近5年高考数学理科试卷(全国卷1)分类汇编--坐标系与参数方程解析版大题版(2011年2012年2013年2014年2015年)
高考专题全国卷真题2011至2018-极坐标与参数方程
4—4.坐标系与参数方程【高考真题】4.4-1(2011全国-23)在直角坐标系中,曲线的参数方程为(为参数),是上的动点,点满足,点的轨迹为曲线。
(Ⅰ)当求的方程;(Ⅱ)在以为极点,轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为,与的异于极点的交点为,求.4.4-2(2012全国-23)已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是。
正方形ABCD 的顶点都在上, 且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为(2,)。
(1)求点A ,B ,C ,D 的直角坐标;(2)设为上任意一点,求的取值范围。
4.4-3(2013全国Ⅰ-23)已知曲线C 1的参数方程为⎩⎨⎧x =4+5costy =5+5sint(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sinθ。
(Ⅰ)把C 1的参数方程化为极坐标方程;(Ⅱ)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π)4.4-4(2013全国Ⅱ-23)已知动点P ,Q 都在曲线C : 上,对应参数分别为β=α与α=2π为(0<α<2π)M 为PQ 的中点。
(Ⅰ)求M 的轨迹的参数方程(Ⅱ)将M 到坐标原点的距离d 表示为a 的函数,并判断M 的轨迹是否过坐标原点。
xOy 1C 2cos 22sin x y αα=⎧⎨=+⎩αM 1C P 2OP OM =P 2C 2C O x 3πθ=1C A 2C B ||AB 1C ⎩⎨⎧==ϕϕsin 3cos 2y x ϕx 2C 2=ρ2C 3πP 1C 2222||||||||PD PC PB PA +++()2cos 2sin x y βββ=⎧⎨=⎩为参数4.4-5(2014全国Ⅰ-23)已知曲线:,直线:(为 参数). (Ⅰ)写出曲线的参数方程,直线的普通方程;(Ⅱ)过曲线上任一点作与夹角为的直线,交于点,求的最大值与最小值.4.4-6(2014全国Ⅱ-23)在直角坐标系xoy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为,.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.4.4-7(2015全国Ⅰ-23)在直角坐标系中,直线:=2,圆:,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系。
2008-2020高考理数全国1卷分类汇编--选考题 参数方程和极坐标
2008-2020高考理数全国1卷分类汇编--选考题参数方程和极坐标1(2011)(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线C 1的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数) M 是C 1上的动点,P 点满足2OP OM =,P 点的轨迹为曲线C 2(Ⅰ)求C 2的方程(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求AB .2(2014)23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C :22149x y +=,直线l :222x t y t =+⎧⎨=-⎩(t 为参数). (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o 30的直线,交l 于点A ,求||PA 的最大值与最小值.3(2015)(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系O χγ中。
直线1C :χ=-2,圆2C :()()22121χγ-+-=,以坐标原点为极点, χ轴的正半轴为极轴建立极坐标系。
(I )求1C ,2C 的极坐标方程; (II ) 若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN 的面积4(2016)(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧+==,sin 1,cos t a y t a x t (为参数,)0>a .在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线θρcos 4:2=C .(Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程; (Ⅱ)直线3C 的极坐标方程为0αθ=,其中0α满足2tan 0=α,若曲线1C 与2C 的公共点都在3C 上,求a .5(2017)22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到la.6(2018)22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xO y 中,曲线1C 的方程为||2y k x =+. 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=.(1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.x7 (2019) 22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.(1)求C 和l 的直角坐标方程;(2)求C 上的点到l 距离的最小值.2221141t x t ty t ⎧-=⎪⎪+⎨⎪=⎪+⎩,2cos sin 110ρθθ+=。
(新课标全国I卷)2010_2019学年高考数学真题分类汇编专题17坐标系与参数方程文(含解析)
专题17 坐标系与参数方程坐标系与参数方程大题:10年10考,而且是作为2个选做题之一出现的,主要考查两个方面:一是极坐标方程与普通方程的转化,二是极坐标方程与参数方程的简单应用,难度较小.1.(2019年)在直角坐标系xOy中,曲线C的参数方程为2221141txttyt⎧-=⎪⎪+⎨⎪=⎪+⎩(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ+11=0.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.【解析】(1)由2221141txttyt⎧-=⎪⎪+⎨⎪=⎪+⎩(t为参数),得22211221txty tt⎧-=⎪⎪+⎨⎪=⎪+⎩,两式平方相加,得2214yx+=(x≠﹣1),∴C的直角坐标方程为2214yx+=(x≠﹣1),由,得2110x++=,即直线l的直角坐标方程为得2110x+=.(2)法一、设C上的点P(cosθ,2sinθ)(θ≠π),则P到直线2110x+=的距离为:d∴当sin(θ+φ)=﹣1时,d.法二、设与直线211x++=平行的直线方程为20x m++=,联立222014x m y x ⎧++=⎪⎨+=⎪⎩,得16x 2+4mx +m 2﹣12=0. 由△=16m 2﹣64(m 2﹣12)=0,得m =±4.∴当m =4时,直线240x ++=与曲线C 的切点到直线2110x ++=的距离最小,为=2.(2018年)在直角坐标系xOy 中,曲线C 1的方程为y =k |x |+2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ2+2ρcosθ﹣3=0. (1)求C 2的直角坐标方程;(2)若C 1与C 2有且仅有三个公共点,求C 1的方程. 【解析】(1)曲线C 2的极坐标方程为ρ2+2ρcosθ﹣3=0. 转换为直角坐标方程为:x 2+y 2+2x ﹣3=0, 转换为标准式为:(x +1)2+y 2=4.(2)由于曲线C 1的方程为y =k |x |+2,则:该射线关于y 轴对称,且恒过定点(0,2). 由于该射线与曲线C 2的极坐标有且仅有三个公共点. 所以必有一直线相切,一直线相交. 则圆心到直线y =kx +2的距离等于半径2.2=2=,解得:k =43-或0, 当k =0时,不符合条件,故舍去,同理解得:k =43或0, 经检验,直线423y x =+与曲线C 2没有公共点.故C 1的方程为423y x =-+.3.(2017年)在直角坐标系xOy 中,曲线C 的参数方程为3cos sin x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为41x a ty t=+⎧⎨=-⎩(t 为参数). (1)若a =﹣1,求C 与l 的交点坐标;(2)若C 上的点到l,求a .