2019版高考数学(理)一轮狂刷练:第11章算法、复数、推理与证明11-1a含解析

合集下载

2019版高考数学(文)一轮狂刷练:第11章算法、复数、推理与证明11-4a含解析

2019版高考数学(文)一轮狂刷练:第11章算法、复数、推理与证明11-4a含解析
[基础送分提速狂刷练]
一、选择题
1.(2018·无锡质检)已知m>1,a= - ,b= - ,则以下结论正确的是()
A.a>bB.a<b
C.a=bD.a,b大小不定
答案B
解析∵a= - = ,b= - = .而 + > + >0(m>1),
∴ < ,即a<b.故选B.
2.设x,y,z>0,则三个数 + , + , + ()
因此各队得分分别为:2,3,4,5.第一名Biblioteka 分5:5=3+1+1,为一胜两平;
第二名得分4:4=3+1+0,为一胜一平一负;
第三名得分3:根据胜场等于负场,只能为三平;
第四名得分2:2=1+1+0,为两平一负.
则所有比赛中最多可能出现的平局场数是4.
故选C.
二、填空题
9.(2017·南昌一模)设无穷数列{an},如果存在常数A,对于任意给定的正数ε(无论多小),总存在正整数N,使得n>N时,恒有|an-A|<ε成立,就称数列{an}的极限为A.则四个无穷数列:①{(-1)n×2};②{n};③ ;④ .其极限为2的共有________个.
答案2
解析对于①,|an-2|=|(-1)n×2-2|=2×|(-1)n-1|,当n是偶数时,|an-2|=0,当n是奇数时,|an-2|=4,所以不符合数列{an}的极限的定义,即2不是数列{(-1)n×2}的极限;对于②,由|an-2|=|n-2|<ε,得2-ε<n<2+ε,所以对于任意给定的正数ε(无论多小),不存在正整数N,使得n>N时,恒有|an-2|<ε,即2不是数列{n}的极限;对于③,由|an-2|= = = <ε,得n>1-log2ε,即对于任意给定的正数ε(无论多小),总存在正整数N,使得n>N时,恒有|an-2|<ε成立,所以2是数列 的极限;对于④,由|an-2|= = <ε,得n> ,即对于任意给定的正数ε(无论多小),总存在正整数N,使得n>N时,恒有|an-2|<ε成立,所以2是数列 的极限.综上所述,极限为2的共有2个,即③④.

2019年高考数学(文科)一轮分层演练:第11章复数、算法、推理与证明第1讲(含答案解析)

2019年高考数学(文科)一轮分层演练:第11章复数、算法、推理与证明第1讲(含答案解析)

[学生用书P283(单独成册)]一、选择题1.已知i 是虚数单位,则(2+i)(3+i)=( )A .5-5iB .7-5iC .5+5iD .7+5i解析:选C .(2+i)(3+i)=6+5i +i 2=5+5i ,故选C .2.设i 是虚数单位,若复数a +5i 1-2i(a ∈R )是纯虚数,则a 等于( ) A .-1 B .1 C .-2 D .2解析:选D .因为a +5i 1-2i =a +5i (1+2i )(1-2i )(1+2i )=a +-10+5i 5=a -2+i 是纯虚数,所以a =2.故选D . 3.设z =1+i(i 是虚数单位),则复数2z+z 2在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限解析:选A .因为z =1+i ,所以2z +z 2=21+i +(1+i)2=2(1-i )(1+i )(1-i )+1+2i +i 2=2(1-i )2+2i =1+i ,所以该复数在复平面内对应的点的坐标为(1,1),位于第一象限,故选A .4.(2018·福建基地综合测试)已知x 1+i=1-y i ,其中x ,y 是实数,i 是虚数单位,则x +y i 的共轭复数为( ) A .1+2iB .1-2iC .2+iD .2-i 解析:选D .x 1+i =12(x -x i)=1-y i ,所以⎩⎨⎧12x =1,-12x =-y ,解得x =2,y =1,所以x +y i =2+i ,其共轭复数为2-i 故选D .5.(2018·安徽江南十校联考)若复数z 满足z (1-i)=|1-i|+i ,则z 的实部为( )A .2-12B .2-1C .1D .2+12解析:选A .由z (1-i)=|1-i|+i ,得z =2+i 1-i =(2+i )(1+i )(1-i )(1+i )=2-12+2+12i ,故z 的实部为2-12,故选A .6.已知⎝⎛⎭⎫1+2i 2=a +b i(a ,b ∈R ,i 为虚数单位),则a +b =( )A .-7B .7C .-4D .4解析:选A .因为⎝⎛⎭⎫1+2i 2=1+4i +4i 2=-3-4i , 所以-3-4i =a +b i ,则a =-3,b =-4,所以a +b =-7,故选A .二、填空题 7.已知t ∈R ,i 为虚数单位,复数z 1=3+4i ,z 2=t +i ,且z 1·z 2是实数,则t 等于________.解析:因为z 1=3+4i ,z 2=t +i ,所以z 1·z 2=(3t -4)+(4t +3)i ,又z 1·z 2是实数,所以4t +3=0,所以t =-34. 答案:-348.若复数z =1+2i ,其中i 是虚数单位,则⎝⎛⎭⎫z +1z ·z -=________. 解析:因为z =1+2i ,所以z =1-2i .所以⎝⎛⎭⎫z +1z ·z -=z ·z -+1=5+1=6. 答案:69.已知复数z 满足z +2z -2=i(其中i 是虚数单位),则|z |=________. 解析:由z +2z -2=i 知,z +2=z i -2i ,即z =-2-2i 1-i ,所以|z |=|-2-2i||1-i|=222=2. 答案:210.已知复数z =4+2i (1+i )2(i 为虚数单位)在复平面内对应的点在直线x -2y +m =0上,则实数m =________. 解析:z =4+2i (1+i )2=4+2i 2i =(4+2i )i 2i 2=1-2i ,复数z 在复平面内对应的点的坐标为(1,-2),将其代入x -2y +m =0,得m =-5. 答案:-5三、解答题11.如图所示,平行四边形OABC ,顶点O ,A ,C 分别表示0,3+2i ,-2+4i ,试求:(1)AO →、BC →所表示的复数;(2)对角线CA →所表示的复数;(3)B 点对应的复数.解:(1)AO →=-OA →,所以AO →所表示的复数为-3-2i .因为BC →=AO →,所以BC →所表示的复数为-3-2i .(2)CA →=OA →-OC →,所以CA →所表示的复数为(3+2i)-(-2+4i)=5-2i . (3)OB →=OA →+AB →=OA →+OC →,所以OB →所表示的复数为(3+2i)+(-2+4i)=1+6i ,即B 点对应的复数为1+6i .12.若虚数z 同时满足下列两个条件:①z +5z是实数; ②z +3的实部与虚部互为相反数.这样的虚数是否存在?若存在,求出z ;若不存在,请说明理由. 解:这样的虚数存在,z =-1-2i 或z =-2-i .设z =a +b i(a ,b ∈R 且b ≠0),z +5z =a +b i +5a +b i=a +b i +5(a -b i )a 2+b 2=⎝⎛⎭⎫a +5a a 2+b 2+⎝⎛⎭⎫b -5b a 2+b 2i . 因为z +5z 是实数,所以b -5b a 2+b 2=0. 又因为b ≠0,所以a 2+b 2=5.①又z +3=(a +3)+b i 的实部与虚部互为相反数,所以a +3+b =0.②由①②得⎩⎪⎨⎪⎧a +b +3=0,a 2+b 2=5,解得 ⎩⎪⎨⎪⎧a =-1,b =-2或⎩⎪⎨⎪⎧a =-2,b =-1, 故存在虚数z ,z =-1-2i 或z =-2-i .。

