GLP-1 and T2DM diabetic nephropathy
GLP-1RA利拉鲁肽治疗2型糖尿病
临床3期试验
6个RCTs
至少26周 (LEAD-3包含2年的延长期研究)
40个国家
>5000名患者
成人18-80岁伴有T2DM
Marre M, et al. Diabet Med. 2009 ;26(3):268-78; Nauck et al. Diabetes Care 2009;32;84–90. Pratley RE,et al. Lancet. 2010; 375(9724):1447-56.
GLP-1RA利拉鲁肽治疗2型糖尿病
中国2型糖尿病患病率不断攀升
全国糖尿病研究协作组调查研究组。中华内科杂志,1981;20(11):678-683; Pan XR, et al. Diabetes Care. 1997;20(11):1664-1669; Gu D, et al. Diabetologia. 2003;46(9):1190-1198; Yang W, et al. N Engl J Med. 2010;362(12):1090-101; Ning G, et al. JAMA. 2013;310(9):948-59.
利拉鲁肽可以有效减少BMI和腰围
长期临床实际应用研究显示: 利拉鲁肽高效“控”糖同时降低体重、缩减腰围
Ponzani P. Minerva Endocrinol. 2013;38(1):103-12.
7.2 %
85.4kg
104.3cm
相较传统降糖药物,让更多患者在血糖达标的同时避免低血糖的发生以及体重的增加
患病率(%)
(年)
1980
1994
2001
2008
2010
0.67
GLP-1作用机制
慢性β细胞 功能衰竭
胰岛素 分泌不足 β细胞 功能异常
二甲双胍 格列酮类
胰岛素、磺脲类 格列奈类
α-糖苷酶 抑制剂
肠促胰素效应
肠促胰素效应: 口服葡萄糖和静脉注射葡萄糖效应的比较
静脉血糖浓度(mg/dL)
时间(分钟)
C肽 (nmol/L)
200
100
0
01
60
120
180
01
中国糖尿病健康管理调查 2006 中国18个城市60家医院登记治疗超过12个月的糖尿病患者 参与分析的患者 2779 例
DiabCare Study 2006, Data on file
潘长玉等《中华内分泌代谢杂志》20:420-424,2004
达标率(%)
25.9%
29.5%
44.6%
0
10%
20%
胰岛素、磺脲类 格列奈类
α-糖苷酶 抑制剂
成人2型糖尿病患者HbA1c 达标的比例不足50%
NHANES=美国人群的一项全国健康营养检查调查. Saydah SH et al. JAMA. 2004;291:335–342.
HbA1c 水平 <7%
血压 <130/80 mmHg
总胆固醇 <200 mg/dl
270
180
90
0
-30
0
60
120
180
240
*
*
*
*
*
*
*
时间 (min)
-30
0
60
120
180
240
20
10
0
时间 (min)
GLP-1类似物治疗中国肥胖型2型糖尿病的meta分析
GLP-1类似物治疗中国肥胖型2型糖尿病的meta分析袁硕;陈本丽;张鹏飞;刘鹏【摘要】目的:系统评价胰升血糖素样肽-1(GLP-1)类似物治疗肥胖型2型糖尿病的临床疗效及应用价值.方法:检索1989~2015年国内发表的关于胰升血糖素样肽-1类似物治疗中国肥胖型2型糖尿病的临床疗效及应用价值的随机对照试验(RCT).按既定的纳入与排除标准选择,资料处理采用Rev Man 5.3统计软件做Meta分析处理.结果:研究共纳入6个RCT,各实验的基线均可比.Meta分析结果表明:与单纯常规降糖治疗方案相比,胰升血糖素样肽-1类似物可以使肥胖型2型糖尿病的患者的体重、空腹血糖、糖化血红蛋白、总胆固醇、甘油三酯等降低并且差异有统计学意义,胰升血糖素样肽-1类似物治疗优于常规治疗.结论:胰升血糖素样肽-1类似物可通过降低血糖和减轻体重来治疗肥胖型2型糖尿病,可以指导临床.【期刊名称】《大众科技》【年(卷),期】2015(017)012【总页数】4页(P87-89,108)【关键词】胰升血糖素样肽-1类似物;肥胖;2型糖尿病;随机对照试验;Meta分析【作者】袁硕;陈本丽;张鹏飞;刘鹏【作者单位】广西中医药大学附属瑞康医院,广西南宁 530000;广西中医药大学附属瑞康医院,广西南宁 530000;广西中医药大学附属瑞康医院,广西南宁 530000;广西中医药大学附属瑞康医院,广西南宁 530000【正文语种】中文【中图分类】R977.15目前糖尿病患病率正呈逐年增高的流行趋势。
根据糖尿病联盟统计,2011年全球糖尿病患者人数已达3.7亿,其中绝大部分患者在发展中国家[1]。
肥胖已成为影响人们健康的公共卫生问题[2],在中国 20岁以上的人群中[3],糖尿病患病率为9.7%,其中2型糖尿病(T2DM)患者约在 90.0%以上,而T2DM中又以肥胖者居多。
肥胖是T2DM的独立危险因素,同时能够促进高血压、脂代谢紊乱的发生,与T2DM的发生、发展密切相关。
2_型糖尿病合并冠状动脉粥样硬化性心脏病的研究进展
2型糖尿病合并冠状动脉粥样硬化性心脏病的研究进展梁金花1,陈图刚21.广东医科大学附属第二医院内分泌科,广东湛江524000;2.广东医科大学附属第二医院心血管内科,广东湛江524000[摘要]2型糖尿病(Type 2 Diabetes Mellitus, T2DM)和冠心病(Coronary Heart Disease, CHD)是临床常见的慢性疾病,两者共病发生率逐年升高。
糖尿病(Diabetes Mellitus, DM)患者常合并冠状动脉弥漫性病变,预后较差,疾病负担日益加重,严重威胁患者的健康。
本文综述了T2DM合并CHD的相关危险因素以及治疗方案,总结了临床相关研究的进展,对如何早期诊断、早期干预,进一步改善疾病预后具有重要意义。
[关键词] 2型糖尿病;冠心病;危险因素;机制;治疗[中图分类号] R587.1 [文献标识码] A [文章编号] 1672-4062(2024)02(a)-0189-05 Research Progress of Type 2 Diabetes Mellitus with Coronary Atheroscle⁃rotic Heart DiseaseLIANG Jinhua1, CHEN Tugang21.Department of Endocrinology, the Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guang⁃dong Province, 524000 China;2.Department of Cardiology, the Second Affiliated Hospital of Guangdong Medical Uni⁃versity, Zhanjiang, Guangdong Province, 524000 China[Abstract] Type 2 diabetes mellitus (T2DM) and coronary heart disease (CHD) are common chronic diseases in clinic, and the incidence of their comorbidity increases year by year. Patients with diabetes mellitus (DM) are generally com⁃plicated by diffuse coronary artery disease, with poor prognosis and increasing disease burden, which seriously threat⁃ens the health of patients. This paper reviewed the related risk factors and treatment plans of T2DM with CHD, and summarized the progress of clinical research, which is of great significance for early diagnosis, early intervention and further improvement of disease prognosis.[Key words] Type 2 diabetes; Coronary heart disease; Risk factors; Mechanism; Heal糖尿病(Diabetes Mellitus, DM)是由于胰岛素分泌或作用缺陷所导致的代谢性疾病,其成因复杂,与多方面因素有关,主要特征为慢性高血糖。
《GLP-1受体激动剂临床应用专家指导意见》要点
《GLP・1受体激动剂临床应用专家指导意见》姜点胰升血糖素样肽1 ( GLP-1 )受体激动剂属于肠促胰素类药物,近年来在T2DM治疗领域得到了越来越广泛的应用。
2005年,国际上第一个GLP-1 受体激动剂成功上市,其后10余年来,随着硏发的不断深入和循证医学证据的逐渐积累,该类药物在T2DM治疗中的地位不断得到提升。
《中国2型糖尿病防治指南(2017年版)》也^其列入二联降糖治疗选择之一。
目前,我国已上市的GLP-1受体激动剂包括艾塞那肽、利拉鲁肽、贝那鲁肽、利司那肽和艾塞那肽周制剂。
—、GLP-1受体激动剂发展史及分类肠促胰素是从肠道分泌的可刺激胰岛素分泌的物质的统称。
现已发现的人体内肠促胰素主要有葡萄糖依赖性胰岛素释放肽(GIP )和GLP-1O GIP 在T2DM 患者中水平正常或升高,对胰岛p细胞的促胰岛素分泌作用弱,其临床应用价值有限。
目前,临床上肠促胰素类药物均基于GLP-1。
根据分子结构特点,GLP-1受体激动剂可分为两大类:第一类是基于exendin-4结构,由人工合成的艾塞那肽和利司那肽,其氨基酸序列与人GLP-1同源性较低;第二类基于天然人GLP-1结构,通过对人GLP-1分子结构局部修饰加工而成,与人GLP-1氨基酸序列同源性较高,如利拉鲁肽。
目前,国内上市的贝那鲁肽为重组人GLP-1分子,与人GLP-1氨基酸序列完全相同。
不同GLP-1受体激动剂的药代动力学和分子结构特点存在差异(附录1丄根据作用时间长短,GLP-1受体激动剂分为短效和长效制剂两大类,短效制剂包括艾塞那肽、利司那肽、贝那鲁肽,长效制剂包括利拉鲁肽和艾塞那肽周制剂。
二、GLP-1受体激动剂的临床应用方法GLP-1受体激动剂临床应用主要推荐意见总结见表:L。
1. 适应证与使用时机:GLP-1受体激动剂适用于成人T2DM患者,该类药物在我国得到药监部门批准的适应证如下。
(1 )艾塞那肽:适用于服用二甲双肌、磺腺类、TZDs、二甲双弧和磺腺类联用、二甲双呱和TZDs联用不能有效控制血糖的T2DM患者的辅助治疗以改善血糖控制。
腹腔镜胃旁路手术促进肥胖型Ⅱ型糖尿病好转
腹腔镜胃旁路手术促进肥胖型Ⅱ型糖尿病好转【摘要】目的评价经腹腔镜胃旁路手术治疗肥胖型2型糖尿病的疗效,并探讨其治疗机制。
方法选择2014年1月-2017年9月期间98例2型糖尿病合并肥胖的患者,按照2型糖尿病诊断标准实施腹腔镜胃旁路手术。
术后6个月检测患者体重指数(BMI),空腹血糖,空腹胰岛素和空腹C肽等指标。
结果与手术前BMI、空腹血糖、空腹胰岛素和空腹C肽相比,术后6个月四个指标分别降低了43.70%、38.80%、22.04%和50.27%(P<0.01)。
与术前抑胃肽(GIP)比较,术后6个月或餐后1小时血浆GIP明显降低(P<0.01)。
结论腹腔镜下胃旁路手术治疗肥胖型2型糖尿病的疗效良好。
【关键词】胃旁路手术;肥胖型2型糖尿病;体重指数全世界范围糖尿病患者将由2013年3.66亿人增加到2035年5.22亿人[1,2],2型糖尿病(Type 2 diabetes mellitus,T2DM)的发病率也不断上升,已成为严重威胁人类健康的疾病之一[3]。
T2DM患者肥胖发病率却呈现逐年升高趋势,虽然胃切除手术可以减小胃的容积,有效的降低食物的摄入与吸收,但是却不能减少能量的摄取与糖代谢负荷[4]。
腹腔镜下开展的胃旁路手术(laparoscopicRoux-en-Y gastric bypass, LRYGB)可以通过改变消化管道解剖学结构和功能,在不用禁食的条件下,也能较好的控制降低血糖的效果[5]。
齐齐哈尔地区高血压、脑血管疾病、肥胖等疾病比较高发,观察LRYGB对本地区肥胖型2项糖尿病患者的治疗效果,对普及LRYGB具有重要意义。
1 材料与方法1.1病例来源本试验得到齐齐哈尔第一医院医学伦理委员会的同意。
2014年1月-2017年9月期间,我院收治的98例2型糖尿病合并肥胖的患者。
平均年龄61.92±2.25岁(20岁-65岁);男62例,女36例。
所有患者术前均应用胰岛素控制血糖。
长效GLP—1受体激动药索马鲁肽治疗2型糖尿病疗效和安全性的系统评价
长效GLP—1受体激动药索马鲁肽治疗2型糖尿病疗效和安全性的系统评价1. 引言1.1 研究背景22型糖尿病是一种由胰岛素抵抗和胰岛素分泌不足引起的慢性疾病,是全球范围内的一种常见病症。
随着生活方式的变化和人口老龄化的加剧,2型糖尿病的患病率呈现逐年增加的趋势,给全球健康健康带来了严重的挑战。
对索马鲁肽在治疗2型糖尿病中的疗效和安全性进行系统评价是十分必要的,可以为临床医生提供更多的决策依据,进一步促进2型糖尿病的治疗和管理。
1.2 研究目的本研究的目的是系统评价长效GLP-1受体激动药索马鲁肽在治疗2型糖尿病中的疗效和安全性。
通过对索马鲁肽的药理作用、在2型糖尿病治疗中的应用情况、临床疗效评价、安全性评价以及副作用分析进行综合分析,旨在全面了解该药物在实际临床应用中的表现。
我们希望通过本研究的结论,探讨索马鲁肽在治疗2型糖尿病中的潜在作用,并为未来相关研究提供方向和建议。
通过本次系统评价,旨在为临床医生在制定治疗方案和决策时提供更为科学的依据,为患者提供更有效和安全的治疗方案,从而提高2型糖尿病患者的生活质量和长期疾病管理效果。
1.3 研究方法为了评估长效GLP-1受体激动药索马鲁肽在治疗2型糖尿病中的疗效和安全性,我们进行了一项系统评价。
我们进行了文献检索,包括检索PubMed、Embase和Cochrane图书馆等数据库,以获取相关研究。
我们限定包括索马鲁肽在2型糖尿病治疗中的临床试验,并排除不相关的研究。
接着,我们对符合纳入标准的研究进行数据提取和质量评价。
数据提取包括研究设计、样本量、主要结局指标等内容,质量评价主要考虑随机性、盲法、隐蔽性等方面。
在数据分析方面,我们采用了统计学方法对研究结果进行汇总和分析。
我们进行了荟萃分析来评估索马鲁肽在2型糖尿病治疗中的临床疗效和安全性。
我们也进行了亚组分析,以探讨不同人群、剂量等因素对治疗效果的影响。
我们对研究结果进行解释和讨论,总结索马鲁肽在治疗2型糖尿病中的作用,评估其疗效和安全性。
《GLP-1受体激动剂用于治疗2型糖尿病的临床专家共识》发布
