江苏省连云港市2018年中考数学模拟试题(含答案)
2018年连云港市中考数学试卷(含答案解析)-精品
江苏省连云港市2018年中考数学试卷(解析版)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2018年江苏省连云港市)﹣8的相反数是()A.﹣8 B.C.8 D.﹣【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:﹣8的相反数是8,故选:C.【点评】此题主要考查了相反数,关键是掌握相反数的定义.2.(2018年江苏省连云港市)下列运算正确的是()A.x﹣2x=﹣x B.2x﹣y=xy C.x2+x2=x4D.(x﹣l)2=x2﹣1【分析】根据整式的运算法则即可求出答案.【解答】解:(B)原式=2x﹣y,故B错误;(C)原式=2x2,故C错误;(D)原式=x2﹣2x+1,故D错误;故选:A.【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.3.(2018年江苏省连云港市)地球上陆地的面积约为150 000 000km2.把“150 000 000”用科学记数法表示为()A.1.5×108B.1.5×107C.1.5×109D.1.5×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:150 000 000=1.5×108,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.(2018年江苏省连云港市)一组数据2,1,2,5,3,2的众数是()A.1 B.2 C.3 D.5【分析】根据众数的定义即一组数据中出现次数最多的数,即可得出答案.【解答】解:在数据2,1,2,5,3,2中2出现3次,次数最多,所以众数为2,故选:B.【点评】此题考查了众数,众数是一组数据中出现次数最多的数.5.(2018年江苏省连云港市)如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A.B.C.D.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵共6个数,大于3的有3个,∴P(大于3)==;故选:D.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6.(2018年江苏省连云港市)如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是()A.B.C.D.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:A.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.7.(2018年江苏省连云港市)已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A.点火后9s和点火后13s的升空高度相同B.点火后24s火箭落于地面C.点火后10s的升空高度为139mD.火箭升空的最大高度为145m【分析】分别求出t=9、13、24、10时h的值可判断A、B、C三个选项,将解析式配方成顶点式可判断D 选项.【解答】解:A、当t=9时,h=136;当t=13时,h=144;所以点火后9s和点火后13s的升空高度不相同,此选项错误;B、当t=24时h=1≠0,所以点火后24s火箭离地面的高度为1m,此选项错误;C、当t=10时h=141m,此选项错误;D、由h=﹣t2+24t+1=﹣(t﹣12)2+145知火箭升空的最大高度为145m,此选项正确;故选:D.【点评】本题主要考查二次函数的应用,解题的关键是熟练掌握二次函数的性质.8.(2018年江苏省连云港市)如图,菱形ABCD的两个顶点B、D在反比例函数y=的图象上,对角线AC 与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()A.﹣5 B.﹣4 C.﹣3 D.﹣2【分析】根据题意可以求得点B的坐标,从而可以求得k的值.【解答】解:∵四边形ABCD是菱形,∴BA=BC,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∵点A(1,1),∴OA=,∴BO=,∵直线AC的解析式为y=x,∴直线BD的解析式为y=﹣x,∵OB=,∴点B的坐标为(,),∵点B在反比例函数y=的图象上,∴,解得,k=﹣3,故选:C.【点评】本题考查反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.二、填空题(本大题共8小题,毎小题3分,共24分,不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9.(2018年江苏省连云港市)使有意义的x的取值范围是x≥2 .【分析】当被开方数x﹣2为非负数时,二次根式才有意义,列不等式求解.