【解析】(1)曲线C 的参数方程为3cos sin x y θθ=⎧⎨=⎩(θ为参数),化为标准方程是29x +y 2=1;a =﹣1时,直线l 的参数方程化为一般方程是:x +4y ﹣3=0;联立方程2219430x y x y ⎧+=⎪⎨⎪+-=⎩,解得30x y =⎧⎨=⎩或21252425x y ⎧=-⎪⎪⎨⎪=⎪⎩,所以椭圆C 和直线l 的交点为(3,0)和(2125-,2425). (2)l 的参数方程41x a ty t=+⎧⎨=-⎩(t 为参数)化为一般方程是x +4y ﹣a ﹣4=0,椭圆C 上的任一点P 可以表示成P (3cosθ,sinθ),θ∈[0,2π), 所以点P 到直线l 的距离d满足tanφ=34,且d .①当﹣a ﹣4≤0时,即a ≥﹣4时,|5sin (θ+φ)﹣a ﹣4|≤|﹣5﹣a ﹣4|=|5+a +4|=17, 解得a =8和﹣26,a =8符合题意.②当﹣a ﹣4>0时,即a <﹣4时,|5sin (θ+φ)﹣a ﹣4|≤|5﹣a ﹣4|=|5﹣a ﹣4|=17, 解得a =﹣16和18,a =﹣16符合题意.4.(2016年)在直角坐标系xOy 中,曲线C 1的参数方程为cos 1sin x a ty a t =⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cosθ. (1)说明C 1是哪种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C 1与C 2的公共点都在C 3上,求a . 【解析】(1)由cos 1sin x a t y a t =⎧⎨=+⎩,得cos 1sin x a t y a t=⎧⎨-=⎩,两式平方相加得,x 2+(y ﹣1)2=a 2.∴C 1为以(0,1)为圆心,以a 为半径的圆. 化为一般式:x 2+y 2﹣2y +1﹣a 2=0.①由x 2+y 2=ρ2,y =ρsinθ,得ρ2﹣2ρsinθ+1﹣a 2=0; (2)C 2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ, ∴x 2+y 2=4x ,② 即(x ﹣2)2+y 2=4.由C 3:θ=α0,其中α0满足tanα0=2,得y =2x , ∵曲线C 1与C 2的公共点都在C 3上,∴y =2x 为圆C 1与C 2的公共弦所在直线方程, ①﹣②得:4x ﹣2y +1﹣a 2=0,即为C 3 , ∴1﹣a 2=0, ∴a =1(a >0).5.(2015年)在直角坐标系xOy 中,直线C 1:x =﹣2,圆C 2:(x ﹣1)2+(y ﹣2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程; (2)若直线C 3的极坐标方程为θ=4π(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积. 【解析】(1)由于x =ρcosθ,y =ρsinθ,∴C 1:x =﹣2 的极坐标方程为 ρcosθ=﹣2, 故C 2:(x ﹣1)2+(y ﹣2)2=1的极坐标方程为:(ρcosθ﹣1)2+(ρsinθ﹣2)2=1, 化简可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0. (2)把直线C 3的极坐标方程θ=4π(ρ∈R )代入圆C 2:(x ﹣1)2+(y ﹣2)2=1, 可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0,求得ρ1=2,∴|MN |=|ρ1﹣ρ2|,由于圆C 2的半径为1,∴C 2M ⊥C 2N , △C 2MN 的面积为221C C 2M N =1112⨯⨯=12.6.(2014年)已知曲线C :2249x y +=1,直线l :222x t y t =+⎧⎨=-⎩(t 为参数). (1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.【解析】(1)对于曲线C :2249x y +=1,可令x =2cosθ、y =3sinθ, 故曲线C 的参数方程为2cos 3sin x y θθ=⎧⎨=⎩(θ为参数).对于直线l :222x t y t =+⎧⎨=-⎩① ② ,由①得:t =x ﹣2,代入②并整理得:2x +y ﹣6=0; (2)设曲线C 上任意一点P (2cosθ,3sinθ).P 到直线l 的距离为53sin 65d θθ=+-. 则()256sin 305d θαPA ==+-o ,其中α为锐角.当sin (θ+α)=﹣1时,|PA |取得最大值,最大值为55. 当sin (θ+α)=1时,|PA |257.(2013年)已知曲线C 1的参数方程为45cos 55sin x ty t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sinθ. (1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π). 【解析】(1)将45cos 55sin x t y t=+⎧⎨=+⎩,消去参数t ,化为普通方程(x ﹣4)2+(y ﹣5)2=25,即C 1:x 2+y 2﹣8x ﹣10y +16=0,将cos sin x y ρθρθ=⎧⎨=⎩代入x 2+y 2﹣8x ﹣10y +16=0, 得ρ2﹣8ρcosθ﹣10ρsinθ+16=0.∴C 1的极坐标方程为ρ2﹣8ρcosθ﹣10ρsinθ+16=0. (2)∵曲线C 2的极坐标方程为ρ=2sinθ. ∴曲线C 2的直角坐标方程为x 2+y 2﹣2y =0,联立222281016020x y x y x y y ⎧+--+=⎪⎨+-=⎪⎩, 解得11x y =⎧⎨=⎩或02x y =⎧⎨=⎩,∴C 1与C 2,4π)和(2,2π). 8.(2012年)已知曲线C 1的参数方程是2cos 3sin x y ϕϕ=⎧⎨=⎩(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线C 2的坐标系方程是ρ=2,正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为(2,3π). (1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C 1上任意一点,求|PA |2+|PB |2+|PC |2+|PD |2的取值范围. 【解析】(1)点A ,B ,C ,D 的极坐标为(2,3π),(2,56π),(2,43π),(2,116π),点A ,B ,C ,D 的直角坐标为(1,(1),(1-,,,1-).(2)设P (x 0,y 0),则002cos 3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),t =|PA |2+|PB |2+|PC |2+|PD |2=4x 2+4y 2+16=32+20sin 2φ,∵sin 2φ∈[0,1], ∴t ∈[32,52].9.(2011年)在直角坐标系xOy 中,曲线C 1的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数)M 是C 1上的动点,P 点满足2OP =OM u u u r u u u u r,P 点的轨迹为曲线C 2.(1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=3π与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |.【解析】(1)设P (x ,y ),则由条件知M (2x ,2y ).由于M 点在C 1上, 所以2cos 222sin 2xy αα⎧=⎪⎪⎨⎪=+⎪⎩,即4cos 44sin x y αα=⎧⎨=+⎩,从而C 2的参数方程为4cos 44sin x y αα=⎧⎨=+⎩(α为参数)(2)曲线C 1的极坐标方程为ρ=4sinθ,曲线C 2的极坐标方程为ρ=8sinθ.射线θ=3π与C 1的交点A 的极径为ρ1=4sin 3π, 射线θ=3π与C 2的交点B 的极径为ρ2=8sin 3π.所以|AB |=|ρ2﹣ρ1|=10.(2010年)已知直线C 1:1cos sin x t y t αα=+⎧⎨=⎩(t 为参数),C 2:cos sin x y θθ=⎧⎨=⎩(θ为参数).(1)当α=3π时,求C 1与C 2的交点坐标; (2)过坐标原点O 做C 1的垂线,垂足为A ,P 为OA 中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.【解析】(1)当α=3π时,C 1的普通方程为)1y x =-,C 2的普通方程为x 2+y 2=1.联立方程组)2211y x x y ⎧=-⎪⎨+=⎪⎩, 解得C 1与C 2的交点为(1,0),(12,2-).(2)C 1的普通方程为x sinα﹣y cosα﹣sinα=0①. 则OA 的方程为x cosα+y sinα=0②, 联立①②可得x =sin 2α,y =﹣cosαsinα;A 点坐标为(sin 2α,﹣cosαsinα),故当α变化时,P 点轨迹的参数方程为21sin 21sin cos 2x y ααα⎧=⎪⎪⎨⎪=⎪⎩ (α为参数),P 点轨迹的普通方程为2211416x y ⎛⎫-+= ⎪⎝⎭.故P 点轨迹是圆心为(14,0),半径为14的圆.。