《GLP-1受体激动剂用于治疗2型糖尿病的临床专家共识》发布2020年10月,由中华医学会内分泌学分会、中华医学会糖尿病学分会联合发布的2020版《GLP-1受体激动剂用于治疗2型糖尿病的临床专家共识》,共识结合最新的国际糖尿病管理指南与最新临床证据,对GLP-1RA的起始治疗时机、GLP-1RA的联合用药方案以及适用人群范围、GLP-1RA对心血管及肾脏的综合获益等做了更新。
该共识由中国人民解放军总医院内分泌科主任母义明教授和南京大学医学院附属鼓楼医院朱大龙教授共同牵头,北京协和医院肖新华教授、北京大学第三医院洪天配教授共同执笔,给出GLP-1RA临床使用的最新推荐建议。
中国糖尿病患者已近1.3亿,严重威胁民众生命健康最新的第6次针对糖尿病的大型流行病学调查显示,中国大陆地区糖尿病患者总人数约为1.298亿。
与非糖尿病患者相比,糖尿病患者的死亡风险显著增加,微血管并发症和大血管并发症是糖尿病最严重的并发症,平均缩短患者生命9年,伴有心血管疾病预计缩短12年生命。
大血管并发症正在成为2型糖尿病(T2DM)患者死亡的主要原因。
有研究显示,糖尿病患者发生心血管疾病的风险是非糖尿病人群的4倍,70%的糖尿病患者死于心血管疾病。
“糖尿病及其并发症正在严重威胁国民生命健康,增加大众及社会负担,强效降糖并尽早控制并发症是帮助患者改善生命周期和生活质量的关键”,母义明教授强调。
GLP-1RA作用机制获益明显,国际指南地位不断上升传统降糖药具有良好的降糖疗效,但没有心血管获益证据,新型降糖药GLP-1RA的出现有望帮助医患达到降糖与综合获益的平衡。
ELIXA、EXSCEL、LEADER、REWIND等大型研究先后证实,GLP-1 RA对既往伴有/不伴有心血管不良事件的糖尿病患者都能获得可靠的治疗效果,并且不增加心血管不良事件。
GLP-1 RA如度拉糖肽还可降低T2DM患者心血管死亡、非致死性心梗和非致死性卒中的发生,T2DM患者心血管病的一级预防和二级预防均有效。
2020《胰高糖素样肽-1(GLP-1)受体激动剂用于治疗2型糖尿病的临床专家共识》要点
2020《胰高糖素样肽-1(GLP-1)受体激动剂用于治疗2型糖尿病的临床专家共识》要点胰高糖素样肽‐1受体激动剂(GLP-1RA)不仅显著降低2型糖尿病(T2DM)患者的血糖,还可以改善多种心血管危险因素,部分GLP-1RA被证实具有明确的心血管保护作用。
《胰高糖素样肽-1(GLP-1)受体激动剂用于治疗2型糖尿病的临床专家共识》针对GLP-1RA降糖治疗的应用时机,与其他降糖药物联用时的注意事项,对T2DM合并动脉粥样硬化性心血管疾病(ASCVD)、心力衰竭(HF)或慢性肾脏疾病(CKD)患者治疗结局的影响,在T2DM特殊人群中的应用等临床问题给出了具体的推荐意见。
主要推荐意见胰高糖素样肽-1受体激动剂(GLP-1RA)可以单独使用,也可以作为除二肽基肽酶4抑制剂(DPP-4i)以外的其他降糖药物单药或联合治疗血糖控制不达标时的二联或三联用药选择之一。
(Ⅱa,B)在含有磺脲类(SU)或胰岛素在内的二联或三联降糖治疗方案中,加用GLP-1RA时,建议减少SU或胰岛素的剂量或停用其中一个降糖药物,以减少低血糖发生风险。
(Ⅱb,C)对于合并动脉粥样硬化性心血管疾病(ASCVD)或极高危心血管风险者,无论基线糖化血红蛋白(HbA1c)或个体化HbA1c目标值如何,建议联合具有心血管获益证据的GLP-1RA,以降低心血管事件风险。
(Ⅰ,A)GLP-1RA可以用于具有心力衰竭(HF)风险的2型糖尿病(T2DM)患者,但不能预防HF;在射血分数降低性心力衰竭(HFrEF)的失代偿期需慎用GLP-1RA。
(Ⅱb,B)GLP-1RA治疗可以显著减少尿白蛋白排泄量,从心血管保护和改善血糖控制的角度,T2DM合并慢性肾脏疾病(CKD)患者可以考虑使用GLP-1RA治疗。
(Ⅱb,B)大多数GLP-1RA可用于轻、中度肾功能不全患者,利拉鲁肽和度拉糖肽可用于肌酐清除率>15 ml/min的重度肾功能不全患者。
(Ⅱb,B)利拉鲁肽可用于轻、中度肝功能不全患者,利司那肽和度拉糖肽可全程用于肝功能不全患者。
推陈出新,时机已到?GLP-1RA在T2DM诊
胰岛素分泌率曲线下面积 (pmol/kg)
利拉鲁肽可提高β细胞对葡萄糖的敏感性约70%
1400
P<0.001
1206
1200
1130
1000
~70%
800
668
600
400
200
0
安慰剂组
利拉鲁肽组
健康对照组
• 一项随机双盲安慰剂对照交叉研究 • 研究纳入10例T2DM患者给予利拉鲁肽7.5μg/kg,单次注射或安慰剂治疗9小时后行40-220分钟的时间分级的葡萄糖输注研究,检测β细胞敏感性
100
糖耐量受损
糖耐量正常
80
60
• 对三项研究中的糖耐量正常、受损及2型糖尿病的 人群进行回归分析
• 结果显示:(log10转换的)β细胞质量的替代指标 与肠促胰素作用有显著的相关性
肠促胰素效应C-肽(%)
40
20
P=0.0002
0
--2200
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
Log10(#摩尔C肽葡萄糖比OGTT30min) (nmol/mmol)
-0.04
-0.06
-0.08 -0.1
-0.08
-0.12
胰岛素原:胰岛素比值
-0.01
*,††
-0.02
*,††
-0.08
-0.1
-0.03
*†
利拉鲁肽1.2 mg OD(n=896)
利拉鲁肽 1.8 mg OD(n=1363)
罗格列酮4mg OD(n=231)
格列美脲2-4mg OD(n=490)
GLP-1RA
GLP-1类似物与甘精胰岛素分别联合盐酸二甲双胍治疗2型糖尿病的疗效及药物经济学比较
2020年12月 第17卷 第23期2型糖尿病(Type 2 Diabetes Mellitus,T2DM)是内分泌科常见的慢性进展性疾病,在我国20岁以上人群中的患病率为9.7%。
长期高血糖的刺激可引起心脑血管、眼底、肾脏等系统的并发症,严重威胁患者机体健康,因此安全有效地控制血糖在目标范围内意义重大[1]。
甘精胰岛素是治疗T2DM的常用药物,利拉鲁肽系人胰高血糖素样肽-1(Glucagon-like Peptide-1,GLP-1)类似物,两者均具有降低血糖的效果[2]。
但现阶段关于两者联合盐酸二甲双胍的降血糖效果尚存在争议,基于此,本研究前瞻性探讨GLP-1类似物与甘精胰岛素的应用价值,报告如下。
1 资料和方法1.1 一般资料前瞻性选取2019年1月—2020年1月本院收治的128例T2DM患者,简单随机化分为观察组和对照组各64例。
观察组:女38例,男26例,年龄41~80岁,平均(62.37±8.65)岁;体质量指数19~26 kg/m2,平均(24.09±0.89) kg/m2;病程2~6GLP-1类似物与甘精胰岛素分别联合盐酸二甲双胍治疗2型糖尿病的疗效及药物经济学比较任清华郑州大学第一附属医院,郑州 450002[摘要]目的:比较人胰高血糖素样肽-1(GLP-1)类似物与甘精胰岛素分别联合盐酸二甲双胍治疗2型糖尿病(T2DM)的疗效及药物经济学,旨在为临床应用提供参考。
方法:前瞻性选取2019年1月—2020年1月本院收治的128例患者,简单随机化分为对照组和观察组各64例。
两组均给予盐酸二甲双胍。
在此基础上,对照组采用甘精胰岛素,观察组采用GLP-1类似物。
治疗12周后,比较两组空腹血糖(FBG)、餐后2 h血糖(2hPG)、糖化血红蛋白(HbA1c)、超氧化物歧化酶(SOD)、丙二醛(MDA)、药物经济学、不良反应等。
结果:治疗后,观察组2hPG低于对照组(P<0.05),组间FBG、HbA1c比较,差异无统计学意义(P>0.05);观察组SOD较对照组高,MDA较对照组低(P<0.05);观察组不良反应发生率为3.13%(2/64),与对照组的1.56%(1/64)比较,差异无统计学意义(P>0.05)。
GLP-1与2型糖尿病
糖尿病相关概念
糖尿病(diabetes mellitus)是一组由于胰 岛素分泌缺陷和/或胰岛素作用缺陷导致的以
慢性血糖水平增高为特征的代谢异常综合征。
导致碳水化合物、蛋白质、脂肪、以及水和电 解质代谢的紊乱。
糖尿病防治时代划分
1、口服降糖药治疗 3、胰岛素与胰岛素强化
2、综合治疗(五驾马车:教育与心理治疗、饮食治疗、运动治疗
GLP-1与2型糖尿病
一、2型糖尿病的病理生理学特点 二、 2型糖尿病的治疗策略概述
⑴、2型糖尿病综合治疗 ⑵、降(抗)糖药物分类 ⑶、GLP-1及其相关制剂
三、GLP-1的特点、作用机制 四、GLP-1及其相关制剂的临床应用 五、GLP-1及其相关制剂的临床应用 的安全性
降(抗)糖药物分类
降(抗)糖药物分类
糖尿病流行病学 糖尿病时代划分
前言
糖尿病流行病学
流行病学
10% 9% 8% 7% 6% 5% 4% 3% 2% 1% 0%
前言
我国糖尿病发病率
80年代
2002年
2006年
2010年
流行病学
前言
2010年杨文英教授等新英格兰医学杂志发表的论文 “Prevalence of diabetes among men and women in China” (N Engl J Med,2010,362:1090-1101 )中国 20岁以上男性和女性的糖尿病患病率分别是10.6% 和8.8%,总患病率为9.7%;糖尿病前期的患病率高 达15.5% (前期) 20—39岁组 3.2% 40—59岁组 11.5 % 60岁以上组 20.4%
胰岛β细胞 凋亡
GLP类似物药物进展
G L P-1类似物药物进展-截止胰高血糖素样肽(glucagon-likepeptide,GLP)是小肠表皮细胞在食物刺激情况下分泌的单肽类肠促胰岛素,包括GLP-1、GLP-2两种类型。
其中GLP-2具有促进小肠生长,抑制细胞凋亡,促进胃排空,增加食欲的药理作用,临床上可用于治疗小肠短小综合症;而GLP-1具有促进胰岛素分泌,保护胰岛β细胞,抑制胰高血糖素分泌,抑制胃排空,降低食欲的药理作用,临床可用于二型糖尿病和肥胖症的治疗。
人体内具有生物活性的GLP-1主要是GLP-1(7-36)酰胺和GLP-1(7-37),天然GLP-1可被二肽基肽酶Ⅳ(dipeptidylpeptidase-Ⅳ,DPP-Ⅳ)迅速水解失活(半衰期小于5min),不具有临床使用价值,因此对GLP-1结构修饰,掩盖DPP-Ⅳ的结合位点,延长半衰期并保证疗效是该类药物研发的主要方向。
一、已上市GLP-1类似物目前已上市的5个GLP-1类似物(表1)包括艾塞那肽(Byetta/Bydureon,byAmylin/Lilly)、利拉鲁肽(Victoza/Saxenda,byNovoNordisk)、利司那肽(Lyxumia,bySanofiAventis/Zealand)、阿必鲁肽(Tanzeum,byGSK)及杜拉鲁肽(Trulicity,byLilly):1.艾塞那肽(Exenatide)艾塞那肽(商品名Byetta)是第一个上市的GLP-1类似物,由Amylin和Lilly公司于1995年开始联合研发,2005年4月获得FDA的批准上市。
艾塞那肽源于从蜥蜴唾液中分离出的GLP-1类似物Exendin-4,与GLP-1大约有53%的同源性。
由于其N端第二位由Gly代替了GLP-1中Ala,不被DPP-Ⅳ降解,而相对天然GLP-1而言具有较长的半衰期和较强的生物活性,临床使用频率为每日2次。
AstraZeneca收购Amylin取得艾塞那肽的全球开发销售权后,开发了其缓释混悬制剂BydureonPen,并于2014年获得FDA批准。
GLP-1受体激动剂对超重及肥胖2型糖尿病患者胰岛细胞功能影响的系统评价
㊃荟萃分析㊃基金项目:河北省直医疗卫生机构老年病防治科研项目邯郸市丛台区2型糖尿病患者现状调查与分析(361037)通信作者:王德峰,E m a i l :w d f 991217@126.c o mG L P -1受体激动剂对超重及肥胖2型糖尿病患者胰岛细胞功能影响的系统评价郑 鑫,朱育刚,王德峰(河北工程大学附属医院内分泌科,河北邯郸056002) 摘 要:目的 系统评价胰高血糖素样肽-1(g l u c a g o n -l i k e p e p t i d e 1,G L P -1)受体激动剂(r e c e p t o r a g o n i s t ,R A )对超重及肥胖2型糖尿病患者胰岛细胞功能的影响㊂方法 计算机检索国内外相关数据库,查找G L P -1R A 作用于超重及肥胖2型糖尿病患者的随机对照试验(R C T )㊂结果 最终入选13个R C T ,G L P -1R A 可明显改善肥胖2型糖尿病患者空腹血糖(F P G )及糖化血红蛋白(H b A 1c ),在改善体重方面表现出明显的优势,且G L P -1R A 可显著提高肥胖患者的胰岛细胞功能(M D =5.80,95%C I =3.16~8.45,P <0.01)㊂结论 在超重及肥胖患者中,G L P -1R A 可明显改善血糖㊁减轻体重,从不同方面印证了其具有保护胰岛细胞功能的优势作用,此类药物为肥胖及超重患者提供了一种新的降糖药物的选择㊂关键词:胰高血糖素样肽-1;受体激动剂;2型糖尿病;肥胖;M e t a 分析中图分类号:R 587.1 文献标志码:A 文章编号:1004-583X (2019)12-1102-06d o i :10.3969/j.i s s n .1004-583X.2019.12.010S y s t e m a t i c e v a l u a t i o no f t h e e f f e c t s o f g l u c a g o n -l i k e p e p t i d e 1r e c e p t o r a go n i s t s o n i s l e t c e l l f u n c t i o n i no v e r w e i g h t a n do b e s e p a t i e n t sw i t h t y pe 2d i a b e t e s Z h e n g X i n ,Z h uY u g a n g ,W a n g D ef e ng D e p a r t m e n t o f E n d o c r i n o l o g y ,th eA f fi l i a t e d H o s p i t a l o f H e b e iU n i v e r s i t yo f E n g i n e e r i n g ,Ha n d a n 056002,C h i n a C o r r e s p o n d i n g a u t h o r :W a n g D e f e n g ,E m a i l :w d f991217@126.c o m A B S T R A C T :O b j e c t i v e T o s y s t e m a t i c a l l y e v a l u a t e t h e e f f e c t o f g l u c a g o n -l i k e p e p t i d e 1(G L P -1)r e c e p t o r a g o n i s t (R A )o n i s l e t c e l l f u n c t i o n i no v e r w e i g h t a n do b e s e p a t i e n t sw i t h t y p e 2d i a b e t e s .M e t h o d s Ac o m p u t e r -b a s e ds e a r c h o f r e l e v a n t d a t a b a s e s a t h o m e a n da b r o a d t o f i n da r a n d o m i z e d c o n t r o l l e d t r i a l (R C T )o fG L P -1R Ai no v e r w e i gh t a n d o b e s e p a t i e n t s w i t ht y p e2d i a b e t e s .R e s u l t s F i n a l l y 13R C T w e r es e l e c t e d ,i n d i c a t i n g G L P -1R A s i g n i f i c a n t l yi m p r o v e d t h ef a s t i n g b l o o d g l u c o s e (F P G )a n d g l y c o s y l a t e d h e m o g l o b i n (H b A 1c )i no b e s e p a t i e n t s w i t ht y p e2d i a be t e s ,a n d s h o w e d s i g n if i c a n t a d v a n t ag e s i n i m p r o v i n g b o d y w e i gh t ,a n dG L P -1R Ac o u l d g r e a t l yi m p r o v e .I s l e t c e l l f u n c t i o n i no b e s e p a t i e n t s (M D =5.80,95%C I =3.16-8.45,P <0.01).C o n c l u s i o n I no v e r w e i g h ta n do b e s e p a t i e n t s ,G L P -1R A c a ns i g n i f i c a n t l y i m p r o v eb l o o d g l u c o s ea n dl o s e w e i g h t ,a n di th a s p r o v e dt h ea d v a n t a g eo f p r o t e c t i n g i s l e t c e l l f u n c t i o n f r o md i f f e r e n t a s p e c t s .S u c hd r u g s p r o v i d e a n e wc h o i c e f o r o b e s e a n do v e r w e i gh t p a t i e n t s t o r e d u c eb l o o d g l u c o s e .K E Y W O R D S :g l u c a g o n -l i k e p e p t i d e 1;r e c e p t o r a g o n i s t ;d i a b e t e s ,t y p e 2;o b e s i t y ;m e t a -a n a l y s i s 2型糖尿病(T 2D M )的发病机制主要是胰岛素分泌减少及胰岛素抵抗,其中超重及肥胖所致的胰岛功能衰退是重要因素,因此如何使血糖达标,又同时达到降低体重,延缓胰岛细胞功能衰竭是目前亟待解决的临床难题㊂胰高血糖素样肽-1(g l u c a g o n -l i k e p e pt i d e 1,G L P -1)是一种肠促胰岛素,通过与胰岛β细胞的G L P -1受体结合促进胰岛素分泌和减少胰高血糖素分泌实现降糖作用,是近年来的研究热点㊂本文采用M e t a 分析的方法,系统评价G L P -1R A 对超重及肥胖患者在血糖㊁体重等方面的影响,进一步证实其对胰岛细胞功能的有益作用,以期为临床合理用药提供循证医学依据㊂1 资料与方法1.1 纳入及排除标准 研究类型:R C T ㊂研究对象:超重或肥胖2型糖尿病患者;H b A 1c 在7%~10%;疗程:ȡ12周;干预措施:G L P -1R A 单药治疗或联合其他降糖药物治疗与对照组进行比较;结局指标:主要结局指标:①F P G ;②H b A 1c ;③B M I ;④体重;⑤胰岛细胞功能指数(HOMA -β)㊂次要结局指标:①甘油三酯(T G )及低密度脂蛋白胆固醇(L D L -C );②低血糖事件;③胃肠道不良反应㊂排除标准:①观察性或回顾性研究;②治疗时间<12周;③重复试验;④出现明显并发症,如心脑血管意外㊁㊃2011㊃‘临床荟萃“ 2019年12月20日第34卷第12期 C l i n i c a l F o c u s ,D e c e m b e r 20,2019,V o l 34,N o .12Copyright ©博看网. All Rights Reserved.肝肾功能损害等;⑤1型糖尿病;⑥妊娠㊂1.2 检索策略 计算机检索P u b m e d ㊁E m b a s e㊁O V I D ㊁M e d l i n e ㊁C o c h r a n eL i b r a r y ㊁中国知网㊁万方㊁维普等数据库,查找G L P -1R A 对超重及肥胖T 2D M 患者影响的R C T ,检索时限为建库起至2018年12月㊂检索关键词:G L P -1受体激动剂,超重,肥胖,2型糖尿病,胰岛细胞功能,随机对照试验,g l u c a g o n -l i k e p e p t i d e -1,G L P -1,e x e n a t i d e ,l i r a g l u t i d e ,o b e s i t y ,o v e r w e i g h t ,T 2D M ,T y pe2D i a b e t e s ,d i a b e t e s ,r a n d o m i z e d c o n t r o l l e d t r i a l ,R C T ㊂1.3 文献筛选 由2名研究人员依据纳入及排除标准独立筛查文献,获得资料并对文献进行质量评价,然后交叉审核,不同意见经由第三方协商解决㊂提取的数据包括文献的一般特征㊁各主要观察对象基线水平及结局变化等㊂R C T 方法学质量评价依据J A D A D 量表进行评分㊂1.4 统计学方法 采用C o c h r a n e 协作网提供的R e v M a n 5.3软件进行M e t a 分析,连续性变量资料采用均数差(M D )为效应量,二分类变量采用相对危险度(R R )为效应量,并给出其95%的可信区间(C I ),各试验研究的异质性采用χ2检验及I 2检验,当各个研究间具有同质性时,即P ȡ0.1且I 2ɤ50%,采用固定效应模型进行M e t a 分析,反之,当P <0.1且I 2>50%时,则采用随机效应模型进行M e t a 分析[1]㊂2 结 果初步检索共2720篇文献,经过逐层筛选,最终入选13篇R C T [2-14](图1)㊂所有试验治疗组与其他降糖药物组间的观察指标水平具有可比性,都有明确描述㊂G L P -1R A 对于T 2D M 患者的优势作用,早期使用可改善肥胖患者的胰岛细胞功能㊂图1 文献检索流程2.1 F P G 变化情况 共纳入9个R C T [2-6.8.11-.13],G L P -1R A 在降低空腹血糖方面优于对照组[M D =-0.28,95%C I (-0.48,-0.08),P =0.007],且依据亚组分析结果显示,对肥胖患者作用明显优于对照组[M D =-0.31,95%C I (-0.53,-0.08),P =0.008],见图2㊂图2 G L P -1受体激动剂治疗超重或肥胖2型糖尿病患者F P G 变化的M e t a 分析㊃3011㊃‘临床荟萃“ 2019年12月20日第34卷第12期 C l i n i c a l F o c u s ,D e c e m b e r 20,2019,V o l 34,N o .12Copyright ©博看网. All Rights Reserved.2.2H b A1c变化情况共纳入11个R C T[2-6,8,10-14]㊂G L P-1R A疗效优于对照组,且对肥胖患者作用更加明显[M D=-0.48,95%C I (-0.85,-0.11),P=0.01],见图3㊂由于各研究间存在异质性,进行敏感性分析,在删除Y i n等[2]后,结果并没有发生明显变化[M D=-0.45, 95%C I(-0.77,-0.13),P=0.006],提示结果可靠,各试验间的异质性并没有影响最终结果㊂图3G L P-1受体激动剂治疗超重或肥胖2型糖尿病患者H b A1c变化的M e t a分析2.3体重变化情况共纳入7个研究[2-5,7,10,14]㊂M e t a分析结果显示,G L P-1R A在降低体重方面明显优于其他降糖药物,且亚组分析显示在肥胖患者中改善体重效果更加明显[M D=-2.62,95%C I(-5.00,-0.24),P=0.03],见图4㊂行敏感性分析㊂在剔除R o s e n s t o c k等[3]后,结果并未发生明显变化[M D=-2.89,95%C I(-4.78,-0.99),P=0.003],提示结果稳定可靠,各试验间的异质性并没有影响最终结果㊂图4G L P-1受体激动剂治疗超重或肥胖2型糖尿病患者体重变化的M e t a分析2.4 B M I变化情况共纳入4个R C T[2,12-14]㊂G L P-1R A在超重和肥胖受试者中改善B M I均优于对照组,且对肥胖患者疗效更明显[M D=-2.00,95%C I(-3.86,-0.14),P=0.04],见图5㊂进一步行敏感性分析,在剔除Y i n等[2]后,结果并未发生明显变化[M D=-1.54,95%C I(-2.74,-0.34),P=0.01],提示结果稳健,各试验间的异质性并没有影响到最终结果㊂㊃4011㊃‘临床荟萃“2019年12月20日第34卷第12期 C l i n i c a l F o c u s,D e c e m b e r20,2019,V o l34,N o.12Copyright©博看网. All Rights Reserved.图5 G L P -1受体激动剂治疗超重或肥胖2型糖尿病患者B M I 变化的M e t a 分析2.5 胰岛细胞功能(H O M A -β)变化情况 共纳入4个研究[2,4-5,9],依据结果显示,G L P -1受体激动剂相较于对照组而言可明显提高胰岛β细胞功能[M D =5.82,95%C I (3.18,8.45),P <0.01]㊂亚组分析提示,G L P -1R A 对肥胖受试者可明显改善胰岛细胞功能[M D =5.80,95%C I (3.16,8.45),P <0.01],见图6㊂图6 G L P -1受体激动剂治疗超重或肥胖2型糖尿病患者H O M A -β变化的Me t a 分析2.6 血脂变化情况 5个R C T [2,6,11-13]报告了使用G L P -1R A 后能引起L D L 的改变,G L P -1R A 在降低L D L 方面强于其他降糖药物[M D =-0.23,95%C I (-0.42,-0.04),P =0.02],见图7㊂但在改善T G 方面差异无统计学意义[M D =-0.13,95%C I (-0.28,0.01),P =0.07],见图8㊂图7 G L P -1受体激动剂治疗超重或肥胖2型糖尿病患者L D L 变化的M e t a 分析㊃5011㊃‘临床荟萃“ 2019年12月20日第34卷第12期 C l i n i c a l F o c u s ,D e c e m b e r 20,2019,V o l 34,N o .12Copyright ©博看网. All Rights Reserved.图8 G L P -1受体激动剂治疗超重或肥胖2型糖尿病患者T G 变化的M e t a 分析2.7 不良反应情况2.7.1 低血糖风险 共纳入9个研究[3-10,13],M e t a 分析示,G L P -1R A 与其他药物比较,发生低血糖的风险较低[R R =0.41,95%C I (0.32,0.51),P <0.01],见图9㊂图9 G L P -1受体激动剂治疗超重或肥胖2型糖尿病患者低血糖风险的M e t a 的分析2.7.2 胃肠道不良反应 共纳入5例研究[4-6,8,13],相较于常规药物,G L P -1R A 的胃肠道反应发生率更高[R R =2.95,95%C I (2.29,3.80),P <0.01],见图10㊂但胃肠道不适反应主要在治疗前期出现,随时间延长而减少[6,8]㊂图10 G L P -1受体激动剂治疗超重或肥胖2型糖尿病患者胃肠道不良反应的M e t a 的分析3 讨 论由于超重及肥胖的快速发展趋势,导致T 2D M 的患者也急剧上升㊂一项回顾性研究表明,B M I 的降低可使血糖及H b A 1c 得到控制,进一步优化胰岛细胞功能㊂并认为越早减重,可能获益越明显㊂由于肥胖T 2D M 患者体内游离脂肪酸(F F A )的水平较㊃6011㊃‘临床荟萃“ 2019年12月20日第34卷第12期 C l i n i c a l F o c u s ,D e c e m b e r 20,2019,V o l 34,N o .12Copyright ©博看网. All Rights Reserved.高,由此会进一步加重脂毒性对胰岛细胞功能的损害,因此对肥胖T2D M患者治疗中的关键步骤就是减轻患者的体质量,改善胰岛素抵抗,从而优化胰岛细胞功能㊂G L P-1R A也被证实能够直接优化部分β细胞功能,包括诸如改善β细胞指数(HOMA-β)和增加胰岛素原的分泌,可通过直接刺激β细胞或增强胰岛素敏感性间接升高胰岛素浓度㊂长期接触高脂肪饮食(H F D)会导致胰岛β细胞的葡萄糖毒性和脂毒性,损伤胰岛β细胞,诱导内源性胰岛素抗性㊂M c G a r r y教授在2001年美国糖尿病协会年会(A D A)上第一次提出糖尿病的脂毒性学说,他提出脂代谢障碍是诱发T2D M及其相关并发症发生发展的关键因素,并且提议将T2D M称为 糖脂病 ㊂由此,于糖尿病患者而言,早期改善血脂可降低胰岛细胞的 糖脂毒性 ,从而延缓胰岛细胞的衰竭㊂通过分析G L P-1R A在控制血糖㊁降低体重㊁调节血脂㊁减轻胰岛素抵抗等方面的作用,进一步印证其对改善胰岛细胞功能的优势,从不同方面维持了胰岛细胞正常功能,延缓了2型糖尿病的进展,并且指出随着体重指数的增加G L P-1R A对胰岛细胞功能的改善越明显㊂综上所述,G L P-1R A与其他降糖药物比较能更好地控制血糖,减轻体重,调节血脂,延缓胰岛细胞衰竭,且更适合于肥胖的T2D M患者㊂结合糖尿病相关指南[15],推荐这类药物在其他降糖药物单药治疗效果欠佳时使用,为临床治疗2型糖尿病的选择性用药提供了循证医学的依据㊂参考文献:[1] M e l s e n WG,B o o t s m aM C,R o v e r sMM,e t a l.T h e e f f e c t s o fc l i n i c a l a nd s t a t i s t i c a l he t e r o g e n e i t y o n t h e p r e d i c t i v ev a l u e so fr e s u l t s f r o m m e t a-a n a l y s e s[J].C l i nM i c r o b i o l I n f e c t,2014,20(2):123-129.