【解答】解:根据二次根式的意义,得x﹣2≥0,解得x≥2.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.10.(2018年江苏省连云港市)分解因式:16﹣x2= (4+x)(4﹣x).【分析】16和x2都可写成平方形式,且它们符号相反,符合平方差公式特点,利用平方差公式进行因式分解即可.【解答】解:16﹣x2=(4+x)(4﹣x).【点评】本题考查利用平方差公式分解因式,熟记公式结构是解题的关键.11.(2018年江苏省连云港市)如图,△ABC中,点D、E分別在AB、AC上,DE∥BC,AD:DB=1:2,则△ADE与△ABC的面积的比为1:9 .【分析】根据DE∥BC得到△ADE∽△ABC,再结合相似比是AD:AB=1:3,因而面积的比是1:9,问题得解.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,∴S△ADE:S△ABC是1:9.故答案为:1:9.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.12.(2018年江苏省连云港市)已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣图象上的两个点,则y1与y2的大小关系为y1<y2.【分析】根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小,从而可以解答本题.【解答】解:∵反比例函数y=﹣,﹣4<0,∴在每个象限内,y随x的增大而增大,∵A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣图象上的两个点,﹣4<﹣1,∴y1<y2,故答案为:y1<y2.【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答.13.(2018年江苏省连云港市)一个扇形的圆心角是120°.它的半径是3cm.则扇形的弧长为2πcm.【分析】根据弧长公式可得结论.【解答】解:根据题意,扇形的弧长为=2π,故答案为:2π【点评】本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.14.(2018年江苏省连云港市)如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB= 44°.【分析】首先连接OB,由点C在过点B的切线上,且OC⊥OA,根据等角的余角相等,易证得∠CBP=∠CPB,利用等腰三角形的性质解答即可.【解答】解:连接OB,∵BC是⊙O的切线,∴OB⊥BC,∴∠OBA+∠CBP=90°,∵OC⊥OA,∴∠A+∠APO=90°,∵OA=OB,∠OAB=22°,∴∠OAB=∠OBA=22°,∴∠APO=∠CBP=68°,∵∠APO=∠CPB,∴∠CPB=∠ABP=68°,∴∠OCB=180°﹣68°﹣68°=44°,故答案为:44°【点评】此题考查了切线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.15.(2018年江苏省连云港市)如图,一次函数y=kx+b的图象与x轴、y轴分别相交于A、B两点,⊙O 经过A,B两点,已知AB=2,则的值为﹣.【分析】由图形可知:△OAB是等腰直角三角形,AB=2,可得A,B两点坐标,利用待定系数法可求k和b 的值,进而得到答案.【解答】解:由图形可知:△OAB是等腰直角三角形,OA=OB∵AB=2,OA2+OB2=AB2∴OA=OB=∴A点坐标是(,0),B点坐标是(0,)∵一次函数y=kx+b的图象与x轴、y轴分别相交于A、B两点∴将A,B两点坐标带入y=kx+b,得k=﹣1,b=∴=﹣故答案为:﹣【点评】本题主要考查图形的分析运用和待定系数法求解析,找出A,B两点的坐标对解题是关键之举.16.(2018年江苏省连云港市)如图,E、F,G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,连接AC、HE、EC,GA,GF.已知AG⊥GF,AC=,则AB的长为 2 .【分析】如图,连接BD.由△ADG∽△GCF,设CF=BF=a,CG=DG=b,可得=,推出=,可得b=a,在Rt△GCF中,利用勾股定理求出b,即可解决问题;【解答】解:如图,连接BD.∵四边形ABCD是矩形,∴∠ADC=∠DCB=90°,AC=BD=,∵CG=DG,CF=FB,∴GF=BD=,∵AG⊥FG,∴∠AGF=90°,∴∠DAG+∠AGD=90°,∠AGD+∠CGF=90°,∴∠DAG=∠CGF,∴△ADG∽△GCF,设CF=BF=a,CG=DG=b,∴=,∴=,∴b2=2a2,∵a>0.b>0,∴b=a,在Rt△GCF中,3a2=,∴a=,∴AB=2b=2.故答案为2.