近5年高考数学理科试卷(全国卷1)分类汇编函数(解析版)(大题版)
2011(21)(本小题满分12分) 已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。
(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围。
解:(Ⅰ)221(ln )'()(1)x x b x f x x xα+-=-+由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩ 解得1a =,1b =。
(Ⅱ)由(Ⅰ)知ln 11x x x++,所以22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x---+=+--。
考虑函数()2ln h x x =+2(1)(1)k x x --(0)x >,则22(1)(1)2'()k x xh x x -++=。
(i)设0k ≤,由222(1)(1)'()k x x h x x+--=知,当1x ≠时,'()0h x <。
而(1)0h =,故当(0,1)x ∈时,()0h x >,可得21()01h x x>-; 当x ∈(1,+∞)时,h (x )<0,可得211x - h (x )>0 从而当x>0,且x ≠1时,f (x )-(1ln -x x +x k )>0,即f (x )>1ln -x x +x k.(ii )设0<k<1.由于当x ∈(1,k -11)时,(k-1)(x 2 +1)+2x>0,故h ’ (x )>0,而h (1)=0,故当x ∈(1,k -11)时,h (x )>0,可得211x -h (x )<0,与题设矛盾。
高考2014-2019全国卷理数极坐标与参数方程真题
⎩ ( 为 参数).⎨y = t s in α,⎨ 22014-2019 全国卷高考极坐标与参数方程真题(含答案)x 2+y =⎧ x = 2 + t(2014 年 1 卷)已知曲线C : 491,直线l :⎨ y = 2 - 2 t t (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点 P 作与l 夹角为30o的直线,交l 于点 A ,求| PA | 的最大值与最小值.(2014 年 2 卷)(本小题满分 10)选修 4-4:坐标系与参数方程在直角坐标系 xoy 中,以坐标原点为极点,x 轴正半轴 ρ= 2 cos θ θ ∈ ⎡ 0 , π ⎤为极轴建立极坐标系,半圆 C 的极坐标方程为,⎢⎣2 ⎥⎦ .(Ⅰ)求 C 的参数方程;(Ⅱ)设点 D 在 C 上,C 在 D 处的切线与直线l : y = 得到的参数方程,确定 D 的坐标.3x + 2 垂直,根据(Ⅰ)中你(2015 年 1 卷)在直角坐标系 xOy 中,直线C : x = - 2,圆C :(x -1)2+ ( y - 2)2= 1,以坐标原点为极点, x 12轴的正半轴为极轴建立极坐标系. (Ⅰ)求C 1 , C 2 的极坐标方程;π(Ⅱ)若直线C 3 的极坐标方程为θ=(ρ∈ R ) ,设C 2 与C 3 的交点为 M , N ,求 ∆C 2 MN 的面积.4(2015 年 2 卷)在直角坐标系 xOy 中,曲线 1 : ⎧ x = t c o s α, ⎩ (t 为参数,且 t≠0),其中 0≤α<π,在以 O 为极点,x 轴正半轴为极轴的极坐标系中,曲线 C 2:ρ=2sin θ,C 3:ρ=2cos θ.(1)求 C 2 与 C 3 交点的直角坐标.(2)若 C 1 与 C 2 相交于点 A,C 1 与 C 3 相交于点 B,求|AB|的最大值.(2016 年 1 卷)在直线坐标系 xOy 中,曲线 C 1 的参数方程为 ⎧x⎩y = acost,= 1 + asint(t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线 C 2:ρ=4cosθ. (1)说明 C 1 是哪一种曲线,并将 C 1 的方程化为极坐标方程.(2)直线 C 3 的极坐标方程为θ=α0,其中α0 满足 tanα0=2,若曲线 C 1 与 C 2 的公共点都在 C 3 上,求 a.C10 22 ⎨y = t sin α⎨ θ + ⎨y = sin θ⎨ y = 1 - t⎩ (2016 年 2 卷)在直线坐标系 xOy 中,圆 C 的方程为( x + 6)2+ y 2 = 25 .(I ) 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求 C 的极坐标方程; (II ) 直线 l 的参数方程是 ⎧ x = t co s α (t 为参数),l 与 C 交于 A 、B 两点, AB = ,求 l 的斜率.⎩(2016 年 3 卷)在直角坐标系 xOy 中,曲线 C 1 的参数方程为 ⎧⎪x =3cosα (α为参数),以坐标原点为极点,⎪⎩y = sinα以 x 轴的正半轴为极轴,,建立极坐标系,曲线 C 2 的极坐标方程为ρsin ⎛π ⎫ =2. 4 ⎪ ⎝ ⎭(1) 写出 C 1 的普通方程和 C 2 的直角坐标方程.(2) 设点 P 在 C 1 上,点 Q 在 C 2 上,求|PQ|的最小值及此时 P 的直角坐标.(2017 年 1 卷)在直角坐标系 xOy 中,曲线 C 的参数方程为 ⎧ x = 3 cos θ(θ 为参数),直线 l 的参数方程为⎩ ⎧ x = a + 4 t ( t 为参数 ) . ⎩ (1) 若 a = -1 ,求C 与l 的交点坐标;(2)(2)若C 上的点到l 的距离的最大值为,求 a .(2107 年 2 卷)在直角坐标系 xOy 中,以坐标原点为极点, x 轴的正半轴为极轴,建立极坐标系,曲线C 1 的极坐标方程为ρcos θ= 4 .(1)M 为曲线C 1 上的动点,点 P 在线段OM 上,且满足 OM ⋅ OP = 16 ,求点 P 的轨迹C 2 的直角坐标方程;(2) 设点 A 的极坐标为⎛ 2 , π ⎫ ,点 B 在曲线C 2 上,求△OAB 面积的最大值.3 ⎪ ⎝ ⎭(2017 年 3 卷)在平面直角坐标系 xOy 中,直线l 的参数方程为⎧ x = 2+t ( t 为参数),直线l 的参数方程为⎧ x = -2 + m1⎨y = kt2⎪ ⎨ y = m ⎩ k (m 为参数).设l 1 与l 2 的交点为 P ,当 k 变化时, P 的轨迹为曲线C . (1) 写出C 的普通方程;(2) 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+ sin θ) -= 0 , M 为l 3 与C 的交点,求 M 的极径.17 ⎪⎩ xOy ⊙O(2018年1卷)在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极 坐标方程为. ⑴求的直角坐标方程;⑵若与有且仅有三个公共点,求的方程.(2018年2卷)在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).(1) 求和的直角坐标方程;(2) 若曲线截直线所得线段的中点坐标为,求的斜率.⎧ x = cos θ,(2018年3卷)在平面直角坐标系 中, 的参数方程为 ⎨ y = sin θ(θ为参数),过点(0 ,- 2 ) 且倾斜角为α的直线l 与⊙O 交于 A ,B 两点.(1) 求α的取值范围;(2) 求 AB 中点 P 的轨迹的参数方程.⎧ 1- t 2x = ,⎪ 1+ t 2 (2019 年 1 卷)在直角坐标系 xOy 中,曲线 C 的参数方程为 ⎨ ⎪ y = ⎩ 4t1+ t 2(t 为参数).以坐标原点 O 为极点,x 轴的正半轴为极轴建立极坐标系,直线 l 的极坐标方程为 2ρcos θ+3ρsin θ+11 = 0 .(1) 求 C 和 l 的直角坐标方程;(2) 求 C 上的点到 l 距离的最小值.(2019 年 2 卷)在极坐标系中,O 为极点,点 M (ρ0 ,θ0 )(ρ0 > 0) 在曲线C :ρ= 4 sin θ上,直线 l 过点 A (4, 0) 且与OM 垂直,垂足为 P .(1)当θ = π时,求ρ 及 l 的极坐标方程;3(2)当 M 在 C 上运动且 P 在线段 OM 上时,求 P 点轨迹的极坐标方程.3 552⎩y = s i n t ,(2019 年 3 卷)如图,在极坐标系 Ox 中,A (2, 0) ,B ( 2, π) ,C ( 2, 3π) , D (2, π) ,弧 AB ,B C , 44C D 所在圆的圆心分别是(1, 0) ,(1, π) ,(1, π) ,曲线 M 1 是弧 AB ,曲线 M 2 是弧 B C ,曲线 M 3 是弧C D . (1) 分别写出 M 1 , M 2 , M 3 的极坐标方程;(2) 曲线 M 由 M 1 , M 2 , M 3 构成,若点 P 在M 上,且| OP |= ,求P 的极坐标.【参考答案】(2014 年 1 卷)⎧ x = 2 cos θ.( I ) 曲线C 的参数方程为⎨ y = 3 sin θ. (θ为参数).直线l 的普通方程为2x + y - 6 = 0.( I I ) 曲 线 C 上 任 意 一 点 P ( 2 co s θ. 3 sin θ) 到 l 的 距 离 为d =4 co s θ + 3 sin θ - 6 .则 P A =d= sin 3 0 ︒ 5 sin (θ + α) - 6 , 其 中 α为 锐 角 , 且 tan α = 4.3当 sin (θ+α) = - 1 时 ,P A 取 得 最 大 值 , 最 大 值 为 2 2 5.5 当 sin (θ + α) = 1时 ,P A 取 得 最 小 值 , 最 小 值 为 2 5.5(2014 年 2 卷)解析:(I )C 的普通方程为(x -1)2 + y 2= 1(0 ≤ y ≤ 1) . 可得 C 的参数方程为⎧ x = 1 + c o s t ,⎨⎩ (t 为参数,0 ≤ t ≤ x ) (Ⅱ)设 D (1 + cos t , sin t ) .由(I )知 C 是以 G (1,0)为圆心,1 为半径的上半圆。
