第二十章--数据的分析导学案整理版
第20章《数据的分析》单元复习--新人教版初中数学导学案八年级上册《数据的分析》【一流精品】
课题: 第二十章 数据的分析复习导学案【学习目标】1.理解统计的基本思想是用样本的特征去估计总体的特征,会用平均数、中位数、众数、极差、方差进行数据处理。
2.经历探索数据的收集、整理、分析过程,在活动中发展学生的统计意识和数据处理的方法与能力。
3.培养合作交流的意识与能力,提高解决简单的实际问题能力,形成一定的数据意识和解决问题的能力,体会特征数据的应用价值。
【学习重点】应用样本数字特征估计总体的相应特征,处理实际问题中的统计内容。
【学习难点】方差概念的理解和应用。
一、知识框架:二、数据的代表1、算术平均数:把一组数据的总和除以这组数据的个数所得的商.公式:nx x x n +⋅⋅⋅++21 使用:当所给数据1x ,2x ,…,n x 中各个数据的重要程度相同时,一般使用该公式计算平均数. 2、加权平均数:若n 个数1x ,2x ,…,n x 的权分别是1w ,2w ,…,n w ,则n n n w w w w x w x w x +⋅⋅⋅+++⋅⋅⋅++212211,叫做这n 个数的加权平均数.使用:当所给数据1x ,2x ,…,n x 中各个数据的重要程度(权)不同时,一般选用加权平均数计算平均数. 权的意义:权就是权重即数据的重要程度.常见的权:1)数值、2)百分数、3)比值、4)频数等。
3、组中值:数据分组后,一个小组的组中值是指这个小组的两个端点的数的平均数,统计中常用各组的组中值代表各组的实际数据.4、中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 意义:在一组互不相等的数据中,小于和大于它们的中位数的数据各占一半.5、众数:一组数据中出现次数最多的数据就是这组数据的众数.特点:可以是一个也可以是多个. 用途:当一组数据中有较多的重复数据时,众数往往是人们所关心的一个量.6、平均数、中位数、众数的区别:平均数能充分利用所有数据,但容易受极端值的影响;中位数计算简单,它不易受极端值的影响,但不能充分利用所有数据;当数据中某些数据重复出现时,人们往往关心众数,但当各个数据的重复次数大致相等时,众数往往没有意义.考向1:算数平均数1、数据-1,0,1,2,3的平均数是( )A .-1B .0C .1D .52、样本数据3、6、x 、4、2的平均数是5,则这个样本中x 的值是( )A .5B .10C .13D .153、一组数据3,5,7,m ,n 的平均数是6,则m ,n 的平均数是( )A .6B .7C .7.5D .154、若n个数的平均数为p,从这n个数中去掉一个数q,余下的数的平均数增加了2,则q的值为()A.p-2n+2 B.2p-n C.2p-n+2 D.p-n+25、已知两组数据x1,x2,…,x n和y1,y2,…,y n的平均数分别为2和-2,则x1+3y1,x2+3y2,…,x n+3y n 的平均数为()A.-4 B.-2 C.0 D.2考向2:加权平均数6、如表是10支不同型号签字笔的相关信息,则这10支签字笔的平均价格是()A.1.4元 B.1.5元 C.1.6元 D.1.7元7、对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是()A.2.2 B.2.5 C.2.95 D.3.08、为了调查某一路口某时段的汽车流量,记录了15天同一时段通过该路口的汽车辆数,其中有2天是142辆,2天是145辆,6天是156辆,5天是157辆,那么这15天通过该路口汽车平均辆数为()A.146 B.150 C.153 D.16009、某校为了了解学生的课外作业负担情况,随机调查了50名学生,得到他们在某一天各自课外作业所用时间的数据,结果用右面的条形图表示,根据图中数据可得这50名学生这一天平均每人的课外作业时间为()第9题图第7题图A.0.6小时 B.0.9小时 C.1.0小时 D.1.5小时10、某学校举行理科(含数学、物理、化学、生物四科)综合能力比赛,四科的满分都为100分.甲、乙、丙三人四科的测试成绩如下表:综合成绩按照数学、物理、化学、生物四科测试成绩的1.2:1:1:0.8的比例计分,则综合成绩的第一名是()A.甲 B.乙 C.丙 D.不确定11、某班四个学习兴趣小组的学生分布如图①②,现通过对四个小组学生寒假期间所读课外书情况进行调查,并制成各小组读书情况的条形统计图③,根据统计图中的信息:这四个小组平均每人读书的本数是( )A .4B .5C .6D .712、某次射击训练中,一小组的成绩如下表所示:若该小组的平均成绩为8.7环,则成绩为9环的人数是( )A .1人B .2人C .3人D .4人13、下表中若平均数为2,则x 等于( )A .0B .1C .2D .3考向3:中位数14、在数据1、3、5、5、7中,中位数是( )A .3B .4C .5D .715、六个数6、2、3、3、5、10的中位数为( )A .3B .4C .5D .616、已知一组数据:-1,x ,1,2,0的平均数是1,则这组数据的中位数是( )A .1B .0C .-1D .217、若四个数2,x ,3,5的中位数为4,则有( )A .x=4B .x=6C .x ≥5D .x ≤518、某市一周每天最高气温(单位:℃)情况如图所示,则这组表示最高气温数据的中位数( )A .22B .24C .25D .2719、为了解九年级学生的视力情况,某校随机抽取50名学生进行视力检查,结果如下:第13题表格第25题图 第18题图这组数据的中位数是( )A .4.6 B .4.7 C .4.8 D .4.920、已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a 岁,中位数为b 岁,则下列结论中正确的是( )A .a <13,b=13B .a <13,b <13C .a >13,b <13D .a >13,b=13考向4:众数21、有一组数据:1,3,3,4,5,这组数据的众数为( )A .1B .3C .4D .522、若一组数据8,9,10,x ,6的众数是8,则这组数据的中位数是( )A .6B .8C .8.5D .923、某中学随机调查了15名学生,了解他们一周在校参加体育锻炼时间,列表如下:则这15名同学一周在校参加体育锻炼时间的中位数和众数分别是( )24、七名学生在一分钟内的跳绳个数分别是:150、140、100、110、130、110、120,设这组数据的平均数是a ,中位数是b ,众数是c ,则有( )A .c >b >aB .b >c >aC .c >a >bD .a >b >c25、学校“清洁校园”环境爱护志愿者的年龄分布如图,那么这些志愿者年龄的众数是( )A .12岁B .13岁C .14岁D .15岁三、数据的波动1、极差: 一组数据中的最大数据与最小数据的差叫做这组数据的极差.2、方差:各个数据与平均数之差的平方的平均数,记作2s .用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公 式是:()()()[]2222121x x x x x x ns n -+⋅⋅⋅+-+-= 意义:方差(2s )越大,数据的波动性越大,方差越小,数据的波动性越小.结论:①当一组数据同时加上一个数a 时,其平均数、中位数、众数也增加a ,而其方差不变;②当一组数据扩大k 倍时,其平均数、中位数和众数也扩大k 倍,其方差扩大2k 倍. 3、标准差:标准差是方差的算术平方根.()()()n x x x x xx s n 22221-+⋅⋅⋅+-+-=考向5:极差1、某班数学学习小组某次测验成绩分别是63,72,49,66,81,53,92,69,则这组数据的极差是( )A .47B .43C .34D .292、若一组数据-1,0,2,4,x 的极差为7,则x 的值是( )A .-3B .6C .7D .6或-33、一次英语测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法正确的是( )A .中位数是91B .平均数是91C .众数是91D .极差是784、某中学随机地调查了50 名学生,了解他们一周在校的体育锻炼时间,结果如表:则50个数据的极差和众数分别是( )A .15,20B .3,20C .3,7D .3,55、王明同学随机抽某市10个小区所得到的绿化率情况,结果如下表:则关于这10个小区的绿化率情况,下列说法错误的是( )A .中位数是25%B .众数是25%C .极差是13%D .平均数是26.2%6、某射击小组有20人,教练根据他们某次射击命中环数的数据绘制成如图的统计图,则这组数据的众数和极差分别是( )第7题图A .10、6B .10、5C .7、6D .7、5 第8题图7、在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是( )A .众数是90B .中位数是90C .平均数是90D .极差是158、某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是( )A .1~2月份利润的增长快于2~3月份利润的增长B .1~4月份利润的极差于1~5月份利润的极差不同C .1~5月份利润的众数是130万元D .1~5月份利润的中位数为120万元9、如图是H 市2013年3月上旬一周的天气情况,右图是根据这一周每天的最高气温绘制的折线统计图,下列说法正确的是( )A .这周中温差最大的是星期一B .这周中最高气温的众数是25℃C .这周中最高气温的中位数是25℃D .折线统计图可以清楚地告诉我们这一周每天气温的总体情况第6题图考向6:方差10、一组数据:-2,-1,0,1,2的方差是( )A .1B .2C .3D .411、数据0,-1,6,1,x 的众数为-1,则这组数据的方差是( )A .2B .534 C .2 D .526 12、某校将举办一场“中国汉字听写大赛”,要求各班推选一名同学参加比赛,为此,初三(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是0.2,乙的成绩的方差是0.8.