【点评】本题考查中点四边形、矩形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(本大题共11小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(2018年江苏省连云港市)计算:(﹣2)2+20180﹣【分析】首先计算乘方、零次幂和开平方,然后再计算加减即可.【解答】解:原式=4+1﹣6=﹣1.【点评】此题主要考查了实数的运算,关键是掌握乘方的意义、零次幂计算公式和二次根式的性质.18.(2018年江苏省连云港市)解方程:﹣=0【分析】根据灯饰的性质,可得整式方程,根据解整式方程,可得答案.【解答】解:两边乘x(x﹣1),得3x﹣2(x﹣1)=0,解得x=2,经检验:x=2是原分式方程的解.【点评】本题考查了解分式方程,利用等式的性质将分式方程转化成整式方程是解题关键,要检验方程的根.19.(2018年江苏省连云港市)解不等式组:【分析】根据不等式组的解集的表示方法:大小小大中间找,可得答案.【解答】解:,解不等式①,得x<2,解不等式②,得x≥﹣3,不等式①,不等式②的解集在数轴上表示,如图,原不等式组的解集为﹣3≤x<2.【点评】本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.20.(2018年江苏省连云港市)随着我国经济社会的发展,人民对于美好生活的追求越来越高.某社区为了了解家庭对于文化教育的消费悄况,随机抽取部分家庭,对每户家庭的文化教育年消费金额进行问卷调査,根据调查结果绘制成两幅不完整的统计图表.请你根据统计图表提供的信息,解答下列问题:(1)本次被调査的家庭有150 户,表中 m= 42 ;(2)本次调查数据的中位数出现在 B 组.扇形统计图中,D组所在扇形的圆心角是36 度;户家庭,请你估计家庭年文化教育消费10000元以上的家庭有多少户?组別家庭年文化教育消费金额x(元)户数A x≤5000 36B 5000<x≤10000 mC 10000<x≤15000 27D 15000<x≤20000 15E x>20000 30【分析】(1)依据A组或E组数据,即可得到样本容量,进而得出m的值;(2)依据中位数为第75和76个数据的平均数,即可得到中位数的位置,利用圆心角计算公式,即可得到D组所在扇形的圆心角;(3)依据家庭年文化教育消费10000元以上的家庭所占的比例,即可得到家庭年文化教育消费10000元以上的家庭的数量.【解答】解:(1)样本容量为:36÷24%=150,m=150﹣36﹣27﹣15﹣30=42,故答案为:150,42;(2)中位数为第75和76个数据的平均数,而36+42=78>76,∴中位数落在B组,D组所在扇形的圆心角为360°×=36°,故答案为:B,36;(3)家庭年文化教育消费10000元以上的家庭有2500×=1200(户).【点评】本题考查扇形统计图、用样本估计总体以及中位数的运用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.21.(2018年江苏省连云港市)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.(1)若前四局双方战成2:2,那么甲队最终获胜的概率是;(2)现甲队在前两周比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?【分析】(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求.【解答】解:(1)甲队最终获胜的概率是;故答案为;(2)画树状图为:共有8种等可能的结果数,其中甲至少胜一局的结果数为7,所以甲队最终获胜的概率=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.22.(2018年江苏省连云港市)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.【分析】(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.【解答】解:(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中点,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四边形ACDF是平行四边形;(2)BC=2CD.证明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中点,∴AD=2CD,∵AD=BC,∴BC=2CD.【点评】本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.23.(2018年江苏省连云港市)如图,在平面直角坐标系中,一次函数y=k1x+b的图象与反比例函数y=的图象交于A(4,﹣2)、B(﹣2,n)两点,与x轴交于点C.(1)求k2,n的值;(2)请直接写出不等式k1x+b的解集;(3)将x轴下方的图象沿x轴翻折,点A落在点A′处,连接A′B,A′C,求△A′BC的面积.