[2] Y i nT T,B iY,L i P,e t a l.C o m p a r i s o no f g l y c e m i c v a r i a b i l i t yi nC h i n e s e T2D M p a t i e n t st r e a t e d w i t he x e n a t i d eo ri n s u l i ng l a r g i n e:ar a n d o m i z e dc o n t r o l l e dt r i a l[J].D i a b e t e s T h e r,2018,9(3):1253-1267.[3] R o s e n s t o c kJ,G u e r c i B,H a n e f e l d M,e t a l.P r a n d i a l o p t i o n st oa d v a n c eb a s a l i n s u l i n g l a r g i n et h e r a p y:t e s t i n g l i x i s e n a t i d ep l u s b a s a l i n s u l i n v e r s u s i n s u l i n g l u l i s i n e e i t h e r a s b a s a l-p l u s o rb a s a l-b o l u s i nt y p e2d i a b e t e s:t h eG e t G o a lD u o-2T r i a l[J].D i a b e t e sC a r e,2016,39(8):1318-1328.[4] G a d d eKM,V e t t e rM L,I q b a lN,e t a l.E f f i c a c y a n d s a f e t y o fa u t o i n j e c t e d e x e n a t i d e o n c e-w e e k l y s u s p e n s i o n v e r s u ss i t a g l i p t i no r p l a c e b o w i t h m e t f o r m i ni n p a t i e n t sw i t ht y p e2d i a be t e s:t h e d u r a t i o n-n e o-2r a n d o m i z e d c l i n i c a ls t u d y[J].D i a b e t e sO b e sM e t a b,2017,19(7):979-988.[5] G a r b e rA,H e n r y R R,R a t n e rR,e ta l.L i r a g l u t i d e,ao n c e-d a i l y h u m a n g l u c a g o n-l i ke p e p t i d e1a n a l o g u e,p r o v i d e ss u s t a i n e d i m p r o v e m e n t s i n g l y c a e m i c c o n t r o l a n dw e i g h t f o r2y e a r sa s m o n o t h e r a p y c o m p a r e d w i t h g l i m e p i r i d ei n p a t i e n t sw i t h t y p e2d i a b e t e s[J].D i a b e t e sO b e sM e t a b,2011,13(4): 348-356.[6] L i u t k u s J,R o s a sG u z m a nJ,N o r w o o dP,e ta l.A p l a c e b o-c o n t r o l l ed t r i a l o fe x e n a t i d e t w i c e-d a i l y a d d e d t ot h i a z o l i d i n e d i o n e s a l o n e o r i nc o m b i n a t i o nw i t hm e t f o r m i n[J].D i a b e t e sO b e sM e t a b,2010,12(12):1058-1065.[7] Y a n g W,C h e n L,J i Q,e t a l.L i r a g l u t i d e p r o v i d e s s i m i l a rg l y c a e m i c c o n t r o l a s g l i m e p i r i d e(b o t h i n c o m b i n a t i o n w i t hm e t f o r m i n)a n d r e d u c e s b o d y w e i g h t a n d s y s t o l i c b l o o d p r e s s u r e i nA s i a n p o p u l a t i o nw i t h t y p e2d i a b e t e s f r o mC h i n a,S o u t hK o r e a a n dI n d i a:A16-w e e k,r a n d o m i z e d,d o u b l e-b l i n d,a c t i v ec o n t r o l t r i a l[J].D i a b e t e sO b e sM e t a b,2011,13(1):81-88.[8] N a u c k M,F r i d A,H e r m a n s e n K,e ta l.E f f i c a c y a n ds a f e t yc o m p a r i s o n o fl i r a g l u t id e,g l i me p i r i d e,a n d p l a c e b o,a l li nc o m b i n a t i o nw i t h m e t f o r m i n,i nt y p e2d i a be t e s:t h eL E A D(l i r a g l u t i d e e f f e c t a n d a c t i o n i nd i a b e t e s)-2s t u d y[J].D i a b e t e sC a r e,2009,32(1):84-90.[9] M a d s b a dS,S c h m i t zO,R a n s t a mJ,e t a l.I m p r o v e d g l y c e m i cc o n t r o lw i t hn ow e i g h t i n c r e a s e i n p a t i e n t sw i t h t y p e2d i a be t e sa f t e ro n c e-d a i l y t r e a t m e n t w i t ht h el o n g-a c t i n gg l u c a g o n-l i k ep e p t i d e1a n a l o g l i r a g l u t i d e(N N2211):a12-w e e k,d o u b l e-b l i n d,r a n d o m i z e d,c o n t r o l l e dt r i a l[J].D i a b e t e sC a r e,2004,27(6):1335-1342.[10] B u n c k M C,D i a m a n tM,C o r nérA,e t a l.O n e-y e a r t r e a t m e n tw i t he x e n a t i d e i m p r o v e s[b e t a]-c e l l f u n c t i o n,c o m p a r e d w i t hi n s u l i n g l a r g i n e,i nm e t f o r m i n-t r e a t e d t y p e2d i a b e t i c p a t i e n t s:a r a n d o m i z e d,c o n t r o l l e dt r i a l[J].D i ab e t e sC a r e,2009,32(5):762-768.[11] N o m o t oH,M i y o s h iH,F u r u m o t oT,e t a l.Ac o m p a r i s o no ft h e e f f e c t s o f t h e G L P-1a n a l o g u e l i r a g l u t i d e a n d i n s u l i ng l a r g i n eo ne n d o t h e l i a l f u n c t i o na n d m e t a b o l i c p a r a m e t e r s:ar a n d o m i z e d,c o n t r o l l e dt r i a ls a p p o r oa t h e r o-i n c r e t i n s t u d y2(S A I S2)[J].P L o SO n e,2015,10(8):e0135854. [12] M e n s b e r g P,N y b y S,J o r g e n s e n P G,e t a l.N e a r-n o r m a l i z a t i o no f g l y c a e m i c c o n t r o lw i t h g l u c a g o n-l i k e p e p t i d e-1r e c e p t o r a g o n i s t t r e a t m e n t c o m b i n e d w i t he x e r c i s e i n p a t i e n t sw i t h t y p e2d i a b e t e s[J].D i a b e t e sO b e s M e t a b,2017,19(2): 172-180.[13] L i uY,J i a n g X,C h e nX,e t a l.L i r a g l u t i d e a n dm e t f o r m i n a l o n e o rc o m b i n e dt h e r a p y f o rt y p e2d i a be t e s p a t i e n t sc o m p l i c a t e d w i t hc o r o n a r y a r t e r yd i se a s e[J].L i p i d sH e a l t hD i s,2017,16(1):227.[14] L i C J,L i J,Z h a n g QM,e t a l.E f f i c a c y a n d s a f e t y c o m p a r i s o nb e t w e e nl i r a g l u t i d ea sa d d-o nt h e r a p y t oi n s u l i n a n di n s u l i nd o s e-i n c re a s e i nC h i n e s e s u b j e c t sw i t h p o o r l y c o n t r o l l e d t y p e2d i a be t e s a n da b d o m i n a l o b e s i t y[J].C a r d i o v a s cD i a b e t o l,2012,11:142.[15] N a t h a n D M,B u s e J B,D a v i d s o n M B,e t a l.M e d i c a lm a n a g e m e n t o f h y p e r g l y c e m i a i n t y p e2d i a b e t e s:ac o n s e n s u sa l g o r i t h m f o rt h ei n i t i a t i o n a n da d j u s t m e n to ft h e r a p y[J].D i a b e t e sC a r e,2009,32(1):193-203.收稿日期:2019-11-01编辑:武峪峰㊃7011㊃‘临床荟萃“2019年12月20日第34卷第12期 C l i n i c a l F o c u s,D e c e m b e r20,2019,V o l34,N o.12Copyright©博看网. All Rights Reserved.。
胰高血糖素样肽-1受体激动剂对2型糖尿病微血管病变影响的研究进展
胰高血糖素样肽-1受体激动剂对2型糖尿病微血管病变影响的研究进展罗孙洁①熊莉云①郭莲②【摘要】近年来随着我国人口老龄化及生活方式的改变,2型糖尿病的发病率不断上升。