根据以上数据,下列说法正确的是( )A .甲的成绩比乙的成绩稳定B .乙的成绩比甲的成绩稳定C .甲、乙两人的成绩一样稳定D .无法确定甲、乙的成绩谁更稳定13、四名运动员参加了射击预选赛,他们成绩的平均环数x 及其方差2s 如表所示.如果选出一个成绩较好且状态稳定的人去参赛,那么应选( )A .甲B .乙C .丙D .丁14、甲、乙两名同学进行了6轮投篮比赛,两人的得分情况统计如下:下列说法不正确的是( )A .甲得分的极差小于乙得分的极差B .甲得分的中位数大于乙得分的中位数C .甲得分的平均数大于乙得分的平均数D .乙的成绩比甲的成绩稳定15、如图是某选手10次射击成绩条形统计图,根据图中信息,下列说法错误的是( )A .平均数为7B .中位数为7C .众数为8D .方差为416、在2014年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是( )A .18,18,1B .18,17.5,3C .18,18,3D .18,17.5,117、样本方差的计算式()()()[]222212303030201-+⋅⋅⋅+-+-=n x x x s 中,数字20和30分别表示样本中的( ) 第16题图第15题图A .众数、中位数B .方差、标准差C .样本中数据的个数、平均数D .样本中数据的个数、中位数18、如果一组数据a 1,a 2,…,a n 的方差是2,那么一组新数据2a 1,2a 2,…,2a n 的方差是( )A .2B .4C .8D .1619、某气象小组测得连续五天的日最低气温并计算出平均气温与方差后,整理得出下表(有两个数据被遮盖).被遮盖的两个数据依次是( )A .2℃,2B .3℃,56C .3℃,2D .2℃,58 三、统计量的选择※典型例题:考向7:统计量的选择1、有19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学的( )A .平均数B .中位数C .众数D .方差2、歌唱比赛有二十位评委给选手打分,统计每位选手得分时,会去掉一个最高分和一个最低分,这样做,肯定不会对所有评委打分的哪一个统计量产生影响( )A .平均分B .众数C .中位数D .极差3、某商场对上月笔袋销售的情况进行统计如下表所示:经理决定本月进笔袋时多进一些蓝色的,经理的这一决定应用了哪个统计知识( )A .平均数B .方差C .中位数D .众数4、体育课上,两名同学分别进行了5次立定跳远测试,要判断这5次测试中谁的成绩比较稳定,通常需要比较这两名同学成绩的( )A .平均数B .中位数C .众数D .方差5、期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映处的统计量是( )A .众数和平均数B .平均数和中位数C .众数和方差D .众数和中位数6、下列选项中,能够反映一组数据离散程度的统计量是( )A . 平均数B .中位数C .众数D .方差四、当堂检测、及时反馈1、一组数据23、27、20、18、X 、12,它的中位数是21,则X 的值是 .2、小华的数学平时成绩为92分,期中成绩为90分,期末成绩为96分,若按3:3:4的比例计算总评成绩,则小华的数学总评成绩应为( )A .92B .93C .96D .92.73、关于一组数据的平均数、中位数、众数,下列说法中正确的是( )A.平均数一定是这组数中的某个数B. 中位数一定是这组数中的某个数C.众数一定是这组数中的某个数D.以上说法都不对4、数据92、96、98、100、X 的众数是96,则其中位数和平均数分别是( )A.97、96B.96、96.4C.96、97D.98、975、一组数据X 1、X 2…X n 的极差是8,则另一组数据2X 1+1、2X 2+1…,2X n +1的极差是_________。
人教八下第二十章 数据的分析教学导学案
第二十章数据的分析20.1 数据的集中趋势20.1.1 平均数第1课时平均数和加权平均数学习目标1.使学生理解数据的权和加权平均数的概念;2.使学生掌握加权平均数的计算方法.重点:会求加权平均数.难点:对“权”的理解.学习过程1. (1)数据:4,5,6,7,8的平均数是 .(2)2、8、7、2、7、7、8、7、6的算术平均数为 .(3)一组数据中有3个x1和8个x2,这组数据中共有个数据;它们的平均数为 .小学所学平均数的计算公式是2.某次考试A、B、C、D、E这5名学生的平均分为62分,若学生A除外,其余学生的平均得分为60分,那么学生A的得分是____ ___.3. 加权平均数:(预习新知)(1)n个数据:f1个a1,f2个a2,…,f n个a n(f1+f2+…+f n=n)它的加权平均数为x(2)权反映的是二.合作探究,生成总结探讨1.某校初二年级共有4个班,在一次数学考试中参考人数和成绩如下:求该校初二年级在这次数学考试中的平均成绩?练一练:1.在一组数据中,2出现了3次,3出现了2次,4出现了5次,则2的权为,3的权为,4的权为;这组数据的平均数为 .2.某人打靶,有1次中10环, 2次中7环,3次中5环,则平均每次中靶环.3.在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分.已知该班平均成绩为80分,则该班有人.4.在一个样本中,2出现了x1次,3出现了x2次,4出现了x3次,5出现了x4次,则这个样本的平均数为 .5.某人打靶有a次打中x环,b次打中y环,则此人平均每次中靶环.探讨2.一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占(注:权能够反映数据的相对)练一练:1、老师在计算学期总平均分的时候按如下标准:作业占100%、测验占30%、期中占35%、期末考试占35%,小关和小兵的成绩如下表:求两人的平均成绩个是多少?知识点小结:本节课我们学习了……..五、达标训练1.5个数据的平均数是205,其中一个数据为201,那么其余4个数据的平均数是( ).2. 为了鼓励市民节约用水,某居民委员会表彰了100个节约用水模范户,6月份这100户用水情况是:52户各用了1吨,30户各用了1.2吨,18户各用了1.5吨,6月份这100户平均用水的吨数为______.3. 某学生5门学科考试成绩的平均分为86分,已知其中两门学科的总分为193分,则另外三科的平均分为_______分.4. 某市广播电视局欲招聘播音员一名,对A ,B 两名候选人进行了两项素质测试,两人的两项测试成绩如右表8-1-2所示.根据实际需要,广播电视局将面试、综合知识测试的得分按3∶2的比例计算两人的总成绩,那么______(填A 或B )将被录用.5. 5位同学在“心连心”献爱心捐助活动中都捐了款,他们分别捐了5元、5元、10元、6元、4元,那么这5位同学平均每人捐款( ). A.4元 B.5元 C.6元 D.8元6. 某电视台举办青年歌手演唱大赛,7位评委给1号选手的评分如下: 9.3 8.9 9.2 9.5 9.2 9.7 9.4按规定,去掉一个最高分和一个最低分后,将其余得分的平均数作为选手的最后得分.那么,1号选手的最后得分是()分.A.9.54B.9.22C.9.32D.9.427. 一组数据的平均数是3,将这组数据每个数都扩大2倍,则所得一组新数据的平均数是( ). A.3 B.5 C.6 D. 无法确定8. 某校八年级共有四个班,在一次英语测试中四个班的平均分(单位:分)与各班参考人数如表8-1-3:则本校八年级参加这次英语测试的所有学生的平均分为(保留3个有效数字)( ).9. 某公司欲招聘一名公关人员,对应聘者A,B,C,D 进行面试,并从三个方面给应聘者打分,最后打分 结果(单位:分)如表8-1-4所示:已知专业知识、工作经验、仪表形象的重要性之比为6:3:1,如果你是人事主管,会录用哪一位应聘者?试说明理由.10. 某校规定:学生期末总评成绩由卷面成绩、研究性学习成绩、平日成绩三部分构成,各部分所占比例如图8-2-5所示.小明本学期数学学科三部分成绩分别是90分、80分、85分,求小明的期末数学总评成绩?8-1-28-1-38-1-48-2-520.1.2 中位数和众数学习目标1.通过学习了解中位数和众数的含义,能够准确确定出一组数据的中位数和众数. 2.理解中位数的概念,感知其代表数据的意义,提高解决问题能力.重点:理解中位数与众数所代表数据的意义.难点:能否准确描述出具体问题中位数和众数的意义.学习过程【预习作业】:1.已知一个样本:11、11、11、6、6、6、2、2、2、2,则样本平均数为2. 600≤x<1000的组中值为;1800≤x<2200的组中值为3.在求n个数的算术平均数时,如果x1出现f1次,x2出现f2次,…,xk出现fk次(这里f1+f2+…+fk=n)那么这n个数的算术平均数= ,这也叫做x1,x2,…,xk这k个数的加权平均数,其中f1,f2,…,fk分别叫做x1,x2,…,xk的权.4.中位数和众数(预习新知)(1)将一组数据按照的顺序排列,如果数据的个数是奇数,则称为这组数据的中位数...;如果数据的个数是偶数,则称为这组数据的中位数....(2)中位数是一个代表值,利用它分析数据可获得一些信息,例如,在一组互不相等的数据中,小于和大于它们的中位数的数据各占.(3)一组数据中出现次数最多的数据称为二.合作探究,生成总结探讨1.在一次男子马拉松比赛中,抽得12名选手的成绩(单位:分)如下:136 140 129 180 124 154 146 145 158 175 165 148(1)样本数据的中位数是多少?(2)一名选手的成绩为142分,他的成绩如何?归纳:1.如何确定一组数据的中位数?第一步:;第二步:第三步:.2.求中位数时一定要注意.