阴极保护原理讲义.
阴极保护详解
阴极保护>阴极保护原理:金属—电解质溶解腐蚀体系受到阴极极化时,电位负移,金属阳极氧化反应过电位ηa 减小,反应速度减小,因而金属腐蚀速度减小,称为阴极保护>阴极保护效应。
利用阴极保护>阴极保护效应减轻金属设备腐蚀的防护方法叫做阴极保护>阴极保护。
由外电路向金属通入电子,以供去极化剂还原反应所需,从而使金属氧化反应(失电子反应)受到抑制。
当金属氧化反应速度降低到零时,金属表面只发生去极化剂阴极反应。
两种阴极保护>阴极保护法:外加电流阴极保护>阴极保护和牺牲阳极保护。
阴极保护>阴极保护技术有两种:牺牲阳极阴极保护>阴极保护和强制电流(外加电流)阴极保护>阴极保护。
1)牺牲阳极阴极保护>阴极保护技术牺牲阳极阴极保护>阴极保护技术是用一种电位比所要保护的金属还要负的金属或合金与被保护的金属电性连接在一起,依靠电位比较负的金属不断地腐蚀溶解所产生的电流来保护其它金属。
优点: A: 一次投资费用偏低,且在运行过程中基本上不需要支付维护费用 B: 保护电流的利用率较高,不会产生过保护 C: 对邻近的地下金属设施无干扰影响,适用于厂区和无电源的长输管道>管道,以及小规模的分散管道>管道保护 D: 具有接地和保护兼顾的作用 E: 施工技术简单,平时不需要特殊专业维护管理。
缺点: A: 驱动电位低,保护电流调节范围窄,保护范围小 B: 使用范围受土壤电阻率的限制,即土壤电阻率大于50Ω?m时,一般不宜选用牺牲阳极保护法 C: 在存在强烈杂散电流干扰区,尤其受交流干扰时,阳极性能有可能发生逆转 C: 有效阴极保护>阴极保护年限受牺牲阳极寿命的限制,需要定期更换2)强制电流阴极保护>阴极保护技术强制电流阴极保护>阴极保护技术是在回路中串入一个直流电源,借助辅助阳极,将直流电通向被保护的金属,进而使被保护金属变成阴极,实施保护。
阴极保护的原理
阴极保护的原理
给被保护管道外加电流或在被保护的管道上连接一个电位更负的金属或合金作为阳极,从而使被保护的管道阴极极化,从而消除或减轻管道腐蚀速率的方法。
1 牺牲阳极法阴极保护
在土壤等电解质环境中,牺牲阳极因其电极电位比被保护体的更负,当与被保护体电连接后将优先腐蚀溶解,释放出的电子在被保护体表面发生阴极还原反应,抑阻了被保护体的阳极溶解过程,从而对被保护体提供了有效的阴极保护。
2 外加电流法阴极保护
外加电流法阴极保护是利用外部电源对被保护体施加阴极
电流,为其表面上进行的还原反应提供电子,从而抑阻被保护体自身的腐蚀过程。
3 牺牲阳极种类及应用范围
(1)带状牺牲阳极:主要应用于高电阻率土壤、淡水及空间
狭窄局部场合,如套管内。
(2)镁合金牺牲阳极:镁合金牺牲阳极相对密度小,电极电位很负,极化率低,对铁的驱动电压大。
因其具有很负的开路电位等性能,广泛地应用于土壤、海水、海泥及工业水环境中。
(3)锌-铝-镉合金牺牲阳极:锌-铝-镉合金牺牲阳极适用于海水、淡海水介质中的船舶、机
械设备、海洋工程和海港设施以及低电阻率土壤中的管道、电缆等设施金属防腐蚀的阴极保护。
(4)铝-锌-铟系牺牲阳极:铝-锌-铟系合金牺牲阳极适于海水介质中船舶、机械设备、海洋工程和海港设施以及海泥中管道、电缆等设施金属防腐蚀的阴极保护。
(5)镯式牺牲阳极:主要应用于水下和海底管道上,多以锌合金为材料,兼顾防腐蚀、配重和长寿命。
河南汇龙合金材料有限公司刘珍。
阴极保护培训讲义图文
THANKS
感谢观看
参比电极
参比电极用于测量被保护结构的电 位,为调整保护电流提供参考依据。
阴极保护系统的设计
确定保护范围
确定电流密度和保护电位
根据被保护结构的材质、尺寸、使用 环境等因素,确定阴极保护系统的保 护范围。
根据被保护结构的材质和需求,确定 合适的电流密度和保护电位。
选择阳极和埋设方式
根据实际情况选择合适的阳极材料和 埋设方式,确保阳极能够有效地向被 保护结构提供电流。
模型预测法
利用数学模型预测管道的腐蚀速率,评估阴极保 护效果。
05
阴极保护的常见问题与解 决方案
阴极保护系统失效的原因分析
电源故障
电源设备出现故障,如电源线断裂、电源开 关损坏等。
杂散电流干扰
外界杂散电流干扰导致阴极保护电流流失或 干扰保护效果。
电流分布不均
由于管道防腐层质量差或破损,导致电流在 管道上分布不均。
03
阴极保护材料
常用的阴极保护材料
锌合金
锌合金作为阳极材料, 通过电化学反应保护金
属不受腐蚀。
镁合金
镁合金作为阳极材料, 适用于土壤和淡水环境
中的金属保护。
镀锌钢
镀锌钢作为阳极材料, 广泛用于钢铁结构的阴
极保护。
钛和锆合金
适用于高腐蚀环境的金 属保护,如海洋环境。
阴极保护材料的性能与选择
01
02
栏等金属结构的防腐。
在建筑行业中,阴极保护用于 地下室、水池、冷却塔等混凝
土结构中的钢筋防腐。
02
阴极保护系统
阴极保护系统的组成
阳极系统
阳极是阴极保护系统的关键组成 部分,通常采用石墨、硅钢等材 料制成,负责向被保护结构提供