近5年全国高考卷理科数学分类汇编-坐标系与参数方程
近5年全国高考卷理科数学分类汇编-坐标系与参数方程班级__________ 座号_____ 姓名__________ 分数__________一、解答题1. (2016理II)选修4−4:坐标系与参数方程在直角坐标系xOy 中,圆C 的方程为(x+6)2+y 2=25.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是(t 为参数),l 与C 交于A ,B 两点,∣AB ∣10求l 的斜率.2. (2016理I)在直角坐标系xOy 中,曲线C 1的参数方程为cos 1sin x a t y a t =⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(Ⅰ)说明C 1是哪种曲线,并将C 1的方程化为极坐标方程;(Ⅱ)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .3. (2012理)已知曲线1C 的参数方程是)(3sin y 2cos x 为参数ϕϕϕ⎩⎨⎧==,以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线2C 的坐标系方程是2=ρ,正方形ABCD 的顶点都在2C 上,且,,,A B C D 依逆时针次序排列,点A 的极坐标为(2,)3π(1)求点,,,A B C D 的直角坐标; (2)设P 为1C 上任意一点,求2222PA PB PC PD +++的取值范围.4. 已知动点P ,Q 都在曲线C :2cos ,2sin x t y t=⎧⎨=⎩(t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点.(1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.5. (2013理I)已知曲线C 1的参数方程为45cos 55sin x t y t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sinθ。
2013---2017年全国1卷高考理科数学分类汇编---坐标系与参数方程
2013---2017年全国1卷高考理科数学分类汇编---坐标系与参数方程 (2017全国1.理数.22)[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为 4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到la .【考点】:参数方程。
【思路】:(1)将参数方程化为直角方程后,直接联立方程求解即可(2)将参数方程直接代入距离公式即可。
【解析】:将曲线C 的参数方程化为直角方程为2219x y +=,直线化为直角方程为11144y x a =-+- (1)当1a =时,代入可得直线为1344y x =-+,联立曲线方程可得:22134499y x x y ⎧=-+⎪⎨⎪+=⎩,解得21252425x y ⎧=-⎪⎪⎨⎪=⎪⎩或30x y =⎧⎨=⎩,故而交点为2124,2525⎛⎫- ⎪⎝⎭或()3,0 (2)点3cos ,sin ,x y θθ=⎧⎨=⎩到直线11144y x a =-+-的距离为d =≤,即:3cos 4sin 417a θθ++-≤,化简可得()()1743cos 4sin 174a a θθ---≤+≤--,根据辅助角公式可得()135sin 21a a θϕ--≤+≤-,又()55sin 5θϕ-≤+≤,解得8a =-或者16a =。
(2016全国1.理数.23)(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系x O y 中,曲线C 1的参数方程为cos 1sin x a t y a t=⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(I )说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(II )直线C 3的极坐标方程为0θα=,其中0α满足tan 0α=2,若曲线C 1与C 2的公共点都在C 3上,求a .【答案】(I )圆,222sin 10a ρρθ-+-=(II )1⑵ 24cos C ρθ=:,两边同乘ρ得22224cos cos x y x ρρθρρθ==+=Q ,224x y x ∴+=,即()2224x y -+= ②3C :化为普通方程为2y x =,由题意:1C 和2C 的公共方程所在直线即为3C①—②得:24210x y a -+-=,即为3C∴210a -=,∴1a =考点:参数方程、极坐标方程与直角坐标方程的互化及应用【名师点睛】“互化思想”是解决极坐标方程与参数方程问题的重要思想,解题时应熟记极坐标方程与参数方程的互化公式及应用.(2015全国1.理数.23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1C : x =-2,圆2C :(x -1)2+(y -2)2=1,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系.(Ⅰ)求1C ,2C 的极坐标方程;(Ⅱ)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求△C 2MN 的面积 .23.解:(Ⅰ)因为cos x ρθ=,sin y ρθ=,所以1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.……5分 (Ⅱ)将4πθ=代入22cos 4sin 40ρρθρθ--+=,得23240ρρ-+=, 解得122ρ=,22ρ. 故122ρρ-=2MN =2C 半径为1,所以2C MN ∆的面积为12.…10分(2014全国1.理数.23)(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C :22149x y +=,直线l :222x t y t=+⎧⎨=-⎩(t 为参数). (1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30︒的直线,交l 于点A ,求PA 的最大值与最小值.【解析】: (1) 曲线C 的参数方程为:2cos 3sin x y θθ=⎧⎨=⎩(θ为参数), 直线l 的普通方程为:260x y +-= ………5分(2)在曲线C 上任意取一点P (2cos θ,3sin θ)到l 的距离为54cos 3sin 65d θθ=+-, 则()025||5sin 6sin 305d PA θα==+-,其中α为锐角.且4tan 3α=. 当()sin 1θα+=-时,||PA 取得最大值,最大值为225; 当()sin 1θα+=时,||PA 取得最小值,最小值为25. …………10分 (2013全国1.理数. 23)(本小题10分)选修4—4:坐标系与参数方程已知曲线C 1的参数方程为45cos 55sin x t y t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为2sin ρθ=.(Ⅰ)把C 1的参数方程化为极坐标方程;(Ⅱ)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).23. 将45cos 55sin x t y t=+⎧⎨=+⎩消去参数t ,化为普通方程22(4)(5)25x y -+-=, 即1C :22810160x y x y +--+=,将cos sin x y ρθρθ=⎧⎨=⎩代入22810160x y x y +--+=得, 28cos 10sin 160ρρθρθ--+=, ∴1C 的极坐标方程为28cos 10sin 160ρρθρθ--+= (Ⅱ)2C 的普通方程为2220x y y +-=, 由222281016020x y x y x y y ⎧+--+=⎪⎨+-=⎪⎩解得11x y =⎧⎨=⎩或02x y =⎧⎨=⎩,∴1C 与2C 2,4π),(2,)2π.(2012全国1.理数. 23)23.(本题满分10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程是2cos3sinxyϕϕ⎧⎨⎩=,=,(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2.正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,π3).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.23.解:(1)由已知可得A(π2cos3,π2sin3),B(ππ2cos()32+,ππ2sin()32+),C(2cos(π3+π),2sin(π3+π)),D(π3π2cos()32+,π3π2sin()32+),即A(1),B(,1),C(-1,,D,-1).(2)设P(2cosφ,3sinφ),令S=|PA|2+|PB|2+|PC|2+|PD|2,则S=16cos2φ+36sin2φ+16=32+20sin2φ. 因为0≤sin2φ≤1,所以S的取值范围是[32,52].。
