有机硅树脂教材
硅树脂说明书
1:1硅树脂操作说明ST-220硅树脂物料性能:ST-220固化后产品性能:一、组成成分: ST-220是双组份改性室温固化的硅烷改性树脂,产品不含有任何溶剂和挥发物,产品环保,其中220A组份为硅烷改性合成树脂,220B组份为硬化剂。
二、产品特点:1、产品具有优异的耐磨性、耐划、耐折、耐水、耐油、耐酸碱、耐腐蚀、耐老化、耐疲劳、耐压、耐冲击、抗振动、可钻、可锯、可钉、可抛光、不开裂、不粉化、耐高低温、表面光滑、电绝缘好、柔弹性能好,韧性好、对塑料、金属底材附着力强,耐紫外线和抗老化等优越性能,长期在室外常温使用1~2 年耐黄变。
2、产品不含有任何溶剂和挥发物,无臭、无毒、具有环保、阻燃、耐用、韧性强、内接力好等优越性能。
3、固化后产品晶莹剔透,光亮透明。
4、产品固化时间的快慢可在温度高低控制,温度超高固超快,产品可手工灌胶和机械灌胶,固化时间的快慢,不会影响产品的性能。
三、可操作时间:在温度25~35℃,相对湿度<65%的无尘环境下将A/B 组份混合搅拌均匀,可操作时间20~25 分钟 。
四、组份配比:1、按重量比:A:B=1:12、在低温条件下,A 组份有可能变稠,B 组份有可能变稠和结晶(属正常现象),先将A/B 组份加温至60~65℃溶解透明(溶解参考方法:①用加热棒放入胶中直接进行加热,一边加热边搅拌至透明变稀即可停止;②将AB 组份物料分别倒入干净的不锈钢盆/桶/罐中,然后用电磁炉进行加热,一边加热一边搅拌至透明变稀即可停止;③将AB 组份物料分别倒入不锈钢容器中放入烤箱进行恒温加热至透明变稀即可停止),等加温的A/B 组份物料冷却至25~30℃时再按重量比称料混合搅拌。
五、容器与搅拌:1、调配器具:配胶壶或配胶罐、搅拌器必须是干净、干燥、没水分、没残留物、没有杂质,尽可能不要使用之前配用过其它胶水的配胶壶或配胶罐、搅拌器。
2、搅拌时必须按同一个方向缓慢搅拌,不能过于激烈,避免夹入气泡,搅拌时尽量刮到底部和边壁,缓慢搅拌2~5 分钟至均匀(搅拌时间需根据不同的物料而调整)。
第11章 2硅树脂
11.2 硅树脂的合成单体
有机硅醇具有以下化学性质。 (1)与有机氯硅烷、有机烷氧基硅烷、有机酰氧 基硅烷等作用,形成Si—O—Si键。
Si OH + Cl Si
Si O + RO Si
Si O Si + ROH
Si OH + NH2 Si
Si O Si + NH3
Si OH + H Si
11.1 概述
有机硅树脂涂料是以有机硅树脂及有机硅改性 树脂(如醇酸树脂、聚酯树脂、环氧树脂、丙烯酸酯 树脂、聚氨酯树脂等)为主要成膜物质的涂料,与其 它有机树脂相比,具有优异的耐热性、耐寒性、耐 候性、电绝缘性、疏水性及防粘脱模性等,因此, 被广泛用作耐高低温涂料、电绝缘涂料、耐热涂料、 耐候涂料、耐烧蚀涂料等。
11.2 硅树脂的合成单
4. 有机硅醇 硅烷水解时形成有机硅醇,硅醇自发缩聚或强制
缩聚而或快或慢地转化成硅氧烷。自发缩聚的倾向取 决于它们的分子结构及水解条件。随着硅原子上OH 基数目的减少,以及有机基团数量及体积增大,对 OH基的空间屏蔽作用的增大,硅醇的缩合倾向降低; 在中性水解条件下易于制备有机硅醇。
1. 有机氯硅烷单体
有机氯硅烷分子中含有极性较强的Si—Cl键,活 性较强,能发生以下化学反应。
(1) 水解反应 有机氯硅烷与水能发生水解反应,生 成硅醇,并放出氯化氢气体。硅醇不稳定,在酸或
碱的催化作用下,易脱水缩聚,生成Si—O—Si为主 链的线型有机硅聚合物或环体聚有机硅烷。生成的
环nR体2中SiC,l2以+x2=n3H,2O4,5的环体n的R2量Si最(O多H,)2 也+ 2较n稳HC定l 。
11.1 概述
18世纪下叶,C. Friedel、J. M. Crafts、A. Ladenberg、 F. S. Kipping等作了大量工作,已注意到了硅和硅碳化合物, 并进行了广泛、深入的研究。特别是F. S. Kipping的工作奠 定了有机硅化学的基础。
有机硅树脂产品说明书
有机硅树脂结合剂性能
上述结合剂结合的碳化硅制品是高新技术产品。
根据配方和制造工艺产品的不同,性能优于氮化硅结合的碳化硅制品和达到重结晶碳化硅制品。
它的抗热震性显著优于其它结合的碳化硅制品。
它用到陶瓷棚板、耐磨部件、匣钵和高温高强元件。
该结合剂结合的滑板,可以不烧、不浸渍而制成的高质量滑板。
使用寿命达到了5
有机硅树脂用于滑板的使用方法说明
滑板工艺过程:
1、混料:先加入颗粒,然后加入硅树脂3—5%,搅拌混合均匀,
再加入粉料混合均匀,干湿适度,树脂涂布均匀。
2、成型:然后机压成型,
3、固化:成型好的坯体,自然放置4小时以上。
然后,进窑烘烤。
烘烤制度
为:常温~2700C;2700C:保温4h—8h;
4、自然冷却(可以推出窑外,也可以在窑内自然冷却)。
5、该结合剂结合的滑板,可以不烧、不浸渍而制成的高质量滑板。
使用寿命
达到了5次,可以用高7次以上。
注意事项:。
有机硅树脂介绍分析
Si I Si Br Si Cl RSiCl3 R2SiCl2 R3SiCl (CH3)2SiCl2 (CH3CH2)2SiCl2
Si F (C6H5)2SiCl2
Si-OH键
可同时含有多个硅-醇键。
容易脱水形成硅氧烷,活性比有机醇大得多,其活性硅醇结构及反应条件,在R相同的条件下有机硅醇 的反应活性为:RSi(OH)3>R2Si(OH)2>R3SiOH 对于硅羟基数相同的情况,R越大越稳定。
下其电气特性降低很少,高频性随频率变化极 但是,在常温和常态下,树脂大都具有与
小。
有机硅相同的特性。
耐水性
由于分子中甲基的排列使其具有憎水性,因此 浸水后电气特性大大降低。吸收的水分难 其涂膜的吸水性小。另外,即使吸收了水分也 以除掉,电气特性恢复较慢。 会迅速放出而恢复到原来的状态。
有机硅树脂
有机树脂
有机硅树脂介绍分析
目录
➢
有机硅树脂化学
➢
硅树脂的特性
➢
硅树脂中有机基团对性能影响
➢
硅树脂固化交联反应及优缺点
➢
硅树脂的制备
➢
改性硅树脂制备
➢
硅树脂应用
➢
展望
结构
R | R-Si-O | R
R | O-Si-O | R
R | O-Si-O | O
O | O-Si-O | O
有机硅化学结构单元
表示式
C6H5>ClC6H4>Cl3C6H2>Cl2C6H3>CH2=CH>CH3>C2H5
评价硅树脂耐热性的方法 ➢ 热重法 ➢ 加热前后硅树脂漆膜的热弹性、抗黄变性和光泽保持率 ➢ 弯曲考核法
➢
耐热性
有机硅材料基础
本书还探讨了有机硅材料的应用领域。由于其优异的性能和广泛的适用性,有机硅材料在许多领 域都有广泛的应用。例如,在航空航天领域,有机硅材料可用于制造高温部件;在电子领域,有 机硅材料可用于制造电子元件和电路板;在建筑领域,有机硅材料可用于防水、保温和装饰。通 过本书的介绍,读者可以深入了解有机硅材料的各种应用,为其在相关领域的应用提供指导和借 鉴。
从目录的编排上来看,这本书采用了典型的章节式结构,将内容分为若干个 主题进行深入探讨。每一章节都配有简短的标题,使得读者可以快速了解该章节 的主题。这种结构使得全书内容层次分明,易于阅读和学习。
从目录的内容上来看,这本书涵盖了有机硅材料的各个方面。它从基本概念 入手,介绍了有机硅材料的定义、分类和基本性质。随后,深入探讨了有机硅材 料的合成方法和反应机理,为读者提供了丰富的理论知识。这本书还详细介绍了 有机硅材料在各个领域的应用,包括高分子材料、橡胶、塑料、纤维、涂料等领 域,充分展示了有机硅材料的广泛用途和重要价值。
这本书的内容丰富,从基础理论出发,对有机硅材料进行了全面而系统的介 绍。作者朱晓敏和章基凯以他们在德国亚琛工业大学的研究和教学经验为基础, 结合国内实际情况,将复杂的专业知识以通俗易懂的方式呈现出来。
阅读这本书,让我对有机硅材料有了更为深入的了解。尤其是书中的第5~8 章,对硅油、硅橡胶、硅树脂和硅烷偶联剂这四大类产品的生产、性能和应用进 行了详尽的阐述。这些内容不仅让我知道了有机硅材料的各种特性和用途,更让 我看到了它们在现实生活和工业生产中的广泛应用。
这段摘录列举了有机硅材料在各个领域的应用,展现了有机硅材料的广泛应 用前景。
“随着科技的不断发展,有机硅材料的应用领域也在不断拓展。未来,随着 人们对环保和可持续发展的要求越来越高,有机硅材料作为一种绿色、环保的材 料,将在更多领域得到应用和发展。”
有机硅树脂合成专业资料silicon synthsis
8SiliconesIn contrast to most organic polymers,in silicones the backbone is made of silicon and oxygen.Silicon is together with carbon in the fourth group of the periodic system,therefore a similar behavior of these elements can be expected.8.1HISTORYKipping∗started with the synthesis of organic silicon compounds by treat-ing SiCl4with magnesium-based organometallic compounds.These com-pounds are now called Grignard reagents,invented by Victor Grignard in 1900.Hyde†,at Corning,developed aflexible,high temperature binder for glassfibers and synthesized thefirst silicone polymer.The potential appli-cations in otherfields,such as electric industries soon became apparent.Eugene George Rochow‡at General Electric developed synthesis of silicones that is now used.1,2Hisfirst patent dates at1941.3,4In1949,the silly putty was invented by James Wright when mixing silicone oil with boric acid.Silly putty acts like both a rubber and a putty.