《阴极保护》课件
阴极保护的应用领域
1 油气管道
阴极保护可延长管道 的使用寿命,并减少 维修和更换的成本。
2 船舶和海洋设施
3 桥梁和建筑结构
海水中的腐蚀对船舶 和海洋设施构成威胁, 阴极保护可以防止腐 蚀的发生。
在恶劣的环境条件下, 如盐湖地区和工业区, 阴极保护可保施工
系统的运行状况。
阴极保护的未来发展趋势
随着技术的不断进步,阴极保护将在更多领域得到应用,如新能源设施、航 空航天和高速铁路等。
阴极保护的原理
阴极保护的原理是通过形成保护电流来抵消金属腐蚀过程中的阳极反应。这 可以通过使用阴极保护剂、阳极材料和外部电源等手段实现。
阴极保护的方法
牺牲阳极法
通过使用比被保护金属更容易腐蚀的金属 作为阳极,从而保护被保护金属。
印流法
通过施加外部电流,将被保护金属作为阴 极,从而抑制金属的腐蚀。
《阴极保护》PPT课件
欢迎来到《阴极保护》PPT课件!通过这个课件,您将了解阴极保护的定义、 原理、方法、应用领域、设计与施工、评估与监控以及未来发展趋势。
阴极保护的定义
阴极保护是一种用于保护金属表面免受腐蚀的技术。通过在金属表面施加电流,将其作为阴极, 从而抑制氧化反应和电子流动,减少或消除金属的腐蚀。
系统设计
阴极保护系统的设计要考虑金属类型、环境条 件和保护需求等因素。
施工步骤
施工包括表面处理、安装阴极保护装置和进行 系统测试等。
阴极保护的评估与监控
1
评估方法
通过测量金属腐蚀速率、阴极保护
监控技术
2
电位和电流密度等参数,评估阴极 保护系统的性能。
使用远程监控系统、故障报警和定
期检查等技术,持续监控阴极保护
阴极保护讲义
冯洪臣的阴极保护讲义第一章绪论一、防腐蚀的重要意义自然界中,大多数金属是以化合状态存在的。
通过炼制,被赋予能量,才从离子状态转变成原子状态。
然而,回归自然状态是金属固有本性。
我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。
金属腐蚀广泛的存在于我们的生活中,国外统计表明,每年由于腐蚀而报废的金属材料,约相当于金属产量的20~40%,全世界每年因腐蚀而损耗的金属达1亿吨以上,金属腐蚀直接和间接地造成巨大的经济损失,据有关国家统计每年由于腐蚀而造成的经济损失,美国为国民经济总产值的4.2%;英国为国民经济总产值的3.5%;日本为国民经济总值1.8%。
二、防腐蚀工程发展概况六十年代初,我国开始研究阴极保护方法,六十年代末期在船舶,闸门等钢铁构筑物上得到应用。
我国埋地油气管道的阴极保护始于1958年,六十年代在新疆、大庆、四川等油气管道上推广应用,目前,全国主要油气管道已全部安装了阴极保护系统,收到明显的效果。
第二章阴极保护基本原理一、腐蚀电位或自然电位每种金属浸在一定的介质中都有一定的电位,称之为该金属的腐蚀电位(自然电位)。
腐蚀电位可表示金属失去电子的相对难易。
腐蚀电位愈负愈容易失去电子,我们称失去电子的部位为阳极区,得到电子的部位为阴极区。
阳极区由于失去电子(如,铁原子失去电子而变成铁离子溶入土壤)受到腐蚀而阴极区得到电子受到保护。
相对于饱和硫酸铜参比电极(CSE),不同金属的在土壤中的腐蚀电位(V)金属电位(CSE)高纯镁 -1.75镁合金(6%Al,3%Zn,0.15%Mn) -1.60锌 -1.10铝合金(5%Zn) -1.05纯铝 -0.80低碳钢(表面光亮) -0.50to-0.80低碳钢(表面锈蚀) -0.20to-0.50铸铁 -0.50混凝土中的低碳钢 -0.20铜 -0.20在同一电解质中,不同的金属具有不同的腐蚀电位,如轮船船体是钢,推进器是青铜制成的,铜的电位比钢高,所以电子从船体流向青铜推进器,船体受到腐蚀,青铜器得到保护。
阴极保护针对原理进行讲解
2. 使用范围受土壤电阻率的限制,即土壤电阻率大于50欧. 米时,一般不宜选用牺牲阳极保护法;
3. 在存在强烈杂散电流干扰区,尤其受交流干扰时,阳极 性能有可能发生逆转;
4. 有效阴极保护年限受牺牲阳极寿命的限制,需要定期更 换。
阴极保护方案设计时,应根据强制电 流保护和牺牲阳极保护各自的特点与优缺点、 实际需要、外界条件和经费指标等因素进行 选择使用。
2.4 评定阴极保护效果的方法
1. 最小保护电位 为使金属腐蚀停止进行,金属经阴极极化后所必须达到的绝 对值最小的负电位值,称之为最小保护电位。
-------监控阴极保护效果的重要参数
美国NACE标准: 1) 施加阴极保护时被保护结构物的负电位至少达到- 0.85V或更负(相对饱和硫酸铜参比电极) 2) 相对于饱和硫酸铜参比电极的负极化电位至少为 850mV. 3) 在构筑物表面与接触电解质的稳定参比电极之间的阴 极极化值最小为100mV。
阴极保护原理与工程
青岛雅合科技
姜刚
2008年2月
阴极保护的原理
腐蚀原理
第一章 腐蚀原理
1.1 腐蚀是什么?