近5年高考数学理科试卷(全国卷1)分类汇编立体几何(解析版)(大题版)(2011年2012年2013年2014年2015年)整理版
2011(18)(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为平行四边形,∠DAB=60°,AB=2AD,PD ⊥底面ABCD.(Ⅰ)证明:PA ⊥BD ;(Ⅱ)若PD=AD ,求二面角A-PB-C 的余弦值。
解:(Ⅰ )因为60,2DAB AB AD ∠=︒=,由余弦定理得BD =从而BD 2+AD 2= AB 2,故BD ⊥AD又PD ⊥底面ABCD ,可得BD ⊥PD所以BD ⊥平面PAD. 故PA ⊥BD(Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则()1,0,0A,()0B,()C -,()0,0,1P 。
(1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=-设平面PAB 的法向量为n=(x,y,z ),则0z =-=因此可取n=设平面PBC 的法向量为m ,则 00m PB m BC ⋅=⋅=可取m=(0,-1, cos ,7m n ==-故二面角A-PB-C 的余弦值为7-2012、19.(本小题满分12分)如图,直三棱柱111C B A ABC -中,121AA BC AC ==,D 是棱1AA 的中点,BD DC ⊥1.(Ⅰ)证明:BC DC ⊥1;(Ⅱ)求二面角11C BD A --的大小.【解析】(1)在Rt DAC ∆中,AD AC =得:45ADC ︒∠=同理:1114590A DC CDC ︒︒∠=⇒∠= 得:111,DC DC DC BD DC ⊥⊥⇒⊥面1BCD DC BC ⇒⊥(2)11,DC BC CC BC BC ⊥⊥⇒⊥面11ACC A BC AC ⇒⊥取11A B 的中点O ,过点O 作OH BD ⊥于点H ,连接11,C O C H111111A C B C C O A B =⇒⊥,面111A B C ⊥面1A BD 1C O ⇒⊥面1A BD 1O H B D C H B D⊥⇒⊥ 得:点H 与点D 重合 且1C DO ∠是二面角11C BD A --的平面角设AC a =,则12C O =,111230C D C O C DO ︒==⇒∠= 既二面角11C BD A --的大小为30︒A C B1B 1A D 1C2013,理18)(本小题满分12分)如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.(1)证明:取AB 的中点O ,连结OC ,OA 1,A 1B .因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C .又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)解:由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB ,所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz.由题设知A (1,0,0),A 1(0,3,0),C (0,0,B (-1,0,0). 则BC =(1,0,1BB =1AA =(-10),1AC =(0,. 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,则10,0,BC BB ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,30.x x y ⎧+=⎪⎨-+=⎪⎩可取n =1,-1).故cos 〈n ,1AC 〉=11AC AC ⋅n n =5-. 所以A 1C 与平面BB 1C 1C 所成角的正弦值为5.2014、19. (本小题满分12分)如图三棱锥111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥. (I )证明:1AC AB =;(Ⅱ)若1AC AB ⊥,o 160CBB ∠=,AB=Bc ,求二面角111A A B C --的余弦值.【解析】:(Ⅰ)连结1BC ,交1B C 于O ,连结AO .因为侧面11BB C C 为菱形,所以1B C 1BC ⊥,且O 为1B C 与1BC 的中点.又1AB B C ⊥,所以1B C ⊥平面ABO ,故1B C AO ⊥又 1B O CO =,故1AC AB = ………6分(Ⅱ)因为1AC AB ⊥且O 为1B C 的中点,所以又因为,所以BOA BOC ∆≅∆故OA ⊥,从而OA ,OB ,1OB 两两互相垂直.以O 为坐标原点,OB 的方向为x 轴正方向,OB 为单位长,建立如图所示空间直角坐标系O-xyz . 因为0160CBB ∠=,所以1CBB ∆为等边三角形.又,则A ⎛ ⎝,()1,0,0B,1B ⎛⎫ ⎪ ⎪⎝⎭,0,C ⎛⎫ ⎪ ⎪⎝⎭1AB ⎛= ⎝,111,0,,A B AB ⎛== ⎝111,B C BC ⎛⎫==- ⎪ ⎪⎝⎭ 设(),,n x y z =是平面的法向量,则11100n AB n A B ⎧=⎪⎨=⎪⎩,即00y z x z =⎪-=⎪⎩所以可取(1,3,n = 设m 是平面的法向量,则111100m A B n B C ⎧=⎪⎨=⎪⎩,同理可取(1,m = 则1cos ,7n mn m n m ==,所以二面角111A A B C --的余弦值为17.2015(18)如图,,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC。
2018-高考近5年全国卷一理科数学含(详细答案)
绝密★启用前2018年普通高等学校招生全国统一考试(新课标Ⅰ卷)理科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设,则()A.0B.C.D.2.已知集合,则()A.B.C.D.3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记为等差数列的前项和.若,,则()A.B.C.D.125.设函数.若为奇函数,则曲线在点处的切线方程为()A.B.C.D.6.在中,为边上的中线,为的中点,则()A.B.C.D.7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A.B.C.D.28.设抛物线的焦点为,过点且斜率为的直线与交于,两点,则()A.5B.6C.7D.89.已知函数,,若存在2个零点,则的取值范围是()A.B.C.D.10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边,,的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为,,,则()A.B.C.D.11.已知双曲线,为坐标原点,为的右焦点,过的直线与的两条渐近线的交点分别为,.若为直角三角形,则()A.B.3C.D.412.已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题(本题共4小题,每小题5分,共20分)13.若满足约束条件,则的最大值为________.14.记为数列的前项和.若,则________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数,则的最小值是________.三、解答题(共70分。
近5年高考数学理科试卷(全国卷1)分类汇编--解析几何(解析版)(大题版)(2011年2012年2013年2014年2015年)
2011(20)(本小题满分12分)在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3上,M 点满足MB//OA , MA •AB = MB •BA ,M 点的轨迹为曲线C 。
(Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值。