[推荐学习]全国版2019版高考数学一轮复习第11章算法初步复数推理与证明第2讲数系的扩充与复数的引

[推荐学习]全国版2019版高考数学一轮复习第11章算法初步复数推理与证明第2讲数系的扩充与复数的引

第2讲 数系的扩充与复数的引入板块一 知识梳理·自主学习[必备知识]考点1 复数的有关概念 1.复数的概念形如a +b i(a ,b ∈R )的数叫做复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +b i 为实数,若b ≠0,则a +b i 为虚数,若a =0,b ≠0,则a +b i 为纯虚数.2.复数相等a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ).3.共轭复数a +b i 与c +d i 共轭⇔a =c 且b =-d (a ,b ,c ,d ∈R ).4.复数的模向量OZ →的模r 叫做复数z =a +b i 的模,记作|z |或|a +b i|,即|z |=|a +b i|=r =a 2+b 2(r ≥0,r ∈R ).考点2 复数的几何意义考点3 复数的运算设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则1.加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; 2.减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; 3.乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ; 4.除法:z 1z 2=a +b ic +d i =(a +b i )(c -d i )(c +d i )(c -d i )=ac +bd c 2+d 2+bc -adc 2+d 2i(c +d i≠0).[必会结论]1.(1±i)2=±2i;1+i 1-i =i ;1-i 1+i =-i.2.-b +a i =i(a +b i). 3.i 4n=1,i 4n +1=i ,i4n +2=-1,i4n +3=-i(n ∈N *).4.i 4n+i4n +1+i 4n +2+i4n +3=0(n ∈N *).[考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)方程x 2+1=0没有解.( )(2)复数z =a +b i(a ,b ∈R )中,虚部为b i.( )(3)复数的模等于复数在复平面上对应的点到原点的距离,也等于复数对应的向量的模.( )(4)已知复数z 的共轭复数z -=1+2i ,则z 在复平面内对应的点位于第三象限.( ) (5)复数中有相等复数的概念,因此复数可以比较大小.( ) 答案 (1)× (2)× (3)√ (4)× (5)×2.[2017·全国卷Ⅲ]复平面内表示复数z =i(-2+i)的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案 C解析 ∵z =i(-2+i)=-1-2i ,∴复数z =-1-2i 所对应的复平面内的点为Z (-1,-2),位于第三象限.故选C.3.[2017·全国卷Ⅱ]3+i 1+i =( )A .1+2iB .1-2iC .2+iD .2-i解析3+i 1+i =(3+i )(1-i )(1+i )(1-i )=3-3i +i +12=2-i. 故选D.4.[2018·榆林模拟]设复数z =-2+i(i 是虚数单位),z 的共轭复数为z -,则|(1+z )·z -|等于( )A. 5 B .2 5 C .5 2 D.10 答案 D解析 ∵z =-2+i ,∴z -=-2-i ,∴|(1+z )·z -|=|(1-2+i)·(-2-i)|=|3-i|=1+9=10,故选D. 5.[2017·江苏高考]已知复数z =(1+i)(1+2i),其中i 是虚数单位,则z 的模是________.答案10解析 解法一:∵z =(1+i)(1+2i)=1+2i +i -2=-1+3i , ∴|z |=(-1)2+32=10.解法二:|z |=|1+i||1+2i|=2×5=10.6.[2018·湖北高中联考]已知复数z =1+i(i 是虚数单位),则2z-z 2的共轭复数是________.答案 1+3i 解析 2z-z 2=21+i -(1+i)2=2(1-i )(1+i )(1-i )-2i =1-i -2i =1-3i ,其共轭复数是1+3i.板块二 典例探究·考向突破 考向复数的有关概念例 1 (1)[2017·全国卷Ⅰ]下列各式的运算结果为纯虚数的是( )A .i(1+i)2B .i 2(1-i) C .(1+i)2 D .i(1+i) 答案 C解析 A 项,i(1+i)2=i(1+2i +i 2)=i×2i=-2,不是纯虚数.B 项,i 2(1-i)=-(1-i)=-1+i ,不是纯虚数.C 项,(1+i)2=1+2i +i 2=2i ,是纯虚数.D 项,i(1+i)=i +i 2=-1+i ,不是纯虚数.故选C.(2)[2017·天津高考]已知a ∈R ,i 为虚数单位,若a -i2+i为实数,则a 的值为________.答案 -2解析 ∵a ∈R ,a -i 2+i =(a -i )(2-i )(2+i )(2-i )=2a -1-(a +2)i 5=2a -15-a +25i 为实数,∴-a +25=0,∴a =-2.求解与复数概念相关问题的技巧复数的分类、复数的相等、复数的模、共轭复数的概念都与复数的实部和虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即a +b i(a ,b ∈R )的形式,再根据题意列方程(组)求解.【变式训练1】 (1)若复数z =a 2-1+(a +1)i(a ∈R )是纯虚数,则1z +a的虚部为( ) A .-25 B .-25i C.25 D.25i答案 A解析 由题意得⎩⎪⎨⎪⎧a 2-1=0,a +1≠0,所以a =1,所以1z +a =11+2i =1-2i (1+2i )(1-2i )=15-25i ,根据虚部的概念,可得1z +a 的虚部为-25.故选A. (2)[2018·福州调研]已知m ∈R ,i 为虚数单位,若1-2im -i>0,则m =( ) A .1 B.12 C.13 D .-2答案 B解析 由已知得1-2i m -i =(1-2i )(m +i )(m -i )(m +i )=m +2+(1-2m )i m 2+1,由1-2i m -i >0,可得1-2m =0,则m =12,选B. 考向复数的几何意义例 2 (1)[2017·北京高考]若复数(1-i)(a +i)在复平面内对应的点在第二象限,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,-1)C .(1,+∞)D .(-1,+∞)答案 B解析 ∵(1-i)(a +i)=a +i -a i -i 2=a +1+(1-a )i ,又∵复数(1-i)(a +i)在复平面内对应的点在第二象限,∴⎩⎪⎨⎪⎧a +1<0,1-a >0,解得a <-1.故选B.(2)[2018·贵阳模拟]已知i 为虚数单位,a 为实数,复数z =a -3i1-i在复平面上对应的点在y 轴上,则a =________.答案 -3 解析 z =a -3i 1-i=(a -3i )(1+i )2=a +3+(a -3)i2,由a +3=0,得a =-3.触类旁通复数几何意义的理解及应用复数集与复平面内所有的点构成的集合之间存在着一一对应关系,每一个复数都对应着一个点(有序实数对).复数的实部对应着点的横坐标,而虚部则对应着点的纵坐标,只要在复平面内找到这个有序实数对所表示的点,就可根据点的位置判断复数实部、虚部的取值.【变式训练2】 (1)[2018·邯郸模考]已知i 是虚数单位,若复数z =2+a i 2+i 在复平面内对应的点在第四象限,则实数a 的值可以是( )A .-2B .1C .2D .3 答案 A解析 z =2+a i 2+i =(2+a i )(2-i )(2+i )(2-i )=4+a +(2a -2)i 5,因为复数z =2+a i2+i在复平面内对应的点在第四象限,所以⎩⎪⎨⎪⎧4+a >0,2a -2<0,解得-4<a <1,选A.(2)已知复数z 1=-1+2i ,z 2=1-i ,z 3=3-4i ,它们在复平面上对应的点分别为A ,B ,C ,若OC →=λOA →+μOB →,(λ,μ∈R ),则λ+μ的值是________.答案 1解析 由条件得OC →=(3,-4),OA →=(-1,2),OB →=(1,-1),由OC →=λOA →+μOB →,得(3,-4)=λ(-1,2)+μ(1,-1)=(-λ+μ,2λ-μ),∴⎩⎪⎨⎪⎧-λ+μ=3,2λ-μ=-4,解得⎩⎪⎨⎪⎧λ=-1,μ=2.∴λ+μ=1.考向复数的代数运算命题角度1 复数的乘法运算例 3 [2017·山东高考]已知a ∈R ,i 是虚数单位.若z =a +3i ,z ·z =4,则a =( )A .1或-1 B.7或-7 C .- 3 D. 3答案 A解析 依题意得(a +3i)(a -3i)=4,即a 2+3=4,∴a =±1.故选A.命题角度2 复数的除法运算例 4 [2015·全国卷Ⅰ]设复数z 满足1+z1-z =i ,则|z |=( )A .1 B. 2 C. 3 D .2 答案 A解析 由题意知1+z =i -z i ,所以z =i -1i +1=(i -1)2(i +1)(i -1)=i ,所以|z |=1.命题角度3 复数的混合运算例 5 [2018·绍兴模拟]i 是虚数单位,⎝ ⎛⎭⎪⎫21-i 2018+⎝ ⎛⎭⎪⎫1+i 1-i 7=________.答案 0解析 原式=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫21-i 21009+⎝ ⎛⎭⎪⎫1+i 1-i 7=⎝ ⎛⎭⎪⎫2-2i 1009+i 7=i4×252+1+i 3=i -i =0. 触类旁通复数的混合运算与实数的混合运算类似,需要注意i n的运算周期性.【变式训练3】 [2018·香坊模拟]已知复数z =5a 2+i +1+i1-i ,a ∈R ,若复数z 对应的点在复平面内位于第四象限,则实数a 的取值范围是( )A .a >1B .a <0C .0<a <1D .a <1 答案 A解析 z =5a (2-i )(2+i )(2-i )+(1+i )(1+i )(1-i )(1+i )=2a +(1-a )i ,若复数z 对应的点在复平面内位于第四象限,则⎩⎪⎨⎪⎧2a >0,1-a <0,解得a >1.