微血管并发症是2型糖尿病重要的并发症之一”目前胰高血糖素样肽-1受体激动剂是治疗2型糖尿病较为新型的一类药物,因其良好的降糖作用及对2型糖尿病微血管并发症的保护作用备受临床医生及专家们的广泛关注,同时也给2型糖尿病微血管并发症患者带来新的希望”本文将对胰高血糖素样肽-1受体激动剂对2型糖尿病微血管病变 影响的研究进展进行阐述”【关键词】胰高血糖素样肽-1受体激动剂2型糖尿病微血管病变doi:10.14033/ki.cfmr.2021.07.066文献标识码A文章编号1674-6805(2021)07-0181-04Research Progress on the Influence of Glucagon-like Peptide-1Receptor Agonist on Microangiopathy in Type2Diabetes Mellitu/LUO Sunjie, XIONG Liyun,GUO Lian.//Chinese and Foreign Medical Research,2021,19(7):181-184[Abstract]In recent years,with the aging of population and the change of life style in China,the incidence of type2diabetes is increasing.Microvascular complication is one of the important complications of type2diabetes mellitus.At present,glucagon-like peptide-1receptor agonist is a new type of drug in the treatment of type2diabetes.It has been widely concerned by clinicians and experts because of its good hypoglycemic effect and protective effect on microvascular complications of type2diabetes.At the same time,it also brings new hope to patients with microvascular complications of type2diabetes.This article will review the research progress on the influence of glucagon-like peptide-1receptor agonists on microangiopathy in type2diabetes mellitus.[Key words]Glucagon-like peptide-1receptor agonist Type2diabetes mellitus MicroangiopathyFirst-author's address:North Sichuan Medical College,Nanchong637000,China近年来,2型糖尿病(type2diabetes,T2DM)发病率在全球范围内逐年上升,已成为第三位威胁人类健康和生命的非传染性疾病,严重影响了患者的生活质量[1]。
GLP-1受体激动剂为2型糖尿病患者“解围”
非洲人 白种人 亚洲人
非洲人 白种人 亚洲人
P<0.001, *与非洲人比较; #与白种人比较
腰围测定结果显示: 中国无论总体人群还是T2DM,中心性肥胖都非常严峻
%
人
群
比
肥胖
例
(
中心性肥胖
)
中国判定标准
T2DM在降糖同时还需关注肥胖,特别是中心性肥胖!
肥胖: BMI≥28kg/m 中心性肥胖:
冠心病 BMI≥30kg/m2与BMI 18.5-24.9kg/m2相比,冠心病风险增加60%
房颤
Framingham研究对75,282人随访14年的观察显示: BMI每增加1kg/m2,房颤发生率增加4%
1. Schienkiewitz A, et al. Am J Clin Nutr. 2006;84(2):427-433 2. Murphy NF, et al. Eur Heart J,2006,27:96-106
欧洲五维度健康量表 (EQ-5D量表)
0 0.01 -0.02
-0.03 -0.04 -0.05 -0.06
BMI<30 无糖尿病
BMI<30 糖尿病
肥胖 无糖尿病
Diabetes Metab Syndr Obes. 2009 Nov 3;2:179-84.
肥胖伴 糖尿病
糖尿病患者 生活质量 下降指数
皮下脂肪(cm2)
胰岛素抵抗增加冠心病发生风险
冠心病发病率(%)
P<0.002
35
31.6
30
25
20
15
14
10
5
0
胰岛素A组抵Байду номын сангаас组
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
GLP-1 Receptor Agonists could Attenuate Diabetic Nephropathy 57Tohoku J. Exp. Med., 2013, 231, 57-6157Received July 22, 2013; revised and accepted August 28, 2013. Published online September 21, 2013; doi: 10.1620/tjem.231.57.Correspondence: Shigeki Imamura, Department of Internal Medicine, Chiba Prefectural Togane Hospital, 1229, Daikata, Togane, Chiba 283-8588, Japan.e-mail: s.immr @pref.chiba.lg.jpThe Glucagon-Like Peptide-1 Receptor Agonist, Liraglutide,Attenuates the Progression of Overt Diabetic Nephropathy in Type 2 Diabetic PatientsShigeki Imamura,1 Keiji Hirai 1 and Aizan Hirai 11Department of Internal Medicine, Chiba Prefectural Togane Hospital, Togane, Chiba, JapanDiabetic nephropathy (DN) is the leading cause of end-stage renal disease. Glucagon-like peptide-1 (GLP-1) is one of the incretins, gut hormones released from the intestine in response to food intake. GLP-1 receptor (GLP-1R) agonists have been used to treat type 2 diabetes. Here, we studied the effect of the administration of a GLP-1R agonist, liraglutide, on proteinuria and the progression of overt DN in type 2 diabetic patients. Twenty-three type 2 diabetic patients with overt DN, who had already been treated with blockade of renin-angiotensin system under dietary sodium restriction, were given liraglutide for a period of 12 months. Treatment with liraglutide caused a significant decrease in HbA1c from 7.4 ± 0.2% to 6.9 ± 0.3% (p = 0.04), and in body mass index (BMI) from 27.6 ± 0.9 kg/m 2 to 26.5 ± 0.8 kg/m 2 after 12 months (p < 0.001), while systolic blood pressure did not change. The progression of DN was determined as the rate of decline in estimated glomerular filtration rate (eGFR). The 12-month administration of liraglutide caused a significant decrease in proteinuria from 2.53 ± 0.48 g/g creatinine to 1.47 ± 0.28 g/g creatinine (p = 0.002). The administration of liraglutide also substantially diminished the rate of decline in eGFR from 6.6 ± 1.5 mL/min/1.73 m 2/year to 0.3 ± 1.9 mL/min/1.73 m 2/year (p = 0.003). Liraglutide can be used not only for reducing HbA1c and BMI, but also for attenuating the progression of nephropathy in type 2 diabetic patients.Keywords: diabetic nephropathy; extra-pancreatic actions; glucagon-like peptide-1 receptor agonist; liraglutide; overt proteinuriaTohoku J. Exp. Med., 2013 September, 231(1), 57-61. © 2013 Tohoku University Medical PressIntroductionDiabetic nephropathy (DN) is the leading cause of end-stage renal disease. DN is a clinical syndrome charac-terized by proteinuria, hypertension, and a relentless decline in glomerular filtration rate (GFR). Several therapeutic approaches have been performed to reduce proteinuria and to retard the decline in GFR in patients with DN. Although the introduction of antihypertensive therapy by the block-ade of the renin-angiotensin system (RAS) with either angiotensin-converting enzyme inhibitor (ACEI)s or angio-tensin II receptor blocker (ARB)s reduced proteinuria and improved the rate of decline in GFR in DN, the mean rate of decline in GFR still remains at 2.0-10 ml/min/year (Björck et al. 1992; Lewis E et al. 1993; Elving el al. 1994; Tarnow et al. 2000).Glucagon-like peptide-1 (GLP-1) is one of the incre -tins, gut hormones secreted from L cells in the intestine in response to food intake. GLP-1 augments glucose-induced insulin release from pancreatic β-cells, suppresses glucagon secretion, and slows gastric emptying (Kim and Egan2008). Therefore, GLP-1 has been proposed as a potential therapeutic target for the treatment of patients with type 2 diabetes mellitus. The biological actions of GLP-1 on pan -creatic cells are mainly mediated by the high-affinity GLP-1 receptor (GLP-1R) (Winzell and Ahrén 2007). GLP-1R is expressed not only in the pancreas, gut and hypothalamus, but also in the kidney (Bullock et al. 1996).Liraglutide is a long-acting human GLP-1 analog that has a high degree of homology to native GLP-1 (Elbrønd et al. 2002). GLP-1R agonists, such as exendin-4 and liraglu -tide, are new therapy options for type 2 diabetes, and pro -duced substantial and clinically significant reductions in HbA1c and fasting and postprandial glucose levels with moderate weight loss (Nauck et al. 2009).With respect to the effects of GLP-1 on the kidney, it has been reported that in animal model, GLP-1R agonists have various extra-pancreatic actions such as regulating sodium excretion in the tubular cells of the kidney (Hirata et al. 2009) and they have been shown to directly prevent the