(平均数、中位数都是反映一组数据集中趋势的统计量,但当某些数据与平均数偏差太大时,最好选用中位数来表达这组数据的一般水平)练一练:1.-1,3,5,8,9的中位数是;2.14,10,11,15,14,17的中位数是3.一次英语口语测试中,10名学生的得分如下:90,50,80,70,80,70,90,80,90,80.这次英语口试中学生得分中位数是.4.一组数据23、27、20、18、X、12,它的中位数是21,则X的值是5.随机抽取我市一年(按365天计)中的30天平均气温状况如下表:请你根据上述数据回答问题:(1).该组数据的中位数是什么?(2).若当气温在18℃~25℃为市民“满意温度”探讨 2. 某商店在一段时间内出售某一品牌各种规格的空调,销售台数如下表所示你能根据下面的数据为这家商店提供进货建议吗?(温馨提示:认真阅读P 132例5,然后解答此题,注意表达清楚哦!)归纳:1.众数是一组数据中出次 的数据. 众数可能是唯一的也可能是 .2.众数可以反映一定的数据信息,可以作为一组数据的代表,帮助人们在实际问题中分析并做出决策. 练一练:1.数据8、9、9、8、8、8、9、9、8、10、7、9、9、8的众数是 2.一射击运动员在一次射击练习中打出的成绩是(单位:环):• 7,8,9,8,6,8,10,7,这组数据的众数是_____ _____. 3.公园里有两群人在做游戏,两群人的年龄分别如下:甲群:13,13,15,17,15,18,12,19,11,20,17,20,14,23,25 乙群:3, 4, 4, 5, 5, 6, 6, 6,54,57,48,36,38,58,34甲群游客的年龄众数是: ,乙群游客的年龄众数是: .4.如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是( )A.24、25B.23、24C.25、25D.23、255.某商店3、4月份出售某一品牌各种规格的空调,销售台数如表所示: 根据表格回答问题:(1)、商店出售的各种规格空调中,众数是多少?(2)、假如你是经理,现要进货,6月份在有限的资金下进货单位将如何决定?知识点小结:本节课我们学习了……..六、达标测试1.青海玉树省玉权县发生7.1级大地震后,湘江中学九年级(1)班的60名同学踊跃捐款,有15人每人捐30元、14人每人捐100元、10人每人捐70元、21人每人捐50元,在这次每人捐款的数值中,中位数是2.某班7名学生的数学考试成绩(单位:分)如下:52,76,80,76,71,92,67 则这组数据的众数..是 分.3. 长沙地区七、八月份天气较为炎热,小华对其中连续十天的最高气温进行统计,依次得到以下一组数据(单位:℃):34,35,36,34,36,37,37,36,37,37.则这组数据的中位数和众数分别是_______;________.4. 某鞋店试销一款女鞋,试销期间对不同颜色鞋的销售 情况统计如表8-2-2:鞋店经理最关心的是哪种颜色的鞋最畅销,则对鞋店经理最有意义的统计量是______. 5.如8-2-3图是光明中学乒乓球队队员年龄分布的条形图.这些年龄的众数、中位数依次分别是( ). A.15,15 B.15,15.5 C.14.5,15 D.14.5,14.56. 已知一组按大小顺序排列的数据2,3,4,x ,6,9的中位数是5,那么这组数据的众数是( ). A.5.5 B.6 C.6.5 D.77. 一名射击运动员连续打靶8次,命中的环数如图8-2-4所示,这组数据的众数与中位数分别为( ). A.9与8 B.8与9 C.8与8.5 D.8.5与98. 为筹备班级的初中毕业联合会,班长对全班学生爱吃哪几种水果作了民意调查,决定最终买什么水果,下面的调查数据中值得关注的是8-2-28-2-3 8-2-4( ).A.中位数B.平均数C.众数D.加权平均数9. 某校八年级(1)班50名学生参加2008年济南市数学质量监控考试,全班学生的成绩统计如下表8-2-5: 请根据表中提供的信息解答下列问题:(1)该班学生考试成绩的众数是______.(2)该班学生考试成绩的中位数是______. (3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.10. 某饭店今年5月份部分员工工资表如表8-2-6:(1)该月以上员工工资的平均数是______元,中位数是______元,众数是______元; (2)该月能用平均数来表示他们工资的集中 趋势吗?你有什么建议?20.2 数据的波动20.3 课题学习 体质健康测试中的数据分析(略)学习目标1.观察与分析数据特征,探究与发现数据波动性大小,了解与掌握数据方差公式.2.培养学生运用方差计算公式,探索解决实际问题的能力;通过探究活动来发展学生的 用能力和创新能力.重点:掌握方差计算公式.难点:会观察与分析数据的特征,理解数据波动性的实际意义及方差产生的必要性.学习过程【自学指导、合作探究】北京奥运会上,中国健儿取得了51金,21银,28铜的好成绩,位列金牌榜首位,其中,中国射击队功不可没,取得了四枚金牌如果你是教练:甲,乙两名射击手现要挑选一名射击手参加比赛.若你是教练,你认为挑选哪一位比较适宜? 甲, 乙两名射击手的测试成绩统计如下:⑴ 请分别计算两名射手的平均成绩⑵ 请根据这两名射击手的成绩在下图中画出折线统图;⑶ 现要挑选一名射击手参加比赛,若你是教练,你认为挑选哪一位比较适宜?为什么?在平均数相同的情况下,用什么数据来衡量,来决定.方差定义:设有n 个数据n x x x ,,, 21,各数据与它们的平均数的差的平方分别是2221)()(x x x x --,,…,,, 2)(x x n -我们用它们的平均数,即用])()()[(1222212x x x x x x nx n -++-+-=8-2-58-2-6乙x =8(环)=8(环) 甲 x来衡量这组数据的波动大小,并把它叫做这组数据的方差,记作2s . 意义:用来衡量一批数据的波动大小在样本容量相同的情况下,方差越大,说明数据的波动越大, 越不稳定 归纳:(1)方差应用更广泛衡量一组数据的波动大小(2)方差主要应用在平均数相等或接近时(3)方差大波动大,方差小波动小,一般选波动小的2. 因此在上一题的引入中:计算方差的步骤可概括为“先平均,后求差,平方后,再平均”.在刚才的例子中,乙选手的方差为3.2,甲选手的方差为0.4,即S 2甲< S 2乙,因此,甲选手的稳定性比较好,发挥比较稳定,在平均数相同的情况下,建议教练选甲选手参赛(1)样本方差的作用是( )(A )表示总体的平均水平 (B )表示样本的平均水平 (C )准确表示总体的波动大小 (D )表示样本的波动大小 (2)在样本方差的计算公式数字10 表示( ) 数字20 表示( ) (3)样本5、6、7、8、9、的方差是多少?(4)甲乙两个班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:某同学分析上表后得出如下结论:1 甲乙两班学生成绩平均水平相同2 乙班优秀人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀)【同步演练、拓展提升】1甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图6-28所示.(1)请填写下表:(2)请从下列四个不同的角度对这次测试结果进行分析.①从平均数和方差相结合看;()()()()()[]4.0898********1222222=-+-+-+-+-=甲S ()()()()()[]2.388868108681051222222=-+-+-+-+-=甲S ⎥⎦⎤⎢⎣⎡-++-+-=)20(2...)20(22)20(121012s x n x x②从平均数和中位数相结合看(分析谁的成绩好些);③从平均数和命中9环以上的次数相结合看(分析谁的成绩好些);④从折线图上两人射击命中环数的走势看(分析谁更有潜力).答:①从平均数和方差相结合看;②从平均数和中位数相结合看(分析谁的成绩好些);③从平均数和命中9环以上的次数相结合看(分析谁的成绩好些);④从折线图上两人射击命中环数的走势看(分析谁更有潜力).六、达标训练1.数据-2,-1,0,1,2的方差是()A.0 B C.2 D.42.某村引进甲乙两种水稻良种,各选6块条件相同的实验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为550kg/亩,方差分别为2S=141.7,2S乙=433.3,则产量稳定,适合推广的品种为()甲A.甲、乙均可B.甲C.乙D.无法确定3.甲、乙两名学生的十次数学考试成绩的平均分分别是145和146,成绩的方差分别是8.5和60.5,现在要从两人中选择一人参加数学竞赛,下列说法正确的是()A.甲、乙两人平均分相当,选谁都可以B.乙的平均分比甲高,选乙C.乙的平均分和方差都比甲高,选乙D.两人的平均分相当,甲的方差小,成绩比乙稳定,选甲4.某校要从四名学生中选拔一名参加市“风华小主播”大赛,选拔赛中每名学生的平均成绩x及其方差s2如表所示,如果要选择一名成绩高且发5.某工程队有14现该工程队进行了人员调整:减少木工2______(填“变小”、“不变”或“变大”).6.在2017年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是()A.18,18,1 B.18,17.5,3C.18,18,3 D.18,17.5,17.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为2S甲_____2S乙(填>或<).8.为了让广大青少年学生走向操场、走进自然、走到阳光下,积极参加体育锻炼,我国启动了“全国亿万学生阳光体育运动”.短跑运动,可以锻炼人的灵活性,增强人的爆发力,因此小明和小亮在课外活动中,报名参加了短跑训练小组.在近几次百米训练中,所测成绩如图所示,请根据图中所示解答以下问题.(1)请根据图中信息,补齐下面的表格;(2。