故选A.核心规律1.实轴上的点都表示实数.除了原点外,虚轴上的点都表示纯虚数.2.设z =a +b i(a ,b ∈R ),利用复数相等和相关性质将复数问题实数化是解决复数问题的常用方法.3.在复数代数形式的四则运算中,加、减、乘运算按多项式运算法则进行,除法法则需分母实数化.满分策略1.判定复数是不是实数,仅注意虚部等于0是不够的,还需考虑它的实部是否有意义. 2.注意复数和虚数是包含关系,不能把复数等同为虚数,如虚数不能比较大小,但说两个复数不能比较大小就不对了.3.注意不能把实数集中的所有运算法则和运算性质照搬到复数集中来.例如,若z 1,z 2∈C ,z 21+z 22=0,就不能推出z 1=z 2=0;z 2<0在复数范围内有可能成立.板块三 启智培优·破译高考数学思想系列12——解决复数问题的实数化思想[2018·金华模拟]已知z ∈C ,解方程z ·z --3i z -=1+3i.解题视点 设z =a +b i(a ,b ∈R ),根据已知中恒等的条件,列出一组含a ,b 的方程,解方程组使问题获得解决.解 设z =a +b i(a ,b ∈R ),则(a +b i)(a -b i)-3i(a -b i)=1+3i ,即a 2+b 2-3b -3a i =1+3i.根据复数相等的定义,得⎩⎪⎨⎪⎧a 2+b 2-3b =1,-3a =3,解之得⎩⎪⎨⎪⎧a =-1,b =0或⎩⎪⎨⎪⎧a =-1,b =3.∴z =-1或z =-1+3i.答题启示 (1)复数问题要把握一点,即复数问题实数化,这是解决复数问题最基本的思想方法.(2)本题求解的关键是先把z 用复数的形式表示出来,再用待定系数法求解,这是常用的数学方法.(3)本题易错原因为想不到利用待定系数法,或不能将复数问题转化为实数方程求解. 跟踪训练[2018·金版创新]设复数z 满足z +|z -|=2+i ,则z =( ) A .-34+i B.34+i C .-34-i D.34-i答案 B解析 设z =a +b i(a ,b ∈R ),由已知得a +b i +a 2+b 2=2+i ,由复数相等可得⎩⎨⎧a +a 2+b 2=2,b =1.∴⎩⎪⎨⎪⎧a =34,b =1,故z =34+i ,故选B.板块四 模拟演练·提能增分[A 级 基础达标]1.[2017·全国卷Ⅲ]设复数z 满足(1+i)z =2i ,则|z |=( ) A.12 B.22 C. 2 D .2 答案 C解析 解法一:由(1+i)z =2i ,得z =2i 1+i =1+i ,∴|z |= 2.故选C. 解法二:∵2i =(1+i)2,∴由(1+i)z =2i =(1+i)2,得z =1+i ,∴|z |= 2.故选C.2.[2018·湖南模拟]已知(1-i )2z=1+i(i 为虚数单位),则复数z =( )A .1+iB .1-iC .-1+iD .-1-i 答案 D解析 由(1-i )2z =1+i ,得z =(1-i )21+i =-2i 1+i =-2i (1-i )(1+i )(1-i )=-1-i.3.[2018·江西模拟]已知复数z 1=cos23°+isin23°和复数z 2=cos37°+isin37°,则z 1·z 2为( )A.12+32iB.32+12iC.12-32iD.32-12i 答案 A解析 z 1·z 2=(cos23°+isin23°)·(cos37°+isin37°)=cos60°+isin60°=12+32i.故选A. 4.设复数z 1,z 2在复平面内对应的点关于实轴对称,z 1=2+i ,则z 1z 2=( ) A .1+i B.35+45i C .1+45iD .1+43i答案 B解析 因为复数z 1,z 2在复平面内对应的点关于实轴对称,z 1=2+i ,所以z 2=2-i ,所以z 1z 2=2+i 2-i =(2+i )25=35+45i.故选B.5.[2018·天津模拟]已知复数z 满足(i -1)(z -i 3)=2i(i 为虚数单位),则z 的共轭复数为( )A .i -1B .1+2iC .1-iD .1-2i 答案 B解析 依题意可得z =2i i -1+i 3=-2i (1+i )(1-i )(1+i )-i =-(i -1)-i =1-2i ,其共轭复数为1+2i ,故选B.6.已知a 为实数,若复数z =(a 2-1)+(a +1)i 为纯虚数,则a +i 20161+i=( )A .1B .0C .1+iD .1-i 答案 D解析 z =(a 2-1)+(a +1)i 为纯虚数,则有a 2-1=0,a +1≠0,得a =1,则有1+i20161+i=1+11+i =2(1-i )(1+i )(1-i )=1-i ,选D. 7.[2018·郴州模拟]设z =1-i(i 是虚数单位),若复数2z+z 2在复平面内对应的向量为OZ →,则向量OZ →的模是( )A .1 B. 2 C. 3 D .2 答案 B解析 z =1-i(i 是虚数单位),复数2z +z 2=21-i +(1-i)2=2(1+i )(1-i )(1+i )-2i =1-i.向量OZ →的模:12+(-1)2= 2.故选B. 8.[2018·温州模拟]满足z +iz=i(i 为虚数单位)的复数是________. 答案 12-i 2解析 由已知得z +i =z i ,则z (1-i)=-i , 即z =-i 1-i =-i (1+i )(1-i )(1+i )=1-i 2=12-i 2.9.若a1-i =1-b i ,其中a ,b 都是实数,i 是虚数单位,则|a +b i|=________. 答案5解析 ∵a ,b ∈R ,且a1-i =1-b i ,则a =(1-b i)(1-i)=(1-b )-(1+b )i ,∴⎩⎪⎨⎪⎧a =1-b ,0=1+b ,∴⎩⎪⎨⎪⎧a =2,b =-1,∴|a +b i|=|2-i|=22+(-1)2= 5.10.[2017·浙江高考]已知a ,b ∈R ,(a +b i)2=3+4i(i 是虚数单位),则a 2+b 2=________,ab =________.答案 5 2解析 (a +b i)2=a 2-b 2+2ab i.由(a +b i)2=3+4i ,得⎩⎪⎨⎪⎧a 2-b 2=3,ab =2.解得a 2=4,b 2=1.所以a 2+b 2=5,ab =2.[B 级 知能提升]1.[2018·成都模拟]已知复数z 1=2+6i ,z 2=-2i ,若z 1,z 2在复平面内对应的点分别为A ,B ,线段AB 的中点C 对应的复数为 z ,则|z |=( )A. 5 B .5 C .2 5 D .217 答案 A解析 复数z 1=2+6i ,z 2=-2i ,若z 1,z 2在复平面内对应的点分别为A (2,6),B (0,-2),线段AB 的中点C (1,2)对应的复数为z =1+2i ,则|z |=12+22= 5.故选A.2.[2017·全国卷Ⅰ]设有下面四个命题p 1:若复数z 满足1z ∈R ,则z ∈R ; p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2; p 4:若复数z ∈R ,则z ∈R .其中的真命题为( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4 答案 B解析 设z =a +b i(a ,b ∈R ),z 1=a 1+b 1i(a 1,b 1∈R ),z 2=a 2+b 2i(a 2,b 2∈R ). 对于p 1,若1z ∈R ,即1a +b i =a -b ia 2+b 2∈R ,则b =0⇒z =a +b i =a ∈R ,所以p 1为真命题.对于p 2,若z 2∈R ,即(a +b i)2=a 2+2ab i -b 2∈R ,则ab =0.当a =0,b ≠0时,z =a +b i =b i ∈/ R ,所以p 2为假命题.对于p 3,若z 1z 2∈R ,即(a 1+b 1i)(a 2+b 2i)=(a 1a 2-b 1b 2)+(a 1b 2+a 2b 1)i ∈R ,则a 1b 2+a 2b 1=0.而z 1=z 2,即a 1+b 1i =a 2-b 2i ⇔a 1=a 2,b 1=-b 2.因为a 1b 2+a 2b 1=0⇒/ a 1=a 2,b 1=-b 2,所以p 3为假命题.对于p 4,若z ∈R ,即a +b i ∈R ,则b =0⇒z =a -b i =a ∈R ,所以p 4为真命题.故选B.3.[2018·厦门模拟]已知复数z =x +y i ,且|z -2|=3,则yx的最大值为________.答案3解析 ∵|z -2|=(x -2)2+y 2=3, ∴(x -2)2+y 2=3. 由图可知⎝ ⎛⎭⎪⎫y x max =31= 3. 4.已知复数z =b i(b ∈R ),z -21+i是实数,i 是虚数单位. (1)求复数z ;(2)若复数(m +z )2所表示的点在第一象限,求实数m 的取值范围. 解 (1)因为z =b i(b ∈R ),所以z -21+i =b i -21+i =(b i -2)(1-i )(1+i )(1-i )=(b -2)+(b +2)i 2=b -22+b +22i.又因为z -21+i 是实数,所以b +22=0,所以b =-2,即z =-2i.(2)因为z =-2i ,m ∈R ,所以(m +z )2=(m -2i)2=m 2-4m i +4i 2=(m 2-4)-4m i ,又因生活的色彩就是学习K12的学习需要努力专业专心坚持 为复数(m +z )2所表示的点在第一象限,所以⎩⎪⎨⎪⎧ m 2-4>0,-4m >0.解得m <-2,即m ∈(-∞,-2).5.若虚数z 同时满足下列两个条件:①z +5z是实数;②z +3的实部与虚部互为相反数.这样的虚数是否存在?若存在,求出z ;若不存在,请说明理由.解 存在.设z =a +b i(a ,b ∈R ,b ≠0),则z +5z =a +b i +5a +b i=a ⎝ ⎛⎭⎪⎫1+5a 2+b 2+b ⎝ ⎛⎭⎪⎫1-5a 2+b 2i.又z +3=a +3+b i 实部与虚部互为相反数,z +5z 是实数,根据题意有⎩⎪⎨⎪⎧b ⎝ ⎛⎭⎪⎫1-5a 2+b 2=0,a +3=-b ,因为b ≠0,所以⎩⎪⎨⎪⎧ a 2+b 2=5,a =-b -3,解得⎩⎪⎨⎪⎧ a =-1,b =-2或⎩⎪⎨⎪⎧ a =-2,b =-1.所以z =-1-2i 或z =-2-i.。