•
腐蚀的定义:腐蚀是金属与周围介质发生化学、电化学反应导致
金属破坏的过程。
按照腐蚀原理可分为:
• 化学腐蚀
• 定义:指金属表面与非电解质直接发生纯化学作用而引。
2.3 阴极保护的分类和特点
2.3.1 分类 阴极保护分为:外加电流和牺牲阳极阴极保护
外加电流是在回路中串入一个直流电源,借助辅助阳 极,将直流电通向被保护的金属,进而使被保护金属 变成阴极,实施保护,如图所示。
牺牲阳极法是用一种电位比所要保护的金属还要负的 金属或合金与被保护的金属电性连接在一起,依靠电 位比较负的金属不断地腐蚀溶解所产生的电流来保护 其它金属的方法。
阴极保护理论讲解(炼化设备处)
有两种办法可以实现这一目的: 1、牺牲阳极阴极保护 2、外加电流阴极保护
阴极保护的分类和特点
2.3.1 分类 阴极保护分为:外加电流和牺牲阳极阴极保护 外加电流是在回路中串入一个直流电源,借助辅助阳 极,将直流电通向被保护的金属,进而使被保护金属 变成阴极,实施保护,如图所示。 牺牲阳极法是用一种电位比所要保护的金属还要负的 金属或合金与被保护的金属电性连接在一起,依靠电 位比较负的金属不断地腐蚀溶解所产生的电流来保护 其它金属的方法。
• 1. 每月规定时间测取所辖站库区域及集输管线阴极保 护工作系统的全部测试桩的对地电位,填写记录报表 ,于规定时间将填写对的各种记录报表上报的上级主 管部门。 • 2. 每季度测试一次本单位阴极保护工作系统的阳极电 阻,每年测试一次本单位所辖区域的阴极保护自然电 位,认真填写记录。 • 3. 认真配合并完成好笨单位阴极保护产能及集输改造 项目现场施工的组织、协调、实施、验收等专项工作 。 • 4.定期检查阴极保护工作间电缆沟内输出电流保证做到 有标识、摆放整齐。
3、铝牺牲阳极 :大多用于海水环境金属结构或原油储罐内底板的阴极 保护。其电极电位为-1.05VCSE。
4、带状阳极: 为了减小阳极接地电阻,有时会采用带状镁阳极或锌阳极。 阳极带沿被保护结构铺设,使电流分布更加均匀。当阳极带沿管道铺设时,每 隔一段距离就应该与管道连接一次。间距不应太大,因为随着阳极的消耗,截 面积不断减小,阳极带电阻会逐步增大。为了减少沿阳极带的电压降,连接间 隔一般不大于305米。带状阳极的一般规格为19x9.5mmx305m每卷。
(3)机械性能好,不易损坏,便于加工制造,运输和安装;
(4)综合保护费用低。
高硅铸铁阳极:除用于焦碳地床中以外,高硅铸铁阳极有时也可直接埋在 低电阻率土壤中。 高硅铸铁硬度很高,耐磨蚀和冲刷作用,但不易机械加 工,只能铸造成型,另外消耗量偏大,因生成大量腐蚀产物造成接地电阻 增大。 钛铂合金阳极:钛—铂合金阳极:消耗量低为2mg/A.a。钢铁阳极为9.1~ 10Kg/ A.a,高硅铸铁阳极为0.5~1.0Kg/ A.a;由于消耗量低,几乎无腐蚀产 物堆积在阳极周围,所以接地电阻无大的变化;导电性能好,电阻率为107Ω.m;寿命长。在100A/m2工作条件下可达20年。
最新-阴极保护原理-PPT课件
一些涂料耐负电压的性能
涂料种类
耐阴极保护电压 (V)
油性 涂料
-0.88
沥青系涂 料
-1.20
环氧沥青 涂料
-1.50
环氧系涂料 (3层pe)
-1.30— -1.5
三层PE防腐层
采用聚乙烯对钢管进行防腐,是近年来逐步推广开来 的一种钢管防腐技术。聚乙烯涂层的主要特点是: • 防腐性能极佳,可耐受在自然环境下存在的各种腐蚀 ; • 具有较高的质价比; • 绝缘性能极好,而且在干燥条件下与长期浸水条件下 电性能基本不变,可有效的防止杂散电流引起的电化 学腐蚀;
2.3.2 特点
一、强制电流
特点:必须有常年供电的直流电源和长寿命辅助阳极地床
1、优点 A: 驱动电压高,能够灵活地在较宽的范围内控制阴极保护电流 输出量; B: 在恶劣的腐蚀条件下或高电阻率的环境中也适用; C: 选用不溶性或微溶性辅助阳极时,可进行长期的阴极保护; D: 每支辅助阳极床的保护范围大,当管道防腐层质量良好时, 一个阴极保护站的保护范围可达数十公里; E: 对裸露或防腐层质量较差的管道也能达到完全的阴极保护
三层PE结构示意图
第三章 腐蚀发生的不同类型
第四章 阴保系统构成
2、强制电流阴极保护系统示意图
本规程主要面向日常操作、管理和维护,简要说明了IHF数控高频开关恒电位仪及 YHS-1控制柜常用操作方法和注意事项,可以作为日常使用及管理维护的依据,详
细的使用方法请参阅恒电位仪及控制柜的使用说明书。
第一章 腐蚀原理
腐蚀原理
1.1 腐蚀是什么?