∗Frederic Stanley Kipping,born in Upper Broughton(UK)1863,died in1949†James Franklin Hyde,born in Solvay,New York1903,died in1999‡Eugene George Rochow,born in Newark,New Jersey1909,died in2002321322Reactive Polymers Fundamentals and Applications8.2MONOMERS8.2.1ChlorosilanesThe synthesis of silanes and siloxanes starts from chlorosilanes such as di-methyldichlorosilane.Other products are derived from this compound that also serve as monomers.Thus,in silicone chemistry,the term monomer is not as clearly defined as in otherfields of polymer chemistry.8.2.2SilsesquioxanesSilsesquioxane resins are used in industrial applications in the automotive, aerospace,naval,and other manufacturing industries.Silsequioxane resins exhibit excellent heat andfire resistant properties that are desirable for such applications.These properties make the silsesquioxane resins attractive for use infiber-reinforced composites for electrical laminates,and structural use in automotive components,aircraft,and naval vessels.There is a need for rigid silsesquioxane resins that has increased flexural strength,flexural strain,fracture toughness,and fracture energy, without significant loss of modulus or loss of thermal stability.In addi-tion,rigid silsesquioxane resins have low dielectric constants and are use-ful as interlayer dielectric materials.Rigid silsesquioxane resins are also useful as abrasion resistant coatings.These applications require that the silsesquioxane resins exhibit high strength and toughness.5The formation of silsesquioxanes is shown in Figure8.1.Silsesqui-oxanes are organosilicon compounds with the formula[RSiO3/2]n.[R7Si7O9(OH)3],as shown in Figure8.1,can be synthesized in one step via the hydrolytic condensation of RSiCl3or RSi(OMe)3.A single Si-O-Si linkage in a fully condensed R8Si8O12framework can be cleaved selectively by strong acids(e.g.,HBF4/BF3or triflic acid.68.2.3Hydrogen SilsesquioxanesHydrogen-silsesquioxane resins are useful precursor substances for silica-containing ceramic coatings.Hydrogen silsesquioxane resins are ladder or cage polymers.7The general structure is shown in Figure8.2.When tri-chlorosilane is subjected to hydrolytic condensation caused by direct con-tact with water,the reaction occurs abruptly,and gels are formed.Accord-ingly,various methods for manufacturing hydrogen-silsesquioxane resinsSilicones 323Si Cl RH 2O Figure 8.1:Formation of Silsesquioxanes:[R 7Si 7O 9(OH )3]Si O Si O Si O SiOO O O O O Si O Si O Si O SiO Si OHSiHO HO H H H H H H H H n H HHSiSi O SiOSi O Si O Si H O Figure 8.2:Hydrogen silsesquioxane resins.7Top:Ladder Form,Bottom:Cage Form324Reactive Polymers Fundamentals and Applicationsthat do not form gels have been proposed.The hydrogen-silsesquioxane resin can be manufactured in an aromatic hydrocarbon solution of trichlo-rosilane.The hydrolytic condensation is then performed as a two-phase reaction with concentrated sulfuric acid.Concentrated sulfuric acid and aromatic hydrocarbon react to pro-duce an arylsulfonic acid hydrate,and the water in this hydrate contributes to the hydrolytic condensation of trichlorosilane.Therefore,the hydrogen-silsesquioxane resin produced by this hydrolytic condensation is obtained from the organic phase.When water is added to the concentrated sulfuric acid phase in or-der to recover and reuse the arylsulfonic acid,precipitation occurs,thus rendering the arylsulfonic acid unsuitable for reuse.For this reason,large quantities of organic solvent and sulfuric acid are lost using this method.A method for complete reuse of the solvent,the sulfuric acid and surfac-tants,essentially without loss of these compounds,has been described.The method utilizes a two-phase system consisting of an aqueous phase:1.An aqueous solution consisting of sulfuric acid and an organicsulfonic acid,e.g.,p-toluenesulfonic acid monohydrate,and2.The organic phase consisting of a diluted solution of organic sulf-onic acid in a halogenated hydrocarbon solvent.The trichlorosil-ane must be soluble in this solvent,and the solvent should not reactwith sulfuric acid.Examples are isopropyl chloride,chlorobenz-ene,and others.This method results in hydrogen-silsesquioxane resins at a high yield. The loss of the organic solvent used in the organic phase is small,and the precipitation of benzenesulfonic acid,etc.,in the aqueous phase due to su-persaturation can also be eliminated.The organic solvent,the sulfuric acid and the organic sulfonic acid used in the aqueous phase can be effectively reused.88.2.4Alkoxy SiloxanesExamples of alkoxy siloxanes are listed in Table8.1.Trifunctional silox-ane units and tetrafunctional siloxane units are used to improve the physical properties of curable epoxy resins.Branched silicone resins with trifunc-tional siloxane units are highly heat-resistant and have an excellent capac-ity forfilm-formation,which is why they are used as electrical insulatingSilicones325Table8.1:Epoxy-containing