2019版高考数学(理)高分计划一轮课件:第11章 算法、复数、推理与证明 11-1

2019版高考数学(理)高分计划一轮课件:第11章 算法、复数、推理与证明 11-1

4.(2017·河南百校联盟模拟)《九章算术》是中国古代 数学名著,体现了古代劳动人民的数学智慧,其中有一竹 节容量问题,某教师根据这一问题的思想设计了如图所示 的程序框图,若输出的m的值为35,则输入的a的值为 ()
A.4 B.5 C.7 D.11
解析 起始阶段有m=2a-3,i=1, 第一次循环,m=2(2a-3)-3=4a-9,i=2; 第二次循环,m=2(4a-9)-3=8a-21,i=3; 第三次循环,m=2(8a-21)-3=16a-45,i=4; 接着计算m=2(16a-45)-3=32a-93,跳出循环, 输出m=32a-93,令32a-93=35,得a=4.故选A.
(2)(必修 A3P15 例 7)执行如图所示的程序框图,输出的 z 的值为____6____.
解析 第一次循环,S=1,a=1;第二次循环,S=2, a=2;第三次循环,S=8,a=3;第四次循环,S=64,a =4,此时退出循环,输出 z=log226=6.
3.小题热身 (1)(2017·全国卷Ⅱ)执行下面的程序框图,如果输入的 a =-1,则输出的 S=( )
2.(2017·天津高考)阅读下面的程序框图,运行相应的 程序,若输入N的值为24,则输出N的值为( )
A.0 B.1 C.2 D.3
解析 第一次循环执行条件语句,此时N=24,24能被 3整除,则N=24÷3=8.
∵8≤3不成立,∴进入第二次循环执行条件语句,此 时N=8,8不能被3整除,则N=8-1=7.
A.0,0 B.1,1 C.0,1 D.1,0
解析 当x=7时,∵b=2,∴b2=4<7=x. 又7不能被2整除,∴b=2+1=3. 此时b2=9>7=x,∴退出循环,a=1,∴输出a=1. 当x=9时,∵b=2,∴b2=4<9=x. 又9不能被2整除,∴b=2+1=3. 此时b2=9=x,又9能被3整除,∴退出循环,a=0. ∴输出a=0.故选D.

