D 1∥B 1C 1,∴∠A 1E 1B 1=∠C 1B 1E 1.∴∠A 1E 1B 1+∠A 1D 1B 1=∠C 1B 1E 1+∠A 1B 1E 1=∠A 1B 1C 1.由(2)中1sin α=S 1S 2可知1sin ∠A 1B 1C 1=4m 2m =2,∴ sin ∠A 1B 1C 1=12.∴∠A 1B 1C 1=30°.∴∠A 1E 1B 1+∠A 1D 1B 1=30°第11题12.(1) 2<AD<8 (2) 如图①,延长FD 至点M ,使DM =DF ,连接BM 、EM ,易证得△BMD ≌△CFD(SAS),∴ BM =CF.∵ DE ⊥DF ,DM =DF ,∴ EM =EF.在△BME 中,由三角形的三边关系得BE +BM>EM ,∴ BE +CF>EF (3) BE +DF =EF 理由:如图②,延长AB 至点N ,使BN =DF ,连接CN.∵∠ABC +∠D =180°,∠NBC +∠ABC =180°,∴∠NBC =∠D.在△NBC 和△FDC 中,∵⎩⎪⎨⎪⎧BN =DF ,∠NBC =∠D ,BC =DC ,∴△NBC ≌△FDC(SAS).∴ CN =CF ,∠NCB =∠FCD.∵∠BCD =140°,∠ECF =70°,∴∠BCE +∠FCD =70°.∴∠ECN =∠ECB +∠BCN =∠BCE +∠DCF =70°=∠ECF.在△NCE 和△FCE 中,∵⎩⎪⎨⎪⎧CN =CF ,∠ECN =∠ECF ,CE =CE ,∴△NCE ≌△FCE(SAS).∴ EN =EF.∵ BE +BN =EN ,∴ BE +DF =EF. 第12题13.(1) AAS (2) 如图①,连接AD ,过点C 作CG ⊥AF ,则∠ACG =90°.在Rt △ABC 中,∵ AB =AC ,D 是BC 的中点,∴ AD =CD ,∠ADC =90°,∠ACB =∠DAC =45°.∵ E 是DC 的中点,∴ DE =12CD =12AD.∴ tan ∠DAE =DE AD =12ADAD =12,∠F +∠CDF =∠ACB =45°.∵∠CDF =∠EAC ,∴∠F +∠EAC =45°.∵∠DAE +∠EAC =45°,∴∠F =∠DAE.∴ tan F =tan ∠DAE =12.∴CG CF =12.∴ CG =12×2=1.∵∠ACG =90°,∠ACB =45°,∴∠DCG =45°.∵∠CDF =∠EAC ,∴△DCG ∽△ACE.∴DC AC =CG CE .易知CD =22AC ,CE =12CD =24AC ,∴22AC AC =124AC .∴ AC =4.∴ AB =4 (3) 如图②,过点D 作DG ⊥BC 于点G ,设DG=a.在Rt △BGD 中,∵ AB =AC ,∠BAC =120°,∴∠B =∠BCA =30°.∴ BD =2a ,BG =3a.∵ AD =kDB ,∴ AD =2ka ,AB =BD +AD =2a +2ka =2a(k +1).过点A 作AH ⊥BC 于点H ,在Rt △ABH 中,∠B =30°,∴ AH =12AB =a(k +1),BH =3a(k +1).∵ AB =AC ,AH ⊥BC ,∴ BC =2BH =23a(k +1).∴ CG =BC -BG =3a(2k +1).过点D 作DN ⊥AC ,交CA 的延长线于点N.∵∠BAC =120°,∴∠DAN =60°.∴∠ADN =30°.∴ AN =ka ,DN =3ka.∵∠DGC =∠AND =90°,∠AED =∠BCD ,∴△NDE ∽△GDC.∴DN DG =NE GC .∴3ka a=NE3a (2k +1).∴ NE =3ak(2k +1).∴ AE =NE -AN =2ak(3k +1).∴ EC =AC -AE =AB-AE =2a(k +1)-2ak(3k +1)=2a(1-3k 2).∴AE EC =2ak (3k +1)2a (1-3k 2)=3k 2+k 1-3k 2第13题。
九年级初中数学阅读理解专题训练及答案
九年级初中数学阅读理解专题训练及答案阅读理解一
题目:
某乡有320个士兵,每个士兵配备一辆自行车,已经配出来220辆,请问还需要多少辆自行车?
解答:
已经配出来的自行车辆数为220辆,总共需要的自行车辆数为320辆,所以还需要320-220=100辆自行车。
阅读理解二
题目:
小刚、小明和小红是同一栋楼的邻居,他们住在一楼、二楼和三楼,每人住在不同的楼层,已知以下信息:
- 小刚住的楼层比小明低一层。
- 小红住的楼层比小明住的楼层高一层。
请问小红住在几楼?
解答:
已知小刚住的楼层比小明低一层,而小红住的楼层比小明住的楼层高一层。
因此,小刚和小红住在相邻的楼层,小明住在中间的楼层。
假设小明住在二楼,则小刚住在一楼,小红住在三楼。
假设小明住在一楼,则小刚无法住在比小明低一层的楼层,因此排除此情况。
所以小红住在三楼。
阅读理解三
题目:
某游戏共有4个人参加,每人可以选择石头、剪刀或布中的一个,要求每个人的选择不能相同。
已知以下信息:
- A和B两个人的选择不同。
- B和C两个人的选择不同。
- A和D两个人的选择不同。
请问D选了什么?
解答:
根据已知条件,A和B两个人的选择不同,B和C两个人的选择不同,A和D两个人的选择不同。
由此可推断以下情况:- A选了石头,B选了剪刀,C选了石头,D选了布。
- A选了石头,B选了剪刀,C选了布,D选了石头。
- A选了石头,B选了剪刀,C选了布,D选了剪刀。
综上所述,D有可能选择了布、石头或剪刀中的任一种。
七年级初中数学阅读理解专题训练
七年级初中数学阅读理解专题训练本文档旨在提供一系列七年级初中数学阅读理解专题训练题,以帮助学生提高对数学问题的理解和解决能力。
题目一阅读下面的问题,并完成相关计算。
问题:小明有10支铅笔,小红有3支铅笔。
如果他们把铅笔都放在一起,那么总共有多少支铅笔?解答:小明有10支铅笔,小红有3支铅笔。
所以他们总共有10+3=13支铅笔。
题目二根据下面的信息,回答问题。
问题:一家商店正在举行打折活动,所有衣服的价格降低了30%。
如果一件衣服原价是120元,那么现在的价格是多少?解答:如果一件衣服原价是120元,那么降价后的价格为120 * (1-30%) = 120 * 0.7 = 84元。
题目三根据下面的图表,回答问题。
问题:以下图表表示了某班级学生的身高分布情况,共有32名学生。
请问身高在150-160cm之间的学生有多少人?解答:根据图表,身高在150-160cm之间的学生有12人。
题目四根据下面的信息,回答问题。
问题:一个长方形花坛的长是6米,宽是4米。
如果要在该花坛周围修建一圈围墙,请计算需要多少米的围墙木材。
解答:该长方形花坛的周长为2 * (6 + 4) = 20米。
因此,需要20米的围墙木材。
题目五根据下面的问题,回答问题。
问题:有一辆汽车从A市开往B市,全程480公里。
在一次加油站,它加满油后继续行驶。
如果这辆车每升汽油可以行驶12公里,那么加满一箱油需要多少升?解答:根据题目,这辆车每升汽油可以行驶12公里,全程为480公里。
所以加满一箱油需要480 / 12 = 40升。
以上是七年级初中数学阅读理解专题训练的一些例题,希望能帮助同学们提高数学解题能力。
祝大家学业进步!。
中考数学备考专题复习: 阅读理解问题(含解析)
中考数学备考专题复习:阅读理解问题(含解析)中考备考专题复习:阅读理解问题一、单选题1、对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b,如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A、0B、2C、3D、42、对于实数a、b,定义一种新运算“⊗”为:a⊗b= ,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)= ﹣1的解是()A、x=4B、x=5C、x=6D、x=73、设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A、②③④B、①③④C、①②④D、①②③4、定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”.例如:M(1,1),N(﹣2,﹣2)都是“平衡点”.当﹣1≤x≤3时,直线y=2x+m上有“平衡点”,则m的取值范围是()A、0≤m≤1B、﹣3≤m≤1C、﹣3≤m≤3D、﹣1≤m≤0二、填空题5、州)阅读材料并解决问题:求1+2+22+23+…+22014的值,令S=1+2+22+23+…+22014等式两边同时乘以2,则2S=2+22+23+…+22014+22015两式相减:得2S﹣S=22015﹣1所以,S=22015﹣1依据以上计算方法,计算1+3+32+33+…+32015=________.三、解答题6、自学下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:(1)若a>0,b>0,则>0;若a<0,b<0,则>0;(2)若a>0,b<0,则<0;若a<0,b>0,则<0.反之:(1)若>0,则或(2)<0,则____________ .根据上述规律,求不等式>0的解集.7、阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用[()n﹣()n]表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.8、先阅读下列材料,然后解答问题:材料1 从3张不同的卡片中选取2张排成一列,有6种不同的排法,抽象成数学问题就是从3个不同元素中选取2个元素的排列,排列数记为A32=3×2=6.一般地,从n个不同元素中选取m个元素的排列数记作A n m,A n m=n(n-1)(n-2)…(n-m+1)(m≤n).例:从5个不同元素中选3个元素排成一列的排列数为:A53=5×4×3=60.材料2 从3张不同的卡片中选取2张,有3种不同的选法,抽象成数学问题就是从3个元素中选取2个元素的组合,组合数记为C32==3.一般地,从n个不同元素中选取m个元素的组合数记作C n m,C n m=(m≤n).例:从6个不同元素中选3个元素的组合数为:C63==20.问:(1)从7个人中选取4人排成一排,有多少种不同的排法?(2)从某个学习小组8人中选取3人参加活动,有多少种不同的选法?9、定义新运算:对于任意实数m、n都有m☆n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:﹣3☆2=(﹣3)2×2+2=20.根据以上知识解决问题:若2☆a的值小于0,请判断方程:2x2﹣bx+a=0的根的情况.四、综合题10、阅读材料:在一个三角形中,各边和它所对角的正弦的比相等,==,利用上述结论可以求解如下题目:在△ABC中,∠A、∠B、∠C的对边分别为a,b,c.若∠A=45°,∠B=30°,a=6,求b.解:在△ABC中,∵=∴b====3.理解应用:如图,甲船以每小时30海里的速度向正北方向航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,且乙船从B1处按北偏东15°方向匀速直线航行,当甲船航行20分钟到达A2时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10海里.(1)判断△A1A2B2的形状,并给出证明(2)求乙船每小时航行多少海里?11、阅读下列材料:2015年清明小长假,北京市属公园开展以“清明踏青,春色满园”为主题的游园活动,虽然气温小幅走低,但游客踏青赏花的热情很高,市属公园游客接待量约为190万人次.其中,玉渊潭公园的樱花、北京植物园的桃花受到了游客的热捧,两公园的游客接待量分别为38万人次、21.75万人次;颐和园、天坛公园、北海公园因皇家园林的厚重文化底蕴与满园春色成为游客的重要目的地,游客接待量分别为26万人次、20万人次、17.6万人次;北京动物园游客接待量为18万人次,熊猫馆的游客密集度较高.2014年清明小长假,天气晴好,北京市属公园游客接待量约为200万人次,其中,玉渊潭公园游客接待量比2013 年清明小长假增长了25%;颐和园游客接待量为26.2万人次,2013 年清明小长假增加了4.6万人次;北京动物园游客接待量为22万人次.2013年清明小长假,玉渊潭公园、陶然亭公园、北京动物园游客接待量分别为32万人次、13万人次、14.9 万人次.根据以上材料解答下列问题:(1)2014年清明小长假,玉渊潭公园游客接待量为________ 万人次(2)选择统计表或统计图,将2013﹣2015年清明小长假玉渊潭公园、颐和园和北京动物园的游客接待量表示出来.12、阅读下列材料,并用相关的思想方法解决问题.计算:(1﹣﹣﹣)×(+++)﹣(1﹣﹣﹣﹣)×(++).令++=t,则原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣t﹣t+t2=问题:(1)计算(1﹣﹣﹣﹣…﹣)×(++++…++)﹣(1﹣﹣﹣﹣﹣…﹣﹣)×(+++…+);(2)解方程(x2+5x+1)(x2+5x+7)=7.13、)阅读下列材料,并解决相关的问题.按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为a1,依此类推,排在第n位的数称为第n项,记为an.一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0).如:数列1,3,9,27,…为等比数列,其中a1=1,公比为q=3.(1)等比数列3,6,12,…的公比q为________ ,第4项是________(2)如果一个数列a1, a2, a3, a4,…是等比数列,且公比为q,那么根据定义可得到:=q,=q,=q,…=q.所以:a2=a1•q,a3=a2•q=(a1•q)•q=a1•q2, a4=a3•q=(a1•q2)•q=a1•q3,…由此可得:an =________(用a1和q的代数式表示).