Siloxanes9SiloxaneMethyltrimethoxysilaneMethyltriethoxysilaneEthyltrimethoxysilaneEthyltriethoxysilaneVinyltrimethoxysilanePhenyltrimethoxysilane3,3,3-TrifluoropropyltrimethoxysilaneDimethyldimethoxysilaneMethylphenyldimethoxysilaneMethylvinyldimethoxysilaneDiphenyldimethoxysilaneDimethyldiethoxysilaneMethylphenyldiethoxysilaneTetramethoxysilaneTetraethoxysilane(TEOS)TetrapropoxysilaneDimethoxydiethoxysilanematerials,and heat-resistant paints and coatings.98.2.5Epoxy-modified SiloxanesSiloxanes with pendent epoxy groups are listed in Table8.2.Epoxy-con-taining silicone resins are prepared either by the co-hydrolysis and conden-sation of epoxy-containing trialkoxysilane and diorganodialkoxysilane or by the base-catalyzed equilibration polymerization of cyclic diorganosil-oxane and epoxy-containing trialkoxysilane.9Epoxy-containing silicone resins have broad molecular weight distributions and do not exhibit a soft-ening point or a distinct glass transition temperature.8.2.6SilaferrocenophanesSilaferrocenophanes are of considerable interest because they may serve as precursors to unusual ceramic materials.Polymers can be made by ring opening polymerization as shown in Figure8.3.Other ferroceno-phanes bridged by heteroatoms such as germanium and phosphorus have been synthesized.In the presence of methylphenylchlorosilane or diphen-ylchlorosilane,i.e.,silanes with pendent hydrogen,telechelic polymers can326Reactive Polymers Fundamentals and ApplicationsTable8.2:Epoxy-containing Siloxanes9Siloxane3-Glycidoxypropyl(methyl)dimethoxysilane3-Glycidoxypropyl(methyl)diethoxysilane3-Glycidoxypropyl(methyl)dibutoxysilane2-(3,4-Epoxycyclohexyl)ethyl(methyl)dimethoxysilane2-(3,4-Epoxycyclohexyl)ethyl(phenyl)diethoxysilane2,3-Epoxypropyl(methyl)dimethoxysilane2,3-Epoxypropyl(phenyl)dimethoxysilane3-Glycidoxypropyltrimethoxysilane(GLYMO)3-Glycidoxypropyltriethoxysilane3-Glycidoxypropyltributoxysilane2-(3,4-Epoxycyclohexyl)ethyltrimethoxysilane2-(3,4-Epoxycyclohexyl)ethyltriethoxysilane2,3-Epoxypropyltrimethoxysilane2,3-EpoxypropyltriethoxysilaneSi 33SiCH3CH3Figure8.3:Ring Opening Polymerization of SilaferrocenophanesSilicones327Table8.3:Products Obtained by the Rochow Synthesis10Silane Yields[%]Boiling Points[°C]Methyldichlorosilane0.541Methyltrichlorosilane8–1866Dimethyldichlorosilane80–8570Trimethylchlorosilane2–457be produced with the hydrogen bearing silanes as end group11,12Apart from silaferrocenophanes,ferrocenophanes with conjugated double bonds instead of silicon are of interest because of their electrical properties.13 8.2.7Synthesis8.2.7.1Direct SynthesisSilicones are synthesized via methylchlorosilanes by the Müller-Rochow process.The reaction is carried out at temperatures of250to300°C and 2to5bars.A copper catalyst used with antimony,cadmium,aluminum, zinc,and tin is effective for improving the activity.However,lead would act as an inhibitor.Afinely homogenized mixture of silicon and copper is introduced into afluidized bed reactor.The reactor isfluidized by gaseous methyl-chloride.The reactants are separated from the solid components and on cooling a crude liquid silane mixture is obtained.Silicon conversions of 90to98%and methylchloride conversions of30to90%can be achieved. The reaction is strongly exothermic and requires a precise control.Dimeth-yldichlorosilane is the main product.Other major products obtained are shown in Table8.3.The selectivity for producing dimethyldichlorosilane is highly sensitive to trace amounts of other metals present.The selectivity for dimethyldichlorosilane is reduced if the Cu,Zn,or Sn concentrations exceed the generally used concentrations or if the reaction temperature exceeds300°C.A silver promoter increases the selectivity to dimethyl-dichlorosilane.14,15The crude silane mixture is then separated in distilla-tion columns.A high separating capacity is needed,because the boiling points of CH3SiCl3and(CH3)2SiCl2differ by only4°C.A high purity is required,because even a small amount of CH3SiCl3leads to branched and eventually gelled products.328Reactive Polymers Fundamentals and Applications8.2.7.2HydrosilylationThe hydrosilylation reaction consists of the addition of hydrogen-contain-ing silanes to products with double or triple bonds.This reaction is suitable for introducing organo functions into silicone compounds.Therefore,hy-drosilylation is extensively used to synthesize organofunctional silicones with pendant vinyl groups,amino groups,etc.16In a further step,chlor-ine atoms,hydrogen atoms,and alkoxy groups can undergo a nucleophilic substitution.The hydrosilylation reaction requires often high temperatures. Vinyl Groups.The hydrosilylation of aromatic compounds containing vinyl unsaturation can lead to radical polymerization of the