2019版高考数学(文)高分计划一轮狂刷练:第11章算法、复数、推理与证明 11-3a含解析

2019版高考数学(文)高分计划一轮狂刷练:第11章算法、复数、推理与证明 11-3a含解析

[基础送分 提速狂刷练]一、选择题1.(2018·湖北华师一附中等八校联考)有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( )A .甲B .乙C .丙D .丁答案 D解析 若甲猜测正确,则4号或5号得第一名,那么乙猜测也正确,与题意不符,故甲猜测错误,即4号和5号均不是第一名.若丙猜测正确,那么乙猜测也正确,与题意不符,故丙猜测错误,即1,2,6号均不是第1名,故3号是第1名,则乙猜测错误,丁猜测正确.故选D.2.已知a 1=3,a 2=6,且a n +2=a n +1-a n ,则a 2016=( )A .3B .-3C .6D .-6答案 B解析 ∵a 1=3,a 2=6,∴a 3=3,a 4=-3,a 5=-6,a 6=-3,a 7=3,…,∴{a n }是以6为周期的周期数列.又2016=6×335+6,∴a 2016=a 6=-3.故选B.3.已知x ∈(0,+∞),观察下列各式:x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3,x +27x 3=x 3+x 3+x 3+27x 3≥4,…,类比有x +a x n ≥n +1(n ∈N *),则a =( )A .nB .2nC .n 2D .n n答案 D解析 第一个式子是n =1的情况,此时a =1,第二个式子是n =2的情况,此时a =4,第三个式子是n =3的情况,此时a =33,归纳可以知道a =n n .故选D.4.已知a n =⎝ ⎛⎭⎪⎫13n ,把数列{a n }的各项排成如下的三角形: a 1a 2 a 3 a 4a 5 a 6 a 7 a 8 a 9……记A (s ,t )表示第s 行的第t 个数,则A (11,12)=( )A.⎝ ⎛⎭⎪⎫1367B.⎝ ⎛⎭⎪⎫1368 C.⎝ ⎛⎭⎪⎫13111 D .⎝ ⎛⎭⎪⎫13112 答案 D解析 该三角形所对应元素的个数为1,3,5,…,那么第10行的最后一个数为a 100,第11行的第12个数为a 112,即A (11,12)=⎝ ⎛⎭⎪⎫13112.故选D. 5.(2017·阳山县校级一模)下面使用类比推理恰当的是( )A .“若a ·3=b ·3,则a =b ”类推出“若a ·0=b ·0,则a =b ”B .“若(a +b )c =ac +bc ”类推出“(a ·b )c =ac ·bc ”C .“(a +b )c =ac +bc ”类推出“a +b c =a c +b c (c ≠0)”D .“(ab )n =a n b n ”类推出“(a +b )n =a n +b n ”答案 C解析 对于A “若a ·3=b ·3,则a =b ”类推出“若a ·0=b ·0,则a =b ”是错误的,因为0乘任何数都等于0;对于B “若(a +b )c =ac +bc ”类推出“(a ·b )c =ac ·bc ”,类推的结果不符合乘法的运算性质,故错误;对于C 将乘法类推除法,即由“(a +b )c =ac +bc ”类推出“a +b c =a c +b c ”是正确的;对于D “(ab )n =a n b n ”类推出“(a +b )n =a n +b n ”是错误的;如(1+1)2=12+12.故选C.6.(2017·河北冀州中学期末)如图所示,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{a n }(n ∈N *)的前12项,如下表所示:按如此规律下去,则a 2017=( )A .502B .503C .504D .505答案 D解析 由a 1,a 3,a 5,a 7,…组成的数列恰好对应数列{x n },即x n =a 2n -1,当n 为奇数时,x n =n +12.所以a 2017=x 1009=505.故选D.7.(2018·安徽江淮十校三联)我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在 2+2+2+…中“…”即代表无限次重复,但原式却是个定值x ,这可以通过方程2+x =x 确定x =2,则1+11+11+…=( ) A.-5-12B.5-12C.1+52D.1-52 答案 C解析 1+11+11+…=x ,即1+1x =x ,即x 2-x -1=0,解得x =1+52⎝ ⎛⎭⎪⎫x =1-52舍,故1+11+11+…=1+52,故选C.8.(2017·陕西一模)设△ABC 的三边长分别为a ,b ,c ,△ABC的面积为S ,内切圆半径为r ,则r =2S a +b +c,类比这个结论可知,四面体S -ABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球半径为R ,四面体S -ABC 的体积为V ,则R 等于( )A.V S 1+S 2+S 3+S 4B.2V S 1+S 2+S 3+S 4C.3V S 1+S 2+S 3+S 4D.4V S 1+S 2+S 3+S4答案 C解析设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R ,由平面图形中r 的求解过程类比空间图形中R 的求解过程可得四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和,则四面体的体积为V =V 四面体S -ABC =13(S 1+S 2+S 3+S 4)R ,所以R=3V S 1+S 2+S 3+S 4.故选C. 9.(2018·鹰潭模拟)[x ]表示不超过x 的最大整数,例如:[π]=3. S 1=[1]+[2]+[3]=3S 2=[4]+[5]+[6]+[7]+[8]=10S 3=[9]+[10]+[11]+[12]+[13]+[14]+[15]=21, …依此规律,那么S 10等于( )A .210B .230C .220D .240答案 A解析 ∵[x ]表示不超过x 的最大整数,∴S 1=[1]+[2]+[3]=1×3=3,S 2=[4]+[5]+[6]+[7]+[8]=2×5=10,S 3=[9]+[10]+[11]+[12]+[13]+[14]+[15]=3×7=21,…S n =[n 2]+[n 2+1]+[n 2+2]+…+[n 2+2n -1]+[n 2+2n ]=n ×(2n +1),∴S 10=10×21=210.故选A.10.(2017·龙泉驿区模拟)对于问题:“已知两个正数x ,y 满足x+y =2,求1x +4y 的最小值”,给出如下一种解法:∵x +y =2,∴1x +4y =12(x +y )⎝ ⎛⎭⎪⎫1x +4y =12⎝ ⎛⎭⎪⎫5+y x +4x y , ∵x >0,y >0,∴y x +4x y ≥2y x ·4xy =4,∴1x +4y ≥12(5+4)=92,当且仅当⎩⎨⎧ y x =4x y,x +y =2,即⎩⎪⎨⎪⎧ x =23,y =43时,1x +4y 取最小值92.参考上述解法,已知A ,B ,C 是△ABC 的三个内角,则1A +9B +C的最小值为( )A.16πB.8πC.4πD.2π答案 A解析 A +B +C =π,设A =α,B +C =β,则α+β=π,α+βπ=1,参考题干中解法,则1A +9B +C=1α+9β=⎝ ⎛⎭⎪⎫1α+9β·(α+β)1π=1π⎝⎛⎭⎪⎫10+βα+9αβ≥1π(10+6)=16π,当且仅当βα=9αβ,即3α=β时等号成立.故选A.二、填空题11.(2017·北京高考)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点A i 的横、纵坐标分别为第i 名工人上午的工作时间和加工的零件数,点B i 的横、纵坐标分别为第i 名工人下午的工作时间和加工的零件数,i =1,2,3.(1)记Q i 为第i 名工人在这一天中加工的零件总数,则Q 1,Q 2,Q 3中最大的是________.(2)记p i 为第i 名工人在这一天中平均每小时加工的零件数,则p 1,p 2,p 3中最大的是________.答案 (1)Q 1 (2)p 2解析 设A 1(xA 1,yA 1),B 1(xB 1,yB 1),线段A 1B 1的中点为E 1(x 1,y 1),则Q 1=yA 1+yB 1=2y 1.因此,要比较Q 1,Q 2,Q 3的大小,只需比较线段A 1B 1,A 2B 2,A 3B 3中点纵坐标的大小,作图比较知Q 1最大.又p 1=yA 1+yB 1xA 1+xB 1=2y 12x 1=y 1x 1=y 1-0x 1-0,其几何意义为线段A 1B 1的中点E 1与坐标原点连线的斜率,因此,要比较p 1,p 2,p 3的大小,只需比较线段A 1B 1,A 2B 2,A 3B 3中点与坐标原点连线的斜率,作图比较知p 2最大.12.(2018·湖北八校联考)二维空间中,圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2;三维空间中,球的二维测度(表面积)S=4πr 2,三维测度(体积)V =43πr 3.应用合情推理,若四维空间中,“超球”的三维测度V =8πr 3,则其四维测度W =________.答案 2πr 4解析 在二维空间中,圆的二维测度(面积)S =πr 2,则其导数S ′=2πr, 即为圆的一维测度(周长)l =2πr ;在三维空间中,球的三维测度(体积)V =43πr 3,则其导数V ′=4πr 2,即为球的二维测度(表面积)S=4πr 2;应用合情推理,在四维空间中,“超球”的三维测度V =8πr 3,则其四维测度W =2πr 4.13.(2017·江西赣州十四县联考)我国古代数学著作《九章算术》有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一.并五关所税,适重一斤.问本持金几何?”其意思为“今有人持金出五关,第1关收税金12,第2关收税金为剩余的13,第3关收税金为剩余的14,第4关收税金为剩余的15,第5关收税金为剩余的16,5关所收税金之和,恰好重1斤,问原本持金多少?”若将“5关所收税金之和,恰好重1斤,问原本持金多少?”改成“假设这个人原本持金为x ,按此规律通过第8关”,则第8关所收税金为________x .答案 172解析 第1关收税金:12x ;第2关收税金:13⎝ ⎛⎭⎪⎫1-12x =x 6=x 2×3; 第3关收税金:14⎝⎛⎭⎪⎫1-12-16x =x 12=x 3×4; ……第8关收税金:x 8×9=x 72. 14.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n }.可以推测:(1)b 2016是数列{a n }中的第________项;(2)b 2k -1=________(用k 表示).答案 (1)5040 (2)5k (5k -1)2解析 观察知这些三角形数满足a n =n (n +1)2,n ∈N *,当n =5k-1或n =5k ,k ∈N *时,对应的三角形数是5的倍数,为数列{b n }中的项,将5k -1和5k 列为一组,所以b 2016是第1008组的后面一项,即b 2016是数列{a n }中的第5×1008=5040项;b 2k -1是第k 组的前面一项,是数列{a n }中的第5k -1项,即b 2k -1=a 5k -1=5k (5k -1)2. 三、解答题15.(2017·未央区校级期中)阅读以下求1+2+3+…+n 的值的过程:因为(n +1)2-n 2=2n +1,n 2-(n -1)2=2(n -1)+1…22-12=2×1+1以上各式相加得(n +1)2-1=2×(1+2+3+…+n )+n所以1+2+3+…+n =n 2+2n -n 2=n (n +1)2. 类比上述过程,求12+22+32+…+n 2的值.解 ∵23-13=3·22-3·2+1,33-23=3·32-3·3+1,…,n 3-(n -1)3=3n 2-3n +1,把这n -1个等式相加得n 3-1=3·(22+32+…+n 2)-3·(2+3+…+n )+(n -1),由此得n 3-1=3·(12+22+32+…+n 2)-3·(1+2+3+…+n )+(n -1),即12+22+…+n 2=13⎣⎢⎡⎦⎥⎤n 3-1+32n (n +1)-(n -1). 16.(2018·南阳模拟)我们知道,等差数列和等比数列有许多性质可以类比,现在给出一个命题:若数列{a n }、{b n }是两个等差数列,它们的前n 项的和分别是S n ,T n ,则a n b n=S 2n -1T 2n -1. (1)请你证明上述命题;(2)请你就数列{a n }、{b n }是两个各项均为正的等比数列,类比上述结论,提出正确的猜想,并加以证明.解 (1)证明:在等差数列{a n }中,a n =a 1+a 2n -12(n ∈N *),那么对于等差数列{a n }、{b n }有:a nb n =12(a 1+a 2n -1)12(b 1+b 2n -1)=12(a 1+a 2n -1)(2n -1)12(b 1+b 2n -1)(2n -1)=S 2n -1T 2n -1. (2)猜想:数列{a n }、{b n }是两个各项均为正的等比数列,它们的前n 项的积分别是X n ,Y n ,则⎝ ⎛⎭⎪⎫a n b n 2n -1=X 2n -1Y 2n -1. 证明:在等比数列{a n }中,a 2n =a 1a 2n -1=a 2a 2n -2=…(n ∈N *),(a n )2n -1=a 1a 2a 3…a 2n -1(n ∈N *),那么对于等比数列{a n }、{b n }有⎝ ⎛⎭⎪⎫a n b n 2n -1=a 1a 2a 3…a 2n -1b 1b 2b 3…b 2n -1=X 2n -1Y 2n -1.。