(3)若一等比数列的公比q=2,第2项是10,请求它的第1项与第4项.14、阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5 即2(2x+5y)+y=5③把方程①带入③得:2×3+y=5,∴y=﹣1把y=﹣1代入①得x=4,∴方程组的解为.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组;(2)已知x,y满足方程组(i)求x2+4y2的值;(ii)求+的值.15、)阅读理解材料一:一组对边平行,另一组对边不平行的四边形叫梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线.梯形的中位线具有以下性质:梯形的中位线平行于两底,并且等于两底和的一半.如图(1):在梯形ABCD中:AD∥BC∵E、F是AB、CD的中点∴EF∥AD∥BCEF=(AD+BC)材料二:经过三角形一边的中点与另一边平行的直线必平分第三边如图(2):在△ABC中:∵E是AB的中点,EF∥BC∴F是AC的中点如图(3)在梯形ABCD中,AD∥BC,AC⊥BD于O,E、F分别为AB、CD的中点,∠DBC=30°请你运用所学知识,结合上述材料,解答下列问题.(1)求证:EF=AC;(2)若OD=,OC=5,求MN的长.16、我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)17、已知点P(x0, y)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d= 计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d= = = = .根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y= x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.18、定义:有三个内角相等的四边形叫三等角四边形.(1)三等角四边形ABCD中,∠A=∠B=∠C,求∠A的取值范围;(2)如图,折叠平行四边形纸片DEBF,使顶点E,F分别落在边BE,BF上的点A,C处,折痕分别为DG,DH.求证:四边形ABCD是三等角四边形.(3)三等角四边形ABCD中,∠A=∠B=∠C,若CB=CD=4,则当AD的长为何值时,AB的长最大,其最大值是多少?并求此时对角线AC的长.19、我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究;如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展;如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.20、阅读下列材料:北京市正围绕着“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.2%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2406.7亿元,比上年增长9.1%,文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2749.3亿元,占地区生产总值的13.1%,创历史新高,2015年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%.根据以上材料解答下列问题:(1)用折线图将2011﹣2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约________亿元,你的预估理由________.21、)阅读材料:关于三角函数还有如下的公式:sin(α±β)=sinαcosβ±cosαsinβtan(α±β)=利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.例:tan75°=tan(45°+30°)= = =2+根据以上阅读材料,请选择适当的公式解答下面问题(1)计算:sin15°;(2)某校在开展爱国主义教育活动中,来到烈士纪念碑前缅怀和纪念为国捐躯的红军战士.李三同学想用所学知识来测量如图纪念碑的高度.已知李三站在离纪念碑底7米的C处,在D点测得纪念碑碑顶的仰角为75°,DC为米,请你帮助李三求出纪念碑的高度.22、阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.(1)根据阅读材料回答:△ABF与△BAE全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).答案解析部分一、单选题1、【答案】B【考点】分段函数【解析】【解答】解:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y min=2,故选B【分析】分x≥﹣1和x<﹣1两种情况进行讨论计算,此题是分段函数题,主要考查了新定义,解本题的关键是分段.2、【答案】B【考点】分式方程的解,定义新运算【解析】【解答】解:根据题意,得= ﹣1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选B.【分析】所求方程利用题中的新定义化简,求出解即可.此题考查了解分式方程,弄清题中的新定义是解本题的关键.3、【答案】C【考点】整式的混合运算,因式分解的应用,二次函数的最值【解析】【解答】解:①根据题意得:a@b=(a+b)2﹣(a﹣b)2∴(a+b)2﹣(a﹣b)2=0,整理得:(a+b+a﹣b)(a+b﹣a+b)=0,即4ab=0,解得:a=0或b=0,正确;②∵a@(b+c)=(a+b+c)2﹣(a﹣b﹣c)2=4ab+4aca@b+a@c=(a+b)2﹣(a﹣b)2+(a+c)2﹣(a﹣c)2=4ab+4ac,∴a@(b+c)=a@b+a@c正确;③a@b=a2+5b2, a@b=(a+b)2﹣(a﹣b)2,令a2+5b2=(a+b)2﹣(a﹣b)2,解得,a=0,b=0,故错误;④∵a@b=(a+b)2﹣(a﹣b)2=4ab,(a﹣b)2≥0,则a2﹣2ab+b2≥0,即a2+b2≥2ab,∴a2+b2+2ab≥4ab,∴4ab的最大值是a2+b2+2ab,此时a2+b2+2ab=4ab,解得,a=b,∴a@b最大时,a=b,故④正确,故选C.【分析】根据新定义可以计算出啊各个小题中的结论是否成立,从而可以判断各个小题中的说法是否正确,从而可以得到哪个选项是正确的.本题考查因式分解的应用、整式的混合运算、二次函数的最值,解题的关键是明确题意,找出所求问题需要的条件.4、【答案】 B【考点】一元一次不等式组的应用【解析】【解答】解:∵x=y,∴x=2x+m,即x=﹣m.∵﹣1≤x≤3,∴﹣1≤﹣m≤3,∴﹣3≤m≤1.故选B.【分析】根据x=y,﹣1≤x≤3可得出关于m的不等式,求出m的取值范围即可.本题考查的是一次函数图象上点的坐标特点,根据题意得出关于m的不等式是解答此题的关键.二、填空题5、【答案】【考点】探索数与式的规律【解析】【解答】解:令s=1+3+32+33+ (32015)等式两边同时乘以3得:3s=3+32+33+ (32016)两式相减得:2s=32016﹣1.所以S= .【分析】令s=1+3+32+33+…+32015,然后再等式的两边同时乘以2,接下来,依据材料中的方程进行计算即可.本题主要考查的是数字的变化规律,依据材料找出解决问题的方法和步骤是解题的关键.三、解答题6、【答案】解:(2)若<0,则或;故答案为:或;由上述规律可知,不等式转化为或,所以,x>2或x<﹣1.【考点】一元一次不等式组的应用【解析】【分析】根据两数相除,异号得负解答;先根据同号得正把不等式转化成不等式组,然后根据一元一次不等式组的解法求解即可.7、【答案】【解答】解:第1个数,当n=1时,[()n﹣()n]=(﹣)=×=1.第2个数,当n=2时,[()n﹣()n]=[()2﹣()2]=×(+)(﹣)=×1×=1.【考点】二次根式的应用【解析】【分析】分别把1、2代入式子化简求得答案即可.8、【答案】解:(1)A74=7×6×5×4=840(种).(2)C83==56(种)【考点】探索数与式的规律【解析】【分析】探索数与式的规律。
(完整版)中考数学阅读理解题试题练习题
中考数学阅读理解题试题练习题1. 为确保信息安全,信息需加密传输,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.己知某种加密规则为:明文a 、b 对应的密文为a -2b 、2a +b .例如,明文1、2对应的密文是-3、4.当接收方收到密文是1、7时,解密得到的明文是( ).A .-1,1B .1,3C . 3,1D .1,1 2. 将4个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成a bc d,定义a bc dad bc =-,上述记号就叫做2阶行列式.若1111x x x x +--+ 6=,则x =__________.3. 阅读下列材料,并解决后面的问题.材料:一般地,n 个相同的因数a 相乘:nn a a a a 记为个⋅.如23=8,此时,3叫做以2为底8的对数,记为()38log 8log 22=即.一般地,若()0,10>≠>=b a a b a n且,则n 叫做以a 为底b 的对数,记为()813.log log 4==如即n b b a a ,则4叫做以3为底81的对数,记为)481log (81log 33=即.问题:(1)计算以下各对数的值: ===64log 16log 4log 222 .(2)观察(1)中三数4、16、64之间满足怎样的关系式?64log 16log 4log 222、、之间又满足怎样的关系式?(3)由(2)的结果,你能归纳出一个一般性的结论吗?(2分)()0,0,10log log >>≠>=+N M a a N M a a 且(4)根据幂的运算法则:m n mna a a +=⋅以及对数的含义证明上述结论.4. 先阅读下列材料,然后解答问题: 从A B C ,,三张卡片中选两张,有三种不同选法,抽象成数学问题就是从3个元素中选取2个元素组合,记作2332C 321⨯==⨯. 一般地,从m 个元素中选取n 个元素组合,记作:(1)(1)C (1)321nm m m m n n n --+=-⨯⨯⨯例:从7个元素中选5个元素,共有5776543C 2154321⨯⨯⨯⨯==⨯⨯⨯⨯种不同的选法.问题:从某学习小组10人中选取3人参加活动,不同的选法共有 种.5. 式子“1+2+3+4+5+……+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+……+100”表示为∑=1001n n,这里“∑”是求和符号.例如:“1+3+5+7+9+……+99”(即从1开始的100以内的连续奇数的和)可表示为∑=-501)12(n n ;又如“13+23+33+43+53+63+73+83+93+103”可表示为∑=1013n n.同学们,通过对以上材料的阅读,请解答下列问题:①2+4+6+8+10+……+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为 ; ②计算:∑=-512)1(n n= (填写最后的计算结果).6. 定义:如果一个数的平方等于-1,记为i 2=-1,这个数i 叫做虚数单位。
初中数学专题-阅读理解问题练习
阅读理解问题1.阅读下题的解题过程:已知a 、b 、c 为△ABC 的三边,且满足a 2c 2-b 2c 2=a 4-b 4,试判断△ABC 的形状.解:∵a 2c 2-b 2c 2=a 4-b 4,(A)∴c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2). (B) ∴c 2=a 2+b 2.(C)∴△ABC 是直角三角形.(1)上述解题过程,从哪一步开始出现错误?请写出该步代号______________; (2)错误原因是_____________________________________________________; (3)本题正确的结论是_______________________________________________.2.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如4=22-02,12=42-22,20=62-42.因此4、12、20这三个数都是神秘数.(1)28和2012这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k +2和2k (其中k 为非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?3.阅读下列材料,并解决后面的问题.材料:一般的,n 个相同的因数a 相乘:43421个n a a a ···⋯记为a n ,如23=8,此时,3叫做以2为底8的对数,记为log 28(即log 28=3).一般的,若a n =b (a >0且a ≠1,b >0),则n 叫做以a 为底b 的对数,记为log a b (即log a b =n ),如34=81,则4叫做以3为底81的对数,记为log 381(即log 381=4). 问题:(1)计算以下各对数的值:log 2 4=______, log 2 16=______,log 2 64=______;(2)观察(1)中三数4、16、64之间满足怎样的关系式?log 24、log 216、log 264之间又满足怎样的关系式?(3)由(2)的结果,你能归纳出一个一般性的结论吗? log a M +log a N =______(a >0且a ≠1,M >0,N >0);(4)根据幂的运算法则:a n ·a m =a n +m 以及对数的含义证明上述结论.4.