人教版八年级数学下册第二十章 数据的分析导学案
课题:20.1.1平均数(1)课型:新课型课时:一课时授课人:班级:授课时间:【学习目标】1.使学生理解数据的权和加权平均数的概念.2.使学生掌握加权平均数的计算方法.3.通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
【重点难点预测】重点:会求加权平均数.难点:对“权”的理解.【学法指导】类比延伸【学习流程】一、自主学习、预习交流(约10分钟)目标、任务1.理解数据的权和加权平均数的概念掌握加权平均数的计算方法.2.描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
练习:1、一组数据88,72,86,90,75的平均数是;2、一组数据12,12,12,12, 4,4,4,4,4,13,的平均数是;3、一组数据有5个20,4个30,3个40,8个50,则这20个数的平均数为 .二、合作探究、展示提升(约20分钟)某市三个郊县的人数及人均耕地面积如下表:郊县人数(万)人均耕地面积(公顷)A 15 0.15B 7 0.21C 10 0.18求这个市郊县的人均耕地面积是多少?(精确到0.01公顷)(分析:人均耕地面积=总耕地面积总人口)讨论:1.总耕地面积= .2.总人口= .3.人均耕地面积= .4.这个问题中,哪些是数据?哪些是权?教师复备(学生笔记)三、练习巩固、达标测评(约10分钟)1.一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试者 听 说 读 写甲 85 83 78 75 乙73808582(1)如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照3∶3∶2∶2的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?讨论:将所占比例看作它们各自的权,即听占有3份,说占 份,读占 份,写占 份,合计 份。
)(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶2∶3∶3的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?2.一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各个成绩均按百分制,然后再按演讲内容占50%、演讲能力占40%、演讲效果占10%的比例,计算选手的综合成绩(百分制),进入决赛的前两名选手的单项成绩如下表所示:选手 演讲内容 演讲能力 演讲效果 A 85 95 95 B958595请决出两人的名次。
新课标人教版第二十章数据的分析导学案
平凉四中数学导学案(八年级下) 编号:2015.42 编制人:刘前平 单元(章节) 课时 课型审核人 小组评价 教师评价20.1.11问题综合解决课 王全红20.1.1平均数(一)【学习目标】1.理解加权平均数的意义;2.会用加权平均数分析一组数据的集中趋势,发展数据分析能力,逐步形 成数据分析观念 【重点难点】理解加权平均数的意义,体会权的意义. 【复习引入】1.算数平均数是指 .2.列式计算7,8,9的平均数 . 【自主学习】1.什么是加权平均数?. 2.权表示数据的 .3.设一组数据1230,1,2x x x ===,它们的权数分别为1.01=p ,6.02=p , 3.03=p ,则这组数据的加权平均数x = . 【合作探究】1.一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试者 听 说 读 写 甲 85 83 7875 乙73808582⑴如果这家公司想招一名综合能力较强的翻译,计算两名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?⑵如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按2:1:3:4的比确定,计算两名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?2.一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分, 各项成绩均按百分制,然后再接演讲内容占50 %、演讲能力占40%、演讲效果占10%的比例,计算选手的综合成绩(百分制). 进入决赛的前两名选手的各单项成绩如下表所示,请确定两人的名次.平凉四中数学导学案(八年级下) 编号:2015.43 编制人:刘前平 单元(章节) 课时 课型审核人 小组评价 教师评价20.1.11问题综合解决课 王全红20.1.1平均数(二)【学习目标】1.进一步加深对加权平均数的认识;2.能根据频数分布表利用组中值的方法计算加权平均数. 【重点难点】根据频数分布表利用组中值的方法计算加权平均数. 【复习引入】加权平均数的概念: . . 【自主学习】1.在n 个数据中,如果1x 出现了1f 次,2x 出现了2f 次,……k x 出现了k f 次, (n f f f k =+++ 21)则这n 个数据的算数平均数x -= 叫做12,,k x x x 这k 个数的加权平均数,其中k f f f ,,,21 分别叫做12,,k x x x 的 .2.某跳水队为了解运动员的年龄情况,作了一次年龄调查,结果如下: 13岁8人,14岁16人,15岁24人,16岁2人,则这个跳水队运动员的平均年龄 是 (结果取整数)3.什么是组中值:4.利用频数分布表(图)求平均数时,如何确定每组的数据与权?5.小组121x ≤<的组中值为 .【合作探究】探究一:加权平均数的应用为了解5路公共汽车的运营情况,公交部门统计了某天5路公交车每个运营班次的载客量,得到下表:载客量/人 组中值 频数(班次)1≤x <21 11 3 21≤x <41 5 41≤x <61 20 61≤x <81 22 81≤x <101 18 101≤x <12111115⑴补全表格;⑵这天5路公交车平均每班的载客量是多少?探究二:利用样本平均数估计总体平均数某灯泡厂为了测量一批灯泡的使用寿命,从中抽查了100只灯泡,它们的使用寿命如下表所示:使用寿命x /时 组中值 灯泡数/个1000600<≤x 10 14001000<≤x 19 18001400<≤x 25 22001800<≤x 34 26002200<≤x12这批灯泡的平均使用寿命是多少?平凉四中数学导学案(八年级下)编号:2015.44 编制人:刘前平单元(章节)课时课型审核人小组评价教师评价20.1.2 1 问题综合解决课王全红20.1.2中位数和众数【学习目标】1.认识中位数和众数,并会求出一组数据中的众数和中位数;2.理解中位数和众数的意义和作用;3.会利用中位数、众数分析数据信息,帮助人们在实际问题中做出决策. 【重点难点】中位数、众数的概念;利用中位数、众数分析数据信息做出决策.【复习引入】某公司员工月收入的资料如下表:月收入/元45000 18000 10000 5500 5000 3400 3000 1000 人数 1 1 1 3 4 1 11 1⑴计算这个公司员工月收入的平均数;⑵若用算得的平均数反映公司全体员工月收入水平,你认为合理吗?【自主学习】1.中位数:2.下面两组数据的中位数分别是多少?⑴5 6 2 3 2 ⑵5 6 2 4 3 53.众数: .(注意:如果一组数据中有两个数据的频数一样,都是最大,那么这两个数据都是..这组数据的众数)4.面两组数据的众数分别是多少?⑴4 5 3 2 5 2 5⑵5 2 6 7 6 3 3 4 3 6 【合作探究】探究一:中位数在一次男子马拉松长跑比赛中,抽得12名选手的成绩(单位:分)如下:137 141 130 181 125 155 147 146 159 176 166 149求样本数据(12名选手的成绩)的中位数.探究二:众数一家鞋店在一段时间内销售某种女鞋30双,各种尺码销售量如下表所示:尺码/厘米22 22.5 23 23.5 24 24.5 25销售量/双 1 2 5 11 7 31你能根据上面的数据为这家鞋店提供进货建议吗?【课堂检测】1.一组数据23、27、20、18、X、12,它的中位数是21,则X的值是 .2.数据92、96、98、X、100的众数是96,则其中位数和平均数分别是()A.97、96B.96、96.4C.96、97D.98、973.如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是()A.24、25B.23、24C.25、25D.23、254.某校男子足球队的年龄分布如条形图所示.请找出这些队员年龄的平均数、众数、中位数,并解释它们的意义.单元(章节)课时课型审核人小组评价教师评价20.1.2 1 问题综合解决课王全红20.1.2平均数、中位数和众数【学习目标】1.进一步认识平均数、众数、中位数都是数据的代表;2.了解平均数、中位数、众数在描述数据时的差异;3.能灵活应用这三个数据代表解决实际问题.【重点难点】了解平均数、中位数、众数之间的差异;灵活运用这三个数据代表解决问题. 【复习引入】一组数据中,12出现了3次,8出现了5次,10出现了1次,14出现了2次.求这组数据的平均数,中位数和众数各是多少?【自主学习】平均数,众数,中位数作为数据代表的不同特点.平均数:众数:中位数:下面是某校八年级(2)班两组女生的体重(单位:kg):第1组 35 36 38 40 42 42 75第2组 35 36 38 40 42 45 42分别求这两组数据的平均数、众数、中位数,并解释它们的实际含义;【课堂检测】某公司的33名职工的月工资(以元为单位)如下:职员董事长副董事长董事总经理经理管理员职员人数 1 1 2 1 5 3 20 工资5500 5000 3500 3000 2500 2000 1500⑴求该公司职员月工资的平均数、中位数、众数?