progression of DN through the suppression of inflam -matory process via the activation of GLP-1R in kidney tis -S. Imamura et al. 58sue (Kodera et al. 2011).Furthermore, GLP-1 is rapidly degraded in the body by dipeptidylpeptidase (DPP) IV. DPP IV inhibitor works by inhibiting the DPP IV enzyme that degrades GLP-1, thereby stabilizing the intact active form of GLP-1. DPP IV inhibitors are one of the latest therapeutic classes of glu-cose-lowering medications. Liu et al. (2012) reported that the increase in endogenous incretine induced by DPP IV inhibitor reduced proteinuria and improved creatinine clear-ance through the activation of the GLP-1R in diabetic ani-mal model. Therefore, GLP-1 is of potential interest as a possible therapeutic regimen for treatment of DN in human. The present study was performed to clarify whether a GLP-1R agonist, liraglutide, could reduce proteinuria and attenuate the progression of overt DN in type 2 diabetic patients.MethodsAmong a population of 1,220 type 2 diabetic patients who regu-larly visited the out-patient diabetic unit of our hospital between March 2008 and September 2010, 23 patients who had diabetic reti-nopathy or diabetes for more than 10 years, were enrolled in the pres-ent study. They had signs of overt DN even after 4-month treatment with oral hypoglycemic agents and/or insulin, diet therapy including salt restriction (6 g/day) and blood pressure control by the administra-tion of antihypertensive drugs including ARBs. Overt DN was defined as in terms of proteinuria greater than 0.5 g/g creatinine (g/ gCr) in at least three urine samples, in the absence of urinary tract infection. Patients with type 1 diabetes or other types of renal disease were excluded. Liraglutide was administered over 12 months. Liraglutide was subcutaneously injected once daily at the same time each day in the abdomen or thigh using a pre-filled pen device. Liraglutide 0.3 mg a day was started as an initial dose and followed with weekly increment of 0.3 mg, up to 0.9 mg by the end of the third week. During the period of liraglutide administration, no further diet therapy and no additional administration of antihypertensive drugs were done.The value for HbA1c (%) is estimated as a National Glyco-hemoglobin Standardization Program (NGSP) equivalent value. The estimated GFR (eGFR) was calculated using the following equation, as recommended by Japanese Society for Nephrology: eGFR (mL/ min/1.73 m2) = 194 × Serum creatinine−1.094× Age−0.287× 0.739 (if female) (Lamb et al. 2005; Retnakaran et al. 2006; Matsuo et al. 2009). The eGFRs were measured every 2 months for 1 through 3 years before the administration of liraglutide and every month during the administration. The rates of change in eGFR (mL/min/1.73 m2/ year) before and after the administration of liraglutide were calculated by linear regression analysis on all eGFR values in each subject before the administration of liraglutide and during the administration, respectively. Correlations were calculated as Spearman correlation coefficients.The study was approved by the ethics committee of Chiba Prefectural Togane Hospital and was conducted in accordance with the Helsinki declaration. Informed consent was obtained from all subjects.Statistical analysisStatistical analysis was performed using the JMP® 9 software (SAS Institute Inc., Cary, NC, USA). Differences between before and after the administration of liraglutide were examined for statistical significance using paired t-test. All values are expressed as the means ± SEM. Values of p < 0.05 were considered to indicate statistically significant differences.ResultsIn the present study, 23 type 2 diabetic patients with overt DN (male: 13 and female: 10, mean age 58.2 ± 2.3 years) were included. Baseline medication for diabetes are as follows: biguanide: n = 10, α-glucosidase inhibitors: n = 5, glinides: n = 4, and insulin: n = 18. All patients received ARBs: olmesartan (40 mg/day): n = 20, telmisartan (80 mg/ day) n = 1, and valsartan (160 mg/day) n = 2. ACEI: n = 4. Ca channel blocker: n = 23, α-blocker: n = 3, and central sympatholytic agent: n = 1. Administration of liraglutide caused a significant decrease in HbA1c levels from 7.4 ± 0.22% (57.6 ± 2.4 mmol/mol) to 7.0 ± 0.22% (53.4 ± 2.4 mmol/mol) after 1 month of administration (p < 0.001), to 6.9 ± 0.25% (51.8 ± 2.7 mmol/mol) after 12 months (p = 0.035). Also, BMI were significantly decreased from 27.6 ± 0.9 kg/m2 to 27.2 ± 0.8 kg/m2 after 1 month of adminis-tration of liraglutide (p < 0.001), to 26.5 ± 0.8 kg/m2 after 12 months (p < 0.001). Systolic blood pressure (SBP) did not significantly change between before and after the administration of liraglutide. Proteinuria was significantly decreased from 2.53 ± 0.48 g/gCr to 1.62 ± 0.31 g/gCr after 1 month (p < 0.001), to 1.47 ± 0.28 g/gCr after 12 months (p= 0.0015) (Table 1). There were no significant differ-ences between proteinuria in 1, 6 and 12 months.A strong correlation was observed between baseline proteinuria and changes in proteinuria after 12-month administration of liraglutide (r = 0.84, p < 0.0001) (Fig. 1). The administration of liraglutide also substantially dimin-ished the rate of decline in eGFR from 6.6 ± 1.5 mL/ min/1.73 m2/year to 0.3 ± 1.9 mL/min/1.73 m2/year (p = 0.003) (Fig. 2). During this study, there were no major adverse events including major hypoglycemic events. No sex difference was observed in the changes in proteinuria and the rate of change in eGFR after 12 months administra-tion of liraglutide (Figs. 1 and 2).DiscussionThe present study was performed to clarify whether GLP-1R agonist could have a renoprotective effect in type 2 diabetic patients who had overt DN even after 4-month treatment with maximal doses of ARBs under dietary sodium restriction.Proteinuria is an established and modifiable progres-sion promoter (Hovind et al. 2001), and intervention target-ing this factor has been the most successful renoprotective treatment in DN. In the present study, administration of liraglutide caused a significant decrease in proteinuria con-comitant with significant reductions in both of HbA1c lev-els and BMI, while SBP did not change. It is well known that glycemic control induces a significant decrease in pro-GLP-1 Receptor Agonists could Attenuate Diabetic Nephropathy59teinuria in type 2 DN (UK Prospective Diabetes Study Group. 