阅读理解:对于任意正实数,02,0)(,2≥+-∴≥-b ab a b a b a Θ、ab b a 2≥+∴,只有当a =b 时,等号成立.结论:在ab b a 2≥+(a 、b 均为正实数)中,若ab 为定值p ,则p b a 2≥+,只有当a =b 时,a +b 有最小值.2P 根据上述内容,回答下列问题: 若m >0,只有当m =______时,mm 1+有最小值______. 思考验证:如图28-1,AB 为半圆O 的直径,C 为半圆上任意一点(与点A 、B 不重合),过点C 作CD ⊥AB ,垂足为D ,AD =a ,DB =b . 试根据图形验证ab b a 2≥+,并指出等号成立时的条件.图28-1探索应用:如图28-2,已知A (-3,0),B (0,-4),P 为双曲线)0(12>=x xy 上的任意一点,过点P 作PC ⊥x 轴于点C ,PD ⊥y 轴于点D .求四边形ABCD 面积的最小值,并说明此时四边形ABCD 的形状.图28-25.已知矩形ABCD 和点P ,当点P 在图28-3中的位置时,则有结论:S △PBC =S△P A C+S△P C D.理由:过点P 作EF 垂直BC ,分别交AD 、BC 于E 、F 两点.图28-3=⋅=+=⋅+⋅=+∆∆EF BC PE PF BC PE AD PF BC S S PAD PBC 21)(212121Θ ABCD S 矩形21, 又ABCD PAD PCD PACS S S S 矩形21=++∆∆∆Θ,∴S △PBC +S △P AD =S △P AC +S △PCD +S △P AD , ∴S △PBC =S △P AC +S △PCD .请你参考上述信息,当点P 分别在图28-4、图28-5中的位置时,S △PBC 、S△P AC、S △PCD 又有怎样的数量关系?请写出你对上述两种情况的猜想,并选择其中一种情况的猜想给予证明.图28-4 图28-5参考答案 阅读理解问题1.(1)C ;(2)如果a =b ,那么等式两边不能同时除以a 2-b 2; (3)直角三角形或等腰三角形.2.(1)∵28=82-62,2012=5042-5022,∴28和2012都是神秘数. (2)设由两个连续偶数2k +2和2k (k 为非负整数)构造的神秘数为M ,则 ∵M =(2k +2)2-(2k )2=4(2k +1). ∴M 是4的倍数,结论成立.(3)设两个连续奇数(2k +1)和(2k -1)(k 为正整数),则 (2k +1)2-(2k -1)2=8k .而8k 无法表示成两个连续偶数的平方差. ∴两个连续奇数的平方差(取正数),不是神秘数. 3.解:(1)1og 24=2,log 216=4,log 264=6;(2)4×16=64,log 24+log 216=log 264; (3)log a M +log a N =log a (MN );(4)证明:设log a M =b 1,log a N =b 2,则1b a =M ,2b a =N . ∴MN =1b a ·2b a =21b b a +.∴b 1+b 2=log a (MN ).即1og a M +log a N =log a (MN ).4.解:阅读理解:m = 1 最小值为 2 . 思考验证:∵AB 是⊙O 的直径,∴AC ⊥BC . 又∵CD ⊥AB ,∴∠CAD =∠BCD =90°-∠B . ∴Rt △CAD ∽Rt △BCD .CD 2=AD ·DB ,∴CD =ab . 若点D 与O 不重合,连结OC ,在Rt △OCD 中,∵OC >CD ,.2ab ba >+∴ 若点D 与O 重合,则OC =CD ,.2ab ba =+∴ 综上所述,ab ba ≥+∴2,即ab b a 2≥+,当CD 等于半径时,等号成立. 探索应用:设P (x ,x 12),则C (x ,0),D (0,x 12),∴CA =x +3,DB =x12+4.∴S 四边形ABCD =21CA ×DB =21(x +3)×(x 12+4).化简得S =2(x +x9)+12.∵x >0,x9>0,∴x +x 9≥x x 92⨯=6.只有当x =x9,即x =3时,等号成立.∴S ≥2×6+12=24.∴S 四边形ABCD 有最小值24.此时,P (3,4),C (3,0),D (0,4),AB =BC =CD =DA =5,四边形ABCD 是菱形.5.(1)原题图28-4中的结论为S △PBC =S △P AC +S △PCD .证明如下:如答图28-1,作PF ⊥BC 于点F ,交AD 于点E ,则有答图28-1)(2121EF PE BC PF BC S PBC +=⋅=∆ EF BC PE BC ⋅+⋅=2121 EF BC PE AD ⋅+⋅=2121 =S △P AD +21S 矩形ABCD =S △P AD +S △ADC =S 四边形ACDP =S △P AC +S △PCD , ∴S △PBC =S △P AC +S △PCD .(2)原题图28-4中的结论为S △PBC =S △P AC -S △PCD .证明如下: 如答图28-2,作PE ⊥AD 于点E ,答图28-2交BC 于点F ,则有)(2121EF PF AD PF BC S PBC -=⋅=∆ ABCD PAD S S EF AD PE AD 矩形212121-=⋅-⋅=∆ =(S 四边形APCD -S △PCD )-S △ADC =(S 四边形APCD -S △ADC )-S △PCD =S △P AC -S △PCD . ∴S △PBC =S △P AC -S △PCD .。
八年级数学阅读理解练习题大全
八年级数学阅读理解练习题大全1. 收入与支出某学生每周从家里获得零花钱70元,他决定每周用30元作为储蓄,剩下的用于购买书籍和文具。
一周后,学生发现他的花费超过了预算,只剩下10元。
请问他购买了多少元的书籍和文具?2. 周长与面积一块矩形花坛的长是12米,宽是5米。
围绕着这块花坛有一圈跑道,宽度为2米。
请问跑道的周长是多少米?跑道的面积是多少平方米?3. 解方程某商品原价为100元,在折扣季期间打6折出售。
小明在这个时间段内买了五件此商品,总共花费了180元。
请问原价时小明买了几件此商品?4. 比例与百分数某公司招聘新员工,其中男性占总人数的40%,女性占总人数的60%。
如果男性员工有200人,请问女性员工有多少人?5. 几何图形一个等边三角形的周长是36厘米。
如果将这个等边三角形分成4个相等的小等边三角形,每个小等边三角形的周长是多少?6. 数据分析某班级进行了一次数学测验,有25个学生参加。
以下是他们的成绩,以百分制计算:70,82,95,63,78,89,71,65,90,76,83,94,88,77,81,85,92,79,72,69,100,68,75,87,97。
请计算并列出该班级的平均成绩和最高分。
7. 图表分析以下是某杂志调查的数据,反映了不同年龄段的读者对数学类文章的兴趣程度。
请根据数据回答问题:年龄段兴趣程度(百分比)13-18岁 50%19-25岁 65%26-35岁 40%36-45岁 30%a. 13-25岁年龄段的读者总数占总人数的百分比是多少?b. 哪个年龄段对数学类文章的兴趣程度最高?8. 数学应用一个长方形篮球场的长是35米,宽是20米。
篮筐离场地两短边的距离是2米,离长边的距离是4米。
请问篮筐距离场地的面积是多少平方米?以上是八年级数学阅读理解练习题大全,希望对学生们在数学学习中起到帮助和巩固知识的作用。
通过解答这些问题,学生们可以提高对数学知识的理解和应用能力。
初中课外数学阅读训练及答案
初中课外数学阅读训练及答案初中数学阅读训练及答案引言为了帮助学生提高数学阅读能力,培养数学思维,提高解决实际问题的能力,本文提供了一些初中数学阅读训练的示例和答案。
这些训练题目涵盖了初中数学各个知识点,适合学生自主研究和巩固知识。
数学阅读训练题目1. 问题:小明走了一段路程,发现他的手机电量只剩下20%。
他查看了手机手册,得知手机电量正常使用可以继续使用2小时。
如果小明之后需要使用手机导航,就必须保证手机的电量不少于50%。
小明还需要走2小时才能到目的地,请问他能否使用手机导航?答案:可以使用手机导航。
小明走2小时消耗的电量为20% ×2 = 40%,剩余电量为20% - 40% = -20%。
因此,他的电量低于50%,但由于手机手册显示继续使用可以使用2小时,这说明手机实际还有电量剩余。
所以,可以使用手机导航。
2. 问题:小红想要购买一种口红,原价是80元,现在打7折。
小红手上有一张20元的优惠券,她还需要支付多少钱?答案:口红的折后价为80元 × 0.7 = 56元。
折后价为56元,减去优惠券的面值20元,小红还需要支付的金额为56元 - 20元 = 36元。
3. 问题:在一个三角形ABC中,AB = 5cm,BC = 6cm,AC = 7cm。
三角形ABC的面积等于多少?答案:根据海伦公式,可以计算得出半周长s = (AB + BC + AC) / 2 = (5 + 6 + 7) / 2 = 9。
然后,利用海伦公式计算三角形的面积S = √(s(s - AB)(s - BC)(s - AC)) = √(9(9 - 5)(9 - 6)(9 - 7)) = √(9 × 4 × 3 × 2) = √(6 × 6 × 2) = 6√2。
因此,三角形ABC的面积为6√2 平方厘米。
总结通过完成上述数学阅读训练题目,学生可以提高数学阅读能力,巩固初中数学知识,并培养解决实际问题的能力。
中考数学 阅读理解题及答案
一个是另一个的有理化因式.于是,二次根式除法可以这样解:如 1阅读理解题1.(2019·重庆中考 A 卷 22 题)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、 合数等.现在我们来研究另一种特珠的自然数——“纯数”.定义:对于自然 数 n ,在计算 n +(n +1)+(n +2)时,各数位都不产生进位,则称这个自然数 n 为“纯数”.例如:32 是“纯数”,因为计算 32+33+34 时,各数位都不产生进位;23 不是“纯数”,因为计算 23+24+25 时,个位产生了进位. (1)判断 2019 和 2020 是否是“纯数”?请说明理由; (2)求出不大于 100 的“纯数”的个数.解 (1)2019 不是“纯数”,2020 是“纯数”. 理由:当 n =2019 时,n +1=2020,n +2=2021, ∵个位是 9+0+1=10,需要进位, ∴2019 不是“纯数”;当 n =2020 时,n +1=2021,n +2=2022,∵个位是 0+1+2=3,不需要进位,十位是 2+2+2=6,不需要进位,百位为 0+0+0=0,不需要进位,千位为 2+2+2=6,不需要进位,∴2020 是“纯数”.(2)由题意可得,连续的三个自然数个位数字是 0,1,2,其他位的数字为 0,1,2,3 时,不会产生进位,当这个数是一位自然数时,只能是 0,1,2,共 3 个,当这个自然数是两位自然数时,十位数字是 1,2,3,个位数字是 0,1,2,共9 个,当这个数是三位自然数时,只能是 100,由上可得,不大于 100 的“纯数”的个数为 3+9+1=13,即不大于 100 的“纯数”有 13 个.2.阅读材料:黑白双雄,纵横江湖;双剑合璧,天下无敌.这是武侠小说中的常见描述,其意是指两个人合在一起,取长补短,威力无比.在二次根式中也有这种相辅相成的“对子”,如:( 5+3)( 5-3)=-4,( 3+ 2)( 3- 2)=1,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中1× 3 =33× 3解(1) 12 2 ∵ 6+2> 5+ 3,∴1(2) 原 式 = 2 + + +…+ ⎪ ==y 630 70 99×97×2 ⎛1 6 10 10 14 194 198 ⎭= 3,2+ 3 (2+ 3)(2+ 3)=7+4 3.像这样,通过分子、分母同乘以一个 3 2- 3 (2- 3)(2+ 3)式子把分母中的根号化去或把根号中的分母化去,叫分母有理化.解决问题:11(1)比较大小:________(用“>”“<”或“=”填空);6-25- 32222(2)计算: + + +…+ ;3+ 3 5 3+3 5 7 5+5 7 99 97+97 99(3)设实数 x , 满足(x + x 2+2019)(y + y 2+2019)=2019,求 x +y +2019的值.6+26+2= = ,6-2 ( 6-2)( 6+2)1 5+ 35+ 3= = ,5- 3 ( 5- 3)( 5+ 3)1 >.6-25- 3⎛3- 3 5 3-3 5 7 5-5 7 99 97-97 99⎫⎝ ⎭⎛1 3 3 5 5 7 97 99 ⎫ 99⎫2 - + - + - +…+ - ⎪ =2 - ⎪ =1- ⎝2 6 ⎝2 198 ⎭11. 33(3)∵(x +x 2+2019)(y +y 2+2019)=2019,∴x +x 2+2019=2019y +y 2+20192019(y - y 2+2019) =-2019=y 2+2019-y ,①同理可得2019y +y 2+2019=x +x 2+20192019(x - x 2+2019) =-2019=x 2+2019-x ,②①+②得 x +y =0,∴x +y +2019=2019.99 99 =1-x 2-x +3 x (x +1)-2(x +1)+5 x (x +1) 2(x +1) 5x +1 x +1 x +1 x +1 x +1 x +1 x +1x -1 x -3 解 (1)x +7+ 4x 2+6x -3 (x -1)2+8(x -1)+4 4 4x -1 x -1 x -1 x -1x +7+4x -3 x -3 =2x (x -3)+11(x -3)+13 x-3 要使原式的值为整数,则为整数,故 x =2,4,16,-10.3.