全国近年高考数学一轮复习第11章算法初步、复数、推理与证明第1讲算法初步学案(2021年整理)

全国近年高考数学一轮复习第11章算法初步、复数、推理与证明第1讲算法初步学案(2021年整理)

(全国版)2019版高考数学一轮复习第11章算法初步、复数、推理与证明第1讲算法初步学案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国版)2019版高考数学一轮复习第11章算法初步、复数、推理与证明第1讲算法初步学案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国版)2019版高考数学一轮复习第11章算法初步、复数、推理与证明第1讲算法初步学案的全部内容。

第1讲算法初步板块一知识梳理·自主学习[必备知识]考点1 算法的框图及结构1.算法算法通常是指按照一定规则解决某一类问题的明确程序或有限的步骤.这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2.程序框图程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.通常,程序框图由程序框和流程线组成,一个或几个程序框的组合表示算法中的一个步骤;流程线带有方向箭头,按照算法进行的顺序将程序框连接起来.3.三种基本逻辑结构考点2 算法语句的格式及框图1.输入语句、输出语句、赋值语句的格式与功能2.条件语句的格式及框图(1)IF-THEN格式(2)IF-THEN-ELSE格式3.循环语句的格式及框图(1)UNTIL语句(2)WHILE语句[必会结论]1.注意区分处理框与输入框,处理框主要是赋值、计算,而输入框只是表示一个算法输入的信息.2.循环结构中必有条件结构,其作用是控制循环进程,避免进入“死循环",是循环结构必不可少的一部分.3.注意区分当型循环与直到型循环.直到型循环是“先循环,后判断,条件满足时终止循环”,而当型循环则是“先判断,后循环,条件满足时执行循环”.两者的判断框内的条件表述在解决同一问题时是不同的,它们恰好相反.[考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)算法只能解决一个问题,不能重复使用.( )(2)一个程序框图一定包含顺序结构,但不一定包含条件结构和循环结构.()(3)算法可以无限操作下去. ()(4)条件结构的出口有两个,但在执行时,只有一个出口是有效的. ( )(5)▱是赋值框,有计算功能.()(6)当型循环是给定条件不成立时执行循环体,反复进行,直到条件成立为止。

2019版高考数学(理)一轮狂刷练:第11章算法、复数、推理与证明11-3a含解析

2019版高考数学(理)一轮狂刷练:第11章算法、复数、推理与证明11-3a含解析

[基础送分 提速狂刷练]一、选择题1.(2018·湖北华师一附中等八校联考)有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( )A .甲B .乙C .丙D .丁答案 D解析 若甲猜测正确,则4号或5号得第一名,那么乙猜测也正确,与题意不符,故甲猜测错误,即4号和5号均不是第一名.若丙猜测正确,那么乙猜测也正确,与题意不符,故丙猜测错误,即1,2,6号均不是第1名,故3号是第1名,则乙猜测错误,丁猜测正确.故选D.2.已知a 1=3,a 2=6,且a n +2=a n +1-a n ,则a 2016=( )A .3B .-3C .6D .-6答案 B解析 ∵a 1=3,a 2=6,∴a 3=3,a 4=-3,a 5=-6,a 6=-3,a 7=3,…,∴{a n }是以6为周期的周期数列.又2016=6×335+6,∴a 2016=a 6=-3.故选B.3.已知x ∈(0,+∞),观察下列各式:x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3,x +27x 3=x 3+x 3+x 3+27x 3≥4,…,类比有x +a x n ≥n +1(n ∈N *),则a =( )A .nB .2nC .n 2D .n n答案 D解析 第一个式子是n =1的情况,此时a =1,第二个式子是n =2的情况,此时a =4,第三个式子是n =3的情况,此时a =33,归纳可以知道a =n n .故选D.4.已知a n =⎝ ⎛⎭⎪⎫13n ,把数列{a n }的各项排成如下的三角形:a 1a 2 a 3 a 4a 5 a 6 a 7 a 8 a 9……记A (s ,t )表示第s 行的第t 个数,则A (11,12)=( )A.⎝ ⎛⎭⎪⎫1367 B.⎝ ⎛⎭⎪⎫1368 C.⎝ ⎛⎭⎪⎫13111 D.⎝ ⎛⎭⎪⎫13112 答案 D解析 该三角形所对应元素的个数为1,3,5,…,那么第10行的最后一个数为a 100,第11行的第12个数为a 112,即A (11,12)=⎝ ⎛⎭⎪⎫13112.故选D. 5.(2017·阳山一模)下面使用类比推理恰当的是( )A .“若a ·3=b ·3,则a =b ”类推出“若a ·0=b ·0,则a =b ”B .“若(a +b )c =ac +bc ”类推出“(a ·b )c =ac ·bc ”C .“(a +b )c =ac +bc ”类推出“a +b c =a c +b c (c ≠0)”D .“(ab )n =a n b n ”类推出“(a +b )n =a n +b n ”答案 C解析 对于A ,“若a ·3=b ·3,则a =b ”类推出“若a ·0=b ·0,则a =b ”是错误的,因为0乘任何数都等于0;对于B ,“若(a +b )c =ac +bc ”类推出“(a ·b )c =ac ·bc ”,类推的结果不符合乘法的运算性质,故错误;对于C ,将乘法类推除法,即由“(a +b )c =ac +bc ”类推出“a +b c =a c +b c ”是正确的;对于D ,“(ab )n=a n b n ”类推出“(a +b )n =a n +b n ”是错误的,如(1+1)2=12+12.故选C.6.(2017·河北冀州中学期末)如图所示,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{a n }(n ∈N *)的前12项,如下表所示:。