monovinylaro-matic compounds,especially at elevated temperature.The use of radical polymerization inhibitors,such as phenols or quinones,is often necessary, however,most of these inhibitors are not sufficiently active at elevated temperatures and require the presence of oxygen to improve their activ-ity.However,special conditions and precautions make the use of a radical polymerization inhibitor unnecessary.Styrene andα-methylstyrene can be hydrosilylated with heptamethyltrisiloxane with a Karstedt platinum cata-lyst at90°C.17When4-vinyl-1-cyclohexene is reacted with a hydrogenchlorosil-ane,both the vinylic double bond and the double bond in the cyclohexene ring react.Thereby an organic silicon compound of the formula given in Figure8.4is obtained in which the hydrogenchlorosilane is added to each of the two double bonds in4-vinyl-1-cyclohexene.The cyclohexane ring within the molecule imparts a high hardness and scratch resistance and is useful as a coupling agent to be added to paints for use in automobiles, buildings and adhesives.The compound is also useful as an intermediate to an alkoxysilane coupling agent.188.2.7.3Grignard SynthesisThe Grignard synthesis is suitable to introduce organic groups to silicon. The Grignard synthesis is used on a laboratory scale.An example for a Grignard synthesis is shown in Figure8.5.With water,methylphenyldi-chlorosilane condenses to a linear polymer.Silicones329Si H CH 3Cl Cl Si H CH 3Cl Cl SiSi CH 3Cl ClCl Cl CH 3SiCH 3Cl Si CH 3ClCl +++Figure 8.4:Hydrosilylation of 4-Vinyl-1-cyclohexeneMg Br 2CH 3SiClCl Cl +SiClCl CH 2CH 3MgClBr+Mg Br Si ClCl +Si Cl Cl Cl MgClBr+Figure 8.5:Grignard Synthesis330Reactive Polymers Fundamentals and Applications8.2.7.4CondensationHydrolysis of chlorosilanes results in silanols.These silanols are not stable and undergo a polycondensation.Intramolecular and intermolecular con-densation takes place.Intermolecular condensation yields linear siloxanes, and intramolecular condensation yields cyclic products.When trichloro-silanes undergo hydrolysis,highly crosslinked silicone resins are obtained. The reaction can be catalyzed by acids.An equilibrium between the linear siloxanes and cyclic siloxanes can be established.If the catalyst is deactivated,the condensation stops and the cyclic products that consist mostly of a tetramer can be removed by distillation. On the other hand,cyclic siloxanes can be transformed to polymers in the presence of alkali.If the catalyst is not deactivated then cyclic siloxane forms until the equilibrium is established.In equilibrium ca.20%of cyclic products are present,which is relevant to the recycling of polysiloxanes.Chain Stoppers.To obtain stable or functional terminal groups,chain stoppers are added.The reaction proceeds under continuous cleavage and recombination of siloxane bonds.The reaction is catalyzed by acids.Bodying.Bodying is a technology that consists of the base-catalyzed depletion of the silanol groups in a silicone resin prepared by the hydro-lysis and condensation of organoalkoxysilane.In this process the molec-ular weight of the silicone resin is simply increased,while control of the molecular weight,softening point,and glass transition temperature is not possible.9Crosslinking.The degree of crosslinking depends on the presence of either tetrachlorosilane SiCl4for the production of very rigid resins,or (CH3)2SiCl2for softer grades.8.2.8ManufactureCommercially produced silicone resins comprise:•Non-meltable solids•Soluble reactive resins•Silsesquioxanes•High reactive alkoxysiloxanes with molecular weight.8.3MODIFIED TYPES8.3.1Chemical ModificationsReactive alkoxysiloxanes can undergo a reaction with functional organic resins.The modification of methylpolysiloxanes is achieved by substitut-ing the methyl groups with other organic groups,e.g.,lower alkyl chains or functional groups like vinyl groups,or by copolymerization with organic polymers,e.g.,poly(ethylene oxide)or poly(propylene oxide).8.3.1.1Amine FunctionsAminofunctional silicones impart extreme softness.Such materials are ap-preciated in textiles because of the improved wear comfort.In textile dye-ing uniformity of colorfixation is achieved by efficient control of foaming in the dyeing bath.8.3.1.2Functionalized SilanesReactive silanes or siloxanes can also include functionalities such as:vin-yl,hydride,allyl,or other unsaturated groups.For surface coating,hexa-methyldisiloxane and tetramethyldivinyldisiloxane are used.5Mixtures of siloxanes with trimethyl silyl groups and dimethylvinyl silyl groups are also common.8.3.1.3Crosslinking AgentsCrosslinking agents include alkoxysilanes such as methyltrimethoxysilane, dimethyldimethoxysilane,etc.,or oxime silanes,for