阅读材料:在处理分数和分式问题时,有时由于分子比分母大,或者分子的次数高于分母的次数,在实际运算中往往难度比较大,这时我们可以考虑逆用分数(分式)的加减法,将假分数 (分式)拆分成一个整数 (或整式)与一个真 分数的和(或差)的形式,通过对简单式的分析来解决问题,我们称之为分离整数法,此法在处理分式或整除问题时颇为有效,现举例说明.解: = = - + = x - 2 +5x +1.x 2-x +35 这样,分式就拆分成一个整式 x -2 与一个分式的和的形式.解决问题:x 2+6x -3 (1)将分式拆分成一个整式与一个分子为整数的分式的和的形式,则结果为________;2x 2+5x -20 (2) 已知整数 x 使分式 的值为整数,则满足条件的整数x =________;(3)若关于 x 的方程 2x 2+(1-2a )x +(4-3a )=0 有整数解,求正整数 a 的值.x -1[解法提示]= =x -1+8+ =x +7+ .故结果为x -1.(2)2,4,16,-10 [解法提示]2x 2+5x -20 2x 26x +11x -33+13 =x -3=2x +11+ 13.13 x -3(3)∵2x 2+(1-2a )x +(4-3a )=0,2x2+x+47+(2x+3)(x-1) 2x+32x+3=x-1+7∴2x2+x-2ax+4-3a=0,即(2x+3)a=2x2+x+4,∴a==2x+3.又∵a,x均为整数,∴2x+3是7的约数,∴2x+3=±1,±7,⎧x=-1,∴⎨⎩a=5⎧x=-2,或⎨⎩a=-10⎧x=2,或⎨⎩a=2⎧x=-5,或⎨⎩a=-7.又∵a为正整数,∴a=5或2.4.阅读下列材料:已知实数m,n满足(2m2+n2+1)(2m2+n2-1)=80,试求2m2+n2的值.解:设2m2+n2=t,则原方程变为(t+1)(t-1)=80,整理得t2-1=80,t2=81,∴t=±9,因为2m2+n2>0,所以2m2+n2=9.上面这种方法称为“换元法”,换元法是数学学习中最常用的一种思想方法,在结构较复杂的数和式的运算中,若把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.解决问题:(1)已知实数x,y满足(2x2+2y2+3)(2x2+2y2-3)=27,求x2+y2的值;(2)若四个连续正整数的积为11880,求这四个连续正整数.解(1)令2x2+2y2=t,则原方程变为(t+3)(t-3)=27,整理得,t2-9=27,t2=36.t=±6.∵2x2+2y2≥0,∴2x2+2y2=6,∴x2+y2=3.(2)设四个连续正整数为k-1,k,k+1,k+2(k≥2且k为整数).由题得(k-1)k(k+1)(k+2)=11880,∴(k-1)(k+2)k(k+1)=11880,∴(k2+k-2)(k2+k)=11880.令t=k2+k,则(t-2)·t=11880,t2-2t-11880=0,∴t=110,t=-108(舍去),12即S=100×(1+100)=5050.=199×(1+199)-100=19900-100=19800.则k2+k=110,得k=10,k=-11(舍去).12综上,四个连续正整数为9,10,11,12.5.阅读材料:材料一:对实数a,b,定义T(a,b)的含义为:当a<b时,T(a,b)=a+b;当a≥b时,T(a,b)=a-b.例如:T(1,3)=1+3=4;T(2,-1)=2-(-1)=3.材料二:关于数学家高斯的故事:200多年前,高斯的算术老师提出了下面的问题:1+2+3+4+…+100=?据说,当其他同学忙于把100个数逐项相加时,十岁的高斯却用下面的方法迅速算出了正确答案:(1+100)+(2+99)+…+(50+51)=101×50=5050.也可以这样理解:令S=1+2+3+…+100①,则S=100+99+…+3+2+1②,①+②得2S=(1+100)+(2+99)+(3+98)+…+(100+1)=100×(1+100个100)=10100,2解决问题:(1)已知x+y=10,且x>y,求T(5,x)-T(5,y)的值;(2)对于正数m,有T(m2+1,-1)=3,求T(1,m+99)+T(2,m+99)+T(3,m+99)+…+T(199,m+99)的值.解(1)∵x+y=10,且x>y,∴x>5,y<5.∴T(5,x)-T(5,y)=(5+x)-(5-y)=x+y=10.(2)∵m2+1>-1,∴m2+1-(-1)=3,∵m>0,∴m=1,∴T(1,m+99)+T(2,m+99)+T(3,m+99)+…+T(199,m+99)=T(1,100)+T(2,100)+T(3,100)+…+T(199,100)=(1+100)+(2+100)+…+(99+100)+(100-100)+(101-100)+…+(199-100)=(1+2+3+…+199)-10026.(热点信息)在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分,而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的密码就很有必要了.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+x2-4x-4因式分解的结果为(x+1)(x+2)(x-2),当x=15时,x+1=16,x+2=17,x-2=13,此时可以得到数字密码161713.(1)根据上述方法,当x=20,y=17时,对于多项式x2y+x2+xy+x分解因式后可以形成哪些数字密码?(写出三个)(2)若多项式x3+(m-3n)x2-nx-21因式分解后,利用本题的方法,当x =27时可以得到其中一个密码为242834,求m,n的值.解(1)x2y+x2+xy+x=x(xy+x+y+1)=x(x+1)(y+1).∴当x=20,y=17时,x=20,x+1=21,y+1=18.∴形成的数字密码可以是202118,211820,182021(其他结果合理即可).(2)由题意得,x3+(m-3n)x2-nx-21=(x-3)(x+1)(x+7),∵(x-3)(x+1)(x+7)=x3+5x2-17x-21,∴x3+(m-3n)x2-nx-21=x3+5x2-17x-21.⎧m-3n=5,∴⎨⎩n=17,⎧m=56,解得⎨⎩n=17.∴m,n的值分别是56,17.7.已知一个三位自然数,若满足百位数字等于十位数字与个位数字的和,则称这个数为“和数”,若满足百位数字等于十位数字与个位数字的平方差,则称这个数为“谐数”.如果一个数既是“和数”,又是“谐数”,则称这个数为“和谐数”.例如321,∵3=2+1,∴321是“和数”,∵3=22-12,∴321是“谐数”,∴321是“和谐数”.(1)证明:任意“谐数”的各个数位上的数字之和一定是偶数;(2)已知a=10m+4n+716(0≤m≤7,1≤n≤3,且m,n均为正整数)是一个“和数”,请求出所有a的值.解(1)证明:设“谐数”的百位数字为x,十位数字为y,个位数字为z(1≤x≤9,0≤y≤9,0≤z≤9且y>z,x,y,z均为整数),由题意知x=y2-z2=(y+z)(y-z),∴x+y+z=(y+z)(y-z)+y+z=(y+z)(y-z+1).∵y+z,y-z的奇偶性相同,∴y+z,y-z+1必然一奇一偶.∴(y+z)(y-z+1)必是偶数.∴任意“谐数”的各个数位上的数字之和一定是偶数.(2)∵0≤m≤7,∴2≤m+2≤9.∵1≤n≤3,∴4≤4n≤12.∴10≤4n+6≤18,∴a=10m+4n+716⎩n =1, ∴a 的值为 734 或 770.称这个数为“平方差数”,则 a ,b 为 m 的一个平方差分解,规定:F (m )= .⎩a -b =2.所以 F (8)= .或 或 .⎩a -b =2∴F (45)= 或 或 .=7×100+(m +1)×10+(4n +6)=7×100+(m +2)×10+(4n +6-10) =7×100+(m +2)×10+(4n -4),∵a 为“和数”,∴7=m +2+4n -4,即 m +4n =9. ∵0≤m ≤7,1≤n ≤3,且 m ,n 均为正整数,⎧m =1, ∴⎨⎩n =2⎧m =5, 或⎨8.如果一个正整数 m 能写成 m =a 2-b 2(a ,b 均为正整数,且 a ≠b ),我们ba⎧a +b =8,例如:8=8×1=4×2,由 8=a 2-b 2=(a +b )(a -b ),可得⎨⎩a -b =1或⎧a +b =4, ⎨⎧a =3,因为 a ,b 为正整数,解得⎨⎩b =1,13又例如:48=132-112=82-42=72-12,所以 F (48)= 11 1 113 2 7(1)判断:6________平方差数(填“是”或“不是”),并求 F (45)的值;(2) 若 s 是 一 个 三 位 数 , t 是 一 个 两 位 数 , s = 100x + 5 , t = 10y +x (1≤x ≤4,1≤y ≤9,x ,y 是整数),且满足 s +t 是 11 的倍数,求 F (t )的最大值.解 (1)不是[解法提示] 根据题意,6=2×3=1×6,由 6=a 2-b 2=(a +b )(a -b )可得,⎧a +b =3, ⎨⎧a +b =6, 或⎨⎩a -b =1,因为 a ,b 为正整数,则可判断出 6 不是平方差数.根据题意,45=3×15=5×9=1×45,由 45=a 2-b 2=(a +b )(a -b ),⎧a +b =15,可得⎨⎩a -b =3⎧a +b =9, 或⎨⎩a -b =5 ⎧a +b =45, 或⎨⎩a -b =1.∵a 和 b 都为正整数,⎧a =9,解得⎨⎩b =6⎧a =7, 或⎨⎩b =2⎧a =23, 或⎨⎩b =22,2 2 223 7 23⎩a-b=1,∴F(t)=.(2)根据题意,s=100x+5,t=10y+x,∴s+t=100x+10y+x+5.∵1≤x≤4,1≤y≤9,x,y是整数,∴100≤100x≤400,10≤10y≤90,6≤x+5≤9,∴116≤s+t≤499.∵s+t为11的倍数,∴s+t最小为11的11倍,最大为11的45倍.∵100x末位为0,10y末位为0,x+5末位为6到9之间的任意一个整数,∴s+t的末位是6到9之间的任意一个整数.①当x=1时,x+5=6,∴11×16=176,此时x=1,y=7,∴t=71.根据题意,71=71×1,由71=a2-b2=(a+b)(a-b),可得⎧a+b=71,⎨⎧a=36,解得⎨⎩b=35,3536②当x=2时,x+5=7,∴11×27=297,此时x=2,y=9.∴t=92.根据题意,92=92×1=46×2=23×4,由92=a2-b2=(a+b)(a-b),⎧a+b=92,可得⎨⎩a-b=1⎧a=24,解得⎨⎩b=22.⎧a+b=46,或⎨⎩a-b=2⎧a+b=23,或⎨⎩a-b=4.∴F(t)=11 12.③当x=3时,x+5=8,∴11×38=418,此时x=3,y没有符合题意的值,∴11×28=308,此时x=3,y没有符合题意的值.④当x=4时,x+5=9,∴11×39=429,此时x=4,y=2.∴t=24.根据题意,24=24×1=12×2=8×3=6×4,由24=a2-b2=(a+b)(a-b),⎧a+b=24,可得⎨⎩a-b=1⎧a+b=12,或⎨⎩a-b=2⎧a+b=8,或⎨⎩a-b=3⎧a+b=6,或⎨⎩a-b=4.∴F(t)=或.综上,F(t)=或或或.∴F(t)的最大值为35⎧a=7,解得⎨⎩b=5⎧a=5,或⎨⎩b=1,517511×49=539不符合题意.35115136127536.9.(1)问题发现:如图1,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转60°得到线段AE,连接EC,则①∠ACE的度数是________;②线段AC,CD,CE之间的数量关系是________;(2)拓展探究:如图2,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到线段AE,连接EC,请写出∠ACE的度数及线段AC,CD,CE之间的数量关系,并说明理由;(3)解决问题:如图3,在四边形ADBC中,∠ABC=∠ACB=45°,∠BDC=90°.若BD=3,CD=5,请直接写出AD的长.解(1)①60°②AC=CD+CE[解法提示]由题意,得ABC和△ADE均为等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=∠B=60°.∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴∠ACE=∠B=60°,BD=CE.∴AC=BC=CD+BD=CD+CE.(2)∠ACE=45°,2AC=CD+CE.理由:由题意,得∠BAC=∠DAE=90°,AB=AC,AD=AE.∴∠BAC-∠DAC=∠DAE-∠DAC.即∠BAD=∠CAE.∴△BAD≌△CAE.∴BD=CE,∠ACE=∠B=45°.∴BC=CD+BD=CD+CE.∵BC=2AC,∴2AC=CD+CE.(3)AD的长为 2.[解法提示]过点A作AE⊥AD交DC于点E,则∠DAB=∠EAC.∵∠BDC=90°,∴∠DBA+∠ABC+∠DCB=90°.∴∠DBA+45°+(45°-∠ECA)=90°.∴∠DBA=∠ECA.又AB=AC.∴△BAD≌△CAE(ASA).∴BD=CE,AD=AE,∴CD-BD=CD-CE=DE,而DE=2AD,∴CD-BD=2AD,∴AD= 2.。
初三中考初中数学阅读理解专题训练含答案
初三中考初中数学阅读理解专题训练含答
案
阅读理解是中考数学考试中常见的题型之一。
在这种题型中,
学生需要通过阅读一篇数学相关的文章,并回答相关的问题。
以下
是一些初三中考初中数学阅读理解专题训练题目及其答案,供同学
们练。
题目一:
某公司为两位员工A和B购买了一套办公设备,设备总价为元。
公司决定按照员工A的工作量和贡献度,将设备总价分成两份。
员工A参与公司工作的时间为8个月,员工B参与公司工作的时间为4个月。
设员工A和B分别支付的费用为X元和Y元,则X+Y
的值为多少?