【分析】(1)将A点坐标代入y=(2)用函数的观点将不等式问题转化为函数图象问题;(3)求出对称点坐标,求面积.【解答】解:(1)将A(4,﹣2)代入y=,得k2=﹣8.∴y=﹣将(﹣2,n)代入y=﹣n=4.∴k2=﹣8,n=4(2)根据函数图象可知:﹣2<x<0或x>4(3)将A(4,﹣2),B(﹣2,4)代入y=k1x+b,得k1=﹣1,b=2∴一次函数的关系式为y=﹣x+2与x轴交于点C(2,0)∴图象沿x轴翻折后,得A′(4,2),S△A'BC=(4+2)×(4+2)×﹣×4×4﹣×2×2=8∴△A'BC的面积为8.【点评】本题是一次函数和反比例函数综合题,使用的待定系数法,考查用函数的观点解决不等式问题.24.(2018年江苏省连云港市)某村在推进美丽乡村活动中,决定建设幸福广场,计划铺设相同大小规格购买数量低于5000块购买数量不低于5000块红色地砖原价销售以八折销售蓝色地砖原价销售以九折销售10000块,蓝色地砖3500块,需付款99000元.(1)红色地砖与蓝色地砖的单价各多少元?(2)经过测算,需要购置地砖12000块,其中蓝色地砖的数量不少于红色地砖的一半,并且不超过6000块,如何购买付款最少?请说明理由.【分析】(1)根据题意结合表格中数据,购买红色地砖4000块,蓝色地砖6000块,需付款86000元;购买红色地砖10000块,蓝色地砖3500块,需付款99000元,分别得出方程得出答案;(2)利用已知得出x的取值范围,再利用一次函数增减性得出答案.【解答】解:(1)设红色地砖每块a元,蓝色地砖每块b元,由题意可得:,解得:,答:红色地砖每块8元,蓝色地砖每块10元;(2)设购置蓝色地砖x块,则购置红色地砖(12000﹣x)块,所需的总费用为y元,由题意可得:x≥(12000﹣x),解得:x≥4000,又x≤6000,所以蓝砖块数x的取值范围:4000≤x≤6000,当4000≤x<5000时,y=10x+×0.8(12000﹣x)=76800+3.6x,所以x=4000时,y有最小值91200,当5000≤x≤6000时,y=0.9×10x+8×0.8(1200﹣x)=2.6x+76800,所以x=5000时,y有最小值89800,∵89800<91200,∴购买蓝色地砖5000块,红色地砖7000块,费用最少,最少费用为89800元.【点评】此题主要考查了一次函数的应用以及二元一次方程组的应用,正确得出函数关系式是解题关键.25.(2018年江苏省连云港市)如图1,水坝的横截面是梯形ABCD,∠ABC=37°,坝顶DC=3m,背水坡AD 的坡度i(即tan∠DAB)为1:0.5,坝底AB=14m.(1)求坝高;(2)如图2,为了提高堤坝的防洪抗洪能力,防汛指挥部决定在背水坡将坝顶和坝底间时拓宽加固,使得AE=2DF,EF⊥BF,求DF的长.(参考数据:sin37°≈,cos37°≈,tan37°≈)【分析】(1)作DM⊥AB于M,CN⊥AN于N.由题意:tan∠DAB==2,设AM=x,则DM=2x,在Rt△BCN中,求出BN,构建方程即可解决问题;(2)作FH⊥AB于H.设DF=y,设DF=y,则AE=2y,EH=3+2y﹣y=3+y,BH=14+2y﹣(3+y)=11+y,由△EFH∽△FBH,可得=,即=,求出y即可;【解答】解:(1)作DM⊥AB于M,CN⊥AN于N.由题意:tan∠DAB==2,设AM=x,则DM=2x,∵四边形DMNC是矩形,∴DM=CN=2x,在Rt△NBC中,tan37°===,∴BN=x,∵x+3+x=14,∴x=3,∴DM=6,答:坝高为6m.(2)作FH⊥AB于H.设DF=y,设DF=y,则AE=2y,EH=3+2y﹣y=3+y,BH=14+2y﹣(3+y)=11+y,由△EFH∽△FBH,可得=,即=,解得y=﹣7+2或﹣7﹣2(舍弃),∴DF=2﹣7,答:DF的长为(2﹣7)m.【点评】本题考查了坡度坡角的求解,考查了特殊角的三角函数值,考查了三角函数在直角三角形中运用,解题的关键是学会理由参数构建方程解决问题.26.(2018年江苏省连云港市)如图1,图形ABCD是由两个二次函数y1=kx2+m(k<0)与y2=ax2+b(a>0)的部分图象围成的封闭图形.已知A(1,0)、B(0,1)、D(0,﹣3).(1)直接写出这两个二次函数的表达式;(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;(3)如图2,连接BC,CD,AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标【分析】(1)利用待定系数法即可得出结论;(2)先确定出MM'=(1﹣m2)﹣(3m2﹣3)=4﹣4m2,进而建立方程2m=4﹣4m2,即可得出结论;(3)先利用勾股定理求出AD=,同理:CD=,BC=,再分两种情况:①如图1,当△DBC∽△DAE时,得出,进而求出DE=,即可得出E(0,﹣),再判断出△DEF∽△DAO,得出,求出DF=,EF=,再用面积法求出E'M=,即可得出结论;②如图2,当△DBC∽△ADE时,得出,求出AE=,当E在直线AD左侧时,先利用勾股定理求出PA=,PO=,进而得出PE=,再判断出即可得出点E坐标,当E'在直线DA右侧时,即可得出结论.