example,methyltris-(methylethylketoxime)silane.19Crosslinking accelerators include amines, tin compounds such as dibutyltin diacetate,or dibutyltin dilaurate.198.3.2FillersThe silicone network does not exhibit much mechanical strength.Mechan-ical strength is imparted by the interaction of afiller with the polymer. Fumed silica shows the strongest reinforcing effect.Otherfillers include quartzflour,iron oxide,and carbon black.8.3.3Reinforcing MaterialsFiber reinforced,silicone matrix resin compositesfind many applications in structural components.Fiber reinforcement often takes the form of wo-ven glassfiber mats.Woven carbonfiber mats offer a higher modulus reinforcing media,but they are more expensive than glassfibers.Other fiber compositions such as aramid,nylon,polyester,and quartzfibers may be used for reinforcement.Otherfibrous forms,such as non-woven mats and layers of loosefibers,may also be used in silicone-based composite applications.20Fiber reinforced,silicone matrix resin composites in multilayer lam-inated form are strong andfire resistant.Theyfind applications in interiors of airplanes and ships.They are also used in electrical applications,such as wiring boards and printed circuit boards,requiringflexural strength and low weight.Suitable resin types are typically highly branched and crosslinked polymer molecules,when cured.To facilitate the impregnation process, silicone precursor formulations may be diluted with toluene.The toluene is then evaporated from the composite.8.4CURING8.4.1Curing by CondensationCuring by condensation releases alcohol,amines,acetic acid,or other volatile reaction products.The polymerization reaction does proceed in the absence of wa-ter.This fact is utilized in one component systems that form polymers by means of atmospheric humidity.To avoid premature curing,the com-ponents are packed in compartments that are free of moisture and tight to permeation of moisture.Methoxysilanes can condense with chlorosilanes releasing methyl-chloride,21as shown in Figure8.6.The reaction is catalyzed by ferric chloride.8.4.1.1Platinum Complexes for HydrosylilationAdditional crosslinking occurs by reaction of compounds with pendant vinyl groups.Certain platinum complexes catalyze the hydrosylilation re-Si CH 33O O CH 3CH 3Si CH 3Cl+Si CH 3CH 3O CH 3Si CH 3CH 3O ClFigure 8.6:Condensation of Methoxysilanes with Chlorosilanesaction.Suitable platinum catalysts are chloroplatinic acid,dichlorobis(tri-phenylphosphine)platinum(II),platinum chloride,platinum oxide,and also complexes of platinum compounds.For example,a Karstedt catalyst is a complex of chloroplatinic acid with 1,3-divinyl-1,1,3,3-tetramethyldisilox-ane and 1,3-diethenyl-1,1,3,3-tetramethyldisiloxane.5Synergistic catalyst systems are mixtures of the compounds H 2PtCl 6and RuCl 3×nH 2O.22The hydrosilylation reaction proceeds at room tem-perature.However,using inhibitors the temperature can be increased.8.4.1.2Hydrosilylation InhibitorsHydrosilylation inhibitors fall into two general classes.23One class is com-posed of materials that effectively inhibit hydrosilylation over a wide range of temperatures and can be volatilized out of the organosilicon composition to allow hydrosilylation to proceed.Examples of this class are pyridine,acrylonitrile,2-ethenylisopropanol,and perchloroethylene.The other class of inhibitors is materials that are non-volatile.The inhibitory effect of these materials is overcome by heating,whereupon hydrosilylation takes place.Examples of this latter class are the reac-tion product of a siloxane having silicon-bonded hydrogen atoms,a plat-inum catalyst,and an acetylenic alcohol,organic phosphines and phos-phites,benzotriazole,organic sulfoxides,metallic salts,aminofunctional siloxanes,ethylenically unsaturated isocyanurates olefinic siloxanes,di-alkyl carboxylic esters,and unsaturated amides.Examples of inhibitors are shown in Table 8.4.In polyethers,oxidation impurities inhibit the hydrosilylation of the polyethers,however,the exact identities of these inhibitors are unknown.They are believed to include acetal hydroperoxides,allyl hydroperoxides and free radicals localized at the tertiary carbon atoms in the hydrophobicTable8.4:Inhibitors for Platinum CatalystsInhibitor RemarksMethylbutynolEthynyl cyclohexanol Most preferred5Diphenylphosphine3-Methyl-1-dodecyn-3-ol Release coatings243,7,11-Trimethyl-1-dodecyn-3-olsegments(e.g.,propylene oxide)of unsaturated polyethers.Oxidation im-purities are most likely to occur in polyethers which have been stored for a long period with no or insufficient quantities of antioxidant.However,they may also be present in freshly prepared polyethers which may have gotten too hot in the presence of air or oxygen.Polyethers can be stabilized with mixtures