⑵假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是什么?⑶你认为应该使用平均数和中位数中哪一个来描述该公司职工的工资水平单元(章节) 课时 课型 审核人 小组评价 教师评价20.21问题综合解决课 王全红20.2方差【学习目标】1.了解方差的意义,会求一组数据的方差;2.会根据方差的大小,比较与判断具体问题中有关数据的波动情况. 【重点难点】方差的概念与计算;会用方差计算公式来比较两组数据的波动大小. 【自主学习】1.方差: .2.方差可以反应数据的 ;注意:当数据分布比较 (即数据在平均数附近波动较大)时,各个数据与 ,方差就 ;当数据分布比较 时各个数据与 ,方差就 .因此方差越 ,数据的 ;方差越 ,数据的 . 3.老师对甲、乙两人的五次数学测验成绩进行统计,得出两人五次测验成绩的平均分均为90分,方差分别为512=甲s ,122=乙s ,则成绩比较稳定的是 . 4.求下列两组数据的方差,体会方差是怎样刻画数据的波动程度的. ⑴0, -1 ,3 ,2,4 ⑵0,-4,2,5,-6在一次芭蕾舞比赛中,甲乙两个芭蕾舞团都表演了舞剧《天鹅舞》,参加表演的女演员的身高(单位:cm )分别是甲团 163 164 164 165 165 165 166 167 乙团 163 164 164 165 166 167 167 168 哪个芭蕾舞团女演员的身高更整齐?【课题检测】下面是两名跳远运动员的10次测验成绩(单位:m ),在这10次测验中,哪名运动员的成绩更稳定?单元(章节) 课时 课型 审核人 小组评价 教师评价20.21问题综合解决课 王全红20.2极差和标准差【学习目标】1.了解极差和标准差的意义,会求一组数据的极差和标准差;2.会根据极差和标准差的大小,判断具体问题中有关数据的波动情况. 【重点难点】极差和标准差的概念与计算;会用极差和标准差来比较数据的波动情况. 【复习引入】1.方差: .2.某快餐公司的香辣鸡腿很受消费者欢迎.现有甲、乙两家农副产品加工厂到快餐公司推销鸡腿,两家鸡腿的价格相同,品质相近.快餐公司决定通过检查鸡腿的质量来确定选购哪家的鸡腿.检查人员从两家的鸡腿中各随机抽取10个,记录它们的质量(单位:g )如下表所示.根据表中的数据,你认为快餐公司应该选购哪家加工厂的鸡腿?1.极差:2.极差可以反映数据的 .3.数据7,10,-6,-7,5的极差是 .4.平均差: .(*)5.标准差: .(*)6.平均差和标准差都可以反映数据的 . 【合作探究】一个家具厂有甲乙两个木料货源,下面是家具厂向两个货源订货后等待交货天数的样本数据: 等待天数 6 7 8 9 10 11 12 13 14 次数 甲0 0 2 8 7 3 0 0 0 乙4262222分别计算样本数据的平均数、极差、方差、平均差和标准差,根据这些计算结果,看看家具厂从哪个货源进货比较好?。
【免费下载】八年级下 第二十章数据的分析 导学案
第二十章数据的分析20.1数据的代表20.1.1平均数(第一课时)一、教学目标:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、重点、难点和难点突破的方法:1、重点:会求加权平均数2、难点:对“权”的理解三、【教学过程】一、学习准备1、若不选择教材中的引入问题,也可以替换成更贴近学生学习生活中的实例,下举一例可供借鉴参考。
某校初二年级共有4个班,在一次数学考试中参考人数和成绩如下:班级1班2班3班4班参考人数40424532平均成绩80818279求该校初二年级在这次数学考试中的平均成绩?下述计算方法是否合理?为什么?=(79+80+81+82)=80.5x 41二、例题讲解例1和例2均为计算数据加权平均数型问题,因为是初学尤其之前与平均数计算公式已经作过比较,所以这里应该让学生搞明白问题中是否有权数,即是选择普通的平均数计算还是加权平均数计算,其次若用加权平均数计算,权数又分别是多少?例2的题意理解很重要,一定要让学生体会好这里的几个百分数在总成绩中的作用,它们的作用与权的意义相符,实际上这几个百分数分别表示几项成绩的权。
三、随堂练习:1、为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进行测量,结果如下表:(单位:小时)寿命450550600650700只数2010301525求这些灯泡的平均使用寿命?、管路敷设技术底。
管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用、电气课件中调试重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进、电气设备调试高中资料试卷技术卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。
因此,电力高中资料试卷保护装置调试技四、体会与小结 五、自我检测1、在一个样本中,2出现了x 次,3出现了x 次,4出现了x 次,5出现了x 次,则这1234个样本的平均数为 .2、某人打靶,有a 次打中环,b 次打中环,则这个人平均每次中靶 环。
第二十章 数据的分析 章末复习小结(1)——基础知识 导学案
第20章章末复习小结(1)—基本知识学案设计一、知识梳理二、考点分析考点一平均数、中位数、众数(一)平均数1.算术平均数:一般地,如果有n个数x1,x2,…,x n,那么___________________叫做这n 个数的平均数.2.加权平均数:一般地,若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则_________________ 叫做这n个数的加权平均数.(二)中位数定义:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于就是这组数据的中位数,如果数据的个数是偶数,则中间就是这组数据的中位数.注意:求中位数时,要先排序,再看奇偶(三)中位数定义:一组数据中出现次数的数据叫做这组数据的众数注意:一组数据中众数不一定只有一个考点二方差的计算及应用1.方差的定义:设有n个数据x1,x2,x3,…,x n,各数据与它们的的差的平方分别是(x1-x)2,(x2-x)2,…,(x n-x)2,用来衡量这组数据的波动大小,并把它叫做这组数据的方差,记作s2方差的意义:方差越大,数据的波动越,反之也成立考点三用样本估计总体1.统计的基本思想:用样本的特征(平均数和方差)估计总体的特征.2.统计的决策依据:利用数据做决策时,要全面、多角度地去分析已有数据,从数据的变化中发现它们的规律和变化趋势,减少人为因素的影响.三、典例精析(一)中位数、众数、中位数1.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分,80分,90分,若依次按照2∶3∶5的比例确定成绩,则小王的成绩是()A.255分B.84分 C.84.5分 D.86分2.一组数据8,12,7,7,10,12的中位数是( )A.7 B.8 C.9 D.103.某班在学校的合唱比赛中,七个评委给出的得分依次为20,18,22,17,20,20,17,则这组数据的众数与中位数分别是( )A.18,17 B.20,20 C.20,19 D.20,174.某地发生地震灾害后,某中学八(1)班学生积极捐款献爱心,如图是该班50名学生的捐款情况统计,则他们捐款金额的众数和中位数分别是 ()A.20,10 B.10,20 C.16,15 D.15,165. 某市在开展节约用水活动中,对某小区200户居民家庭用水情况进行统计分析,其中3月份比2月份节约用水情况如下表所示:请问:抽取的200户家庭节水量的平均数是,中位数是,众数是 .(二)方差的计算及综合运用1.一组数据6,4,a,3,2的平均数是4,则这组数据的方差为 .2.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择 . (三)用样本估计总体1.黄石农科所在相同条件下经试验发现蚕豆种子的发芽率为97.1%,请估计黄石地区1 000斤蚕豆种子中不能发芽的大约有( )A.971斤B.129斤C.97.1斤D.29斤2.某中学数学活动小组为了调查居民的用水情况,从某社区的 1500 户家庭中随机抽取了30 户家庭的月用水量,结果如下表所示:(1)求这 30 户家庭月用水量的平均数、众数和中位数;(2)根据上述数据,试估计该社区1500 户家庭的月用水量;四、课堂总结:1.本节课你有哪些收获? .2.你还有哪些疑惑?五、作业布置:见《精准作业设计》。
2020年春人教版数学八年级下册第二十章数据的分析20.1.2 中位数和众数(第2课时)导学案
2020年春人教版数学八年级下册第二十章数据的分析20.1.2 中位数和众数(第2课时)导学案一、复习在上一课中,我们学习了如何计算一组数据的算术平均数。
算术平均数是一组数据的总和除以数据的个数。
我们还学习了如何使用折线图和柱状图来表示数据的分布情况。
今天我们将继续学习数据的分析,重点是中位数和众数。
二、学习目标1.理解中位数的概念,并学会计算中位数;2.理解众数的概念,并学会找出众数;3.能够在实际问题中应用中位数和众数进行分析。
三、中位数中位数是一组数据按照从小到大的顺序排列后,位于中间位置的数值。
如果一组数据的个数为奇数,那么中位数就是这组数据排序后的中间值;如果一组数据的个数为偶数,那么中位数就是这组数据排序后中间两个数的平均值。
例如,对于数据集{1,3,5,7,9},其中共有5个数据,中位数为5。
而对于数据集{2,3,6,8},其中共有4个数据,中位数为(3+6)/2=4.5。
四、众数众数是一组数据中出现次数最多的数值。
一个数据集可能有一个或多个众数,也可能没有众数。
例如,对于数据集{2,3,3,4,5,6,6,6,7},其中出现次数最多的数字是6,因此6是这组数据的众数。