A. 4000元
B. 6000元
C. 8000元
D. 元
答案:C. 8000元
题目二:
某学校举行篮球比赛,共有12名学生参加。
其中有7名男生
和5名女生。
学校规定,要选出一支由至少3名男生和至少2名女
生组成的比赛队。
则符合要求的不同组队方式有多少种?
A. 50种
B. 60种
C. 70种
D. 80种
答案:C. 70种
题目三:
某商店打折出售一种商品,原价120元,现在打8折出售。
同时,商店还提供会员折扣,会员购买可再打7折。
某消费者是该商
店的会员,他购买了两件该商品。
则他需要支付的总费用是多少元?
A. 82.4元
B. 86.4元
C. 89.6元
D. 93.6元
答案:B. 86.4元
通过完成以上的阅读理解训练题目,同学们可以提高自己的阅读理解能力,并更好地应对中考数学考试。
初三数学阅读试题及答案
初三数学阅读试题及答案一、选择题1. 下列哪个选项是二次方程的一般形式?A. ax^2 + bx + c = 0B. ax^2 + c = 0C. ax + b = 0D. ax^2 + bx = 02. 一个正数的平方根是它本身的数是:A. 0B. 1C. -1D. 以上都不是3. 一个数的立方根是它本身的数有:A. 1个B. 2个C. 3个D. 无数个二、填空题4. 如果一个二次方程的判别式为负数,那么这个方程_________实数根。
5. 一个数的相反数是它本身,这个数是_________。
三、解答题6. 解析下列方程,并说明解的类型:(1) x^2 - 5x + 6 = 0(2) 3x^2 - 4x - 5 = 0四、阅读材料题7. 阅读以下材料,回答问题:“在数学中,一个数的平方根是指一个数乘以它自己得到原数的数。
例如,4的平方根是2,因为2*2=4。
负数没有实数平方根,因为实数的乘积不可能是负数。
”(1)根据材料,为什么负数没有实数平方根?(2)材料中提到了平方根,那么立方根的定义是什么?初三数学阅读试题答案一、选择题1. A2. A3. B二、填空题4. 没有5. 0三、解答题6. (1)方程 x^2 - 5x + 6 = 0 的判别式Δ = b^2 - 4ac = (-5)^2 - 4*1*6 = 25 - 24 = 1,因为判别式大于0,所以方程有两个不相等的实数根。
(2)方程 3x^2 - 4x - 5 = 0 的判别式Δ = b^2 - 4ac = (-4)^2 - 4*3*(-5) = 16 + 60 = 76,因为判别式大于0,所以方程有两个不相等的实数根。
四、阅读材料题7. (1)根据材料,负数没有实数平方根,因为实数的乘积不可能是负数。
两个正数相乘或两个负数相乘都是正数,而正数和负数相乘是负数,所以不存在一个实数乘以它自己得到负数。
(2)立方根的定义是一个数乘以它自己两次得到原数的数。
初中数学专题复习阅读理解型问题(含答案)
yxO yx O yxO Ox y CE DBA专题训练25 阅读理解型问题一、选择题(每小题5分,共40分)1.在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文26个字母a b c ,,,…,z (不论大小写)依次对应1,2,3,…,26这26个自然数(见表格).当明码对应的序号x 为奇数时,密码对应的序号12x y +=;当明码对应的序号x 为偶数时,密码对应的序号13xy =+.按上述规定,将明码“love ”译成密码是( ) A .gawq B .shxcC .sdriD .love2.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC 为公共边的“共边三角形”有( )A .2对B .3对C .4对D .6对3.小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后 细端详,父子高兴把家还。
”如果用纵轴y 表示父亲与儿子行进中离家的距离,用横轴x 表示父亲离家的时间,那么下面的图象与上述诗的含义大致吻合的是( )A B C D4.已知坐标平面上的机器人接受指令“[a ,A ]”(a ≥0,0°<A <180°)后的行动结果为:在原地顺时针旋转A 后,再向面对方向沿直线行走a . 若机器人的位置在原点,面对方向为y 轴的负半轴,则它完成一次指令[2,60°]后,所在位置的坐标为( ) A. (-1, B. (-1C.-1)D.-1)5.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219423x y x y ⎧⎨⎩+=+=类似地,图2所示的算筹图我们可以表述为( ) A .211,4327.x y x y ⎧⎨⎩+=+= B .211,4322.x y x y ⎧⎨⎩+=+=C .3219,423.x y x y ⎧⎨⎩+=+=D .26,4327.x y x y ⎧⎨⎩+=+=6.根据下列表格中二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,判断方程20ax bx c ++=(0a a b c ≠,,,为常数)的一个解x 的范围是( )A.6 6.17x << B.6.17 6.18x << C.6.18 6.19x << D.6.19 6.20x <<7.1883年,康托尔构造的这个分形,称做康托尔集.从数轴上单位长度线段开始,康托尔取走其中间三分之一而达到第一阶段;然后从每一个余下的三分之一线段中取走其中间三分之一而达到第二阶段.无限地重复这一过程,余下的无穷点集就称做康托尔集.上图是康托尔集的最初几个阶段,当达到第八个阶段时,余下的所有线段的长度之和为( )A .523⎛⎫ ⎪⎝⎭B .623⎛⎫ ⎪⎝⎭C .723⎛⎫ ⎪⎝⎭D .823⎛⎫ ⎪⎝⎭8.自2006年3月26日起,国家对石油开采企业销售国产石油因价格超过一定水平(每桶40美元)所获的超额收入,将按比例征收收益金(征收比率及算法举例如下面的图表).有人预测中国石油公司2006年第3季度将销售200百万桶石油,售价为每桶53美元,那么中国石油公司该季度估算的特别收益金将达到人民币(按1美元兑换8元人民币的汇率计算) ( )石油特别收益金计算举例 石油特别收益金计算举例图2图1A. 62.4亿元B.58.4亿元C.50.4亿元D. 0.504亿元二、填空题(每小题4分,共24分)9.阅读材料:设一元二次方程20ax bx c ++=的两根为1x ,2x ,则两根与方程系数之间有如下关系:12b x x a+=-,acx x =21.根据该材料填空: 已知1x ,2x 是方程2630x x ++=的两实数根,则2112x x x x +的值为______. 10、(2007四川巴中)先阅读下列材料,然后解答问题:从A B C ,,三张卡片中选两张,有三种不同选法,抽象成数学问题就是从3个元素中选取2个元素组合,记作2332C 321⨯==⨯. 一般地,从m 个元素中选取n 个元素组合,记作:(1)(1)C (1)321nm m m m n n n --+=-⨯⨯⨯例:从7个元素中选5个元素,共有5776543C 2154321⨯⨯⨯⨯==⨯⨯⨯⨯种不同的选法.问题:从某学习小组10人中选取3人参加活动,不同的选法共有 种.11、将4个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成a b cd,定义a bc dad bc =-,上述记号就叫做2阶行列式.若1111x x x x +--+ 6=,则x =________. 12、我们常用的数是十进制的数,而计算机程序处理中使用的是只有数码0和1的二进制数.这两者可以相互换算,如将二进制1101换算成十进制数应为1×23+1×22+0×21+ 1×20= 13,按此方式,则将十进制数25换算成二进制数应为__________.13、定义一种对正整数n 的“F ”运算:①当n 为奇数时,结果为3n +5;②当n 为偶数时,结果为kn2(其中k 是使kn2为奇数的正整数),并且运算重复进行.例如,取n =26,则:2613 44 11第F ②第F ①第F ②…… 若n =449,则第449次“F 运算”的结果是_____.14、放假了,小明和小丽去蔬菜加工厂社会实践,两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了28千克,你呢?” 小丽思考了一会儿说:“我来考考你.图⑴、图⑵分别表示你和我的工作量与工作时间的关系,你能算出我加工了多少千克吗?” 小明思考后回答:“你难不倒我,你现在加工了 千克.”时间()18工作量(kg )时间()7040工作量(kg )图1 图2三、解答题(每小题12分,共36分) 15、阅读下列题目的解题过程: 已知a 、b 、c 为的三边,且满足,试判断的形状.解:2222222222()()()()()ABC c a b a ba bB c a bC ∆∴-=+-∴=+∴是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:________________;(2)错误的原因为:_______________________________________________________; (3)本题正确的结论为:____________.16、图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为(1)1232n n n +++++=.图1 图2 图3 图4如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1234,,,,,则最底层最左边这个圆圈中的数是 ;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数23-,22-,21-,,求图4中所有圆圈中各数的绝对值之和.17.阅读以下材料,并解答以下问题.“完成一件事有两类不同的方案,在第一类方案中有m种不同的方法,在第二类方案中有n种不同的方法.那么完成这件事共有N=m+n种不同的方法,这是分类加法计数原理;完成一件事需要两个步骤,做第一步有m种不同的方法,做第二步有n种不同的方法.那么完成这件事共有N=m×n种不同的方法,这就是分步乘法计数原理.”如完成沿图1所示的街道从A点出发向B点行进这件事(规定必须向北走,或向东走),会有多种不同的走法,其中从A点出发到某些交叉点的走法数已在图2填出.(1)根据以上原理和图2的提示,算出从A出发到达其余交叉点的走法数,将数字填入图2的空圆中,并回答从A点出发到B点的走法共有多少种?(2)运用适当的原理和方法算出从A点出发到达B点,并禁止通过交叉点C的走法有多少种?(3)现由于交叉点C道路施工,禁止通行.求如任选一种走法,从A点出发能顺利开车到达B点(无返回)概率是多少?参考答案(第17题)(第17题)参考答案一、选择题1、B ,2、 B ,3、C ,4、 D ,5、A ,6、C,7、D ,8、C , 二填空题9、 10, 10、 120, 11、 12、 11001, 13、8, 14、 20kg 三、解答题15、解:(1) C(2)没有考虑220a b -=(3)ABC ∆是直角三角形或等腰三角形 16、解:(1)67.(2)图4中所有圆圈中共有12(121)12312782+++++==个数, 其中23个负数,1个0,54个正数,∴图4中所有圆圈中各数的绝对值之和|23||22||1|01254=-+-++-+++++(12323)(12354)27614851761=+++++++++=+=.17、解: (1)∵完成从A 点到B 点必须向北走,或向东走,∴到达A 点以外的任意交叉点的走法数只能是与其相邻的南边交叉点和西边交叉点的数字之和.故使用分类加法计数原理,由此算出从A 点到达其余各交叉点的走法数,填表如图1, 答:从A 点到B 点的走法共有35种.方法一: 可先求从A 点到B 点,并经过交叉点C 的走法数,再用从A 点到B 点总走法数减去它,即得从A 点到B 点,但不经过交叉点C 的走法数.完成从A 点出发经C 点到B 点这件事可分两步,先从A 点到C 点,再从C 点到B 点. 使用分类加法计数原理,算出从A 点到C 点的走法是3种,见图2;算出从C 点到B 点的走法为6种,见图3,再运用分步乘法计数原理,得到从A 点经C 点到B 点的走法有3×6=18种.∴从A 点到B 点但不经过C 点的走法数为35-18=17种.方法二:由于交叉点C道路施工,禁止通行,故视为相邻道路不通,可删除与C点紧相连的线段.运用分类加法计数原理,算出从A点到B点并禁止通过交叉点C的走法有17种.从A点到各交叉点的走法数见图4.∴从A点到B点并禁止经过C点的走法数为35-18=17种.(3)P(顺利开车到达B点)=17 35.答:任选一种走法,顺利开车到达B点的概率是17 35.。
(完整版)初二数学经典阅读理解题