2019版高考数学理高分计划一轮狂刷练:第11章 算法、复数、推理与证明 11-2a 含解析 精品

2019版高考数学理高分计划一轮狂刷练:第11章 算法、复数、推理与证明 11-2a 含解析 精品

[基础送分 提速狂刷练]一、选择题1.(2018·湖南长沙四县联考)i 是虚数单位,若复数z 满足z i =-1+i ,则复数z 的实部与虚部的和是( )A .0B .1C .2D .3 答案 C解析 复数z 满足z i =-1+i ,可得z =-1+i i =(-1+i )i i·i =1+i.故复数z 的实部与虚部的和是1+1=2,故选C.2.(2018·湖北优质高中联考)已知复数z =1+i(i 是虚数单位),则2z -z 2的共轭复数是( )A .-1+3iB .1+3iC .1-3iD .-1-3i 答案 B解析 2z -z 2=21+i -(1+i)2=2(1-i )(1+i )(1-i )-2i =1-i -2i =1-3i ,其共轭复数是1+3i ,故选B.3.(2017·河南洛阳模拟)设复数z 满足z -=|1-i|+i(i 为虚数单位),则复数z =( )A.2-iB.2+i C .1 D .-1-2i 答案 A解析 复数z 满足z -=|1-i|+i =2+i ,则复数z =2-i.故选A.4.(2018·广东测试)若z =(a -2)+a i 为纯虚数,其中a ∈R ,则a +i 71+a i=( ) A .i B .1 C .-i D .-1答案 C解析 ∵z 为纯虚数,∴⎩⎪⎨⎪⎧a -2=0,a ≠0,∴a =2,∴a +i 71+a i =2-i 1+2i =(2-i )(1-2i )(1+2i )(1-2i )=-3i3=-i.故选C. 5.(2018·安徽江南十校联考)若复数z 满足z (1-i)=|1-i|+i ,则z 的实部为( )A.2-12B.2-1 C .1 D.2+12 答案 A解析 由z (1-i)=|1-i|+i ,得z =2+i 1-i =(2+i )(1+i )(1-i )(1+i )=2-12+2+12i ,z 的实部为2-12,故选A.6.(2017·安徽江南十校联考)若z =2-i2+i ,则|z |=( )A.15 B .1 C .5 D .25 答案 B解析 解法一:z =2-i 2+i =(2-i )(2-i )(2+i )(2-i )=35-45i ,故|z |=1.故选B.解法二:|z |=⎪⎪⎪⎪⎪⎪2-i 2+i =|2-i||2+i|=55=1.故选B. 7.(2017·河南百校联盟模拟)已知复数z 的共轭复数为z -,若⎝ ⎛⎭⎪⎫3z 2+z -2(1-22i)=5-2i(i 为虚数单位),则在复平面内,复数z对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案 A解析 依题意,设z =a +b i(a ,b ∈R ),则3z 2+z-2=2a +b i ,故2a +b i =5-2i1-22i=1+2i ,故a =12,b =2,则在复平面内,复数z 对应的点为⎝ ⎛⎭⎪⎫12,2,位于第一象限.故选A.8.(2018·新乡、许昌、平顶山调研)复数z 1,z 2满足z 1=m +(4-m 2)i ,z 2=2cos θ+(λ+3sin θ)i(m ,λ,θ∈R ),并且z 1=z 2,则λ的取值范围是( )A.[]-1,1B.⎣⎢⎡⎦⎥⎤-916,1 C.⎣⎢⎡⎦⎥⎤-916,7 D.⎣⎢⎡⎦⎥⎤916,7 答案 C解析 由复数相等的充要条件,可得⎩⎪⎨⎪⎧m =2cos θ,4-m 2=λ+3sin θ,化简得4-4cos 2θ=λ+3sin θ,由此可得λ=-4cos 2θ-3sin θ+4=-4(1-sin 2θ)-3sin θ+4=4sin 2θ-3sin θ=4⎝ ⎛⎭⎪⎫sin θ-382-916,因为sin θ∈[-1,1],所以λ∈⎣⎢⎡⎦⎥⎤-916,7.故选C. 9.对于复数z 1,z 2,若(z 1-i)z 2=1,则称z 1是z 2的“错位共轭”复数,则复数32-12i 的“错位共轭”复数为( )A .-36-12i B .-32+32i C.36+12i D.32+32i答案 D解析 由(z -i)⎝ ⎛⎭⎪⎫32-12i =1,可得z -i =132-12i=32+12i ,所以z=32+32i.故选D.10.已知z =a +b i(a ,b ∈R ,i 是虚数单位),z 1,z 2∈C ,定义:D (z )=||z ||=|a |+|b |,D (z 1,z 2)=||z 1-z 2||,给出下列命题:(1)对任意z ∈C ,都有D (z )>0;(2)若z 是复数z 的共轭复数,则D (z )=D (z )恒成立; (3)若D (z 1)=D (z 2)(z 1,z 2∈C ),则z 1=z 2;(4)对任意z 1,z 2,z 3∈C ,结论D (z 1,z 3)≤D (z 1,z 2)+D (z 2,z 3)恒成立.其中真命题为( ) A .(1)(2)(3)(4) B .(2)(3)(4) C .(2)(4) D .(2)(3) 答案 C解析 对于(1),由定义知当z =0时,D (z )=0,故(1)错误,排除A ;对于(2),由于共轭复数的实部相等而虚部互为相反数,所以D (z )=D (z )恒成立,故(2)正确;对于(3),两个复数的实部与虚部的绝对值之和相等并不能得到实部与虚部分别相等,所以两个复数也不一定相等,故(3)错误,排除B ,D ,故选C.二、填空题11.(2017·江苏高考)已知复数z =(1+i)(1+2i),其中i 是虚数单位,则z 的模是________.答案10解析 解法一:∵z =(1+i)(1+2i)=1+2i +i -2=-1+3i , ∴|z |=(-1)2+32=10. 解法二:|z |=|1+i||1+2i| =2×5=10.12.(2016·天津高考)已知a ,b ∈R ,i 是虚数单位.若(1+i)(1-b i)=a ,则ab 的值为________.答案 2解析 由(1+i)(1-b i)=a 得1+b +(1-b )i =a ,则⎩⎪⎨⎪⎧b +1=a ,1-b =0,解得⎩⎪⎨⎪⎧a =2,b =1,所以ab =2.13.(2016·北京高考)设a ∈R .若复数(1+i)(a +i)在复平面内对应的点位于实轴上,则a =________.答案 -1解析 (1+i)(a +i)=(a -1)+(a +1)i ,∵a ∈R ,该复数在复平面内对应的点位于实轴上, ∴a +1=0,∴a =-1.14.若虚数z 同时满足下列两个条件:①z +5z 是实数;②z +3的实部与虚部互为相反数.则z =________.答案 -1-2i 或-2-i解析 设z =a +b i(a ,b ∈R ,b ≠0), 则z +5z =a +b i +5a +b i=a ⎝ ⎛⎭⎪⎫1+5a 2+b 2+b ⎝ ⎛⎭⎪⎫1-5a 2+b 2i. 又z +3=a +3+b i 实部与虚部互为相反数,z +5z 是实数,根据题意有⎩⎨⎧b ⎝⎛⎭⎪⎫1-5a 2+b 2=0,a +3=-b ,因为b ≠0,所以⎩⎪⎨⎪⎧ a 2+b 2=5,a =-b -3,解得⎩⎪⎨⎪⎧ a =-1,b =-2或⎩⎪⎨⎪⎧a =-2,b =-1.所以z =-1-2i 或z =-2-i.三、解答题15.(2017·徐汇模拟)已知z 是复数,z +2i 与z2-i 均为实数(i 为虚数单位),且复数(z +a i)2在复平面上对应点在第一象限.(1)求z 的值;(2)求实数a 的取值范围. 解 (1)设z =x +y i(x ,y ∈R ),又z +2i =x +(y +2)i 为实数,∴y +2=0, 解得y =-2.∴z2-i =x -2i 2-i =(x -2i )(2+i )(2-i )(2+i )=(2x +2)+(x -4)i 5, ∵z 2-i 为实数,∴x -45=0,解得x =4. ∴z =4-2i.(2)∵复数(z +a i)2=[4+(a -2)i]2=16-(a -2)2+8(a -2)i =(12+4a -a 2)+(8a -16)i ,∴⎩⎪⎨⎪⎧12+4a -a 2>0,8a -16>0,解得2<a <6, 即实数a 的取值范围是(2,6).16.(2017·孝感期末)已知复数z =(m -1)+(2m +1)i(m ∈R ). (1)若z 为纯虚数,求实数m 的值;(2)若z 在复平面内的对应点位于第二象限,求实数m 的取值范围及|z |的最小值.解 (1)∵z =(m -1)+(2m +1)i(m ∈R )为纯虚数, ∴m -1=0且2m +1≠0,∴m =1. (2)z 在复平面内的对应点为(m -1,2m +1).由题意得⎩⎪⎨⎪⎧m -1<0,2m +1>0,∴-12<m <1, 即实数m 的取值范围是⎝⎛⎭⎪⎫-12,1.而|z |=(m -1)2+(2m +1)2=5m 2+2m +2=5⎝⎛⎭⎪⎫m +152+95, 当m =-15∈⎝ ⎛⎭⎪⎫-12,1时,|z |min =95=355.。

2019版高考数学理培优增分一轮全国经典版增分练:第11

2019版高考数学理培优增分一轮全国经典版增分练:第11

板块四 模拟演练·提能增分[A 级 基础达标]1.[2017·全国卷Ⅲ]设复数z 满足(1+i)z =2i ,则|z |=( ) A.12 B.22 C. 2 D .2答案 C解析 解法一:由(1+i)z =2i ,得z =2i1+i =1+i , ∴|z |= 2.故选C. 解法二:∵2i =(1+i)2,∴由(1+i)z =2i =(1+i)2,得z =1+i ,∴|z |= 2. 故选C.2.[2018·湖南模拟]已知(1-i )2z =1+i(i 为虚数单位),则复数z =( )A .1+iB .1-iC .-1+iD .-1-i答案 D解析 由(1-i )2z =1+i ,得z =(1-i )21+i =-2i 1+i =-2i (1-i )(1+i )(1-i )=-1-i.3.[2018·江西模拟]已知复数z 1=cos23°+isin23°和复数z 2=cos37°+isin37°,则z 1·z 2为( )A.12+32iB.32+12i C.12-32i D.32-12i 答案 A解析 z 1·z 2=(cos23°+isin23°)·(cos37°+isin37°)=cos60°+isin60°=12+32i.故选A.4.设复数z 1,z 2在复平面内对应的点关于实轴对称,z 1=2+i ,则z 1z 2=( ) A .1+i B.35+45i C .1+45i D .1+43i答案 B解析 因为复数z 1,z 2在复平面内对应的点关于实轴对称,z 1=2+i ,所以z 2=2-i ,所以z 1z 2=2+i 2-i =(2+i )25=35+45i.故选B.5.[2018·天津模拟]已知复数z 满足(i -1)(z -i 3)=2i(i 为虚数单位),则z 的共轭复数为( )A .i -1B .1+2iC .1-iD .1-2i答案 B解析 依题意可得z =2i i -1+i 3=-2i (1+i )(1-i )(1+i )-i =-(i -1)-i =1-2i ,其共轭复数为1+2i.故选B.6.已知a 为实数,若复数z =(a 2-1)+(a +1)i 为纯虚数,则a +i20161+i=( )A .1B .0C .1+iD .1-i答案 D解析 z =(a 2-1)+(a +1)i 为纯虚数,则有a 2-1=0,a +1≠0,得a =1,则有1+i 20161+i =1+11+i =2(1-i )(1+i )(1-i )=1-i.选D.7.[2018·郴州模拟]设z =1-i(i 是虚数单位),若复数2z +z 2在复平面内对应的向量为OZ →,则向量OZ →的模是( )A .1 B. 2 C. 3 D .2答案 B解析 z =1-i(i 是虚数单位),复数2z +z 2=21-i +(1-i)2=2(1+i )(1-i )(1+i )-2i =1-i.向量OZ →的模:12+(-1)2= 2.故选B.8.[2018·温州模拟]满足z +iz =i(i 为虚数单位)的复数是________. 答案 12-i 2解析 由已知得z +i =z i ,则z (1-i)=-i , 即z =-i 1-i =-i (1+i )(1-i )(1+i )=1-i 2=12-i 2.9.若a1-i =1-b i ,其中a ,b 都是实数,i 是虚数单位,则|a +b i|=________.答案5解析 ∵a ,b ∈R ,且a1-i=1-b i ,则a =(1-b i)(1-i)=(1-b )-(1+b )i ,∴⎩⎪⎨⎪⎧ a =1-b ,0=1+b ,∴⎩⎪⎨⎪⎧a =2,b =-1,∴|a +b i|=|2-i|=22+(-1)2= 5.10.[2017·浙江高考]已知a ,b ∈R ,(a +b i)2=3+4i(i 是虚数单位),则a 2+b 2=________,ab =________.答案 5 2解析 (a +b i)2=a 2-b 2+2ab i.由(a +b i)2=3+4i ,得⎩⎪⎨⎪⎧a 2-b 2=3,ab =2.解得a 2=4,b 2=1.所以a 2+b 2=5,ab =2.[B 级 知能提升]1.[2018·成都模拟]已知复数z 1=2+6i ,z 2=-2i ,若z 1,z 2在复平面内对应的点分别为A ,B ,线段AB 的中点C 对应的复数为 z ,则|z |=( )A. 5 B .5 C .2 5 D .217答案 A解析 复数z 1=2+6i ,z 2=-2i ,若z 1,z 2在复平面内对应的点分别为A (2,6),B (0,-2),线段AB 的中点C (1,2)对应的复数为z =1+2i ,则|z |=12+22= 5.故选A.2.[2017·全国卷Ⅰ]设有下面四个命题 p 1:若复数z 满足1z ∈R ,则z ∈R ; p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2; p 4:若复数z ∈R ,则z ∈R . 其中的真命题为( ) A .p 1,p 3 B .p 1,p 4 C .p 2,p 3 D .p 2,p 4 答案 B解析 设z =a +b i(a ,b ∈R ),z 1=a 1+b 1i(a 1,b 1∈R ),z 2=a 2+b 2i(a 2,b 2∈R ).对于p 1,若1z ∈R ,即1a +b i =a -b i a 2+b 2∈R ,则b =0⇒z =a +b i =a∈R ,所以p 1为真命题.对于p 2,若z 2∈R ,即(a +b i)2=a 2+2ab i -b 2∈R ,则ab =0.当a=0,b ≠0时,z =a +b i =b i ∈/ R ,所以p 2为假命题.对于p 3,若z 1z 2∈R ,即(a 1+b 1i)(a 2+b 2i)=(a 1a 2-b 1b 2)+(a 1b 2+a 2b 1)i ∈R ,则a 1b 2+a 2b 1=0.而z 1=z 2,即a 1+b 1i =a 2-b 2i ⇔a 1=a 2,b 1=-b 2.因为a 1b 2+a 2b 1=0⇒/ a 1=a 2,b 1=-b 2,所以p 3为假命题.对于p 4,若z ∈R ,即a +b i ∈R ,则b =0⇒z =a -b i =a ∈R ,所以p 4为真命题.故选B.3.[2018·厦门模拟]已知复数z =x +y i ,且|z -2|=3,则yx 的最大值为________.答案3解析 ∵|z -2|=(x -2)2+y 2=3, ∴(x -2)2+y 2=3.由图可知⎝ ⎛⎭⎪⎫y x max =31= 3.4.已知复数z =b i(b ∈R ),z -21+i 是实数,i 是虚数单位.(1)求复数z ;(2)若复数(m +z )2所表示的点在第一象限,求实数m 的取值范围. 解 (1)因为z =b i(b ∈R ),所以z -21+i =b i -21+i =(b i -2)(1-i )(1+i )(1-i )=(b -2)+(b +2)i 2=b -22+b +22i.又因为z -21+i 是实数,所以b +22=0,所以b =-2,即z =-2i.(2)因为z =-2i ,m ∈R ,所以(m +z )2=(m -2i)2=m 2-4m i +4i 2=(m 2-4)-4m i ,又因为复数(m +z )2所表示的点在第一象限,所以⎩⎪⎨⎪⎧m 2-4>0,-4m >0.解得m <-2,即m ∈(-∞,-2). 5.若虚数z 同时满足下列两个条件:①z +5z 是实数;②z +3的实部与虚部互为相反数.这样的虚数是否存在?若存在,求出z ;若不存在,请说明理由.解 存在.设z =a +b i(a ,b ∈R ,b ≠0), 则z +5z =a +b i +5a +b i=a ⎝ ⎛⎭⎪⎫1+5a 2+b 2+b ⎝ ⎛⎭⎪⎫1-5a 2+b 2i. 又z +3=a +3+b i 实部与虚部互为相反数,z +5z 是实数,根据题意有⎩⎨⎧b ⎝⎛⎭⎪⎫1-5a 2+b 2=0,a +3=-b ,因为b ≠0,所以⎩⎪⎨⎪⎧a 2+b 2=5,a =-b -3,解得⎩⎪⎨⎪⎧a =-1,b =-2或⎩⎪⎨⎪⎧a =-2,b =-1.所以z =-1-2i 或z =-2-i.。