如果没有任何数字出现的次数超过其他数字,那么这组数据就没有众数。
五、中位数和众数的应用中位数和众数在实际问题中有着重要的应用。
通过计算中位数,我们可以找到一组数据的中间值,从而更好地了解这组数据的整体情况。
例如,某班级的学生考试成绩为{80,85,90,95,100},其中的中位数是90,说明大部分学生的成绩集中在90分左右。
众数可以帮助我们找到一组数据中出现次数最多的数值,从而了解这个数据集的主要特征。
例如,一个销售商想要知道他们最畅销的产品是什么,他们可以通过找出销售量最高的产品来确定众数。
六、练习1.计算以下数据集的中位数:–{2,4,6,8}–{10,20,30,40,50}–{18,24,36,42,55,69}2.找出以下数据集的众数:–{4,2,8,6,4,9,11,4,2,15}–{10,20,30,30,40,50}–{18,24,24,18,55,69,69}七、总结通过今天的学习,我们学会了如何计算中位数和找出众数。
八年级数学下册第二十章数据的分析数学活动教案(新版)新人教版(共5篇)
八年级数学下册第二十章数据的分析数学活动教案(新版)新人教版(共5篇)第一篇:八年级数学下册第二十章数据的分析数学活动教案 (新版)新人教版第二十章数据的分析【教学目标】知识与技能进一步理解平均数、中位数、众数、方差等统计量的意义,会用适当的统计量进行数据分析;过程与方法经历提出问题,数据收集、整理、描述、分析等统计过程,体会样本估计总体的思想,发展数据分析观念;情感、态度与价值观体会统计的实际应用价值.【教学重难点】重点:结合身边素材提出统计问题,开展统计活动.难点:结合身边素材提出统计问题,开展统计活动.【导学过程】【情景导入】我们已经学习了数据的收集、整理、描述、分析等统计活动,统计与生活实际紧密联系,其实,我们身边就有大量的统计问题.请大家分组讨论,每一小组提出一个可以在课内调查的统计问题.【新知探究】活动1、请同学们合作完成下面的活动:1.全班同学一起讨论,提出5个问题对全班同学进行调查,例如全班同学的平均身高是多少?全班同学的平均体重是多少?等等;2.全班同学分成五个小组,每个小组选择一个问题进行调查,并将调查过程和结果在全班展示;3.将各组的结果汇总到一起,得到全班同学的一个“平均情况”,找出一个最能代表全班“平均情况”的同学.活动2、请全班同学分成几个小组,合作完成下面的活动:1.每个小组分别测量本组同学的每分脉搏次数,得到几组数据;2.求出本组数据的平均数、中位数、众数、方差等;3.与其他小组进行交流,估计一颗“正常”心脏的每分跳动次数;4.查找资料,看看一颗“正常”心脏的每分跳动次数,与你们的调查结果进行对照,谈谈你们对用样本估计总体的感受.以“每分脉搏次数问题” 为例,进行现场调查分析.统计调查的基本步骤是哪些?(1)你的小组准备采用什么方法收集数据?是全面调查方式还是抽样调查方式?(2)你的小组准备怎样整理数据和描述数据?(3)你的小组准备怎样分析数据?请各组介绍和展示统计分析过程及得到的结论:(1)介绍你所在小组的数据收集与分析过程;(2)你得出了哪些结论?依据分别是什么?【知识梳理】1.本次统计活动中,你经历了哪些环节?2.各个统计环节你是怎样做的?3.经历这次调查活动,你有什么体会?第二篇:新人教八年级下册数学期末考试知识点归纳新人教八年级下册数学期末考试知识点归纳二次根式知识回顾1.二次根式:式子(ge;0)叫做二次根式。
人教版数学八年级下《第二十章数据的分析》导学案
20.1 数据的代表学习目标、重点、难点【学习目标】1、掌握平均数、中位数、众数等数据代表的概念,能根据所给信息求出相应的数据代表.2、掌握加权平均数的计算方法. 【重点难点】1、掌握中位数、众数等数据代表的概念.2、选择恰当的数据代表对数据做出判断.知识概览图某中学举行歌咏比赛,六名评委给某选手打分如下:78分,77分,82分,95分,83分,75分,去掉一个最高分,去掉一个最低分,再统计平均分作为该选手的最后得分.根据打分规则,选手的得分是:14×(78+77+82+83)=14×320=80(分),除了用平均数来衡量选手的得分外,是否还有其他的方法呢? 教材精华知识点1 平均数的概念 算术平均数.1)n k x x f n+++++…+f k )一般地,对于n 个数1x ,2x , ,…,n x ,我们把1n(1x +2x +3x +…n x )叫做这n 个数的算术平均数,简称平均数,记为x ,则x =1n(1x +2x +3x +…n x ).新数据法.当所给数据都在某一常数a 的上下波动时,一般选用简化公式:x =x '+a.其中a 通常取接近于这组数据的平均数较“整”的数,1x '=1x -a ·2x '=2x -a,…,n x '=n x - a, x '=1n(1x '+2x '+…+nx ')是新数据的平均数. 加权平均数.在求n 个数的算术平均数时,如果1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(这里1f +2f +…+k f =n ),则这n 个数的算术平均数x =1122k kx f x f x f n+++也叫做12,,k x x x ,这k个数的加权平均数,其中12,,,k f f f 分别叫做12,,k x x x 的权.总结:如果1231(),n x x x x x n=++++1231(),n y y y y y n=++++则有下列结论:①112233,,,,,n n x y x y x y x y ±±±±的平均数为x y ±; ②112,233,,,,,,n n x y x y x y x y 的平均数为2x y+; ③123,,,,n ax b ax b ax b ax b ++++的平均数为ax b +. 知识点2 总体、个体、样本调查中,所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体. 例如,某班10名女生的考试成绩是总体,每一名女生的考试成绩是个体.从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本.例如,要调查全县农村中学生学生平均每周每人的零花钱数,由于人数较多(一般涉与几万人),我们从中抽取500名学生进行调查,就是抽样调查,这500名学生平均每周每人的零花钱数,就是总体的一个样本.知识点3 中位数的概念将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数称为这组数据的中位数.知识点4 众数的概念一组数据中出现次数最多的数据就是这组数据的众数.例如:求一组数据3,2,3,5,3,1的众数.解:这组数据中3出现3次,2,5,1均出现1次.所以3是这组数据的众数.又如:求一组数据2,3,5,2,3,6的众数.解:这组数据中2出现2次,3出现2次,5,6各出现1次.所以这组数据的众数是2和3.【规律方法小结】(1)平均数、中位数、众数都是描述一组数据集中趋势的量.(2)平均数反映一组数据的平均水平,与这组数据中的每个数据都有关,是最为重要的量.(3)中位数不受个别偏大或偏小数据的影响,当一组数据中的个别数据变动较大时,一般用它来描述集中趋势.(4)众数只与数据出现的频数有关,不受个别数据影响,有时是我们最为关心的统计数据.探究交流1、一组数据的中位数一定是这组数据中的一个,这句话对吗?为什么?解析:不对,一组数据的中位数不一定是这组数据中的一个,当这组数据有偶数个时,中位数由中间两个数的平均数决定,若中间两数相等,则这组数据的中位数在这组数据之中,反之,中位数不在这组数据之中.总结:(1)中位数在一组数据中是唯一的,可能是这组数据中的一个,也可能不是这组数据中的数据.(2)求中位数时,先将数据按由小到大的顺序排列(或按由大到小的顺序排列).若这组数据是奇数个,则最中间的数据是中位数;若这组数据是偶数个,则最中间的两个数据的平均数是中位数。
人教版八年级数学下册第二十章数据的分析导学案(全章)
20.1.1 课题:平均数、中位数和众数学习目标:1.解数据的权和加权数的概念。
掌握加权平均数的计算方法。
2.解平均数在数据统计中的意义和作用。
3.认识中位数和众数,并会求出一组数据中的众数和中位数。
4理解中位数和众数的意义和作用。
会利用中位数、众数分析数据信息做出决策 学习过程: 一、温故知新1.据有关资料统计,1978-1996年的18年间,我国有13.5万学生留学美国,则这18年间平均每年留学美国的人数是________.2.某班10名学生为支援希望工程,将平时积攒的零花钱捐献给贫困地区的失学儿童.每人捐款金额如下10,12,15,21,40,20,20,25,16,30.这10名同学平均捐款_________元.二、自主学习: 1.算术平均数的定义:一般地,对于n 个数x 1,x 2,…,x n ,我们把)(121n x x x n+++ 叫做这n 个数的算术平均数,简称平均数,记为x ,读作“x 拔”.小明经过认真的观察,对上海东方大鲨鱼队队员的年龄总结如下:计算该队的平均年龄如下:2.加权平均数的概念如果n 个数中,x 1出现f 1次,x 2出现f 2次,……,x k 出现f k 次,(这里f 1+f 2+……+f k =n),那么,根据平均数的定义,这n 个数的平均数可以表示为 这样求得的平均数叫做加权平均数,其中f 1,f 2,……,f k 叫做权。
3.是中位数?如何确定一组数据的中位数? (2)什么是众数?如何确定?将一组数据按照由小到大(或由大到小)的顺序排列如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数。
将一组数据按照由小到大(或由大到小)的顺序排列如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数。
如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
一组数据中出现次数最多的数据就是这组数据的众数。