解:(Ⅰ)设M(x,y),由已知得B(x,-3),A(0,-1).所以MA=(-x,-1-y ),MB =(0,-3-y), AB =(x,-2).再由愿意得知(MA +MB )• AB=0,即(-x,-4-2y )• (x,-2)=0. 所以曲线C 的方程式为y=14x 2-2. (Ⅱ)设P(x 0,y 0)为曲线C :y=14x 2-2上一点,因为y '=12x,所以l 的斜率为12x 0 因此直线l 的方程为0001()2y y x x x -=-,即200220x x y y x -+-=。
则O 点到l的距离2d =又200124y x =-,所以201412,2x d +==≥当20x =0时取等号,所以O 点到l 距离的最小值为2.201220.(本小题满分12分)设抛物线C :)0(22>=p py x 的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于两B 、D 点.(Ⅰ)若oBFD 90=∠,ABD ∆的面积为24,求p 的值及圆F 的方程;(Ⅱ)若A 、B 、F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到n 、m 距离的比值.【解析】(1)由对称性知:BFD ∆是等腰直角∆,斜边2BD p =点A 到准线l的距离d FA FB ===122ABD S BD d p ∆=⇔⨯⨯=⇔= 圆F 的方程为22(1)8x y +-=(2)由对称性设200(,)(0)2x A x x p>,则(0,)2p F点,A B 关于点F 对称得:22220000(,)3222x x p B x p p x p p p --⇒-=-⇔=得:3,)2p A,直线3:02p p p m y x x -=+⇔-=2222x x x py y y x p p p '=⇔=⇒==⇒=⇒切点(,)36p P直线:06p n y x x p -=⇔-= 坐标原点到,m n距离的比值为:326=。
近五年高考数学全国卷1试题全解全析汇编篇解析版
f (x) f (x) ,则
(A)
f
(x)
在
0,
2
Байду номын сангаас
单调递减
(B)
f
(x)
在
4
,
3 4
单调递减
(C)
f
(x)
在
0,
2
单调递增
(D)
f
(x)
在
4
,
3 4
单调递增
解 析 : f (x) 2 sin(x ) , 所 以 2 , 又 f(x) 为 偶 函 数 , 4
0,
2 3
。由
a
b
a2 b2 2ab cos
2 2 cos 1得 cos 1 2
3
,
。
选A
( 11 ) 设 函 数 f (x) sin(x ) cos(x )( 0, ) 的 最 小 正 周 期 为 , 且 2
得 r=3,对应的常数项=-40,故所求的常数项为 40 ,选 D
解析 2.用组合提取法,把原式看做 6 个因式相乘,若第 1 个括号提出 x,从余下的 5 个括
1
1
1
号中选 2 个提出 x,选 3 个提出 ;若第 1 个括号提出 ,从余下的括号中选 2 个提出 ,
x
x
x
选 3 个提出 x.
故常数项=
16 8
(15)已知矩形 ABCD 的顶点都在半径为 4 的球 O 的球面上,且 AB 6, BC 2 3 ,则棱锥
2015-2019高考数学理科(全国卷和自主命题)分类汇编 专题14 坐标系与参数方程
专题14 坐标系与参数方程2019年1.【2019年高考北京卷理数】已知直线l 的参数方程为13,24x t y t =+=+⎧⎨⎩(t 为参数),则点(1,0)到直线l 的距离是A .15B .25C .45 D .65【答案】D【解析】由题意,可将直线l 化为普通方程:1234x y --=,即()()41320x y ---=,即4320x y -+=,所以点(1,0)到直线l的距离65d ==,故选D . 2.【2019年高考全国Ⅰ卷理数】在直角坐标系xOy 中,曲线C 的参数方程为(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为. (1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.【答案】(1)221(1)4y x x +=≠-;l的直角坐标方程为2110x ++=;(2.【解析】(1)因为221111t t--<≤+,且()22222222141211y t t x t t ⎛⎫-⎛⎫+=+= ⎪ ⎪+⎝⎭⎝⎭+,所以C 的直角坐标方程为221(1)4y x x +=≠-. l的直角坐标方程为2110x +=.(2)由(1)可设C 的参数方程为cos ,2sin x y αα=⎧⎨=⎩(α为参数,ππα-<<).C 上的点到lπ4cos 11α⎛⎫-+ ⎪=.2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,2cos sin 110ρθθ++=当2π3α=-时,π4cos 113α⎛⎫-+ ⎪⎝⎭取得最小值7,故C 上的点到l .3.【2019年高考全国Ⅱ卷理数】在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P .(1)当0=3θπ时,求0ρ及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.【答案】(1)0ρ=l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭;(2)4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π.【解析】(1)因为()00,M ρθ在C 上,当03θπ=时,04sin 3ρπ== 由已知得||||cos23OP OA π==. 设(,)Q ρθ为l 上除P 的任意一点.在Rt OPQ △中,cos ||23OP ρθπ⎛⎫-== ⎪⎝⎭,经检验,点(2,)3P π在曲线cos 23ρθπ⎛⎫-= ⎪⎝⎭上.所以,l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭.(2)设(,)P ρθ,在Rt OAP △中,||||cos 4cos ,OP OA θθ== 即 4cos ρθ=.因为P 在线段OM 上,且AP OM ⊥,故θ的取值范围是,42ππ⎡⎤⎢⎥⎣⎦.所以,P 点轨迹的极坐标方程为4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π.4.【2019年高考全国Ⅲ卷理数】如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π,(2,)D π,弧AB ,BC ,CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧AB ,曲线2M 是弧BC ,曲线3M 是弧CD . (1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.【答案】(1)1M 的极坐标方程为π2cos 04ρθθ⎛⎫=≤≤ ⎪⎝⎭,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫=≤≤⎪⎝⎭,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=-≤≤⎪⎝⎭.(2)π6⎫⎪⎭或π3⎫⎪⎭或2π3⎫⎪⎭或5π6⎫⎪⎭.【解析】(1)由题设可得,弧,,AB BC CD 所在圆的极坐标方程分别为2cos ρθ=,2sin ρθ=,2cos ρθ=-.所以1M 的极坐标方程为π2cos 04ρθθ⎛⎫=≤≤ ⎪⎝⎭,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫=≤≤⎪⎝⎭,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=-≤≤ ⎪⎝⎭. (2)设(,)P ρθ,由题设及(1)知若π04θ≤≤,则2cos θ=,解得π6θ=;若π3π44θ≤≤,则2sin θ=π3θ=或2π3θ=;若3ππ4θ≤≤,则2cos θ-=5π6θ=.综上,P 的极坐标为π6⎫⎪⎭或π3⎫⎪⎭或2π3⎫⎪⎭或5π6⎫⎪⎭.5.【2019年高考江苏卷数学】在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭.(1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离.【答案】(1)2)2.【解析】(1)设极点为O .在△OAB 中,A (3,4π),B ,2π),由余弦定理,得AB =(2)因为直线l 的方程为sin()34ρθπ+=,则直线l 过点)2π,倾斜角为34π.又)2B π,所以点B 到直线l 的距离为3sin()242ππ⨯-=.2018年1.【2018年理数天津卷】已知圆x 2+y 2−2x =0的圆心为C ,直线{x =−1+√22t,y =3−√22t(t 为参数)与该圆相交于A ,B 两点,则ΔABC 的面积为___________. 【答案】122.【2018年理北京卷】在极坐标系中,直线ρcosθ+ρsinθ=a(a >0)与圆ρ=2cosθ相切,则a =__________. 【答案】1+√2【解析】分析:根据ρ2=x 2+y 2,x =ρcosθ,y =ρsinθ将直线与圆极坐标方程化为直角坐标方程,再根据圆心到直线距离等于半径解出a.