腐蚀的定义:腐蚀是金属与周围介质发生化学、电化学反应导致金属破坏 的过程。
阴极保护器工作原理
阴极保护器工作原理一、引言阴极保护器是一种用于防止金属结构物腐蚀的设备,它通过施加电流来抑制金属结构物表面的电化学反应,从而减少或消除腐蚀。
二、基本原理阴极保护器的基本原理是利用电化学反应的特性,将金属结构物表面上发生的阳极反应转化为阴极反应。
在金属结构物表面施加一定电流密度后,阴极反应会占据优势地位,从而抑制或消除阳极反应。
三、电化学反应1. 金属在水中的溶解当金属处于水中时,它会与水发生反应,生成离子和氢气。
例如钢铁在水中会被氧化成铁离子和氢气:Fe + 2H2O → Fe2+ + 2OH- + H2↑2. 阳极反应和阴极反应当金属处于水中时,它会同时发生两种电化学反应:阳极反应和阴极反应。
阳极是指发生氧化还原反应的区域,而阴极则是指接受电子并发生还原反应的区域。
例如钢铁在水中的阳极反应和阴极反应如下:阳极反应:Fe → Fe2+ + 2e-阴极反应:2H2O + 2e- → H2↑ + 2OH-3. 腐蚀当阳极反应和阴极反应同时发生时,就会导致金属结构物的腐蚀。
在钢铁结构物表面,氧化还原反应会导致金属离子逐渐溶解,从而使得结构物逐渐腐蚀。
四、阴极保护器的工作原理1. 防止阳极反应阴极保护器通过施加一定电流密度来抑制或消除阳极反应,从而减少或消除金属结构物的腐蚀。
例如,在钢铁结构物表面施加一定电流密度后,可以将钢铁表面上的阳极区域转化为阴极区域,从而抑制氧化还原反应的发生。
2. 增强阴极反应阴极保护器可以通过增强阴极反应来提高金属结构物的耐腐蚀性能。
例如,在钢铁结构物表面施加一定电流密度后,可以增强钢铁表面上的阴极反应,从而使得结构物表面产生一层保护性的氢氧化铁膜,从而防止金属离子进一步溶解。
3. 阴极保护器的组成阴极保护器主要由电源、阳极、阴极和电缆等部分组成。
电源用于提供电流,阳极用于引导电流进入金属结构物表面,阴极用于接受电流并产生保护性的氢氧化铁膜,而电缆则用于将电流从电源传输到阳极和阴极。
阴极保护工作原理
阴极保护工作原理阴极保护基本原理内容:一、腐蚀电位或自然电位每种金属浸在一定的介质中都有一定的电位,称之为该金属的腐蚀电位(自然电位)。
腐蚀电位可表示金属失去电子的相对难易。
腐蚀电位愈负愈容易失去电子,我们称失去电子的部位为阳极区,得到电子的部位为阴极区。
阳极区由于失去电子(如,铁原子失去电子而变成铁离子溶入土壤)受到腐蚀而阴极区得到电子受到保护。
相对于饱和硫酸铜参比电极(CSE),不同金属的在土壤中的腐蚀电位(V)金属电位(CSE)高纯镁 -1.75镁合金(6%Al,3%Zn,0.15%Mn) -1.60 锌 -1.10铝合金(5%Zn) -1.05 纯铝 -0.80低碳钢(表面光亮) -0.50to-0.80 低碳钢(表面锈蚀) -0.20to-0.50 铸铁 -0.50混凝土中的低碳钢 -0.20 铜 -0.20在同一电解质中,不同的金属具有不同的腐蚀电位,如轮船船体是钢,推进器是青铜制成的,铜的电位比钢高,所以电子从船体流向青铜推进器,船体受到腐蚀,青铜器得到保护。
钢管的本体金属和焊缝金属由于成分不一样,两者的腐蚀电位差有时可达0.275V,埋入地下后,电位低的部位遭受腐蚀。
新旧管道连接后,由于新管道腐蚀电位低,旧管道电位高,电子从新管道流向旧管道,新管道首先腐蚀。
同一种金属接触不同的电解质溶液(如土壤),或电解质的浓度、温度、气体压力、流速等条件不同,也会造成金属表面各点电位的不同。
二、参比电极为了对各种金属的电极电位进行比较,必须有一个公共的参比电极。
饱和硫酸铜参比电极,其电极电位具有良好的重复性和稳定性,构造简单,在阴极保护领域中得到广泛采用。