【解答】解:(1)∵点A(1,0),B(0,1)在二次函数y1=kx2+m(k<0)的图象上,∴,∴,∴二次函数解析式为y1=﹣x2+1,∵点A(1,0),D(0,﹣3)在二次函数y2=ax2+b(a>0)的图象上,∴,∴,∴二次函数y2=3x2﹣3;(2)设M(m,﹣m2+1)为第一象限内的图形ABCD上一点,M'(m,3m2﹣3)为第四象限的图形上一点,∴MM'=(1﹣m2)﹣(3m2﹣3)=4﹣4m2,由抛物线的对称性知,若有内接正方形,∴2m=4﹣4m2,∴m=或m=(舍),∵0<<1,∴存在内接正方形,此时其边长为;(3)在Rt△AOD中,OA=1,OD=3,∴AD==,同理:CD=,在Rt△BOC中,OB=OC=1,∴BC==,①如图1,当△DBC∽△DAE时,∵∠CDB=∠ADO,∴在y轴上存在E,由,∴,∴DE=,∵D(0,﹣3),∴E(0,﹣),由对称性知,在直线DA右侧还存在一点E'使得△DBC∽△DAE',连接EE'交DA于F点,作E'M⊥OD于M,连接E'D,∵E,E'关于DA对称,∴DF垂直平分线EE',∴△DEF∽△DAO,∴,∴,∴DF=,EF=,∵S△DEE'=DE•E'M=EF×DF=,∴E'M=,∵DE'=DE=,在Rt△DE'M中,DM==2,∴OM=1,∴E'(,﹣1),②如图2,当△DBC∽△ADE时,有∠BDC=∠DAE,,∴,∴AE=,当E在直线AD左侧时,设AE交y轴于P,作EQ⊥AC于Q,∵∠BDC=∠DAE=∠ODA,∴PD=PA,设PD=n,∴PO=3﹣n,PA=n,在Rt△AOP中,PA2=OA2+OP2,∴n2=(3﹣n)2+1,∴n=,∴PA=,PO=,∵AE=,∴PE=,在AEQ中,OP∥EQ,∴,∴OQ=,∵,∴QE=2,∴E(﹣,﹣2),当E'在直线DA右侧时,根据勾股定理得,AE==,∴AE'=∵∠DAE'=∠BDC,∠BDC=∠BDA,∴∠BDA=∠DAE',∴AE'∥OD,∴E'(1,﹣),综上,使得△BDC与△ADE相似(其中点C与E是对应顶点)的点E的坐标有4个,即:(0,﹣)或(,﹣1)或(1,﹣)或(﹣,﹣2).【点评】此题是二次函数综合题,主要考查了待定系数法,勾股定理,相似三角形的判定和性质,对称性,正确作出辅助线和用分类讨论的思想是解本题的关键.27.(12018年江苏省连云港市)在数学兴趣小组活动中,小亮进行数学探究活动.△ABC是边长为2的等边形,E是AC上一点,小亮以BE为边向BE的右侧作等边三角形BEF,连接CF.(1)如图1,当点E在线段AC上时,EF、BC相交于点D,小亮发现有两个三角形全等,请你找出来,并证明.(2)当点E在线段上运动时,点F也随着运动,若四边形ABFC的面积为,求AE的长.(3)如图2,当点E在AC的延长线上运动时,CF、BE相交于点D,请你探求△ECD的面积S1与△DBF的面积S2之间的数量关系.并说明理由.(4)如图2,当△ECD的面积S1=时,求AE的长.【分析】(1)结论:△ABE≌△CBF.理由等边三角形的性质,根据SAS即可证明;(2)由△ABE≌△CBF,推出S△ABE=S△BCF,推出S四边形BECF=S△BEC+s△BCF=S△BCE+S△ABE=S△ABC=,由S四边形ABCF=,推出S△ABE=,再利用三角形的面积公式求出AE即可;(3)结论:S2﹣S1=.利用全等三角形的性质即可证明;(4)首先求出△BDF的面积,由CF∥AB,则△BDF的BF边上的高为,可得DF=,设CE=x,则2+x=CD+DF=CD+,推出CD=x﹣,由CD∥AB,可得=,即=,求出x即可;【解答】解:(1)结论:△ABE≌△CBF.理由:如图1中,∴∵△ABC,△BEF都是等边三角形,∴BA=BC,BE=BF,∠ABC=∠EBF,∴∠ABE=∠CBF,∴△ABE≌△CBF.(2)如图1中,∵△ABE≌△CBF,∴S△ABE=S△BCF,∴S四边形BECF=S△BEC+s△BCF=S△BCE+S△ABE=S△ABC=,∵S四边形ABCF=,∴S△ABE=,∴•AE•AB•siin60°=,∴AE=.(3)结论:S2﹣S1=.理由:如图2中,∵∵△ABC,△BEF都是等边三角形,∴BA=BC,BE=BF,∠ABC=∠EBF,∴∠ABE=∠CBF,∴△ABE≌△CBF,∴S△ABE=S△BCF,∵S△BCF﹣S△BCE=S2﹣S1,∴S2﹣S1=S△ABE﹣S△BCE=S△ABC=.(4)由(3)可知:S△BDF﹣S△ECD=,∵S△ECD=,∴S△BDF=,∵△ABE≌△CBF,∴AE=CF,∠BAE=∠BCF=60°,∴∠ABC=∠DCB,∴CF∥AB,则△BDF的BF边上的高为,可得DF=,设CE=x,则2+x=CD+DF=CD+,∴CD=x﹣,∵CD∥AB,∴=,即=,化简得:3x2﹣x﹣2=0,解得x=1或﹣(舍弃),∴CE=1,AE=3.【点评】本题考查四边形综合题、全等三角形的判定和性质、平行线等分线段定理、解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,学会理由参数构建方程解决问题,属于中考压轴题.。