当一组数据中多个数据出现的次数一样多时,这几个数据都是这组数据的众数。
人教新课标八年级下,第20章数据的分析复习教案,数据的收集、整理与描述导学案
人教新课标八年级下,第20章数据的分析复习教案,数据的收集、整理与描述导学案第十章数据的收集、整理与描述导学案(一)知识回顾1、数据处理的基本过程是:⑴(普查、抽样调查);⑵(作出统计表);(3)(作出统计图);(4)(根据统计表、统计图进行描述);(5)(分析原因、得出结论、作出判断)。
2.调查分为哪几种形式?各有什么优、缺点?3.几个名词概念总体:个体:样本:上面三个概念的共同点:;区别:样本容量:频数:4.抽样调查要注意的问题①样本容量不能太少,少了不能很好地代表总体的情况,②在数据较大,情况较复杂时,5.数据的整理和描述主要采取什么方法?整理数据,主要是通过表格来反映,根据不同情况制出不同形式的表格,来反映各组的状况.描述数据,主要采取绘图的方式。
条形图的特点及画法:扇形图的特点及画法:折线图的特点及画法:直方图的特点:6、画直方图的步骤是:(1)计算: - ;(2)决定和(近1法);(3)列:划记法;(4)画:小长方形的面积= × = 。
(二)例题与习题:一.填空题1. 为了了解某校七年级400名学生的期中数学成绩的情况,从中抽取了50名学生的数学成绩进行分析。
在这个问题中,总体是,个体是,样本是,样本容量是 .2. 在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是.3.扇形统计图中扇形占圆的30%,则扇形圆心角是4.某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,先抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为、、5.某市为了了解七年级学生的身体素质情况,随机抽取了500名学生进行检测,身体素质达标率为92%,请你估计该市6万名七年级学生中身体素质达标的大约有 万人。
6.在进行数据描述时,要显示每组中的具体数据,应采用 图;要显示部分在总体中所占的百分比,应采用 图;要显示数据的变化趋势,应采用 图;要显示数据的分布情况,应采用 图. 二.选择题7.下列调查工作需采用普查方式的是( )(A)对长江某段水域的水污染情况的调查;(B)电视台对正在播出的某电视节目收视率的调查; (C)对各厂家生产的电池使用寿命的调查;(D)企业在给职工做工作服前进行的尺寸大小的调查。
第二十章--数据的分析导学案
第二十章数据的分析课题 20.1 数据的代表课时:六课时第一课时 20.1.1 平均数【学习目标】1.认识和理解数据的权及其作用。
2.通过实例了解加权平均数的意义,会根据加权平均数的计算公式进行有关计算。
【重点难点】重点:加权平均数的概念以及运用加权平均数解决实际问题。
难点:对数据的权及其作用的理解。
【导学指导】学习教材P124-P127相关内容,思考、讨论、合作交流后完成下列问题:1.你认为P124“思考”中小明的做法有道理吗?为什么?2.正确的解法应是怎样的?请谈谈你的看法。
3.什么是加权平均数?4.P125“例1”中,所求的结果已不再是各人听说读写成绩的简单平均,而是听说读写成绩的加权平均数,它们的权分别是多少?5.P126“例2”中,两名选手的单项成绩都是两个95分与一个85分,为什么他们的最后得分不同呢?谈谈你对权的作用的体会。
【课堂练习】1.教材P127练习第1,2题。
2.某广告公司欲招聘广告策划人员一名,对甲、乙、丙三名候选人进行了三(1)如果根据三项测试平均成绩确定录用人选,那么谁将被录取?(2)根据实际需要,公司将创新、综合知识、语言三项测试得分按4:2:2的比例确定各人的测试成绩,此时谁将被录用?【要点归纳】你今天有什么收获?与同伴交流一下。
【拓展训练】学校对各个班级的教室卫生情况考察包括以下几项:黑板、门窗、桌椅、地面。
三请你设计一个评分方案,并根据你的评分方案计算一下哪个班的卫生情况最好?第二课时 20.1.1 平均数【学习目标】1.理解把算术平均数的简便算法看成加权平均数的道理,进一步加深对加权平均数的认识。
2.能根据频数分布表利用组中值的方法计算加权平均数。
3.掌握利用计算器计算加权平均数的方法。
【重点难点】重点:能根据频数分布表利用组中值的方法应用公式计算加权平均数。
难点:对算术平均数的简便算法与加权平均数算法一致性的理解。
【导学指导】学习教材P127-P129相关内容,思考、讨论、合作交流后完成下列问题:1.你能为教材P127的算术平均数举一个例子吗?2.把算术平均数的公式与上节课的加权平均数公式进行对比,思考它们的相同之处与不同之处。
2019年第二十章数据的分析全章导学案.doc
第1课时 平均数(1)【导学目标】1.使学生理解数据的权和加权平均数的概念.2.使学生掌握加权平均数的计算方法.3.通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
【导学重点】会求加权平均数.【导学难点】对“权”的理解. 【学法指导】类比延伸.【课前准备】查资料理解“权”. 【导学流程】一、呈现目标、明确任务1.理解数据的权和加权平均数的概念掌握加权平均数的计算方法.2.描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、检查预习、自主学习一组数据88,72,86,90,75的平均数是 ;一组数据12,12,12,12, 4,4,4,4,4,13,的平均数是 ;一组数据有5个20,4个30,3个40,8个50,则这20个数的平均数为 . 三、教师引导某市三个郊县的人数及人均耕地面积如下表:求这个市郊县的人均耕地面积是多少?(精确到0.01公顷) (分析:人均耕地面积=总耕地面积总人口)讨论:1.总耕地面积= .2.总人口= .3.人均耕地面积= .4.这个问题中,哪些是数据?哪些是权? 四、问题导学、展示交流1.一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成(1)如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照3∶3∶2∶2的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?讨论:将所占比例看作它们各自的权,即听占有3份,说占 份,读占 份,写占 份,合计 份。
)(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶2∶3∶3的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?2.一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各个成绩均按百分制,然后再按演讲内容占50%、演讲能力占40%、演讲效果占10%的比例,计算选手的综合成绩(百分制),进入决赛的前请决出两人的名次。
新课标人教版 初中初二 八年级数学 下册第二学期(导学案)第二十章 数据的分析 (第20章全单元 导学案)
第二十章数据的分析20.1 数据的集中趋势20.1.1 平均数第1课时平均数和加权平均数【学习目标】1.使学生理解数据的权和加权平均数的概念;2.使学生掌握加权平均数的计算方法.【重、难点】重点:会求加权平均数.难点:对“权”的理解.【预习作业】:1.(1)数据:4,5,6,7,8的平均数是。
(2)2、8、7、2、7、7、8、7、6的算术平均数为。
(3)一组数据中有3个x1和8个x2,这组数据中共有个数据;它们的平均数为。
小学所学平均数的计算公式是2.某次考试A、B、C、D、E这5名学生的平均分为62分,若学生A除外,其余学生的平均得分为60分,那么学生A的得分是____ ___.3. 加权平均数:(预习新知)(1)n个数据:f1个a1,f2个a2,…,f n个a n(f1+f2+…+fn=n)它的加权平均数为x(2)权反映的是二.合作探究,生成总结练一练:1.在一组数据中,2出现了3次,3出现了2次,4出现了5次,则2的权为,3的权为,4的权为;这组数据的平均数为.2.某人打靶,有1次中10环,2次中7环,3次中5环,则平均每次中靶环.3.在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。
已知该班平均成绩为80分,则该班有人.4.在一个样本中,2出现了x1次,3出现了x2次,4出现了x3次,5出现了x4次,则这个样本的平均数为.5.某人打靶有a次打中x环,b次打中y环,则此人平均每次中靶环。
探讨2.一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩(注:权能够反映数据的相对)练一练:1、老师在计算学期总平均分的时候按如下标准:作业占100%、测验占30%、期中占35%、期末考试占35%,小关和小兵的成绩如下表:求两人的平均成绩个是多少?知识点小结:本节课我们学习了……..三.达标测评,分层巩固基础训练题:1.为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进行测量,结果如下表:(单位:小时)2.数学期末总评成绩由作业分数,课堂参与分数,期考分数三部分组成,并按3:3:4的比例确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十章数据的分析课题 20.1 数据的代表课时:六课时第一课时 20.1.1 平均数【学习目标】1.认识和理解数据的权及其作用。
2.通过实例了解加权平均数的意义,会根据加权平均数的计算公式进行有关计算。
【重点难点】重点:加权平均数的概念以及运用加权平均数解决实际问题。
难点:对数据的权及其作用的理解。
【导学指导】学习教材P124-P127相关内容,思考、讨论、合作交流后完成下列问题:1.你认为P124“思考”中小明的做法有道理吗?为什么?2.正确的解法应是怎样的?请谈谈你的看法。