不同参比电极之间的电位比较:土壤中或浸水钢铁结构最小阴极保护电位(V)被保护结构相对于不同参比电极的电位饱和硫酸铜氯化银锌饱和甘汞钢铁(土壤或水中) -0.85 -0.75 0.25 -0.778钢铁(硫酸盐还原菌)-0.95 -0.85 0.15 -0.878三、阴极保护阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。
阴极保护原理
一、.阴极保护的原理:在了解了金属的电化学腐蚀的原理之后,再去了解阴极保护的原理就比较容易了。
传统的金属防腐方法主要是隔离防腐,即将金属与腐蚀介质隔离。
具体措施有涂料、敷层、电镀等。
另一种方法就是选用耐腐蚀金属,如不锈钢、铜、钛等;或在可能的情况下用其它材料如塑料、玻璃钢等。
但是,由于腐蚀环境几乎无处不在,腐蚀的形态也多种多样。
单一的防腐措施往往不能有效地控制金属的腐蚀,尤其是电化学腐蚀。
金属结构一旦有腐蚀电池形成,其阳极区因其区域范围相对比阴极区的区域范围小的多,腐蚀速度也极快。
此时金属表面发生的不是均匀腐蚀,而是孔蚀。
地下的油气管道、储罐、各种存有电解质的容器设备等几乎都是因为孔蚀而发生泄露的。
阴极保护就是利用腐蚀电池的原理,将需要被保护的金属结构作为阴极,通过阳极向阴极不间断地提供电子,首先使结构极化,进而在结构表面富集电子,使其不易产生离子,因而大大地减缓了结构的腐蚀速度。
二.阴极保护的种类:阴极保护大致分为牺牲阳极法(见图1)和外加电流法(见图2)两种。
1.牺牲阳极法是利用电位比被保护金属结构低的金属或合金(如镁合金、锌合金、铝合金等)作为阳极,构成一个腐蚀电池。
在阴极(被保护结构)得到保护的同时,阳极不断地被消耗,故称为牺牲阳极。
2.强制电流法(外加电流法)则是给被保护结构加一阴极电流,而给辅助阳极(一般为高硅铸铁或废钢)加一阳极电流,构成一个腐蚀电池。
以同样的原理使金属结构得到保护。
三.两种阴极保护方法的优缺点:1.牺牲阳极法的优点在于安装施工简便,对临近金属结构的影响极小,运行成本低,可实现零费用维护,一次投资,长期受益。
2.强制电流法在实施大范围野外阴极保护时比较经济。
但对附近金属结构的影响较大,需要有专人管理维护,需要有稳定可靠的不间断电源。
故不适合用于市区内的地下结构的阴极保护。
3.根据实施阴极保护工程的现场条件,有时亦可考虑对同一结构同时采用两种阴极保护法。
图.1图.2。
详解管道阴极保护原理
• 2、埋地管道防腐层的主要种类 • 埋地管道的防腐层种类主要有石油沥青、 单(双)层环氧粉末涂层、3层PE以及聚乙 烯胶粘带等。
• 3、单层熔结环氧粉末 • (1)性能 • 熔结环氧粉末防腐涂层最早于1961年由美国开发 成功并应用于管道防腐工程,之后在许多国家得 到进一步的开发和应用。由于熔结环氧粉末防腐 涂层与钢管表面粘结力强、耐化学介质侵蚀性能、 耐温性能等都比较好,抗腐蚀性、耐阴极剥离性、 耐老化性、耐土壤应力等性能也很好,使用温度 范围宽(普通熔结环氧粉末为-30~100℃,成为国 内外管道内外防腐涂层技术的主要体系之一。但 由于涂层较薄(0.3-0.5环境和定向钻穿越粘质土壤。
二、腐蚀的分类
• 腐蚀按材料的类型可分为金属腐蚀和非金 属腐蚀,就腐蚀破坏的形态分类,可分为 全面腐蚀和局部腐蚀。全面腐蚀是一种常 见的腐蚀形态,包括均匀的全面和不均匀 全面腐蚀。按腐蚀的机理可分为化学腐蚀 和电化学腐蚀。 • 金属管道常见的腐蚀按其作用原理可分为 化学腐蚀和电化学腐蚀两种。
1、化学腐蚀