1998). Also moderate weight reduction in over -weight diabetic patients with overt DN induces a significant decrease in proteinuria (Saiki et al. 2005). The reduction in HbA1c levels and BMI after the administration of liraglu-tide may contribute to antiproteinuric effect of GLP-1R agonists observed in the present study.Ninomiya et al. (2009) reported that high albuminuria and low eGFR are independent risk factors for renal events among patients with type 2 diabetes. A reduction in pro -teinuria shortly after onset of antihypertensive therapy by the blockade of the RAS is the best predictor of long-term preservation of renal function (Rossing et al. 1994; Breyer et al. 1996). It seems to be worthwhile that a significant reduction in proteinuria was observed shortly after the administration of liraglutide such as within one month (Table 1).The rate of decline in GFR has been one of the pri -mary endpoints in clinical trials of DN, whereas a reduction in urinary protein excretion has been considered a surrogate endpoint, a predictor of a beneficial outcome (Rossing et al. 1994; Breyer et al. 1996). In randomized controlled trials, the rate of decline in GFR in overt DN is 2-10 ml/min/year after the introduction of antihypertensive therapy with blockade of the RAS (Björck et al. 1992; Lewis E et al. 1993; Elving el al. 1994; Tarnow et al. 2000). All patientsTable 1. Effect of 12-month administration of liraglutide on HbA1c, BMI, SBP, eGFR and proteinuria in type 2 diabetic patients(n = 23).Before1 month 6 months 12 months HbA1c (%) 7.4 ± 0.22 7.0 ± 0.22*** 6.6 ± 0.25*** 6.9 ± 0.25*BMI (kg/m 2)27.6 ± 0.9 27.2 ± 0.8*** 26.2 ± 0.8**** 26.5 ± 0.8***SBP (mmHg) 140.2 ± 3.1135.6 ± 2.7135.3 ± 2.8137.1 ± 2.9Alb (g/dl)4.06 ± 0.12 4.16 ± 0.19 4.11 ± 0.11 4.10 ± 0.13eGFR (mL/min/1.73 m 2) 58.2 ± 6.4 57.1 ± 6.758.8 ± 6.656.9 ± 6.9urinary protein (g/g creatinine)2.53 ± 0.481.62 ± 0.31***1.45 ± 0.30***1.47 ± 0.28**HbAlc, hemoglobin Ale; BMI, body mass index (calculated as weight in kilograms divided by height in meters squared); SBP, systolic blood pressure; Alb, serum albumin; eGFR, estimated glomerular filtration rate.All values are expressed as the means ± SEM unless otherwise indicated. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p <0.0001.Fig. 1. Relationship of baseline proteinuria and changes in proteinuria. Shown is the relationship of baseline proteinuria and changes in proteinuria after 12 months administration of liraglutidein type 2 diabetic patients with diabetic nephropathy (n = 23). Changes are expressed as values of positive or negative change with respect to baseline values. ○: male, △: female.S. Imamura et al.60in the present study had been treated under the blockade ofthe RAS over 4 months before the administration of liraglu-tide. In our study, the mean rate of decline in eGFR before the administration of liraglutide (6.6 mL/min/1.73 m 2/year) was similar with those described in the earlier reports (Björck et al. 1992; Lewis E et al. 1993; Elving el al. 1994; Tarnow et al. 2000). It seems to be valid to evaluate the effects of liraglutide on the progression of overt DN among the patients who were included in the present study. For the long-term evaluation of decline in eGFR, a minimal obser -vation period of 12 months was required (Tarnow et al. 2000). After 12-month administration of liraglutide, the rate of decline in eGFR was substantially diminished from 6.6 mL/min/1.73 m 2/year to 0.3 mL/min/1.73 m 2/year (p = 0.003).Renoprotective effect of GLP-1R agonists through the direct action on the kidney was first reported in an animal model (Kodera et al. 2011). Ishibashi et al. (2011) also reported that GLP-1R agonist directly acts on mesangial cells via GLP-1R and that it could work as an anti-inflam -matory agent via activation of cyclic adenosine monophos-phate pathway. A GLP-1R agonist has been shown to attenuate the actions of angiotensin II (Hirata et al. 2009), resulting in an antihypertensive effect in salt-sensitive mice and a reduction in proteinuria, and renal pathology (Yu et al. 2003). This has also been shown with the exanetide analogue AC3174 in Dahl salt-sensitive rats (Liu et al. 2010), where it attenuated hypertension, insulin resistance and renal dysfunction. These actions of GLP-1R agonists on the kidney as mentioned above may contribute to reno-protective effect of liraglutide observed in the present human study.In the previous study with an animal model, GLP-1R agonists were administered without the blockade of the RAS and exerted renoprotective effects (Kodera et al. 2011). The present study was performed under the combi -nation with the blockade of the RAS. The patients, who had continued overt proteinuria even after 4 months admin -istration of ARBs with dietary salt restriction, were included in the present study. Mima et al. (2012) reported that the renoprotective effects of GLP-1 in animal model were mediated via the inhibition of angiotensin II actions on cRaf (Ser259) and diminished by diabetes because of protein kinase C β activation and the increased degradation of GLP-1R in the glomerular endothelial cells. Thus, the renoprotective effect of liraglutide in human DN might be optimized by the combination with the blockade of the RAS.Recently, Lind et al. (2012) reported that liraglutide combined with insulin therapy is well tolerated for type 2 diabetes, providing significant improvement in glycemic control. Liraglutide combined with insulin therapy has not been covered by Japanese health insurance system. However, clinical trials for evaluating the combination of liraglutide and insulin therapy are now ongoing in Japan.Although the main limitation of the present study is that the population and the period were limited and the study lacks a control group, our exploratory findings indi -cate first the possible role of GLP-1R agonists as a potentialtherapeutic agent for DN in human.Fig. 2. Effect of 12-month administration of liraglutide on the rates of change in eGFR. Shown are the rates of change in estimated glomerular filtration rate (eGFR) (∆eGFR; mL/min/1.73 m 2/year) before andafter 12 months administration of liraglutide in type 2 diabetic patients with diabetic nephropathy (n = 23). means ± SEM, p < 0.01. ○: male, △: female.GLP-1 Receptor Agonists could Attenuate Diabetic Nephropathy61In conclusion, the present study suggests that GLP-1R agonists can be used not only for reducing HbA1c and BMI, but also for attenuating the progression of nephropa-thy in type 2 diabetic patients.AcknowledgementsThe authors would like to thank H. Nishihara, M. Hanazawa, Y. Ui, H. Maeda and S. Wakamatsu for their excel-lent medical care support. This research was not supported by any specific grant from funding agency in the public, commer-cial or not-for-profit sector.Conflict of InterestThe authors declare no conflict of interest.ReferencesBjörck, S., Mulec, H., Johnsen, S.A., Nordén, G. & Aurell, M.