of ascorbic acid and sodium ascorbate and allyl polyethers.25 8.4.1.3SaltsA commercially available curing catalyst material comprises zinc octoate and choline octoate.208.4.1.4PolymethylsilazanesPolymethylsilazanes are synthesized by the reaction of ammonia with di-methyldichlorosilane and methyltrichlorosilane.They are effective room temperature curing agents for silicone resins.However,ammonia is re-leased in the course of curing.268.5CROSSLINKINGCrosslinking can be achieved by different reactions at high temperatures for HTV-rubber and at room temperature for RTV-rubber.The liquid RTV-silicone rubber can crosslink both by condensation and by addition mech-anisms.8.5.1Condensation CrosslinkingCondensation crosslinking occurs betweenα,ω-dihydroxypoly(dimethyl-siloxane)s and silicates in the presence of inorganic compounds.The cross-linking density depends on the functionality and concentration of the cross-linking agent and the nature of the catalyst.8.5.2PeroxidesCrosslinking at higher temperatures in the range100to160°C is achieved by the addition of peroxides.Suitable formulations contain a small amount of vinyl groups.8.5.3Hydrosilylation CrosslinkingThe hydrosilylation reaction is suitable forfinal crosslinking or curing re-actions.8.5.3.1Thermoplastic ElastomersHydrosilylation crosslinking can be used to prepare a thermoplastic elas-tomer.A thermoplastic elastomer is a polymer or polymeric blend that can be processed and recycled in the same way as a conventional thermoplas-tic material.However,it has some properties and functional performance similar to those of vulcanized rubber at the service temperature.Elastomeric rubber blends are used in the production of high perfor-mance thermoplastic elastomers,particularly for the replacement of ther-moset rubbers in various applications.High performance thermoplastic elastomers,in which a highly vulcanized rubbery polymer is intimately dispersed in a thermoplastic matrix,are generally known as thermoplastic vulcanizates.Hydrosilylation crosslinking of a rubber acts via the unsatur-ated groups present from norbornene and diene components.Even at low concentrations of hydrosilylation agent and catalyst,a rubber can be fully crosslinked in a dynamic vulcanization process and provide a thermoplas-tic elastomer product with excellent physical properties and oil resistance.Suitable hydrosilylation agents are methylhydrogen polysiloxanes, methylhydrogen dimethyl-siloxane copolymers,bis(dimethylsilyl)alkanes, and bis(dimethylsilyl)benzene.27Platinum catalyst concentrations of0.1 to4ppm are sufficient.The preparation is done by mixing the rubber and silicone hydride at180°C.Then a solution of the platinum catalyst is added.The rubber is dynamically vulcanized by mixing until maximum torque is reached.8.6PROPERTIES8.6.1Silicone RubberSilicone rubber consists essentially of silicone polymers andfillers.Silic-one rubber formulations with molecular weights of more than100kDaltonand canflow,in contrast to other polymers.8.6.1.1HTV-silicone rubberSilicone polymers for solid silicone rubber(HTV-silicone rubber)havemolecular weights of500kDalton to1000kDalton,yet exhibit a pastyconsistency.8.6.1.2RTV-silicone rubberPourable silicone rubber(RTV-silicone rubber)has a liquid consistencyand molecular weights in the range of10kDalton to20kDalton.8.6.2Thermal PropertiesThe service temperatures of silicones cover a wide range,from−60to +250°C.Silicone rubber retains its elasticity to temperatures down to −60°C.The glass transition temperature is120°C.At temperatures greater than150°C silicone rubbers are superior to other elastomers with respect totheir thermal properties.28Silicone rubber exhibits aflash point of750°Cand an excellentflame retardancy.However,on combustion,it releasestoxic or corrosive gases.8.6.2.1Boron Siloxane CopolymersPolymers containing boron within the polymer are high temperature oxida-tively stable materials.It has been known that the addition of a carboranewithin a siloxane polymer significantly increases the thermal stability ofsuch siloxane polymers.29Hybrids of organic and inorganic components,made from1,7-Bis(chlorotetramethyldisiloxy)-m-carborane,1,3-dichloro-tetramethyldisiloxane and1,4-dilithio-1,3-butadiyne are shown in Figure8.7.Oxidative crosslinking in air is found for poly(m-carborane-di-methyl-siloxane)around420°C.21Such polymers can be converted into ceramicsSi OSi C CSi OSi CH 3CH 3CH 3CH 3Z H 3C H 3C H 3C H 3C CCCCSi O Si 33H 3C H 3C Si O Cl Si C C Si O Si Cl CH 33CH 33CH 33CH 33Z Z=B 10H 10C C Li Li Si O Si Cl ClCH 3CH 333Figure 8.7:Polymers from 1,7-Bis(chlorotetramethyldisiloxy)-m -carborane,1,3-dichlorotetramethyldisiloxane and 1,4-dilithio-1,3-butadiyneby pyrolysis.Carbonfibers