阅读理解题型训练1.阅读下面材料:小明遇到这样一个问题:如图1,△ABO 和△CDO 均为等腰直角三角形, ∠AOB =∠COD=90︒.若△BOC 的面积为1, 试求以AD 、BC 、OC+OD 的长度为三边长的三角形的面积.图1 图2小明是这样思考的:要解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他利用图形变换解决了这个问题,其解题思路是延长CO 到E , 使得OE =CO , 连接BE , 可证△OBE ≌△OAD , 从而得到的△BCE 即是以AD 、BC 、OC+OD 的长度为三边长的三角形(如图2).请你回答:图2中△BCE 的面积等于 .2.如图所示,圆圈内分别标有1,2,…,12,这12个数字,电子跳蚤每跳一步,可以从一个圆圈逆时针跳到相邻的圆圈,若电子跳蚤所在圆圈的数字为n ,则电子跳蚤连续跳(2-3n )步作为一次跳跃,例如:电子跳蚤从标有数字1的圆圈需跳12-13=⨯步到标有数字2的圆圈内,完成一次跳跃,第二次则要连续跳42-23=⨯步到达标有数字6的圆圈,…依此规律,若电子跳蚤从①开始,那么第3次能跳到的圆圈内所标的数字为 ;第2012次电子跳蚤能跳到的圆圈内所标的数字为 .3.请阅读下列材料:已知:如图(1)在Rt △ABC 中,∠BAC =90°,AB = AC ,点D 、E 分别为线段BC 上两动点,若∠DAE =45°.探究线段BD 、DE 、EC 三条线段之间的数量关系. 小明的思路是:把△AEC 绕点A 顺时针旋转90°,得到△ABE′,连结E′D , 使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD 、DE 、EC 三条线段之间存在的数量关系式,并对你的猜想给予证明; 图(1)ADCOBBOCDA111210987654321图2图1A'PPA ABCBC(2)当动点E 在线段BC 上,动点D 运动在线段CB 延长线上时,如图(2),其它条件 不变,(1)中探究的结论是否发生改变? 请说明你的猜想并给予证明.4.阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC (其中∠BAC 是一个可以变化的角)中,AB=2,AC=4,以BC 为边在BC 的下方作等边△PBC ,求AP 的最大值。
初一数学阅读试题及答案
初一数学阅读试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正整数?A. -1B. 0C. 1D. 1.5答案:C2. 一个数的相反数是-2,那么这个数是:A. 2B. -2C. 0D. 4答案:A3. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5或-5D. 0答案:C4. 计算下列哪个表达式的结果是正数?A. 3 + (-2)C. 0 - 5D. -3 × 2答案:A5. 下列哪个选项是偶数?A. 2B. 3C. 5D. 7答案:A6. 一个数的平方是9,这个数可能是:A. 3B. -3C. 3或-3D. 0答案:C7. 一个数的立方是-27,这个数是:A. 3B. -3C. 27D. -27答案:B8. 计算下列哪个表达式的结果是负数?B. -1 - 2C. 0 + 4D. 6 ÷ 2答案:B9. 一个数的倒数是2,这个数是:A. 1/2B. 2C. -1/2D. -2答案:A10. 下列哪个选项是质数?A. 4B. 6C. 9D. 11答案:D二、填空题(每题3分,共30分)1. 一个数的相反数是它自己,这个数是______。
答案:02. 一个数的绝对值是它自己,这个数是非负数,即______或______。
答案:正数,03. 计算:(-3) × (-4) = ______。
答案:124. 一个数的平方是16,这个数是______或______。
答案:4,-45. 一个数的立方是8,这个数是______。
答案:26. 计算:(-2) + (-3) = ______。
答案:-57. 一个数的倒数是1/3,这个数是______。
答案:38. 计算:5 × (-2) = ______。
答案:-109. 一个数的平方是25,这个数是______或______。
答案:5,-510. 计算:(-1) ÷ (-1) = ______。
初一数学阅读试题及答案
初一数学阅读试题及答案一、选择题1. 下列哪个选项是最小的正整数?A. 0B. 1C. 2D. 32. 如果一个数的平方是16,那么这个数是多少?A. 4B. -4C. 4或-4D. 163. 一个数的绝对值是5,这个数可能是多少?A. 5B. -5C. 5或-5D. 都不是二、填空题4. 一个数的相反数是-8,这个数是________。
5. 如果一个数的立方是-27,那么这个数是________。
三、解答题6. 一个数列的前三项是2,5,8,这个数列是等差数列吗?如果是,请给出第四项的值。
四、应用题7. 某班有30名学生,其中男生人数是女生人数的2倍。
请问这个班有多少名男生?答案:一、选择题1. 答案:B(最小的正整数是1)2. 答案:C(一个数的平方是16,这个数可以是4或-4)3. 答案:C(一个数的绝对值是5,这个数可能是5或-5)二、填空题4. 答案:8(一个数的相反数是-8,那么这个数是8)5. 答案:-3(一个数的立方是-27,那么这个数是-3)三、解答题6. 答案:是等差数列,第四项的值为11。
(等差数列的公差为3,所以第四项为8+3=11)四、应用题7. 答案:这个班有20名男生。
(设女生人数为x,则男生人数为2x,x+2x=30,解得x=10,男生人数为2*10=20)结束语:通过本试题的练习,同学们可以更好地理解和掌握初一数学中的基本概念和运算规则,希望同学们能够认真复习,不断提高自己的数学能力。
初一数学 阅读理解题型练习
初一数学阅读理解题型练习1.课题学习:平行线的“等角转化”功能.阅读理解:如图1,已知点A是BC外一点,连接AB,AC.求∠BAC+∠B+∠C的度数.(1)阅读并补充下面推理过程.解:过点A作ED∥BC,所以∠B=,∠C=.又因为∠EAB+∠BAC+∠DAC=180°.所以∠B+∠BAC+∠C=180°.解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决.方法运用:(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.提示:过点C作CF∥AB.深化拓展:(3)已知AB∥CD,点C在点D的右侧,∠ADC=70°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间.请从下面的A,B两题中任选一题解答,我选择题.A.如图3,点B在点A的左侧,若∠ABC=60°,则∠BED的度数为°.B.如图4,点B在点A的右侧,且AB<CD,AD<BC.若∠ABC=n°,则∠BED的度数为°.(用含n的代数式表示)2.如图,直线AC∥BD,P在直线AB上(不与点A,B重合).(1)当点P在如图所示的位置时,∠PCA=30°,∠PDB=25°,则∠CPD=.(2)猜想,当点P在A,B两点之间运动时,∠PCA,∠PDB,∠CPD之间的数量关系.(3)说明(2)中的猜想成立的理由.(4)当点P在直线AB上(不在线段AB上)运动时,试探究∠PCA,∠PDB,∠CPD之间的数量关系(画图并直接写出结论即可)3.已知:∠MON=80°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图1,若AB∥ON,则:①∠ABO的度数是;②如图2,当∠BAD=∠ABD时,试求x的值(要说明理由);(2)如图3,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,直接写出x的值;若不存在,说明理由.(自己画图)4.如图1,已知直线l1∥l2,且l1、l2分别相交于A、B两点,l4和l1、l2分别交于C、D两点,∠ACP=∠1,∠BDP=∠2,∠CPD=∠3.点P在线段AB上.(1)若∠1=22°,∠2=33°,则∠3=.(2)试找出∠1、∠2、∠3之间的等量关系,并说明理由.(3)应用(2)中的结论解答下列问题:如图2,点A在B处北偏东40°的方向上,在C处的北偏西45°的方向上,求∠BAC的度数.(4)如果点P在直线l3上且在A、B两点外侧运动时,其他条件不变,试探究∠1、∠2、∠3之间的关系(点P和A、B两点不重合),直接写出结论即可.5.如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.6.如图,AB∥CD,P为定点,E、F分别是AB、CD上的动点.(1)求证:∠P=∠BEP+∠PFD;(2)若M为CD上一点,如图2,∠FMN=∠BEP,且MN交PF于N.试说明∠EPF与∠PNM 关系,并证明你的结论;(3)移动E、F使得∠EPF=90°,如图3,作∠PEG=∠BEP,求∠AEG与∠PFD度数的比值.7.如图,AB∥CD,直线PQ截AB、CD于点E、F,点M是直线PQ上的一个动点(点M不与E、F重合),点N在射线FC上.(1)当点M在线段EF上时,如图(1),求证:∠FMN+∠FNM=∠AEF.(2)当点M在射线EP上时,如图(2),试猜想∠FMN、∠FNM、∠AEF之间的数量关系:(不要求说明理由).(3)当点M在射线FQ上时,如图(3),试猜想∠FMN、∠FNM、∠AEF之间的数量关系,并说明理由.8.图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:;(2)仔细观察,在图2中“8字形”的个数:个;(3)图2中,当∠D=50度,∠B=40度时,求∠P的度数.9.已知△ABC中,∠BAC=100°.(1)若∠ABC和∠ACB的角平分线交于点O,如图1所示,试求∠BOC的大小;(2)若∠ABC和∠ACB的三等分线(即将一个角平均分成三等分的射线)相交于O,O1,如图2所示,试求∠BOC的大小;(3)如此类推,若∠ABC和∠ACB的n等分线自下而上依次相交于O,O1,O2…,如图3所示,试探求∠BOC的大小与n的关系,并判断当∠BOC=170°时,是几等分线的交线所成的角.10.如图①,△ABC中,AD平分∠BAC交BC于点D,AE⊥BC,垂足为E,CF∥AD.(1)如图①,∠B=30°,∠ACB=70°,则∠CFE=;(2)若(1)中的∠B=α,∠ACB=β,则∠CFE=;(用α、β表示)(3)如图②,(2)中的结论还成立么?请说明理由.阅读理解题型参考答案1.解:(1)∵ED∥BC,∴∠B=∠EAB,∠C=∠DAC,故答案为:∠EAB,∠DAC;(2)过C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠D=∠FCD,∵CF∥AB,∴∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°,(3)A、如图2,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE=∠ABC=30°,∠CDE=∠ADC=35°,∴∠BED=∠BEF+∠DEF=30°+35°=65°;故答案为:65;B、如图3,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°∴∠ABE=∠ABC=n°,∠CDE=∠ADC=35°∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=180°﹣∠ABE=180°﹣n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF+∠DEF=180°﹣n°+35°=215°﹣n°.故答案为:215°﹣n.2.解:(1)如图①,过P点作PE∥AC交CD于E点,∵AC∥BD∴PE∥BD,∴∠CPE=∠PCA=30°,∠DPE=∠PDB=25°,∴∠CPD=∠CPE+∠DPE=55°,故答案为:55;(2)∠CPD=∠PCA+∠PDB,故答案为:∠CPD=∠PCA+∠PDB;(3)过P点作PE∥AC交CD于E点,∵AC∥BD∴PE∥BD,∴∠CPE=∠PCA,∠DPE=∠PDB,∴∠CPD=∠CPE+∠DPE;(3)∠CPD=∠PCA﹣∠PDB.理由如下:如图②,过P点作PF∥BD交CD于F点,∵AC∥BD,∴PF∥AC,∴∠CPF=∠PCA,∠DPF=∠PDB,∴∠CPD=∠CPF﹣∠DPF=∠PCA﹣∠PDB.3.解:(1)①∵∠MON=80°,OE平分∠MON.∴∠AOB=∠BON=40°,∵AB∥ON,∴∠ABO=40°故答案是:40°;②如答图1,∵∠MON=80°,且OE平分∠MON,∴∠1=∠2=40°,又∵AB∥ON,∴∠3=∠1=40°,∵∠BAD=∠ABD,∴∠BAD=40°∴∠4=80°,∴∠OAC=60°,即x=60°.(2)存在这样的x,①如答图2,当点D在线段OB上时,若∠BAD=∠ABD,则x=40°;若∠BAD=∠BDA,则x=25°;若∠ADB=∠ABD,则x=10°.②如答图3,当点D在射线BE上时,因为∠ABE=130°,且三角形的内角和为180°,所以只有∠BAD=∠BDA,此时x=115°,C不在ON上,舍去;综上可知,存在这样的x的值,使得△ADB中有两个相等的角,且x=10°、25°、40°.4.解:(1)∠1+∠2=∠3.∵l1∥l2,∴∠1+∠PCD+∠PDC+∠2=180°,在△PCD中,∠3+∠PCD+∠PDC=180°,∴∠3=∠1+∠2=55°,∵l1∥l2,∴∠1+∠PCD+∠PDC+∠2=180°,在△PCD中,∠3+∠PCD+∠PDC=180°,∴∠1+∠2=∠3;(3)过A点作AF∥BD,则AF∥BD∥CE,则∠BAC=∠DBA+∠ACE=40°+45°=85°;(4)当P点在A的外侧时,如图2,过P作PF∥l1,交l4于F,∴∠1=∠FPC.∵l1∥l4,∴PF∥l2,∴∠2=∠FPD∵∠CPD=∠FPD﹣∠FPC∴∠CPD=∠2﹣∠1.当P点在B的外侧时,如图3,过P作PG∥l2,交l4于G,∴∠2=∠GPD∵l1∥l2,∴PG∥l1,∴∠1=∠CPG∵∠CPD=∠CPG﹣∠GPD∴∠CPD=∠1﹣∠2.5.