(1992) Renal protective effect of enalapril in diabeticnephropathy. BMJ, 304, 339-343.Breyer, J.A., Bain, R., Evans, J.K., Nahman, N.S. Jr., Lewis, E.J., Cooper, M., McGill, J. & Berl, T. (1996) Predictors of theprogression of renal insufficiency in patients with insulindependent diabetes and overt diabetic nephropathy. KidneyInt., 50, 1651-1658.Bullock, B.P., Heller, R.S. & Habener, J.F. (1996) Tissue distribu-tion of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology, 137, 2968-2978.Elbrønd, B., Jakobsen, G., Larsen, S., Agersø, H., Jensen, L.B., Rolan, P., Sturis, J., Hatorp, V. & Zdravkovic, M. (2002)Pharmacokinetics, pharmacodynamics, safety, and tolerabilityof a single dose of NN2211, a long-acting glucagon-likepeptide 1 derivative, in healthy male subjects. Diabetes Care,25, 1398-1404.Elving, L.D., Wetzels, J.F.M., van, Lier, H.J.J., de Nobel, E. & Berden, J.H.M. (1994) Captopril and atenolol are equallyeffective in retarding progression of diabetic nephropathy.Results of a 2-year prospective, randomized study. Diabeto-logia, 37, 604-609.Hirata, K., Kume, S., Araki, S., Sakaguchi, M., Chin-Kanasaki, M., Isshiki, K., Sugimoto, T., Nishiyama, A., Koya, D., Haneda,M., Kashiwagi, A. & Uzu, T. (2009) Exendin-4 has an anti-hypertensive effect in salt-sensitive mice model. Biochem.Biophys. Res. Commun., 380, 44-49.Hovind, P., Rossing, P., Tarnow, L., Smidt, U.M. & Parving, H.H.(2001) Progression of diabetic nephropathy. Kidney Int., 59,702-709.Ishibashi, Y., Nishino, Y., Matsui, T., Takeuchi, M. & Yamagishi, S.(2011) Glucagon-like peptide-1 suppresses advanced glyca-tion end product-induced monocyte chemoattractant protein-1expression in mesangial cells by reducing advanced glycationend product receptor level. Metabolism, 60, 1271-1277.Kim, W. & Egan, J.M. (2008) The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol. Rev., 60,470-512.Kodera, R., Shikata, K., Kataoka, H.U., Takatsuka, T., Miyamoto, S., Sasaki, M., Kajitani, N., Nishishita, S., Sarai, K., Hirota,D., Sato, C., Ogawa, D. & Makino, H. (2011) Glucagon-likepeptide-1 receptor agonist ameliorates renal injury through itsanti-inflammatory action without lowering blood glucose levelin a rat model of type 1 diabetes. Diabetologia, 54, 965-978. Lamb, E.J., Tomson, C.R. & Roderick, P.J.; Clinical Sciences Reviews Committee of the association for clinical biochem-istry. (2005) Estimated kidney function in adults usingformulae. Ann. Clin. Biochem., 42, 321-345.Lewis, E.J., Hunsicker, L.G., Bain, R.P. & Rhode, R.D. (1993)The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. N. Engl. J. Med. 329, 1456-1462. Lind, M., Jendle, J., Torffvit, O. & Lager, I. (2012) Glucagon-like peptide 1 (GLP-1) analogue combined with insulin reduces HbA1c and weight with low risk of hypoglycemia and high treatment satisfaction. Prim. Care Diabetes, 6, 41-46.Liu, Q., Adams, L., Broyde, A., Fernandez, R., Baron, A.D. & Parkes, D.G. (2010) The exenatide analogue AC3174 attenu-ates hypertension, insulin resistance, and renal dysfunction in Dahl salt-sensitive rats. Cardiovasc. Diabetol., 9, 32.Liu, W.J., Xie, S.H., Liu, Y.N., Kim, W., Jin, H.Y., Park, S.K., Shao, Y.M. & Park, T.S. (2012) Dipeptidyl peptidase IV inhibitor attenuates kidney injury in streptozotocin-induced diabetic rats. J. Pharmacol. Exp. Ther., 340, 248-255. Matsuo, S., Imai, E., Horio, M., Yasuda, Y., Tomita, K., Nitta, K., Yamagata, K., Tomino, Y., Yokoyama, H. & Hishida, A.;Collaborators developing the Japanese equation for estimating GFR. (2009) Revised equation for estimated GFR from serum creatinine in Japan. Am. J. Kidney Dis., 53, 982-992. Mima, A., Hiraoka-Yamamoto, J., Li, Q., Kitada, M., Li, C., Geraldes, P., Matsumoto, M., Mizutani, K., Park, K., Cahill,C., Nishikawa, S., Rask-Madsen, C. & King, G.L. (2012)Protective effects of GLP-1 on glomerular endothelium and its inhibition by PKCβ activation in diabetes. Diabetes, 61, 2967-2979.Nauck, M., Frid, A., Hermansen, K., Shah, N.S., Tankova, T., Mitha, I.H., Zdravkovic, M., Düring, M. & Matthews, D.R.(2009) Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes: the LEAD (liraglutide effect and action in diabetes)-2 study. Diabetes Care, 32, 84-90.Ninomiya, T., Perkovic, V., de Galan, B.E., Zoungas, S., Pillai, A., Jardine, M., Patel, A., Cass, A., Neal, B., Poulter, N., Mogensen, C.E., Cooper, M., Marre, M., Williams, B., Hamet, P., Mancia, G., Woodward, M., Macmahon, S. & Chalmers, J.;ADVANCE Collaborative Group. (2009) Albuminuria and kidney function independently predict cardiovascular and renal outcomes in diabetes. J. Am. Soc. Nephrol., 20, 1813-1821.Retnakaran, R., Cull, C.A., Thorne, K.I., Adler, A.I. & Holman, R.R.; UKPDS Study Group. (2006) Risk factors for renal dysfunction in type 2 diabetes: U.K. Prospective Diabetes Study 74. Diabetes, 55, 1832-1839.Rossing, P., Hommel, E., Smidt, U.M. & Parving, H.H. (1994) Reduction in albuminuria predicts a beneficial effect on dimin-ishing the progression of human diabetic nephropathy during antihypertensive treatment. Diabetologia, 37, 511-516. Saiki, A., Nagayama, D., Ohhira, M., Endoh, K., Ohtsuka, M., Koide, N., Oyama, T., Miyashita, Y. & Shirai, K. (2005) Effect of weight loss using formula diet on renal function in obese patients with diabetic nephropathy. Int. J. Obes., 29, 1115-1120.Tarnow, L., Rossing, P., Jensen, C., Hansen, B.V. & Parving, H.H.(2000) Long-term renoprotective effect of nisoldipine and lisinopril in type 1 diabetic patients with diabetic nephropathy.Diabetes Care, 23, 1725-1730.UK Prospective Diabetes Study (UKPDS) Group. (1998) Inten-sive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complica-tions in patients with type 2 diabetes. Lancet, 352, 837-853. Winzell, M.S. & Ahrén, B. (2007) G-protein-coupled receptors and islet function-implications for treatment of type 2 diabetes.Pharmacol. Ther., 116, 437-448.Yu, M., Moreno, C., Hoagland, K.M., Dahly, A., Ditter, K., Mi stry, M. & Roman, R.J. (2003) Antihypertensive effect of glucagon-like peptide 1 in Dahl salt-sensitive rats. J.Hypertens., 21, 1125-1135.。