2018年江苏省连云港市中考数学试卷真题含解析版
2018年江苏省连云港市中考数学试卷真题含解析版一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2018年江苏省连云港市)﹣8的相反数是()A.﹣8 B.C.8 D.﹣【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:﹣8的相反数是8,故选:C.【点评】此题主要考查了相反数,关键是掌握相反数的定义.2.(2018年江苏省连云港市)下列运算正确的是()A.x﹣2x=﹣x B.2x﹣y=xy C.x2+x2=x4D.(x﹣l)2=x2﹣1【分析】根据整式的运算法则即可求出答案.【解答】解:(B)原式=2x﹣y,故B错误;(C)原式=2x2,故C错误;(D)原式=x2﹣2x+1,故D错误;故选:A.【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.3.(2018年江苏省连云港市)地球上陆地的面积约为150 000 000km2.把“150 000 000”用科学记数法表示为()A.1.5×108B.1.5×107C.1.5×109D.1.5×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:150 000 000=1.5×108,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(2018年江苏省连云港市)一组数据2,1,2,5,3,2的众数是()A.1 B.2 C.3 D.5【分析】根据众数的定义即一组数据中出现次数最多的数,即可得出答案.【解答】解:在数据2,1,2,5,3,2中2出现3次,次数最多,所以众数为2,故选:B.【点评】此题考查了众数,众数是一组数据中出现次数最多的数.5.(2018年江苏省连云港市)如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A .B .C .D .【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵共6个数,大于3的有3个,∴P (大于3)==; 故选:D .【点评】本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=.6.(2018年江苏省连云港市)如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是( )A .B .C .D .【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形, 故选:A .【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.7.(2018年江苏省连云港市)已知学校航模组设计制作的火箭的升空高度h (m )与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A.点火后9s和点火后13s的升空高度相同B.点火后24s火箭落于地面C.点火后10s的升空高度为139mD.火箭升空的最大高度为145m【分析】分别求出t=9、13、24、10时h的值可判断A、B、C三个选项,将解析式配方成顶点式可判断D选项.【解答】解:A、当t=9时,h=136;当t=13时,h=144;所以点火后9s和点火后13s的升空高度不相同,此选项错误;B、当t=24时h=1≠0,所以点火后24s火箭离地面的高度为1m,此选项错误;C、当t=10时h=141m,此选项错误;D、由h=﹣t2+24t+1=﹣(t﹣12)2+145知火箭升空的最大高度为145m,此选项正确;故选:D.【点评】本题主要考查二次函数的应用,解题的关键是熟练掌握二次函数的性质.8.(2018年江苏省连云港市)如图,菱形ABCD的两个顶点B、D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()A.﹣5 B.﹣4 C.﹣3 D.﹣2【分析】根据题意可以求得点B的坐标,从而可以求得k的值.【解答】解:∵四边形ABCD是菱形,∴BA=BC,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∵点A(1,1),∴OA=,∴BO=,∵直线AC的解析式为y=x,∴直线BD的解析式为y=﹣x,∵OB=,∴点B的坐标为(,),∵点B在反比例函数y=的图象上,∴,解得,k=﹣3,故选:C.【点评】本题考查反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.