coated with poly(carborane-siloxane-acetyl-ene)can be protected against oxidation at elevated temperatures.308.6.2.2Microcellular CeramicsMicrocellular foams were produced by means of poly(methyl methacryl-ate)as a sacrificial templating agent.Poly(methyl methacrylate)micro-beads,were mixed in with a methylsilicone resin powder.The samples were heated up to300°C and after one hour pyrolyzed at1200°C.A sili-con oxycarbide(SiOC)ceramic microcellular foam was obtained.318.6.3Electrical PropertiesSilicone rubbers and resins are very efficient in insulating.The dielectric strength,the resistivity,and the dielectric constant do not change signifi-cantly with temperature.8.6.4Surface Tension PropertiesUnmodified silicones exhibit hydrophobic properties.When spread out asfilms they impart water repellency to the carrier material.The surface tension is only around30mN/m.Silazanes significantly improve water-repellent properties of silic-one resins.19Examples of hexaorganodisilazanes include hexamethyldis-ilazane,1,3-dihexyltetramethyldisilazane,1,3-di-tert-butyltetramethyldis-ilazane,1,3-di-n-butyltetramethyldisilazane,and1,3-diphenyltetramethyl-disilazane.8.6.5AntioxidantsIron-containing polysilazanes exhibit an antioxidation effect on silicone oil and rubber.32This type of polymer was synthesized by the polycondensa-tion of silazane lithium salts with iron trichloride.The synthesis is shown in Figure8.8.The gelling time of a silicone oil increased from3to1000 hours at300°C in air by an addition of5%of polysilazane.8.6.6Gas PermeabilitySilicones have an extraordinarily high gas permeability.Theyfind use in medical applications,e.g.,as contact lenses,so that the oxygen in air canSi N Si N Si N CH 3H 3C H 3C H 3CH H CH 3BuLi SiN Si N Si N CH 33H 3C H 3C H 3C H H CH 3Li SiN Si N Si N CH 33H 3C H 3C H 3CH Li CH 3Li BuLi Si N Si N Si N CH 33H 3C H 3C H 3C Li Li CH 3Li Si Si N CH 3H 3C CH 3CH 3Si Si N 3H 3H 3C Li H 3C Si Si NCH 3H 3CH 3CH 3Li FeCl 3Si Si N CH 3H 3CH 33Li Fe Li CH 3H 3C CH 3N Si Si Li H 3C H 3CH 3NSi SiCH 3H 3C Figure 8.8:Synthesis of Iron-containing Polysilazanes。
有机硅树脂
R= Me,Ph等; 可相同, 也可不同
RO SiCH=CH2
SiCHCH2OR
SiCHCH2OR SiCHCH2OR
SiCHCH2OR
SiCH3 RO
SiCH3
RO - ROH
SiCH2
SiCHCH2OR + ROH OR
SiCH2CH2Si
过氧化型硅树脂具 有无溶剂化、低温 固化、贮存期长等 优点,但成本高; 可用作浸渍漆、胶 粘剂、层压板等。
两种交联机制:
过氧化物
Si CH CH2 + CH3 Si
过氧化物
Si CH3 + CH3 Si
Si CH2CH2CH2 Si Si CH2CH2 Si
ORR
Si O Si O Si O Si O Si
R
O
R R
O
R
R
Si O Si O Si O Si O Si O
R
OR
R
O
O Si O
R Si O
溶剂:甲苯、醋酸丁酯、异丙醇
过氧化硅树脂的制备——过氧化物引发交 联硅树脂
特点:过氧化物引发交联硅树脂与加成型硅树脂的基础树脂相似,其化学结
构中含有乙烯基基团,在加热及过氧化物引发下,使乙烯基双键打开而合成 三维网状高聚物。其过程与高温硅橡胶相同。这种硅树脂具有良好的电气绝 缘性、防水性、耐高低温性能等。树脂的制造工艺与缩合型相似。
碳 化 物
不能和氧形成 长链状分子
碳与氧能以双 键结合形成羟 基
两个碳原子间 能以单键、双 键、三键相结
多只能得到 14个硅原子 化合物
生水解反应,这一 反应是合成有机硅 聚合物的基础
合
结论:只有以Si—O键为主链形成的有机硅聚合物才能赋予材料以耐热性和化学稳定性。
有机硅树脂及其应用.ppt
耐候性
机械强 度
耐溶剂 性 粘接性 相溶性
由于难以产生由紫外线引起的 除丙烯酸类树脂外,耐候性 游离基反应,也不易产生氧化 好的树脂不多。 反应,因此耐候性极佳。
由于分子间引力小,有效交联 密度低,因此一般的机械强度 (弯曲、抗张、冲击、耐擦伤 性等)较弱。
与机械强度同理,耐各种有机 溶剂性差。
对金属和塑料等基材的粘接性 差。
(C6H5)2SiCl2
Si-OH键 可同时含有多个硅-醇键。 容易脱水形成硅氧烷,活性比有机醇大得多,其活性硅醇结 构及反应条件,在R相同的条件下有机硅醇的反应活性为: RSi(OH)3>R2Si(OH)2>R3SiOH 对于硅羟基数相同的情况,R越大越稳定。
Si-OR键 Si-OR键的热稳定性较高,但随烷基增大及支化度提高下降。 当苯基取代烷基后,可提高其耐热性。 Si-OR键在碱金属或 氢氧化物存在下,其热稳定性明显下降。 Si-OR还可被质子 酸、羧酸、酸酐、卤化物、金属及其氢化物、水及醇等断裂, 并生成硅氧烷或相应的含硅化合物。 Si-OR的水解反应活性 随R的空间位阻增大而降低,并随硅原子上OR的增加而提高。
H+/OH-
Si O Si + H2O
Si OH + HO Si
Si-O-Si键高反应活性的来源: ➢ 硅原子体积较大,硅上取代基很难完全屏蔽硅原子,Si-O键键
长较长,转动能较小,很容易受各种试剂进攻; ➢ 硅原子容易极化并带有正电性,使其可能与其它元素结合; ➢ Si-O键本身强极性导致其对极性试剂的作用很敏感。
Si Cl + M2On
Si O Si + MCln
Si Cl + M(OH)n
Si OH + MCln
有机硅方面专业的书籍
有机硅是一种重要的高分子材料,广泛应用于建筑、电子、纺织、医疗等领域。
以下是一些关于有机硅的专业书籍推荐:1. 《有机硅化学》:这本书详细介绍了有机硅的化学性质、合成方法和应用技术,是学习有机硅化学的基础教材。
2. 《有机硅材料科学》:这本书从材料科学的角度出发,系统地介绍了有机硅的基本性质、结构与性能关系、加工工艺和应用技术。
3. 《有机硅聚合物》:这本书主要介绍了有机硅聚合物的合成、结构与性能、加工和应用,对于研究有机硅聚合物的学者和工程师具有很高的参考价值。
4. 《有机硅材料及其应用》:这本书详细介绍了有机硅材料的分类、性质、制备方法和应用领域,对于从事有机硅材料研究和开发的人员具有很大的帮助。
5. 《有机硅橡胶》:这本书主要介绍了有机硅橡胶的合成、结构与性能、加工工艺和应用,对于研究有机硅橡胶的学者和工程师具有很高的参考价值。
6. 《有机硅涂料》:这本书详细介绍了有机硅涂料的组成、性能、制备方法和应用领域,对于从事有机硅涂料研究和开发的人员具有很大的帮助。
7. 《有机硅电子材料》:这本书主要介绍了有机硅电子材料的合成、结构与性能、加工工艺和应用,对于研究有机硅电子材料的学者和工程师具有很高的参考价值。
8. 《有机硅光学材料》:这本书详细介绍了有机硅光学材料的合成、结构与性能、加工工艺和应用,对于从事有机硅光学材料研究和开发的人员具有很大的帮助。
9. 《有机硅生物医学材料》:这本书主要介绍了有机硅生物医学材料的合成、结构与性能、加工工艺和应用,对于研究有机硅生物医学材料的学者和工程师具有很高的参考价值。
10. 《有机硅纳米材料》:这本书详细介绍了有机硅纳米材料的合成、结构与性能、加工工艺和应用,对于从事有机硅纳米材料研究和开发的人员具有很大的帮助。
有机硅树脂相关参考书
有机硅树脂相关参考书有机硅树脂,这个名字听起来像是个高大上的化学术语,其实没那么复杂。
想象一下,你手里拿着一瓶透明的液体,像是魔法药水一样。
哇,这可不是普通的胶水哦,这可是有机硅树脂!它在我们生活中可谓是无处不在,给我们的生活带来了不少便利。
咱们得先聊聊它的特性,像防水、防腐蚀,这些可都是它的强项。
你说这东西有多牛?嘿,居然能把水珠打得飞起,真是名副其实的“水性涂鸦”!再来聊聊它的用途。
有没有想过,平常我们用的洗碗液、沐浴露,里面可能就有有机硅的身影。
想象一下,洗完碗,手上还留着一丝丝滑滑的感觉,那是因为有机硅在里面“加分”呢。
还有那些高档化妆品,光是闻上去就像春天的花朵,实际上可能也是靠它来增加光泽感和滑顺度。
是不是觉得有机硅树脂真的是个万金油?再说说这玩意儿的制作过程。
听说这些小分子在工厂里可是大显身手,经过一系列的化学反应,变成我们所需的树脂。
简直就像变魔术一样,最初的液体经过搅拌、加热,再加上一些神秘的成分,最后呈现出光彩照人的产品。
是不是觉得化学也可以这么有趣?有机硅树脂的好处可不仅限于此。