3.什么是加权平均数?4.P125“例1”中,所求的结果已不再是各人听说读写成绩的简单平均,而是听说读写成绩的加权平均数,它们的权分别是多少?5.P126“例2”中,两名选手的单项成绩都是两个95分与一个85分,为什么他们的最后得分不同呢?谈谈你对权的作用的体会。
【课堂练习】1.教材P127练习第1,2题。
2.某广告公司欲招聘广告策划人员一名,对甲、乙、丙三名候选人进行了三(1)如果根据三项测试平均成绩确定录用人选,那么谁将被录取?(2)根据实际需要,公司将创新、综合知识、语言三项测试得分按4:2:2的比例确定各人的测试成绩,此时谁将被录用?【要点归纳】你今天有什么收获?与同伴交流一下。
【拓展训练】学校对各个班级的教室卫生情况考察包括以下几项:黑板、门窗、桌椅、地面。
三个班的各项卫生成绩情况分别如下:请你设计一个评分方案,并根据你的评分方案计算一下哪个班的卫生情况最好?第二课时 20.1.1 平均数【学习目标】1.理解把算术平均数的简便算法看成加权平均数的道理,进一步加深对加权平均数的认识。
2.能根据频数分布表利用组中值的方法计算加权平均数。
3.掌握利用计算器计算加权平均数的方法。
【重点难点】重点:能根据频数分布表利用组中值的方法应用公式计算加权平均数。
难点:对算术平均数的简便算法与加权平均数算法一致性的理解。
【导学指导】学习教材P127-P129相关内容,思考、讨论、合作交流后完成下列问题:1.你能为教材P127的算术平均数举一个例子吗?2.把算术平均数的公式与上节课的加权平均数公式进行对比,思考它们的相同之处与不同之处。
3.教材P128的“探究”中,各组的载客量不是一个具体值,怎么办?4.你的计算器能求平均数吗?试试看。
【课堂练习】1.教材P129练习第1,2题。
2.八年级一班有学生50人,八年级二班有学生45人。
期末数学测试中,一班学生的平均分为81.5分,二班学生的平均分是83.4分,这两个班的平均分是多少?【要点归纳】本节课你学到了什么?与同伴交流一下。
【拓展训练】1.小民骑自行车的速度是15千米/时,步行的速度是5千米/时,如果小民先骑自行车2小时,然后步行1小时,那么他的平均速度是多少?2.小民和小亮家去年的饮食、教育、和其他支出均分别为3600元,1200元,7200元。
小民家今年的这三项支出依次比去年增长了10﹪,20﹪,30﹪,小亮家今年这三项支出依次比去年增长了20﹪,30﹪,10﹪。
小民和小亮家今年的总支出比去年增长的百分数相等吗?它们分别是多少?第三课时 20.1.1 平均数【学习目标】1.能根据频数分布直方图计算平均数。
2.能正确有效应用平均数知识解决问题,提高分析、解决问题的能力。
3.学习并体会用样本平均数估计总体平均数的思想方法。
【重点难点】重点:能根据频数分布直方图计算平均数。
难点:能根据不同特点的频数分布直方图采取相应的处理方法。
【导学指导】我们知道,当所要考察的对象很多,或考察本身带有破坏性时,统计中常用通过样本估计总体的方法来获得对总体的认识。
例如,实际生活中经常用样本的平均数来估计总体的平均数。
学习教材P129-P130相关内容,思考、讨论、合作交流后完成下列问题:1.教材p129“例3”中,表格里没有组中值,怎么办?2.某灯泡厂要测量一批灯泡的使用寿命,使用全面调查的方法考察这批灯泡的平均使用寿命合适吗?由这100个灯泡的使用寿命估计这批灯泡的平均使用寿命可以吗?这批灯泡的平均使用寿命是多少?【课堂练习】1.教材P130练习题。
2.小妹统计了她家10月份的长途电话费清单,并按通话时间画出直方图。
(1)这张直方图与第1题中的直方图有何不同?(2)从这张图你能得到哪些信息?(3)小妹家10月份平均每个长途电话的通话时间是多少?(4)你认为能通过(3)的结论估计小妹家一年中平均每个长途电话的通话时间吗?分【要点归纳】今天你有什么收获,与同伴交流一下。
【拓展训练】1.某瓜农采用大棚栽培技术种植了一亩地的良种西瓜,这亩地产西瓜约600计算这10个西瓜的平均质量,并根据计算结果估计这亩地的西瓜产量约是多少?2. 某班同学进行数学测验,将所得的成绩(得分取整数)进行整理后分成5组,并绘成频数分布直方图,请结合直方图提供的信息,回答下列问题: (1) 该班共有多少名学生?(2)80.5-90.5这一分数段的频数、频率分别是多少?(3) 这次考试的平均成绩是多少?分数人数15129634第四课时 20.1.2 中位数和众数【学习目标】1. 掌握中位数的概念,会求一组数据的中位数。
2. 能应用中位数知识分析解决实际问题。
3. 初步感受中位数的特点及其与平均数的区别与联系。
【重点难点】重点:掌握中位数的概念,能应用中位数知识分析解决实际问题。
难点:感受中位数的特点及其与平均数的区别与联系。
【导学指导】学习教材P130-P131相关内容,思考、讨论、合作交流后完成下列问题:1.什么是中位数?2.你认为中位数和平均数有什么区别与联系?【课堂练习】1.教材P131练习题。
2.在一次测试中,全班平均成绩是78分,小妹考了83分,她说自己的成绩在班里是中上水平,你认为小妹的说法合适吗?下面是小妹她们班所有学生的成绩:20,35,35,40,40,52,63,65,74,79,80,83,84,84,85,85,85,85,85,85,86,87,87,87,87,87,87,87,87,87,87,87,87,87,88,88,90,91,92,93,95.由数列可知,小妹的成绩在全班是中上水平吗?多少分才是中上水平?【要点归纳】今天你有什么收获?与同伴交流一下。
【拓展训练】约翰先生有一个小工厂生产超级小玩意。
管理人员由约翰先生,他的弟弟,六个亲戚组成;工作人员由五个领工和十个工人组成。
工厂经营得很顺利,需要增加一个工人。
汤姆需要一份工作,应征而来与约翰先生交流,约翰说:“我们这里报酬不错,平均薪金是每周300美元,你在学徒期每周75美元,不过很快就可以加工资。
”汤姆工作几天后找到约翰说:“你欺骗了我,我已经找其他工人问过了,没有一个人的工资超过每周100美元,平均工资怎么可能是一周300美元呢?”约翰说:“啊,汤姆,不要激动,平均工资是300美元,你看,这是一张工资表。
”请你仔细观察表中的数据,回答下面的问题:(1)约翰说每周平均工资300美元是否欺骗了汤姆?平均工资300美元能否客观地反映工人的平均收入?若不能,你认为应该用什么工资反映比较合适?(2)汤姆找工作时,你认为他应该首先了解什么工资?第五课时20.1.2 中位数和众数【学习目标】1.掌握众数的概念,会求一组数据的众数。
2.能应用众数知识分析解决实际问题。
3.初步感受众数的特点及其与中位数、平均数的区别与联系。
【重点难点】重点:理解众数的意义,能应用众数知识分析解决实际问题。
难点:众数的特点及其与中位数、平均数的区别与联系。
【导学指导】学习教材P131-P132 相关内容,思考、讨论、合作交流后完成下列问题:1.什么是众数?2.众数与中位数、平均数有什么相同和不同的?【课堂练习】1.教材P132练习第1,2题。
2.在某电视台举办的歌咏比赛中,六位评委给1号选手的评分如下:90,96, 91, 96, 95, 94,这组数据的众数是A.94.5 B. 95 C. 96 D. 23.8年级一班46个同学中,13岁的有5人,14岁的有20人,15岁的15人,16岁的6人。
8年级一班学生年龄的平均数,中位数,众数分别是多少?4.求下列数据的众数:(1)3, 2, 5, 3, 1, 2, 3(2)5, 2, 1, 5, 3, 5, 2, 2【要点归纳】今天你有什么收获? 与同伴交流一下。
【拓展训练】1.2.某中学举行演讲比赛,8(1)、8(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如下表所示:(2)结合两班复赛成绩的平均数和中位数,分析哪一个班级的复赛成绩较好。
(3)如果在每班参加复赛的选手中分别选出两人参加决赛,你认为哪个班的实力更强一些,并说明理由。
第六课时20.1.2 中位数和众数【学习目标】1.在解决实际问题中进一步理解平均数、中位数、众数作为数据代表的意义,能根据所给信息求出相应的数据代表。
2.结合具体情景体会平均数、中位数、众数三者的特点与差异,能根据具体问题选择适当的量来代表,并作出自己的评判。
【重点难点】重点:理解平均数、中位数、众数作为数据代表的意义,能根据具体问题选择适当的量来代表。
难点:能对具体问题进行分析,选择适当的量来代表。
【导学指导】复习旧知:什么是平均数?什么是中位数?什么是众数?它们有什么区别与联系?学习新知:学习教材P132-P134相关内容,思考、讨论、合作交流后完成下列问题:如何在实际问题中选取平均数、中位数、众数来代表数据?【课堂练习】1.教材P135练习题。
2.8年级某教室里,三位同学正在为谁的数学成绩好而争论,他们五次数学成绩分别是:小花:62,94,95,98,98 小妹:62,92,98,99,100 小路:40,62,85,99,99他们都认为自己的数学成绩比另两位同学好,(1)他们认为自己的数学成绩比另外两位同学好的依据是什么?(2)你认为哪一个同学的成绩最好呢?请说明理由。
【要点归纳】你今天有什么收获?与同伴交流一下。
【拓展训练】1.某超市购进一批不同价格的皮鞋,下表是该超市在近几年统计的平均数据。
要使该超市销售皮鞋收入最大,该超市应多购()的皮鞋。
A.160元 B.140元 C.120元 D.100元2.某商场统计了每个营业员在某月的销售额,统计图如下:(1)设营业员的月销售额为x万元,商场规定:当x<15时为不称职,当15≤x<20时为基本称职,当20≤x<25时为称职,当x≥25时为优秀,试求出不称职、基本称职、称职、优秀四个层次营业员人数所占的百分比。
(2)根据(1)中的规定,所有称职和优秀的营业员月销售的中位数、众数、平均数分别是多少?(3)为了调动营业员的工作积极性,决定实行销售奖励标准,凡达到或超过这个标准的营业员将受到奖励。