2019版高考数学(文)高分计划一轮狂刷练:第11章算法、复数、推理与证明 11-3a

2019版高考数学(文)高分计划一轮狂刷练:第11章算法、复数、推理与证明 11-3a

[基础送分 提速狂刷练]一、选择题1.(2018·湖北华师一附中等八校联考)有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( )A .甲B .乙C .丙D .丁答案 D解析 若甲猜测正确,则4号或5号得第一名,那么乙猜测也正确,与题意不符,故甲猜测错误,即4号和5号均不是第一名.若丙猜测正确,那么乙猜测也正确,与题意不符,故丙猜测错误,即1,2,6号均不是第1名,故3号是第1名,则乙猜测错误,丁猜测正确.故选D.2.已知a 1=3,a 2=6,且a n +2=a n +1-a n ,则a 2016=( )A .3B .-3C .6D .-6答案 B解析 ∵a 1=3,a 2=6,∴a 3=3,a 4=-3,a 5=-6,a 6=-3,a 7=3,…,∴{a n }是以6为周期的周期数列.又2016=6×335+6,∴a 2016=a 6=-3.故选B.3.已知x ∈(0,+∞),观察下列各式:x +≥2,x +=++≥3,1x 4x 2x 2x 24x 2x +=+++≥4,…,27x 3x 3x 3x 327x 3类比有x +≥n +1(n ∈N *),则a =( )a xn A .n B .2n C .n 2 D .n n答案 D解析 第一个式子是n =1的情况,此时a =1,第二个式子是n =2的情况,此时a =4,第三个式子是n =3的情况,此时a =33,归纳可以知道a =n n .故选D.4.已知a n =n ,把数列{a n }的各项排成如下的三角形:(13)a 1a 2 a 3 a 4a 5 a 6 a 7 a 8 a 9……记A (s ,t )表示第s 行的第t 个数,则A (11,12)=( )A.67 B.68(13)(13)C.111 D.112(13)(13)答案 D解析 该三角形所对应元素的个数为1,3,5,…,那么第10行的最后一个数为a 100,第11行的第12个数为a 112,即A (11,12)=112.故选D.(13)5.(2017·阳山县校级一模)下面使用类比推理恰当的是( )A .“若a ·3=b ·3,则a =b ”类推出“若a ·0=b ·0,则a =b ”B .“若(a +b )c =ac +bc ”类推出“(a ·b )c =ac ·bc ”C .“(a +b )c =ac +bc ”类推出“=+(c ≠0)”a +bc a c b c D .“(ab )n =a n b n ”类推出“(a +b )n =a n +b n ”答案 C解析 对于A “若a ·3=b ·3,则a =b ”类推出“若a ·0=b ·0,则a =b ”是错误的,因为0乘任何数都等于0;对于B “若(a +b )c =ac +bc ”类推出“(a ·b )c =ac ·bc ”,类推的结果不符合乘法的运算性质,故错误;对于C 将乘法类推除法,即由“(a +b )c =ac +bc ”类推出“=+”是正确的;对于D “(ab )n =a n b n ”类推出a +b c a c b c “(a +b )n =a n +b n ”是错误的;如(1+1)2=12+12.故选C.6.(2017·河北冀州中学期末)如图所示,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{a n }(n ∈N *)的前12项,如下表所示:按如此规律下去,则a 2017=( )A .502B .503C .504D .505答案 D解析 由a 1,a 3,a 5,a 7,…组成的数列恰好对应数列{x n },即x n =a 2n -1,当n 为奇数时,x n =.所以a 2017=x 1009=505.故选D.n +127.(2018·安徽江淮十校三联)我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在 中“…”即代表无限次重复,但原式却是个2+2+2+…定值x ,这可以通过方程=x 确定x =2,则1+=( )2+x 11+11+…A. B.C. D.-5-125-121+521-52答案 C 解析 1+=x ,即1+=x ,即x 2-x -1=0,解得11+11+…1x x =,故1+=,故选C.1+52(x =1-52舍)11+11+…1+528.(2017·陕西一模)设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =,类比这个结论可知,2S a +b +c 四面体S -ABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球半径为R ,四面体S -ABC 的体积为V ,则R 等于( )A. B.V S 1+S 2+S 3+S 42VS 1+S 2+S 3+S 4C. D.3V S 1+S 2+S 3+S 44VS 1+S 2+S 3+S 4答案 C解析 设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R ,由平面图形中r 的求解过程类比空间图形中R 的求解过程可得四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和,则四面体的体积为V =V 四面体S -ABC =(S 1+S 2+S 3+S 4)R ,13所以R =.故选C.3VS 1+S 2+S 3+S 49.(2018·鹰潭模拟)[x ]表示不超过x 的最大整数,例如:[π]=3.S 1=[]+[]+[]=3123S 2=[]+[]+[]+[]+[]=1045678S 3=[]+[]+[]+[]+[]+[]+[]=21,9101112131415…依此规律,那么S 10等于( )A .210B .230C .220D .240答案 A解析 ∵[x ]表示不超过x 的最大整数,∴S 1=[]+[]+[]=1×3=3,123S 2=[]+[]+[]+[]+[]=2×5=10,45678S 3=[]+[]+[]+[]+[]+[]+[]9101112131415=3×7=21,…S n =[]+[]+[]+…+[]+[]n 2n 2+1n 2+2n 2+2n -1n 2+2n=n ×(2n +1),∴S 10=10×21=210.故选A.10.(2017·龙泉驿区模拟)对于问题:“已知两个正数x ,y 满足x +y =2,求+的最小值”,给出如下一种解法:1x 4y ∵x +y =2,∴+=(x +y )=,1x 4y 12(1x +4y )12(5+y x +4x y )∵x >0,y >0,∴+≥2=4,y x 4x y y x ·4x y ∴+≥(5+4)=,1x 4y 1292当且仅当Error!即Error!时,+取最小值.1x 4y 92参考上述解法,已知A ,B ,C 是△ABC 的三个内角,则+1A 的最小值为( )9B +C A. B. C. D.16π8π4π2π答案 A解析 A +B +C =π,设A =α,B +C =β,则α+β=π,=1,α+βπ参考题干中解法,则+=+=·(α+β)=1A 9B +C 1α9β(1α+9β)1π1π≥(10+6)=,当且仅当=,即3α=β时等号成(10+βα+9αβ)1π16πβα9αβ立.故选A.二、填空题11.(2017·北京高考)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点A i 的横、纵坐标分别为第i 名工人上午的工作时间和加工的零件数,点B i 的横、纵坐标分别为第i 名工人下午的工作时间和加工的零件数,i =1,2,3.(1)记Q i 为第i 名工人在这一天中加工的零件总数,则Q 1,Q 2,Q 3中最大的是________.(2)记p i 为第i 名工人在这一天中平均每小时加工的零件数,则p 1,p 2,p 3中最大的是________.答案 (1)Q 1 (2)p 2解析 设A 1(xA 1,yA 1),B 1(xB 1,yB 1),线段A 1B 1的中点为E 1(x 1,y 1),则Q 1=yA 1+yB 1=2y 1.因此,要比较Q 1,Q 2,Q 3的大小,只需比较线段A 1B 1,A 2B 2,A 3B 3中点纵坐标的大小,作图比较知Q 1最大.又p 1====,其几何意义为线段A 1B 1的yA 1+yB 1xA 1+xB 12y 12x 1y 1x 1y 1-0x 1-0中点E 1与坐标原点连线的斜率,因此,要比较p 1,p 2,p 3的大小,只需比较线段A 1B 1,A 2B 2,A 3B 3中点与坐标原点连线的斜率,作图比较知p 2最大.12.(2018·湖北八校联考)二维空间中,圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2;三维空间中,球的二维测度(表面积)S =4πr 2,三维测度(体积)V =πr 3.应用合情推理,若四维空间中,43“超球”的三维测度V =8πr 3,则其四维测度W =________.答案 2πr 4解析 在二维空间中,圆的二维测度(面积)S =πr 2,则其导数S ′=2πr, 即为圆的一维测度(周长)l =2πr ;在三维空间中,球的三维测度(体积)V =πr 3,则其导数V ′=4πr 2,即为球的二维测度(表43面积)S =4πr 2;应用合情推理,在四维空间中,“超球”的三维测度V =8πr 3,则其四维测度W =2πr 4.13.(2017·江西赣州十四县联考)我国古代数学著作《九章算术》有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一.并五关所税,适重一斤.问本持金几何?”其意思为“今有人持金出五关,第1关收税金,第2关收税金为剩余的,第3关收税金为剩余的,第4关121314收税金为剩余的,第5关收税金为剩余的,5关所收税金之和,1516恰好重1斤,问原本持金多少?”若将“5关所收税金之和,恰好重1斤,问原本持金多少?”改成“假设这个人原本持金为x ,按此规律通过第8关”,则第8关所收税金为________x .答案 172解析 第1关收税金:x ;12第2关收税金:x ==;13(1-12)x 6x 2×3第3关收税金:x ==;14(1-12-16)x 12x 3×4第8关收税金:=.x 8×9x 7214.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n }.可以推测:(1)b 2016是数列{a n }中的第________项;(2)b 2k -1=________(用k 表示).答案 (1)5040 (2)5k (5k -1)2解析 观察知这些三角形数满足a n =,n ∈N *,当n (n +1)2n =5k -1或n =5k ,k ∈N *时,对应的三角形数是5的倍数,为数列{b n }中的项,将5k -1和5k 列为一组,所以b 2016是第1008组的后面一项,即b 2016是数列{a n }中的第5×1008=5040项;b 2k -1是第k 组的前面一项,是数列{a n }中的第5k -1项,即b 2k -1=a 5k -1=.5k (5k -1)2三、解答题15.(2017·未央区校级期中)阅读以下求1+2+3+…+n 的值的过程:因为(n +1)2-n 2=2n +1,n 2-(n -1)2=2(n -1)+122-12=2×1+1以上各式相加得(n +1)2-1=2×(1+2+3+…+n )+n所以1+2+3+…+n ==.n 2+2n -n 2n (n +1)2类比上述过程,求12+22+32+…+n 2的值.解 ∵23-13=3·22-3·2+1,33-23=3·32-3·3+1,…,n 3-(n -1)3=3n 2-3n +1,把这n -1个等式相加得n 3-1=3·(22+32+…+n 2)-3·(2+3+…+n )+(n -1),由此得n 3-1=3·(12+22+32+…+n 2)-3·(1+2+3+…+n )+(n -1),即12+22+…+n 2=.13[n 3-1+32n (n +1)-(n -1)]16.(2018·南阳模拟)我们知道,等差数列和等比数列有许多性质可以类比,现在给出一个命题:若数列{a n }、{b n }是两个等差数列,它们的前n 项的和分别是S n ,T n ,则=.an bn S 2n -1T 2n -1(1)请你证明上述命题;(2)请你就数列{a n }、{b n }是两个各项均为正的等比数列,类比上述结论,提出正确的猜想,并加以证明.解 (1)证明:在等差数列{a n }中,a n =(n ∈N *),那a 1+a 2n -12么对于等差数列{a n }、{b n }有:===.an bn 12(a 1+a 2n -1)12(b 1+b 2n -1)12(a 1+a 2n -1)(2n -1)12(b 1+b 2n -1)(2n -1)S 2n -1T 2n -1(2)猜想:数列{a n }、{b n }是两个各项均为正的等比数列,它们的前n项的积分别是X n,Y n,则2n-1=.(anbn)X2n-1Y2n-1证明:在等比数列{a n}中,a=a1a2n-1=a2a2n-2=…(n∈N*),2n(a n)2n-1=a1a2a3…a2n-1(n∈N*),那么对于等比数列{a n}、{b n}有2n-1==.(anbn)a1a2a3…a2n-1b1b2b3…b2n-1X2n-1Y2n-1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4个数比第3个数大3即4+3=7;
故②中应填写p=p+i.故选D.
二、填空题
13.定义n!=1×2×3×…×n,如图是求10!的程序框图,其中k为整数,则k=________.
答案11
解析因为10!=1×2×…×10,所以判断框内的条件为“i<11?”,故k=11.
14.秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法,如图所示的程序框图表示用秦九韶算法求5次多项式f(x)=a5x5+a4x4+a3x3+a2x2+a1x+a0当x=x0(x0是任意实数)时的值的过程,若输入a0=2,a1=-5,a2=6,a3=-4,a4=7,a5=2,x0=3,则输出的v的值为________.
A.3 B.4 C.5 D.6
答案B
解析第一次循环:a=2,b=4,a=6,s=6,n=1;
第二次循环:a=-2,b=6,a=4,s=10,n=2;
第三次循环:a=2,b=4,a=6,s=16,n=3;
第四次循环:a=-2,b=6,a=4,s=20,n=4.
结束循环,输出n的值为4,故选B.
7.执行如图所示的程序框图,则输出的S=()
[基础送分提速狂刷练]
一、选择题
1.(2015·湖南高考)执行如图所示的程序框图,如果输入n=3,则输出的S=()
A. B. C. D.
答案B
解析当输入n=3时,输出S= + + = = .故选B.
2.(2015·全国卷Ⅱ)如图所示的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=()
10.执行如图所示的程序框图,输出的S的值为()
A.log210-1B.2log23-1
C. D.6
答案B
解析S=3,i=1,i≤7成立;
S=3+log2 ,i=2,i≤7成立;
S=3+log2 +log2 =3+log2 =3+log2 ,
i=3,i≤7成立;
S=3+log2 +log2 =3+log2 =3+log2 ,i=4,i≤7成立;……;S=3+log2 ,i=8,i≤7不成立,退出循环,S=log2(3+log2 )=log2 =log2 =2log23-1,故选B.
A. B. C.- D.0
答案A
解析由程序框图得S=sin +sin +sin +sin +sin +sin +sin +…+sin .由正弦函数的周期性,得S=sin = ,故选A.
8.我们可以用随机数法估计π的值,如图所示的程序框图表示其基本步骤(函数RAND是产生随机数的函数,它能随机产生(0,1)内的任何一个实数),若输出的结果为521,则由此可估计π的近似值为()
C.1+ + +…+
D.1+ + +…+
答案B
解析T=1,S=1,k=2;
T= ,S=1+ ,k=3;
T= ,S=1+ + ,k=4;
T= ,S=1+ + + ,k=5;……;
T= ,S=1+ + +…+ ,k=11>10,输出S,故选B.
5.(2017·广东潮州二模)执行如图所示的程序框图,则输出的结果为()
A.0 B.2 C.4 D.14
答案B
解析开始:a=14,b=18,第一次循环:a=14,b=4;第二次循环:a=10,b=4;第三次循环:a=6,b=4;第四次循环:a=2,b=4;第五次循环:a=2,b=2.此时,a=b,退出循环,输出a=2.故选B.
3.(2018·江西赣州十四县联考)如图所示的程序框图,若输入x,k,b,p的值分别为1,-2,9,3,则输出的x值为()
A.3.119 B.3.126 C.3.132 D.3.151
答案BБайду номын сангаас
解析在空间直角坐标系Oxyz中,不等式组
表示的区域是棱长为1的正方体区域,相应区域的体积为13=1;不等式组 表示的区域是棱长为1的正方体区域内的 球形区域,相应区域的体积为 × ×13= ,因此 ≈ ,即π≈3.126,故选B.
9.已知函数f(x)=ax3+ x2在x=-1处取得极大值,记g(x)= .执行如图所示的程序框图,若输出的结果S> ,则判断框中可以填入的关于n的判断条件是()
A.i≤30?;p=p+i-1B.i≤31?;p=p+i+1
C.i≤31?;p=p+iD.i≤30?;p=p+i
答案D
解析由于要计算30个数的和,
故循环要执行30次,由于循环变量的初值为1,步长为1,故终值应为30,
即①中应填写“i≤30?”;
又由第1个数是1;
第2个数比第1个数大1即1+1=2;
第3个数比第2个数大2即2+2=4;
A.-29
B.-5
C.7
D.19
答案D
解析程序执行过程如下:n=1,x=-2×1+9=7;
n=2,x=-2×7+9=-5;
n=3,x=-2×(-5)+9=19;
n=4>3,终止循环,输出x=19.
故选D.
4.执行下面的程序框图,如果输入的N=10,那么输出的S=()
A.1+ + +…+
B.1+ + +…+
A.7 B.9 C.10 D.11
答案B
解析i=1,s=1× ≤0.1,否;
i=3,s= × = ≤0.1,否;
i=5,s= × = ≤0.1,否;
i=7,s= × = ≤0.1,否;
i=9,s= × = ≤0.1,是,
输出i=9,故选B.
6.(2016·全国卷Ⅲ)执行下面的程序框图,如果输入的a=4,b=6,那么输出的n=()
A.n≤2016?B.n≤2017?
C.n>2016?D.n>2017?
答案B
解析f′(x)=3ax2+x,则f′(-1)=3a-1=0,解得a= ,g(x)= = = = - ,g(n)= - ,则S=1- + - +…+ - =1- = ,因为输出的结果S> ,分析可知判断框中可以填入的判断条件是“n≤2017?”,故选B.
11.(2018·河南模拟)下边程序框图的功能是求出 的值,则框图中①、②两处应分别填写的是()
A.i≥1,aB.i≥1,a-6
C.i>1,aD.i>1,a-6
答案D
解析程序框图是计算 的值,则利用累积加,则第一个处理框应为i>1,然后计算i是自减1个,i=i-1,第二空输出结果a-6.故选D.
12.(2017·湖南三模)给出30个数:1,2,4,7,11,…,要计算这30个数的和,现已给出了该问题的程序框图如图所示,那么框图中判断框①处和执行框②处应分别填入()
相关文档
最新文档