比如它的耐热性,嘿,咱们做菜的时候,有时锅里的油可热得很呢。
这时候,如果用上有机硅树脂的锅具,那就放心大胆了,绝对不会被烫坏。
它还有个超厉害的功能,就是不易燃!想想看,万一厨房里出现了小火苗,有机硅可会帮你一把,让火焰变得不再那么可怕。
再说到环保,这可是现代人的热门话题。
有机硅树脂一般比较稳定,不容易分解,少了有害物质释放,能算得上是环保材料的一员。
是不是觉得这小东西竟然还有这样的责任感?真是不得不让人赞叹。
许多厂家也在不断研发新技术,力求让有机硅树脂在使用后能更好地回收利用,真的是在为地球出力。
再提到一些更高端的应用,像航空航天、电子设备,这些领域可是对材料的要求特别高。
有机硅树脂在这些地方表现得就像个超级英雄,能够承受极端环境,保证设备的正常运作。
咱们用的手机、电脑,里面可能就藏着有机硅的身影,真是让人心里默默点赞。
有机硅树脂产品规格技术书TDS
200kg 铁桶或包装。35℃以下贮存,防止阳光直射,切勿靠近热源。按易燃品贮运。保存期半年(超期分析合格仍可使用)。
有机硅树脂产品规格技术书
一、主要成份
甲基聚硅氧烷树脂
二、技术指标
项目
指标
外观
无色或淡黄色透明液体,无机械杂质。
PH 值
6~7
固含量(120℃, 2h),%
50±1
凝胶时间(200℃, min)
10~30
三、性能及用途
本品具有耐高温、电气绝缘、防潮、防水等优良性能。是制造耐高温硬质云母板及玻纤布层压板理想的粘接剂,还可用作大理石、地板砖的耐磨、抛光处理剂。本产品特性较脆硬,固化程度高,固化过程中挥发份少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2具体工艺 改性硅树脂不粘涂料的组成:基体树脂(黏结剂)、 颜料、填料、环境友好型溶剂和助剂等。
2.1基体树脂(黏结剂) 现阶段,有机硅树脂不粘涂料用基体树脂主 要为聚酯有机硅树脂,其中在市场上应用比较成熟的有:德国迪高的HTL系 列产品、台湾长川的1400系列产品、台湾高点的9825等。2007年底,本公 司1062系列产品也在市场上问世。在一年多的时间里,得到了行业内很多 客户的认可和好评。本公司1062系列产品采用饱和二元酸与聚硅氧烷低聚 物及高级多元醇共聚而制得,具有丰满度好、光泽高、耐温性好、硬度高、 耐磨性强等优点,非常适合用作中、低温固化的不粘涂料。为了进一步提 高附着力,基体树脂中一般也加入少量的环氧树脂,用得较多的是601(E20)。 2.2颜料 不粘涂料多以黑色为主,用得最多的黑色颜料是高色素炭 黑、德固赛的U黑以及日本三菱的MA-100、卡博特M-1300等,当然,国产 高色素炭黑也可以选用,但黑度可能会差一点。平底锅的外涂也有各种颜 色,如红色、黄色、蓝色等,其所用颜料和普通工业漆差别不大。 2.3填料 不粘涂料所用填料多以滑石粉为主。滑石粉具有很好的耐 高温性能,而且在高温下可以表现出很好的防止开裂的作用。一般为粒径 很细的(1500目左右)滑石粉,当然也可以把粒径较大的滑石粉经过研磨 以后使用。
指 类别 品种 耐高温有机硅树脂 牌号 -------> 外观
标
( 耐高温有机硅树脂 )
固含 量 % ≥50 粘度 秒/T4,25℃ 干燥时 间 ≤2h/200 ℃ ≤2h/200 ℃ ≤2h/200 ℃ ≤2h/200 ℃ 固化 时间 耐热性 > 200h/200 ℃ > 200h/200 ℃ > 200h/200 ℃ > 200h/200 ℃ 热失重 3h/250 ℃,% ≤5 特性和主要用途
50 ±2
60 ±2 60 ±2 60 ±2 60 ±2
20-40
>200 >150 >100 >250
≤1
<2 <2 <2 <2
2h/1 80℃
5-8 5-8 5-8 5-8
芳 烃
酯 类 酯 类 酯 类 酯 类
耐高温、高硬 度、附着力强
发热盘烤箱、煤 气灶
耐高温、高光 不粘锅内涂、外 泽、高硬度(3H) 涂及家电用涂装 耐高温、高光 不粘锅内涂、外 泽、高硬度(3H) 涂及家电用涂装 高光泽、耐冲 击、附着力强 耐高温、高硬 度(>3H)、高光 泽、附着力强 高温彩色外涂 不粘锅内涂、外 涂及家电用涂装
表1.1 有 机硅树 脂的种 类 及优点、 缺点、 应用比 较表
划分方 式
主链构成 划 分
类型
纯硅
改性硅 缩合型
优点
缺点
应用
固化 反 应 机 理
固化条件
耐热、强度高、枯接 性好、成本低 等, 不发泡、形态小、反 应易控制
存在发泡、官能度控例 困难等
涂料、线圈浸渍、层压板、 借水剂、胶粘剂等
涂料、层压板、胶粘剂、套 管、线圈漆等
电子元器件及设备用涂料 电子元器件用涂料 电子元器件及精密仪器封装 涂料与浸渍漆 线圈浸渍、壳体成型 涂料、憎水剂等 涂料、憎水剂等
不需加热设备 不需加热设备、投资 省 固化速度快、不需溶 剂 作业性、浸渍性好 不发泡、不污染环境 等 使用安全
产品形态
溶剂型 无溶剂型 水基型 乳液型
2h/180 ℃ 2h/180 ℃ 2h/220 ℃
2h/300℃ 2h/300℃
常温快干,硬度高,附着力 强,耐热优异 适用于高温使用的大型设备, 施工性好 常温快干,硬度高,耐冲击, 耐热优异,适用于高温使用 大型设备
单组 分室 温干 燥型
WJ2B 甲基 苯基 硅树 脂 WJ-3
≥50
≥20
2h/300℃
不粘涂料的特性: ①表面能低,防污性好; ②低毒或无毒(不粘锅内涂); ③对底材润湿性好; ④固化条件相对温和; ⑤硬度高,热硬度、耐溶剂性、耐磨性、柔韧性和耐候性好; ⑥经济环保。 不粘涂料用途:电子工业、纺织工业、塑料和橡胶工业、造纸 和纤维工业、医疗机械等。可以用于辊筒抗粘外套,广泛用于 纺织业、印染业、造纸业、橡胶加工、塑料加工等领域各种辊 筒、模具、管道、发动机内壁、食品机械、印刷机械料斗、煎 锅烘盘的防粘涂层、保险刀的防锈增滑涂层等。 氟树脂不粘涂料和有机硅树脂不粘涂料对比:前者存在固化温 度高、施工工艺复杂、涂膜光泽低、颜色单一等缺点,因此应 用范围受到限制;有机硅树脂不粘涂料具有固化温度相对较低、 光泽较高、色彩多变、涂覆方便等优点,在实际施工应用中很 受用户欢迎。当然,氟树脂不粘涂料在不粘性方面比有机硅树 脂不粘涂料略有优势。本公司研发的有机硅树脂系列产品特别 推荐用于:各种饮具、厨具、烤具、电钣煲内胆、面包桶、油 炸锅、烤肉盘、烤饼器、烤面包机、电磁炉面板及电烫斗底板 等家用电器产品的耐高温不粘涂层;亦适用于各种工业不粘用 途。
1053
25-60
耐高温涂料,电机变压器线 圈漆
甲基 苯基 硅≥55
25-65
<6
耐高温涂料
1152
≥55
25-75
≤3
电机绝缘用玻璃布,玻璃丝 套管漆 云母板,云母带,电容器, 纸张等绝缘浸渍基料 俗称玻璃树脂,透明硬化涂 层 电子显像管阳极保护涂层 耐高温云母粉的黏结剂,电 阻器灌封料和高温涂料
醋酸 丁酯
成膜快、光亮、 高档建筑外墙,罩 附着力强、憎 光涂料 水、防沾污、 耐候、单组份、 室温自干
50± 2
>50
≤3mi n
醋酸 丁酯 丁醇
室温成膜快、 附着力强、防 潮防污、污渍 易于去除,耐 黑墨水污染性 (GB927488)≥9级
专用于地砖、瓷砖 表面防污
家电用有机硅树脂-------> 查看产品说明 牌 号 指标 外 观 固 含 量 % 粘度 秒/T4,25 ℃ 表 干 时 间 室 温 固化 时间 270 ℃, 分钟 溶 剂 特性 主要用途
105 4-1
105 4-2 105 4-3 105 4-4 105 4-5
浅 黄 色 透 明 粘 稠 液 体
应用领域
鉴于上述特性,有机硅树脂主要作为绝缘漆(包括清漆、瓷漆、色漆、浸 渍漆等)浸渍H级电机及变压器线圈, 以及用来浸渍玻璃布、玻布丝及石 棉布后制成电机套管、电器绝缘绕组等。用有机硅绝缘漆粘结云母可制 得大面积云母片绝缘材料,用作高压电机的主绝缘。此外,硅树脂还可 用作耐热、耐候的防腐涂料,金属保护涂料,建筑工程防水防潮涂料, 脱模剂,粘合剂以及二次加工成有机硅塑料,用于电子、电气和国防工 业上,作为半导体封装材料和电子、电器零部件的绝缘材料等。 硅树脂的固化交联大致有三种方式:一是利用硅原子上的羟基进行 缩水聚合交联而成网状结构,这是硅树脂固化所采取的主要方式,二是 利用硅原子上连接的乙烯基,采用有机过氧化物为触媒,类似硅橡胶硫 化的方式:三是利用硅原子上连接的乙烯基和硅氢键进行加成反应的方 式,例如无溶剂硅树脂与发泡剂混合可以制得泡沫硅树脂。因此,硅树 脂按其主要用途和交联方式大致可分为有机硅绝缘漆、有机硅涂料、有 机硅塑料和有机硅粘合剂等几大类。
加成型 过氧化物 型硅 树脂
易催化剂中毒
浸渍漆、层压板等 用作浸渍漆、胶粘剂、层压 板等
无溶剂化、低退固化、 空气会阻碍树脂的固化 贮存期长等
加热固化 型
常温干燥 型 常温固化 型 紫外线固 化型
粘接性及电气性能好
要加热设备,在精细的 电子元器件上使用 有困难
固化不完全 需严格密封保管 粘接性差 发泡、污染环境、易燃 等 枯度高 耐水性差 耐水性、耐热性差
有机硅树脂教材
内容提要
有机硅树脂简介 成分结构 生产工艺 应用领域(有机硅树脂在不粘系列涂料中的应用) 发展前沿(有机硅改性丙烯酸酯和环氧改性有机硅 树脂) 市场与发展趋势(西欧,日本,美国,中国) 结束语
双组 分室 温交 联
WJ-1
≥50
<
20-55 3h/25℃
300h/200 ℃ 0.5h/300℃
双组分,常温固化,室温干 燥,适用于高温使用的大型 设备
有机硅树脂在不粘系列涂料中的应用
不粘性涂料是一种涂层表面不易被其它黏性物质 所黏附或黏着后易被除去的特种涂料。这种涂料由 于其所形成的表面能极低、摩擦系数小、易滑动等 特点,所以具有不粘性。按涂料的介质与状态不同, 不粘涂料可分为水性、溶剂型和粉末等。水性不粘 涂料主要为氟树脂涂料(特氟龙为主),溶剂型不 粘涂料以有机硅树脂为主,粉末不粘涂料现阶段应 用还不广泛。下文主要讨论合成有机硅树脂应用于 溶剂型不粘涂料。
成分结构
硅树脂的固化通常是通过硅醇缩合形成硅氧链节来实现的。当缩合反 应在进行时,由于硅醇浓度逐渐减少,增加了空间位阻,流动性差,致 使反应速率下降。因此,要使树脂完全固化,须经过加热和加入催化剂来加 速反应进行。许多物质可起硅醇缩合反应的催化作用,它们包括酸和碱, 铅、钴、锡、铁和其它金属的可溶性有机盐类,有机化合物如二丁基二 月桂酸锡或N,N,N',N'一四甲基胍盐等。 硅树脂最终加工制品的性能取决于所含有机基团的数量(即R与Si 的比值)。一般有实用价值的硅树脂,其分子组成中R与Si的比值在 1.2~1.6之间。一般规律是,R:Si的值愈小,所得到的硅树脂就愈能 在较低温度下固化;R:Si的值愈大,所得到的硅树脂要使它固化就需 要在200材250℃的高温下长时间烘烤,所得的漆膜硬度差,但热弹性要 比前者好得多。 此外,有机基团中甲基与苯基基团的比例对硅树脂性能也有很大的 影响。有机基团中苯基含量越低,生成的漆膜越软,缩合越快,苯基含 量越高,生成的漆膜越硬,越具有热塑性。苯基含量在20~60%之间, 漆膜的抗弯曲性和耐热性最好。此外,引入苯基可以改进硅树脂与颜料 的配伍性,也可改进硅树脂与其它有机硅树脂的配伍性以及硅树脂对各 种基材的粘附力。