解:(1)∵CB∥OA,∴∠AOC=180°﹣∠C=180°﹣100°=80°,∵OE平分∠COF,∴∠COE=∠EOF,∵∠FOB=∠AOB,∴∠EOB=∠EOF+∠FOB=∠AOC=×80°=40°;(2)∵CB∥OA,∵∠FOB=∠AOB,∴∠FOB=∠OBC,∴∠OFC=∠FOB+∠OBC=2∠OBC,∴∠OBC:∠OFC=1:2,是定值;(3)在△COE和△AOB中,∵∠OEC=∠OBA,∠C=∠OAB,∴∠COE=∠AOB,∴OB、OE、OF是∠AOC的四等分线,∴∠COE=∠AOC=×80°=20°,∴∠OEC=180°﹣∠C﹣∠COE=180°﹣100°﹣20°=60°,故存在某种情况,使∠OEC=∠OBA,此时∠OEC=∠OBA=60°.6.(1)证明:如图1,过点P作PG∥AB.则∠1=∠BEP.又∵AB∥CD,∴PG∥CD,∴∠2=∠PFD,∴∠EPF=∠1+∠2=∠BEP+∠PFD,即∠EPF=∠BEP+∠PFD;(2)∠EPF=∠PNM.理由如下:由(1)知,∠EPF=∠BEP+∠PFD.如图2,∵∠FMN=∠BEP,∴∠EPF=∠FMN+∠PFD.又∵∠PNM=∠FMN+∠PFD.∴∠EPF=∠PNM;(3)如图,∵由(1)知∠1+∠2=90°.∴∠1=90°﹣∠2.又∵∠1=∠3,∴∠4=180°﹣2∠1=2∠2,∴∠4:∠2=2:1.即∠AEG与∠PFD度数的比值为2:1.7.(1)证明:∵AB∥CD,∴∠AEF+∠NFM=180°,∵∠FMN+∠FNM+∠NFM=180°,∴∠FMN+∠FNM=∠AEF.(2)关系为:∠FMN+∠FNM=∠AEF.理由:∵AB∥CD,∴∠AEF+∠NFM=180°,∵∠FMN+∠FNM+∠NFM=180°,∴∠FMN+∠FNM=∠AEF.(3)数量关系为:∠FMN+∠FNM+∠AEF=180°.理由:∵AB∥CD,∴∠AEF=∠NFM,∵∠FMN+∠FNM+∠NFM=180°,∴∠FMN+∠FNM+∠AEF=180°.8.解:(1)∵∠A+∠D+∠AOD=∠C+∠B+∠BOC=180°,∠AOD=∠BOC(对顶角相等),∴∠A+∠D=∠C+∠B.故答案为:∠A+∠D=∠C+∠B;(2)①线段AB、CD相交于点O,形成“8字形”;②线段AN、CM相交于点O,形成“8字形”;③线段AB、CP相交于点N,形成“8字形”;④线段AB、CM相交于点O,形成“8字形”;⑤线段AP、CD相交于点M,形成“8字形”;⑥线段AN、CD相交于点O,形成“8字形”;故“8字形”共有6个;(3)由(1)可知,∠DAP+∠D=∠P+∠DCP,①∠PCB+∠B=∠P AB+∠P,②∵∠DAB和∠BCD的平分线AP和CP相交于点P,∴∠DAP=∠P AB,∠DCP=∠PCB,由①+②得:∠DAP+∠D+∠PCB+∠B=∠P+∠DCP+∠P AB+∠P,即2∠P=∠D+∠B,又∵∠D=50°,∠B=40°,∴2∠P=50°+40°=90°,∴∠P=45°.9.解:∵∠BAC=100°,∴∠ABC+∠ACB=80°,(1)∵点O是∠ABC与∠ACB的角平分线的交点,∴∠OBC+∠OCB=40°,∴∠BOC=140°.(2)∵点O是∠ABC与∠ACB的三等分线的交点,∴∠OBC+∠OCB=°,∴∠BOC=°.(3)∵点O是∠ABC与∠ACB的n等分线的交点,∴∠OBC+∠OCB=°,∴∠BOC=180°﹣°.当∠BOC=170°时,是八等分线的交线所成的角.10.解:(1)∵∠B=30°,∠ACB=70°,∴∠BAC=180°﹣∠B﹣∠ACB=80°,∵AD平分∠BAC,∴∠BAD=40°,∵AE⊥BC,∴∠AEB=90°∴∠BAE=60°∴∠DAE=∠BAE﹣∠BAD=60°﹣40°=20°,∵CF∥AD,∴∠CFE=∠DAE=20°,(2)∵∠BAE=90°﹣∠B,∠BAD=∠BAC=(180°﹣∠B﹣∠BCA)∴∠CFE=∠DAE=∠BAE﹣∠BAD=90°﹣∠B﹣(180°﹣∠B﹣∠BCA)=(∠BCA﹣∠B)=β﹣α.(3)成立.∵∠B=α,∠ACB=β,∴∠BAC=180°﹣α﹣β,∵AD平分∠BAC,∴∠DAC=∠BAC=90°﹣α﹣β,∵CF∥AD,∴∠ACF=∠DAC=90°﹣α﹣β,∴∠BCF=β+90°﹣α﹣β=90°﹣α+β,∴∠ECF=180°﹣∠BCF=90°+α﹣β,∵AE⊥BC,∴∠FEC=90°,∴∠CFE=90°﹣∠ECF=β﹣α.。
初一数学阅读型试题
阅读理解型试题1、几何问题:如图,点C在线段AB上,点M、N分别是AC、BC的中点,若线段MN=5cm,求线段AB的长.方法迁移:小明在解决问题:“某七年级(1)班参加拔河比赛,其中参加比赛的女生是未参加比赛的女生人数的22,若参加比赛的男、女生共有18人,则该班共有学生多少人?倍,参加比赛的男生是全班男生人数的3时”,突然联想到上面的几何问题,请你将这个实际问题转化为几何模型,并直接写出答案.(建立几何模型就是画出相应的线段示意图,并分别注明相应线段的实际意义)2、十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式. 请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是;(2)正二十面体有12个顶点,那它有条棱;(3)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的顶点数是;(4)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有48个顶点,每个顶点处都有3条棱. 设该多面体外表面三角形的个数为x个,八边形的个数为y个,求x+y的值.3、阅读材料:一个边长为20cm正方形,按图1中的方法可以剪拼成一个底面是正方形的直四棱柱模型,且使它的表面积与原正方形面积相等.具体方法如下:沿粗黑实线剪下4个边长为5cm的小正方形,拼成一个正方形作为直四棱柱的一个底面;余下部分按虚线折叠成一个无盖直四棱柱;最后把两部分拼在一起,组成一个完整的直四棱柱.请按上述方法,将一个边长为20cm 的正三角形纸片剪拼成一个底面是正三角形的直三棱柱模型,使它的表面积与原正三角形的面积相等.要求:在图2中画出你的剪拼方法(用虚线表示要折叠的线,用粗黑实线表示要剪开的线),注出必要的.....数据..........,并给予简要说明4、阅读理解:钟面角是指时钟的时针与分针所成的角.We know:在时钟上,每个大格对应360°÷12=30°的角,每个小格对应360°÷60=6°的角.这样,时针每走1小时对应30°的角,即时针每走1分钟对应30°÷60=0.5°的角,分针每走1分钟对应6°的角.初步感知:(1) 如图1,时钟所表示的时间为2点30分,则钟面角为_____________°;(2) 若某个时刻的钟面角为60°,请写出一个相应的时刻:____________;延伸拓展:(3) 如图2,时钟所表示的时间为3点,此时钟面角为90°,在4点前,经过多少分钟,钟面角为35°?活动创新:(4) 一天中午,小明在12:00到13:00之间打开电视看少儿节目,看完节目后,他发现这段时间钟面上的时针和分针正好对调了位置.请问小明是在12:_____开始看电视的.(填时刻即可)。
初中数学 阅读理解-含答案
专题09 阅读理解问题例1.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧⌒P 1P 2 ,⌒P 2P 3 ,⌒P 3P 4 ,…得到斐波那契螺旋线,然后顺次连结P 1P 2 ,P 2P 3 ,P 3P 4 ,…得到螺旋折线(如图),已知点P 1 (0,1),P 2 (-1,0),P 3 (0,-1),则该折线上的点P 9 的坐标为( )A .(-6,24)B .(-6,25)C .(-5,24)D .(-5,25)同类题型1.1 定义[x ]表示不超过实数x 的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数y =[x ]的图象如图所示,则方程[x ]= 12x 2 的解为( ) A .0或 2 B .0或2 C .1或- 2 D . 2 或- 2同类题型1.2 对于函数y =x n +x m ,我们定义y '=nx n ﹣1+mx m ﹣1(m 、n 为常数).例如y =x 4+x 2,则y '=4x 3+2x .已知:y =13x 3+(m ﹣1)x 2+m 2x . (1)若方程y ′=0有两个相等实数根,则m 的值为 ;(2)若方程y ′=m ﹣14有两个正数根,则m 的取值范围为 . 例2.将一枚六个面的编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a ,第二次掷出的点数为b ,则使关于x ,y 的方程组⎩⎨⎧ax +by =3x +2y =2有正数解的概率为___. 同类题型2.1 六个面上分别标有1,1,2,3,4,5六个数字的均匀立方体的表面展开图如图所示,掷这个立方体一次,记朝上一面的数为平面直角坐标系中某个点的横坐标,朝下一面的数为该点的纵坐标.则得到的坐标落在抛物线y =2x 2 -x 上的概率是( )A .23B .16C .13D .19同类题型2.2 把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m 、n ,则二次函数y =x 2 +mx +n 的图象与x 轴没有公共点的概率是________.同类题型2.3 如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果点Q 从点A 出发,沿图中所示方向按A →B →C →D →A 滑动到A 止,同时点R 从点B 出发,沿图中所示方向按B →C →D →A →B 滑动到B 止.点N 是正方形ABCD 内任一点,把N 点落在线段QR 的中点M 所经过的路线围成的图形内的概率记为P ,则P =( )A .4-π4B .π4C .14D .π-14同类题型2.4 从-1,1,2这三个数字中,随机抽取一个数,记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14 ,且使关于x 的不等式组⎩⎨⎧x +2≤a 1-x ≤2a有解的概率为_________. 例3.若f (n )为n 2+1(n 是任意正整数)的各位数字之和,如142 +1=197,1+9+7=17,则f (14)=17,记f 1 (n )=f (n ),f 2=f (f 1(n ))…f k +1=f k (f (n )),k 是任意正整数则f 2016(8)=( )A .3B .5C .8D .11同类题型3.1 将1,2,3,…,100这100个自然数,任意分为50组,每组两个数,现将每组的两个数中任一数值记作a ,另一个记作b ,代入代数式12(|a -b |+a +b )中进行计算,求出其结果,50组数代入后可求得50个值,则这50个值的和的最大值是____________.同类题型3.2 规定:[x ]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x ≠n +0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是________.(写出所有正确说法的序号)①当x =1.7时,[x ]+(x )+[x )=6;②当x =-2.1时,[x ]+(x )+[x )=-7;③方程4[x ]+3(x )+[x )=11的解为1<x <1.5;④当-1<x <1时,函数y =[x ]+(x )+x 的图象与正比例函数y =4x 的图象有两个交点.同类题型3.3 设[x ]表示不大于x 的最大整数,{x }表示不小于x 的最小整数,<x >表示最接近x 的整数(x ≠n +0.5,n 为整数).例如[3.4]=3,{3.4}=4,<3.4≥3.则方程3[x ]+2{x }+<x ≥22( )A .没有解B .恰好有1个解C .有2个或3个解D .有无数个解同类题型3.4对于实数p ,q ,我们用符号min {p ,q }表示p ,q 两数中较小的数,如min {1,2}=1,因此,min {-2,-3}=______;若min {(x -1)2,x 2 }=1,则x =____________.例4.已知点A 在函数y 1=-1x(x >0)的图象上,点B 在直线y 2 =kx +1+k (k 为常数,且k ≥0)上.若A ,B 两点关于原点对称,则称点A ,B 为函数y 1 ,y 2 图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为( )A .有1对或2对B .只有1对C .只有2对D .有2对或3对同类题型4.1 在平面直角坐标内A ,B 两点满足:①点A ,B 都在函数y =f (x )的图象上;②点A ,B 关于原点对称,则称A ,B 为函数y =f (x )的一个“黄金点对”.则函数f (x )= ⎩⎪⎨⎪⎧|x +4|,x ≤0- 1x,x >0的“黄金点对”的个数为( ) A .0个 B .1个 C .2个 D .3个同类题型4.2 定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点Q (至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若P (-1,1),Q (2,3),则P ,Q 的“实际距离”为5,即PS +SQ =5或PT +TQ =5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为A (3,1),B (5,-3),C (-1,-5),若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为____________.