详解:因为ρ2=x2+y2,x=ρcosθ,y=ρsinθ,由ρcosθ+ρsinθ=a(a>0),得x+y=a(a>0),由ρ=2cosθ,得ρ2=2ρcosθ,即x2+y2=2x,即(x−1)2+y2==1,∴a=1±√2,∵a>0,∴a=1+√2.1,因为直线与圆相切,所以√2−θ)=2,曲线C的方程为ρ= 3.【2018年江苏卷】在极坐标系中,直线l的方程为ρsin(π64cosθ,求直线l被曲线C截得的弦长.【答案】直线l被曲线C截得的弦长为2√3=2√3.因此,直线l被曲线C截得的弦长为2√3.所以AB=4cosπ64.【2018年理新课标I卷】在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcosθ−3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.【答案】 (1)(x+1)2+y2=4.|x|+2.(2)综上,所求C1的方程为y=−43详解:(1)由x=ρcosθ,y=ρsinθ得C2的直角坐标方程为(x+1)2+y2=4.(2)由(1)知C2是圆心为A(−1,0),半径为2的圆.由题设知,C1是过点B(0,2)且关于y轴对称的两条射线.记y轴右边的射线为l1,y轴左边的射线为l2.由于B在圆C2的外面,故C1与C2有且仅有三个公共点等价于l1与C2只有一个公共点且l2与C2有两个公共点,或l2与C2只有一个公共点且l1与C2有两个公共点.当l1与C2只有一个公共点时,A到l1所在直线的距离为2,所以√k2+1=2,故k=−43或k=0.经检验,当k=0时,l1与C2没有公共点;当k=−43时,l1与C2只有一个公共点,l2与C2有两个公共点.当l2与C2只有一个公共点时,A到l2所在直线的距离为2,所以√k2+1=2,故k=0或k=43.经检验,当k=0时,l1与C2没有公共点;当k=43时,l2与C2没有公共点.综上,所求C1的方程为y=−43|x|+2.5.【2018年全国卷Ⅲ理】在平面直角坐标系xOy中,⊙O的参数方程为{x=cosθ,y=sinθ(θ为参数),过点(0 , −√2)且倾斜角为α的直线l与⊙O交于A , B两点.(1)求α的取值范围;(2)求AB中点P的轨迹的参数方程.【答案】(1)(π4,3π4)(2){x=√22sin2α,y=−√22−√22cos2α(α为参数,π4<α<3π4)详解:(1)⊙O的直角坐标方程为x2+y2=1.当α=π2时,l与⊙O交于两点.当α≠π2时,记tanα=k,则l的方程为y=kx−√2.l与⊙O交于两点当且仅当√2√1+k2<1,解得k<−1或k>1,即α∈(π4,π2)或α∈(π2,3π4).综上,α的取值范围是(π4,3π4).(2)l的参数方程为{x=tcosα,y=−√2+tsinα(t为参数,π4<α<3π4).设A,B,P对应的参数分别为t A,t B,t P,则t P=t A+t B2,且t A,t B满足t2−2√2tsinα+1=0.于是t A +t B =2√2sinα,t P =√2sinα.又点P 的坐标(x,y)满足{x =t P cosα,y =−√2+t P sinα. 所以点P 的轨迹的参数方程是{x =√22sin2α,y =−√22−√22cos2α(α为参数,π4<α<3π4).6.【2018年理数全国卷II 】在直角坐标系xOy 中,曲线C 的参数方程为{x =2cosθ,y =4sinθ(θ为参数),直线l 的参数方程为{x =1+tcosα,y =2+tsinα(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1, 2),求l 的斜率.【答案】(1)当cosα≠0时,l 的直角坐标方程为y =tanα⋅x +2−tanα,当cosα=0时,l 的直角坐标方程为x =1.(2)−2详解:(1)曲线C 的直角坐标方程为x 24+y 216=1.当cosα≠0时,l 的直角坐标方程为y =tanα⋅x +2−tanα, 当cosα=0时,l 的直角坐标方程为x =1.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程 (1+3cos 2α)t 2+4(2cosα+sinα)t −8=0.①因为曲线C 截直线l 所得线段的中点(1,2)在C 内,所以①有两个解,设为t 1,t 2,则t 1+t 2=0.又由①得t 1+t 2=−4(2cosα+sinα)1+3cos 2α,故2cosα+sinα=0,于是直线l 的斜率k =tanα=−2.过点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程是{x =x 0+tcosαy =y 0+tsinα.(t 是参数,t 可正、可负、可为0)若M 1,M 2是l 上的两点,其对应参数分别为t 1,t 2,则(1)M 1,M 2两点的坐标分别是(x 0+t 1cos α,y 0+t 1sin α),(x 0+t 2cos α,y 0+t 2sin α). (2)|M 1M 2|=|t 1-t 2|.(3)若线段M 1M 2的中点M 所对应的参数为t ,则t =t 1+t 22,中点M 到定点M 0的距离|MM 0|=|t |=|t 1+t 22|.(4)若M 0为线段M 1M 2的中点,则t 1+t 2=0.2017年1.【2017天津,理11】在极坐标系中,直线4cos()106ρθπ-+=与圆2sin ρθ=的公共点的个数为___________. 【答案】2【解析】直线为210y ++= ,圆为22(1)1x y +-= ,因为314d =< ,所以有两个交点2.【2017北京,理11】在极坐标系中,点A 在圆22cos 4sin 40ρρθρθ--+=上,点P 的坐标为(1,0),则|AP |的最小值为___________.【答案】1 【解析】试题分析:将圆的极坐标方程化为普通方程为222440x y x y +--+= ,整理为()()22121x y -+-= ,圆心()1,2C ,点P 是圆外一点,所以AP 的最小值就是211AC r -=-=.3.【2017课标1,理22】在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数).(1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到la.(2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l 的距离为d =.当4a ≥-时,d=8a =; 当4a <-时,d.=16a =-.综上,8a =或16a =-.4. 【2017课标II ,理22】在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=。
高考近5年全国卷一理科数学含(详细答案).pdf
绝密★启用前2018年普通高等学校招生全国统一考试(新课标Ⅰ卷)理科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设,则( ) A .0B .C .D .2.已知集合,则( ) A .B .C .D .3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:此卷只装订不密封姓名 准考证号 考场号 座位号则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记为等差数列的前项和.若,,则()A.B.C.D.125.设函数.若为奇函数,则曲线在点处的切线方程为()A.B.C.D.6.在中,为边上的中线,为的中点,则()A.B.C.D.7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A.B.C.D.28.设抛物线的焦点为,过点且斜率为的直线与交于,两点,则()A.5B.6C.7D.89.已知函数,,若存在2个零点,则的取值范围是()A.B.C.D.10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边,,的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为,,,则()A.B.C.D.11.已知双曲线,为坐标原点,为的右焦点,过的直线与的两条渐近线的交点分别为,.若为直角三角形,则()A.B.3C.D.412.已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题(本题共4小题,每小题5分,共20分)13.若满足约束条件,则的最大值为________.14.记为数列的前项和.若,则________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数,则的最小值是________.三、解答题(共70分。
(通用版)五年高考(-)高考数学真题专题归纳 专题20 坐标系与参数方程(含解析)理-人教版高三全册
所在圆的圆心分别是
(1,
0)
,(1,
2
)
,(1,
)
,曲线
M1
是弧
AB
,
曲线 M 2 是弧 BC ,曲线 M3 是弧 CD .