二、填空题(本大题共8小题,毎小题3分,共24分,不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9.(2018年江苏省连云港市)使有意义的x的取值范围是x≥2 .【分析】当被开方数x﹣2为非负数时,二次根式才有意义,列不等式求解.【解答】解:根据二次根式的意义,得x﹣2≥0,解得x≥2.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.10.(2018年江苏省连云港市)分解因式:16﹣x2= (4+x)(4﹣x).【分析】16和x2都可写成平方形式,且它们符号相反,符合平方差公式特点,利用平方差公式进行因式分解即可.【解答】解:16﹣x2=(4+x)(4﹣x).【点评】本题考查利用平方差公式分解因式,熟记公式结构是解题的关键.11.(2018年江苏省连云港市)如图,△ABC中,点D、E分別在AB、AC上,DE∥BC,AD:DB=1:2,则△ADE与△ABC的面积的比为1:9 .【分析】根据DE∥BC得到△ADE∽△ABC,再结合相似比是AD:AB=1:3,因而面积的比是1:9,问题得解.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,∴S△ADE:S△ABC是1:9.故答案为:1:9.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.12.(2018年江苏省连云港市)已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣图象上的两个点,则y1与y2的大小关系为y1<y2.【分析】根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小,从而可以解答本题.【解答】解:∵反比例函数y=﹣,﹣4<0,∴在每个象限内,y随x的增大而增大,∵A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣图象上的两个点,﹣4<﹣1,∴y1<y2,故答案为:y1<y2.【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答.13.(2018年江苏省连云港市)一个扇形的圆心角是120°.它的半径是3cm.则扇形的弧长为2πcm.【分析】根据弧长公式可得结论.【解答】解:根据题意,扇形的弧长为=2π,故答案为:2π【点评】本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.14.(2018年江苏省连云港市)如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB= 44°.【分析】首先连接OB,由点C在过点B的切线上,且OC⊥OA,根据等角的余角相等,易证得∠CBP=∠CPB,利用等腰三角形的性质解答即可.【解答】解:连接OB,∵BC是⊙O的切线,∴OB⊥BC,∴∠OBA+∠CBP=90°,∵OC⊥OA,∴∠A+∠APO=90°,∵OA=OB,∠OAB=22°,∴∠OAB=∠OBA=22°,∴∠APO=∠CBP=68°,∵∠APO=∠CPB,∴∠CPB=∠ABP=68°,∴∠OCB=180°﹣68°﹣68°=44°,故答案为:44°【点评】此题考查了切线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.15.(2018年江苏省连云港市)如图,一次函数y=kx+b的图象与x轴、y轴分别相交于A、B两点,⊙O经过A,B两点,已知AB=2,则的值为﹣.【分析】由图形可知:△OAB是等腰直角三角形,AB=2,可得A,B两点坐标,利用待定系数法可求k和b的值,进而得到答案.【解答】解:由图形可知:△OAB是等腰直角三角形,OA=OB∵AB=2,OA2+OB2=AB2∴OA=OB=∴A点坐标是(,0),B点坐标是(0,)∵一次函数y=kx+b的图象与x轴、y轴分别相交于A、B两点∴将A,B两点坐标带入y=kx+b,得k=﹣1,b=∴=﹣故答案为:﹣【点评】本题主要考查图形的分析运用和待定系数法求解析,找出A,B两点的坐标对解题是关键之举.16.(2018年江苏省连云港市)如图,E、F,G、H分别为矩形ABCD的边AB、BC、CD、DA 的中点,连接AC、HE、EC,GA,GF.已知AG⊥GF,AC=,则AB的长为 2 .【分析】如图,连接BD.由△ADG∽△GCF,设CF=BF=a,CG=DG=b,可得=,推出=,可得b=a,在Rt△GCF中,利用勾股定理求出b,即可解决问题;【解答】解:如图,连接BD.∵四边形ABCD是矩形,∴∠ADC=∠DCB=90°,AC=BD=,∵CG=DG,CF=FB,∴GF=BD=,∵AG⊥FG,∴∠AGF=90°,∴∠DAG+∠AGD=90°,∠AGD+∠CGF=90°,∴∠DAG=∠CGF,∴△ADG∽△GCF,设CF=BF=a,CG=DG=b,∴=,∴b2=2a2,∵a>0.b>0,∴b=a,在Rt△GCF中,3a2=,∴a=,∴AB=2b=2.