同类题型4.3 经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD 是△ABC 的“和谐分割线”,△ACD 为等腰三角形,△CBD 和△ABC 相似,∠A =46°,则∠ACB 的度数为__________.专题09 阅读理解问题例1.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧⌒P 1P 2 ,⌒P 2P 3 ,⌒P 3P 4 ,…得到斐波那契螺旋线,然后顺次连结P 1P 2 ,P 2P 3 ,P 3P 4 ,…得到螺旋折线(如图),已知点P 1 (0,1),P 2 (-1,0),P 3 (0,-1),则该折线上的点P 9 的坐标为( )A .(-6,24)B .(-6,25)C .(-5,24)D .(-5,25) 解:由题意,P 5 在P 2 的正上方,推出P 9 在P 6 的正上方,且到P 6 的距离=21+5=26,所以P 9 的坐标为(-6,25),选B .同类题型1.1 定义[x ]表示不超过实数x 的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数y =[x ]的图象如图所示,则方程[x ]= 12x 2 的解为( ) A .0或 2 B .0或2 C .1或- 2 D . 2 或- 2解:当1≤x <2时,12x 2 =1,解得x 1= 2 ,x 2=- 2 ;当x =0,12x 2 =0,x =0; 当-1≤x <0时,12x 2 =-1,方程没有实数解; 当-2≤x <-1时,12x 2 =-2,方程没有实数解; 所以方程[x ]=12x 2 的解为0或 2 . 选A .同类题型1.2 对于函数y =x n +x m ,我们定义y '=nx n ﹣1+mx m ﹣1(m 、n 为常数).例如y =x 4+x 2,则y '=4x 3+2x .已知:y =13x 3+(m ﹣1)x 2+m 2x . (1)若方程y ′=0有两个相等实数根,则m 的值为 ;(2)若方程y ′=m ﹣14有两个正数根,则m 的取值范围为 .解:根据题意得y ′=x 2+2(m ﹣1)x +m 2,(1)∵方程x 2﹣2(m ﹣1)x +m 2=0有两个相等实数根,∴△=[﹣2(m ﹣1)]2﹣4m 2=0,解得:m =12; (2)y ′=m ﹣14,即x 2+2(m ﹣1)x +m 2=m ﹣14, 化简得:x 2+2(m ﹣1)x +m 2﹣m +14=0, ∵方程有两个正数根,∴⎩⎪⎨⎪⎧2(m -1)<0m 2-m +14>0[-2(m -1)]2-4(m 2-m +14)≥0, 解得:m ≤34且m ≠12. 例2.将一枚六个面的编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a ,第二次掷出的点数为b ,则使关于x ,y 的方程组⎩⎨⎧ax +by =3x +2y =2有正数解的概率为___. 解:①当2a -b =0时,方程组无解;②当2a -b ≠0时,方程组的解为由a 、b 的实际意义为1,2,3,4,5,6可得.易知a ,b 都为大于0的整数,则两式联合求解可得x =6-2b 2a -b ,y =2a -32a -b, ∵使x 、y 都大于0则有x =6-2b 2a -b >0,y =2a -32a -b>0, ∴解得a <1.5,b >3或者a >1.5,b <3,∵a ,b 都为1到6的整数,∴可知当a 为1时b 只能是4,5,6;或者a 为2,3,4,5,6时b 为1或2,这两种情况的总出现可能有3+10=13种;(1,4)(1,5)(1,6)(2,1)(3,1)(4,1)(5,1)(6,1)(2,2)(3,2)(4,2)(5,2)(6,2)又掷两次骰子出现的基本事件共6×6=36种情况,故所求概率为=1336.同类题型2.1 六个面上分别标有1,1,2,3,4,5六个数字的均匀立方体的表面展开图如图所示,掷这个立方体一次,记朝上一面的数为平面直角坐标系中某个点的横坐标,朝下一面的数为该点的纵坐标.则得到的坐标落在抛物线y =2x 2 -x 上的概率是( )A .23B .16C .13D .19解:掷一次共出现6种情况,根据图形可知1,2,3所对应的数分别是1,5,4,在抛物线上的点为:(1,1),只有两种情况,因此概率为:26=13.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FE DCB A EDCBA1、14东城一模22. 阅读下面材料:小炎遇到这样一个问题:如图1,点E 、F 分别在正方形ABCD 的边BC ,CD 上,∠EAF =45°,连结EF ,则EF =BE +DF ,试说明理由.F E DCBAGF EDCBA图1 图2小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.她先后尝试了翻折、旋转、平移的方法,最后发现线段AB ,AD 是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE 绕着点A 逆时针旋转90°得到△ADG ,再利用全等的知识解决了这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)如图3,四边形ABCD 中,AB =AD ,∠BAD =90°点E ,F 分别在边BC ,CD 上,∠EAF =45°.若∠B ,∠D 都不是直角,则当∠B 与∠D 满足_ 关系时,仍有EF =BE +DF ;(2)如图4,在△ABC 中,∠BAC =90°,AB =AC ,点D 、E 均在边BC 上,且∠DAE =45°,若BD =1,EC =2,求DE 的长.图3 图4(本小题满分5分)解: (1)∠B +∠D =180°(或互补). ………………1分 (2)∵ AB =AC ,∴ 把△ABD 绕A 点逆时针旋转90°至△ACG ,可使AB 与AC 重合. ………………2分 ∠B =∠ACG , BD=CG , AD=AG∵ △ABC 中,∠BAC =90°,∴ ∠ACB +∠ACG =∠ACB +∠B =90°. 即∠ECG =90°.∴EC2+CG2=EG2.………………3分在△AEG与△AED中,∠EAG=∠EAC+∠CAG=∠EAC+∠BAD=90°-∠EAD=45°=∠EAD.又∵AD=AG,AE=AE,∴△AEG≌△AED.………………4分∴DE=EG .又∵CG=BD,∴BD2+EC2=DE2.∴DE=.………………5分2、14西城一模22.阅读下列材料:问题:在平面直角坐标系xOy中,一张矩形纸片OBCD按如图1所示放置,已知OB=10,BC=6.将这张纸片折叠,使点O落在边CD上,记作点A,折痕与边OD(含图1图2 备用图请回答:(1)如图1,若点E的坐标为(0,4),直接写出点A的坐标;(2)在图2中,已知点O落在边CD上的点A处,请画出折痕所在的直线EF(要求:尺规作图,保留作图痕迹,不写作法);参考小明的做法,解决以下问题:折叠,求点A的坐标;F落在OB边上(含端点),直接写出k的取值范围.解:(1)点A的坐标(0);……………… 1分(2)如图;………………2分(3)EF 垂直平分OA ,则∠AOD =∠OFE . ∴tan ∠AOD =tan ∠OFE =12. 在Rt △AOD 中,DA = OD tan ∠AOD 3=.∴点A 的坐标为()36,; ······································································ 3分 (4)113k-≤≤- ·························································································· 5分 找到两个特殊点(OD 和DC 重合;EF 过B 点利用tan ∠OFE =k -3、14年海淀一模22.阅读下面材料:在学习小组活动中,小明探究了下面问题:菱形纸片ABCD 的边长为2,折叠菱形纸片,将B 、D 两点重合在对角线BD 上的同一点处,折痕分别为EF 、GH .当重合点在对角线BD 上移动时,六边形AEFCHG 的周长的变化情况是怎样的? 小明发现:若∠ABC =60°,①如图1,当重合点在菱形的对称中心O 处时,六边形AEFCHG 的周长为_________;②如图2,当重合点在对角线BD 上移动时,六边形AEFCHG 的周长_________(填“改变”或“不变”).请帮助小明解决下面问题:如果菱形纸片ABCD 边长仍为2,改变∠ABC 的大小,折痕EF 的长为m . (1)如图3,若∠ABC =120°,则六边形AEFCHG 的周长为_________;(2)如图4,若∠ABC 的大小为2α,则六边形AEFCHG 的周长可表示为________.解:①6分 ②不变. ……………………………………………………………………………2分(1) ……………………………………………………………………3分(2)4+4sin α. ………………………………………………………………5分4、14年朝阳22.以下是小辰同学阅读的一份材料和思考:五个边长为1的小正方形如图①放置,用两条线段把它们分割成三部分(如图②),移动其中的两部分,与未移动的部分恰好拼接成一个无空隙无重叠的新正方形(如图③).CB图① 图② 图③小辰阅读后发现,拼接前后图形的面积相等....,若设新的正方形的边长为x (x >0),可得x 2=5,x由此可知新正方形边长等于两个小正方形组成的矩形的对角线长.参考上面的材料和小辰的思考方法,解决问题:五个边长为1的小正方形(如图④放置),用两条线段把它们分割成四部分,移动其中的两部分,与未移动的部分恰好拼接成一个无空隙无重叠的矩形,且所得矩形的邻边之比为1:2.具体要求如下:(1)设拼接后的长方形的长为a ,宽为b ,则a 的长度为 ; (2)在图④中,画出符合题意的两条分割线(只要画出一种即可); (3)在图⑤中,画出拼接后符合题意的长方形(只要画出一种即可)解:(1……………………………………………………………………… 1分(2)如图(画出其中一种情况即可)3分(2)如图(画出其中一种情况即可) ……………………………………………… 5分 5、14年石景山一模22.实验操作图④ 图⑤(1)如图1,在平面直角坐标系xOy 中,△ABC 的顶点的横、纵坐标都是整数,若将△ABC 以点()1,1-P 为旋转中心,按顺时针方向旋转︒90得到△DEF ,请在坐标系中画出点P 及△DEF ;(2)如图2,在菱形网格图(最小的菱形的边长为1,且有一个内角为︒60)中有一个等边△ABC ,它的顶点C ,,B A 都落在格点上,若将△ABC 以点P 为旋转中心,按顺时针方向旋转︒60得到△C B A ''',请在菱形网格图中画出△C B A '''.其中,点A 旋转到点A '所经过的路线长为 .解:(1)画出点P …………………..1分 画出△DEF ………………..2分(2)°A'C'B'P CA CB…………………………….4分34π=⋂AB ……………………………………………………5分6、14门头沟一模22. 折纸是一种传统的手工艺术,也是很多人从小就经历的事,在折纸中,蕴涵许多数学知识,我们还可以通过折纸验证数学猜想.如下图把一张直角三角形纸片按照图①~④的过程折叠后展开,便得到一个新的图形—“叠加矩形”。
请按照上述操作过程完成下面的问题:∠°PCACB 图1 图2xy–5–4–3–2–112345–5–4–3–2–112345CBAOx y–5–4–3–2–112345–5–4–3–2–112345PF ED C B AO(1)若上述直角三角形的面积为6,则叠加矩形的面积为 ;(2)已知△ABC 在正方形网格的格点上,在图9中画出△ABC 的边BC 上的叠加矩形EFGH (用虚线作出痕迹,实线呈现矩形,保留作图痕迹)(3) 如图10所示的坐标系,OA =3,点P 为第一象限内的整数..点,使得△OAP 的叠加矩形是正方形,写出所有满足条件的P 点的坐标。
(1)3 ………………1分 (2)作图正确 ………………2分(3)图略123(1,3);(2,3);(3,3)P P P (答对1个坐标得1分)7、14年丰台一模22. 在学习三角形中线的知识时,小明了解到:三角形的任意一条中线所在的直线可以把该三角形分为面积相等的两部分。
进而,小明继续研究,过四边形的某一顶点的直线能否将该四边形平分为面积相等的两部分?他画出了如下示意图(如图1),得到了符合要求的直线AF 。
小明的作图步骤如下: 第一步:连结AC ;第二步:过点B 作BE//AC 交DC 的延长线于点E ; 第三步:取ED 中点F ,作直线AF ; 则直线AF 即为所求.请参考小明思考问题的方法,解决问题:如图2,五边形ABOCD ,各顶点坐标为:A(3,4),B(0,2),O(0,0),C(4,0),D(4,2).请你构造..一条经过顶点A 的直线,将五边形ABOCD 分为面积相等的两部分,并求出该直线的解析式. 解:正确构图……………………………………… 1分连结AO ,作BM//AO 交x 轴于点M ;连结AC ,作DN//AC 交x 轴于点N ; 取MN 中点F ,作AH ⊥x 轴于H 。