• 应用无污染的热源将钢管加热至合适的涂敷温度, 环氧粉末涂料均匀地涂敷到钢管表面;胶粘剂的 涂敷必须在环氧粉末胶化过程中进行;聚乙烯层 的涂敷可采用纵向挤出工艺或侧向缠绕工艺。公 称直径大于5OOmm的钢管,宜采用侧向缠绕工艺。 采用侧向缠绕工艺时,应确保搭接部分的聚乙烯 及焊缝两侧的聚乙烯完全辊压密实,并防止压伤 聚乙烯层表面;采用纵向挤出工艺时,焊缝两侧不 应出现空洞。聚乙烯层涂敷后,确保熔结环氧涂 层固化完全,然后用水冷却至钢管温度不高于 60℃。
• 防腐层地下检测 • 管道在埋地后仍应定期或不定期进行防腐 层检测, 检测其在埋地后的防腐层质量变化 情况: 有否破损? 破损点位置、大小;防腐 层绝缘电阻变化速率等, 对埋地管道防腐层 状况作出确切的评估,并提出处理建议。
阴极保护工作原理
阴极爱护工作原理阴极爱护基本原理内容:一、腐蚀电位或自然电位每种金属浸在肯定的介质中都有肯定的电位,称之为该金属的腐蚀电位(自然电位)。
腐蚀电位可表示金属失去电子的相对难易。
腐蚀电位愈负愈简洁失去电子,我们称失去电子的部位为阳极区,得到电子的部位为阴极区。
阳极区由于失去电子(如,铁原子失去电子而变成铁离子溶入土壤)受到腐蚀而阴极区得到电子受到爱护。
相对于饱和硫酸铜参比电极(CSE),不同金属的在土壤中的腐蚀电位(V)金属电位(CSE)高纯镁-1.75镁合金(6%Al,3%Zn,0.15%Mn)-1.60锌-1.10铝合金(5%Zn)-1.05纯铝-0.80低碳钢(表面光亮)-0.50to-0.80低碳钢(表面锈蚀)-0.20to-0.50铸铁-0.50混凝土中的低碳钢-0.20铜-0.20在同一电解质中,不同的金属具有不同的腐蚀电位,如轮船船体是钢,推动器是青铜制成的,铜的电位比钢高,所以电子从船体流向青铜推动器,船体受到腐蚀,青铜器得到爱护。
钢管的本体金属和焊缝金属由于成分不一样,两者的腐蚀电位差有时可达0.275V,埋入地下后,电位低的部位遭受腐蚀。
新旧管道连接后,由于新管道腐蚀电位低,旧管道电位高,电子从新管道流向旧管道,新管道首先腐蚀。
同一种金属接触不同的电解质溶液(如土壤),或电解质的浓度、温度、气体压力、流速等条件不同,也会造成金属表面各点电位的不同。
二、参比电极为了对各种金属的电极电位进行比较,必需有一个公共的参比电极。
饱和硫酸铜参比电极,其电极电位具有良好的重复性和稳定性,构造简洁,在阴极爱护领域中得到广泛采纳。
不同参比电极之间的电位比较:土壤中或浸水钢铁结构最小阴极爱护电位(V)被爱护结构相对于不同参比电极的电位饱和硫酸铜氯化银锌饱和甘汞钢铁(土壤或水中)-0.85-0.750.25-0.778钢铁(硫酸盐还原菌)-0.95-0.850.15-0.878三、阴极爱护阴极爱护的原理是给金属补充大量的电子,使被爱护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不简洁失去电子而变成离子溶入溶液。
阴极保护的工作原理是什么
阴极保护的工作原理是什么
阴极保护原理是什么
一、阴极保护是什么:
首先,阴极保护技术是电化学保护技术的一种, 阴极保护是利用外加直流电源,使金属表面变为阴极而达到保护,其主要原理是向被腐蚀金属结构物表面施加一个外加电流,使得被保护结构物成为阴极,继而让金属腐蚀发生的电子迁移得到抑制,避免或减弱了腐蚀的发生. 其次,就目前阴极保护技术而言利用阴极保护效应减轻金属设备腐蚀的防护方法叫做阴极保护。
由外电路向金属通入电子,以供去极化剂还原反应所需。
二、阴极保护原理:
阴极保护原理是使金属构件作为阴极,对其施加一定的直流电流,使其产生阴极极化,当金属的电位负于某一电位值时,该金属表面的电化学不均匀性得到消除,腐蚀的阴极溶解过程得到有效抑制,达到保护的目的.简单来说,就是使金属表面电子达到饱和的一种电化学技术.