(1)分别写出 M1 , M 2 , M3 的极坐标方程;
(2)曲线 M 由 M1 , M 2 , M3 构成,若点 P 在 M 上,且| OP | 3 ,求 P 的极坐标.
x cos4 t
(2)当
k
4时,曲线 C1
的参数方程为
y
sin4
t
(t
为参数),
所以
x
0,
y
0
,曲线
C1
的参数方程化为
x cos2 t (t 为参数),
y sin2 t
两式相加得曲线 C1 方程为 x y 1,
得 y 1 x ,平方得 y x 2 x 1,0 x 1,0 y 1 ,
5 / 16
word
因为P在线段OM上,且
AP
OM
,故
的取值X围是
4
,
2
.
所以,P点轨迹的极坐标方程为 4 cos ,
4
,
2
.
4.【2019 年高考全国Ⅲ卷理数】如图,在极坐标系 Ox 中,A(2, 0) ,B( 2, ) ,C( 2, ) ,
4
4
D(2,
)
,弧
AB
,BC
,C
D
t
2
(t
为参
数且 t≠1),C 与坐标轴交于 A、B 两点. (1)求| AB | ; (2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线 AB 的极坐标方程.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011
(23)(本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系xOy 中,曲线C 1的参数方程为
2cos 22sin x y α
α=⎧⎨
=+⎩
(α为参数) M 是C 1上的动点,P 点满足2OP OM =,P 点的轨迹为曲线C 2 (Ⅰ)求C 2的方程
(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3
π
θ=与C 1的异
于极点的交点为A ,与C 2的异于极点的交点为B ,求AB . 解:
(I )设P(x,y),则由条件知M(
2
,2Y
X ).由于M 点在C 1上,所以 ⎪⎪⎭
⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧+=∂=sin 222,cos 22y x 即 ⎭⎬⎫⎩⎨⎧∂+=∂=sin 44cos 4y x 从而2C 的参数方程为4cos 44sin x y α
α
=⎧⎨=+⎩(α为参数)
(Ⅱ)曲线1C 的极坐标方程为4sin ρθ=,曲线2C 的极坐标方程为8sin ρθ=。
射线3
π
θ=与1C 的交点A 的极径为14sin 3
π
ρ=, 射线3
π
θ=
与2C 的交点B 的极径为28sin
3
π
ρ=。
所以21||||AB ρρ-== 2012
23.(本小题满分10分)选修4-4:坐标系与参数方程
已知曲线1C 的参数方程是⎩
⎨⎧==ϕϕ
sin 3cos 2y x (ϕ为参数),以坐标原点为极点,x 轴的正半
轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ.正方形ABCD 的顶点都在2C 上,
且A 、B 、C 、D 依逆时针次序排列,点A 的极坐标为)3
,
2(π
.
(Ⅰ)求点A 、B 、C 、D 的直角坐标;
(Ⅱ)设P 为1C 上任意一点,求2222||||||||PD PC PB PA +++的取值范围. 【解析】(1)点,,,A B C D 的极坐标为5411(2,
),(2,
),(2,),(2,)3
636
π
πππ
点,,,A B C D
的直角坐标为(11,1)-- (2)设00(,)P x y ;则002cos ()3sin x y ϕ
ϕϕ
=⎧⎨
=⎩为参数
2
2
2
2
22
4440t PA PB PC PD x y =+++=++
25620sin [56,76]ϕ=+∈(lfxlby )
2013
(23)(本小题满分10分)选修4—4:坐标系与参数方程
已知曲线C 1的参数方程为45cos ,
55sin x t y t =+⎧⎨=+⎩
(t 为参数),以坐标原点为极点,x 轴的正半
轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.
(1)把C 1的参数方程化为极坐标方程;
(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).
解:(1)将45cos ,
55sin x t y t
=+⎧⎨
=+⎩消去参数t ,化为普通方程(x -4)2+(y -5)2=25,
即C 1:x 2+y 2-8x -10y +16=0.
将cos ,sin x y ρθρθ
=⎧⎨=⎩代入x 2+y 2-8x -10y +16=0得 ρ2-8ρcos θ-10ρsin θ+16=0. 所以C 1的极坐标方程为 ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的普通方程为x 2+y 2-2y =0.
由2222
810160,20x y x y x y y ⎧+--+=⎨+-=⎩ 解得1,1x y =⎧⎨=⎩
或0,2.x y =⎧⎨=⎩
所以C 1与C 2
交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭
.
2014
23. (本小题满分10分)选修4—4:坐标系与参数方程
已知曲线C :22
149x y +=,直线l :222x t y t =+⎧⎨=-⎩
(t 为参数). (I )写出曲线C 的参数方程,直线l 的普通方程;
(Ⅱ)过曲线C 上任一点P 作与l 夹角为o
30的直线,交l 于点A ,求||PA 的最大值与最小值.
【解析】.(Ⅰ) 曲线C 的参数方程为:2cos 3sin x y θ
θ=⎧⎨=⎩
(θ为参数),
直线l 的普通方程为:260x y +-= ………5分 (Ⅱ)(2)在曲线C 上任意取一点P (2cos θ,3sin θ)到l 的距离为
3sin 6d θθ=
+-,
则()0
||6sin 30d PA θα=
=+-,其中α为锐角.且4
tan 3
α=
.
当()sin 1θα+=-时,||PA
当()sin 1θα+=时,||PA . …………10分 2015
(23)(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系O χγ中。
直线1C :χ=-2,圆2C :()()2
2
121χγ-+-=,以坐标原点为极点, χ轴的正半轴为极轴建立极坐标系。
(I ) 求1C ,2C 的极坐标方程; (II ) 若直线3C 的极坐标方程为()4
R π
θρ=∈,设2C 与3C 的交点为M ,N ,
求2C MN 的面积。