原理是向被腐蚀金属结构物表面施加一个外加电流,被保护结构物成为阴极,从而使得金属腐蚀发生的电子迁移得到抑制,避免或减弱腐蚀的发生。
三、阴极保护效应
金属—电解质溶解腐蚀体系受到阴极极化时,电位负移,金属阳极氧化反应过电位ηa 减小,反应速度减小,因而金属腐蚀速度减小,称为阴极保护效应。
从而使金属氧化反应(失电子反应)受到抑制。
当金属氧化反应速度降低到零时,金属表面只发生去极化剂阴极反应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
层失效,而且电能大量消耗,还可导致金属材料产生氢脆
进而发生氢脆断裂。
4、最小保护电流密度:使金属腐蚀下降到最低程度或
停止时所需要的保护电流密度,称作最小保护电流密度, 其常用单位为mA/m2表示。
5、瞬时断电电位:在断掉被保护结构的外加电源或牺牲 阳极0.2—0.5秒中之内读取的结构对地电位。 由于此时没有外加电流从介质中流向被保护结构,所测电
三、防腐蚀工程发展概况
六十年代初,我国开始研究阴极保护方法,六 十年代末期在船舶,闸门等钢铁构筑物上得到应 用。 我国埋地油气管道的阴极保护始于1958年,六
十年代在新疆、大庆、四川等油气管道上推广应用, 目前,全国主要油气管道已全部安装了阴极保护系 统,收到明显的效果。
第二章 阴极保护基本原理
2、辅助阳极的结构
1.1浅埋式地床结构:将电极埋入距地表1~5米的土层中, 这是管道阴极保护一般选用的阳极埋设形式。 (1)立式阳极:由一根或多根垂直埋入地中的阳极排列构成, 电极 间用电缆联接。 (2)水平式阳极:将阳极以水平方向埋入一定深度的地层中。 (3)联合式阳极:指采用钢铁材料制成地床,它由上端联 接着水平干线的一排立式阳极所组成。
缺点: 施工复杂技术要求高,单井造价贵。尤其是深度
超过100米的深阳极,施工需要大钻机,这就限制了它的 应用。
3、阳极地床填料 (1)阳极地床填料的功能 1)增大阳极与土壤的接触,从而降低地床接地电阻; 2)将阳极电极反应转移到填料与土壤之间进行,延长 阳极的使用寿命; 3)填料可以消除气体堵塞。 (2)对填料的要求 1)填料颗粒必须是导电体,以保证阳极与土壤之间良 好的导电性。 2)填料应成本低,来源广,具有较连续的接触表面。
第一章 绪 论 第二章 阴极保护基本原理 第三章 阴极保护主要参数 第四章 阴极保护准则 第五章 牺牲阳极保护阳极材料 第六章 外加电流阴极保护阳极材料 第七章 辅助阳极的选择 第八章 恒电位仪操作规定 第九章 阴极保护参数的测量 第十章 阴极保护的运行管理 第十一章 阴极保护中的几个屏蔽问题 第十二章 阴极保护站常见故障处理
阴 极 阳 极
Ia
腐蚀金属
腐蚀电池
I
直流电源
- +
I- - + Ic 辅助 阳极
阴 极
Ia
阳 极
辅助 阳极
Ⅰ-Ia
外加电流阴极保护示意图
第三章 阴极保护主要参数
1、自然电位 金属埋入土壤后,在无外部电流影响时的
腐蚀电位。
影响自然电位因素:金属结构的材质、表面状况和土质状 况,含水量等因素不同而异,一般有涂层埋地管道的自然电 位在-0.4~-0.7VCSE(硫酸铜参比电极)之间,在雨季 土壤湿润时,自然电位会偏负,一般新管道设计阴极保护时 取平均值-0.55V。 2、最小保护电位:金属达到完全保护所需要的、绝对 值最小的负电位值(相对于CSE为-0.85V)。
第一章 绪 论
一、腐蚀的危害 1、阻碍新技术的发展 2、造成巨大的经济损失
3、造成设备的破坏事故
4、 金属资源和能源的浪费
二、腐蚀的定义
腐蚀的定义1:我们把金属与周围的电解质发生
反应、从原子变成离子的过程称为腐蚀。
腐蚀的定义2:金属材料和周围环境发生化学
或电化学的作用而破坏。
腐蚀过程的本质: 金属 → 金属化合物
3、最大保护电位的限制应根据覆盖层及环境确定, 以不损坏覆盖层的粘结力为准,一般瞬时断电电位不得 低于-1.10VCSE。 判断阴极保护电位是否过大应以断电电位为判断基 础,只要断电电位不低于-1.1VCSE,通电电位再大 也没有关系。
第五章 牺牲阳极保护阳极材料
1 、镁牺牲阳极 : 镁阳极可用于电阻率在 20 欧姆 . 米到 100欧姆.米的土壤或淡水环境。高电位镁阳极的电位为 -1.75VCSE,低电位镁阳极的电位为-1.55VCSE。
3、最大保护电位:将电位控制在比析氢电位稍高的电位 值,此电位称为最大保护电位(相对于CSE为-1.25V)。(在 阴极保护条件下,允许绝对值最大的负电位值) 超过最大保护电位时称为"过保护"。 过保护对管道的影响:保护电位不是愈低愈好,是有限
度的,过低的保护电位会造成管道防腐层漏点处大量析出
氢气,造成涂层与管道脱离,即,阴极剥离,不仅使防腐
第七章辅助阳极的选择
辅助阳极是强制电流阴极保护中不可缺少的重要组 成部分,通过辅助阳极把保护电流送入土壤,经土壤流 入被保护的管道,使管道表面进行阴极极化(防止电化 学腐蚀)电流再由管道流入电源负极形成一个回路,这 一回路形成了一个电解池,管道为负极处于还原环境中, 防止腐蚀;而辅助阳极进行氧化反应,遭受腐蚀,也可 能是周围电解质被氧化。
2.2 深埋式阳极(深井式)
当阳极地床周围存在干扰、屏蔽、地床位置受到限制, 或者在地下管网密集区进行区域性阴极保护时,使用深 埋式阳极,可获得浅埋式阳极所不能得到的保护效果。 深埋式地床根据埋设深度不同可分为浅深井(20~40米)、 中深井(50~100米)和深井(>100米)三种。 优点: 接地电阻小,对周围干扰小,消耗功率低,电流 分布比较理想。
高硅铸铁阳极:适用于各种环境介质如海水、淡水、咸 水、土壤中。当阳极电流通过时,在其表面会发生氧化, 形成一层薄的SiO2多孔保护膜,极耐酸,可阻止基体材 料的腐蚀,降低阳极的溶解速率,具有良好的导电性能。
除用于焦碳地床中以外,高硅铸铁阳极有时也可直接埋
在低电阻率土壤中。 高硅铸铁硬度很高,耐磨蚀和冲 刷作用,但不易机械加工,只能铸造成型,另外脆性大, 搬运和安装时易损坏。
1、牺牲阳极阴极保护:是将电位更负的金属与被保护金
属连接,并处于同一电解质中,使该金属上的电子转移到被 保护金属上去,使整个被保护金属处于一个较负的相同的电 位下。 特点:该方式简便易行,不需要外加电源,很少产生腐蚀 干扰。 应用:保护小型或处于低土壤电阻率环境下(土壤电阻率 小于100欧姆.米)的金属结构。如:城市管网、小型储罐等。
位为结构的实际极化电位,不含IR降(介质中的电压降)。
第四章 阴极保护准则
1、“在通电的情况下,埋地钢铁结构最小保护电位为0.85VCSE或更负,在有硫酸盐还原菌存在的情况下,最 小保护电位为-0.95VCSE,该电位不含土壤中电压降(IR 降:电流在介质中流动所造成的电阻压降)”。 2、瞬时断电电位与自然电位之差不得小于100mV。 在有些情况下,在断开电源0.2-0.5秒内测量断电电位, 待结构去极化后(24或48小时后)再测量结构电位(自然 电位),其差值应不小于100mV。也可以用通电电位(极 化后)减去瞬时通电电位来计算极化电位。
一、腐蚀电位或自然电位 腐蚀电位(自然电位):每种金属浸在一定的介质中都有一 定的电位,称之为该金属的腐蚀电位(自然电位)。 腐蚀电位可表示金属失去电子的相对难易。腐蚀电位愈负愈 容易失去电子。 我们称:失去电子的部位为阳极区。 得到电子的部位为阴极区。 阳极区由于失去电子(如,铁原子失去电子而变成铁离 子溶入土壤)受到腐蚀,阴极区得到电子受到保护。
二、KHL-30/40可控硅恒电位仪
(一)操作注意事项: 1、安装、接线等作业,请务必在切断全部电源后进行; 2、清扫及拧紧端子须在关闭电源后进行,以防短路及触 电; 3、更换控制板或元器件时须在关闭电源后进行,以防损 坏设备。 (二)性能参数: 输入电压:220±10%VAC,50HZ 电位控制精度:≤±5mV 参比电极:使用任意长效电极,极化电位-3V~3V任选
钢铁(土壤或水中)
钢铁(硫酸盐还原菌)
-0.95
-0.85
0.15
-0.878
三、阴极保护
阴极保护的原理:是给金属补充大量的电子,使被保护
金属整体处于电子过剩的状态,使金属表面各点达到同一
负电位,金属原子不容易失去电子而变成离子溶入溶液。
有两种办法可以实现这一目的:
1、牺牲阳极阴极保护 2、外加电流阴极保护
二、参比电极
为了对各种金属的电极电位进行比较,必须有一个公共的 参比电极。
饱和硫酸铜参比电极电极,其电极电位具有良好的重复性 和稳定性,构造简单,在阴极保护领域中得到广泛采用。 土壤中或浸水钢铁结构最小阴极保护电位(V)
相对于不同参比电极的电位 被保护结构 饱和硫酸铜 参比电 极 -0.85 氯化银 参比电极 -0.75 锌 参比电极 0.25 饱和甘汞 参比电 极 -0.778
阴 极
阳 极
I
牺牲 阳极
牺牲阳极保护原理图
2、外加电流阴极保护:通过外加直流电源以及辅助阳极, 迫使电流从土壤中流向被保护金属,使被保护金属结构电位 低于周围环境。
应用:保护大型或处于高土壤电阻率土壤中的金属结构,如: 长输埋地管道,大型罐群等。
外加电流阴极保护原理
Icor
Ic
阳极区 阴极区
4、接地电阻
目前接地电阻一般不大于1欧左右。
第八章 恒电位仪操作规定
一、恒电位仪使用保养
1、恒电位仪要保持性能良好,能够正常开机,并保持输出
电流正常无杂音,各部位无锈蚀、灰尘,机壳表面完好明亮。 2、经常检查电路输入、阳极和阴极输出线、参比电极是否 接触良好,是否有干涸,每月检查一次,每季度测阳极地床 电阻一次。
(2)在苛刻的环境中,有良好的化学和电化学稳定性,消耗
率低,寿命长; (3)机械性能好,不易损坏,便于加工制造,运输和安装;
(4)综合保护费用低。
2、目前主要使用的几种阳极材料及性能
废钢铁阳极:是早期外加电流阴极保护常用阳极材料,其 来源广泛,价格低廉。由于是溶解性阳极,表面很少析出 气体,因而地床中不存在气阻问题。其缺点是消耗速率大, 在土壤中为8.4kg/A.a,使用寿命较短,多用于临时性保护 或高电阻率土壤中。 石墨阳极:是由碳素在高温加热后形成的晶体材料,通常 用石蜡、亚麻油或树脂进行浸渍处理,以减少电解质的渗 入,增加机械强度。经浸渍处理后,石墨阳极的消耗率将 明显减小。 石墨阳极价格较低,并易于加工,但软而脆, 在运输和安装时易损坏,随着新的阳极材料出现,其在地 床中的应用逐渐减少。