故答案为2.【点评】本题考查中点四边形、矩形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(本大题共11小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(2018年江苏省连云港市)计算:(﹣2)2+20180﹣【分析】首先计算乘方、零次幂和开平方,然后再计算加减即可.【解答】解:原式=4+1﹣6=﹣1.【点评】此题主要考查了实数的运算,关键是掌握乘方的意义、零次幂计算公式和二次根式的性质.18.(2018年江苏省连云港市)解方程:﹣=0【分析】根据灯饰的性质,可得整式方程,根据解整式方程,可得答案.【解答】解:两边乘x(x﹣1),得3x﹣2(x﹣1)=0,经检验:x=2是原分式方程的解.【点评】本题考查了解分式方程,利用等式的性质将分式方程转化成整式方程是解题关键,要检验方程的根.19.(2018年江苏省连云港市)解不等式组:【分析】根据不等式组的解集的表示方法:大小小大中间找,可得答案.【解答】解:,解不等式①,得x<2,解不等式②,得x≥﹣3,不等式①,不等式②的解集在数轴上表示,如图,原不等式组的解集为﹣3≤x<2.【点评】本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.20.(2018年江苏省连云港市)随着我国经济社会的发展,人民对于美好生活的追求越来越高.某社区为了了解家庭对于文化教育的消费悄况,随机抽取部分家庭,对每户家庭的文化教育年消费金额进行问卷调査,根据调查结果绘制成两幅不完整的统计图表.请你根据统计图表提供的信息,解答下列问题:(1)本次被调査的家庭有150 户,表中m= 42 ;(2)本次调查数据的中位数出现在 B 组.扇形统计图中,D组所在扇形的圆心角是36 度;(3)这个社区有2500户家庭,请你估计家庭年文化教育消费10000元以上的家庭有多少户?【分析】(1)依据A 组或E 组数据,即可得到样本容量,进而得出m 的值;(2)依据中位数为第75和76个数据的平均数,即可得到中位数的位置,利用圆心角计算公式,即可得到D 组所在扇形的圆心角;(3)依据家庭年文化教育消费10000元以上的家庭所占的比例,即可得到家庭年文化教育消费10000元以上的家庭的数量.【解答】解:(1)样本容量为:36÷24%=150, m=150﹣36﹣27﹣15﹣30=42, 故答案为:150,42;(2)中位数为第75和76个数据的平均数,而36+42=78>76, ∴中位数落在B 组,D 组所在扇形的圆心角为360°×=36°,故答案为:B ,36;(3)家庭年文化教育消费10000元以上的家庭有2500×=1200(户).【点评】本题考查扇形统计图、用样本估计总体以及中位数的运用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.21.(2018年江苏省连云港市)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.(1)若前四局双方战成2:2,那么甲队最终获胜的概率是;(2)现甲队在前两周比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?【分析】(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求.【解答】解:(1)甲队最终获胜的概率是;故答案为;(2)画树状图为:共有8种等可能的结果数,其中甲至少胜一局的结果数为7,所以甲队最终获胜的概率=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.22.(2018年江苏省连云港市)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.【分析】(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.【解答】解:(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中点,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四边形ACDF是平行四边形;(2)BC=2CD.证明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中点,∴AD=2CD,∵AD=BC,∴BC=2CD.【点评】本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.23.(2018年江苏省连云港市)如图,在平面直角坐标系中,一次函数y=k1x+b的图象与反比例函数y=的图象交于A(4,﹣2)、B(﹣2,n)两点,与x轴交于点C.(1)求k2,n的值;(2)请直接写出不等式k1x+b的解集;(3)将x轴下方的图象沿x轴翻折,点A落在点A′处,连接A′B,A′C,求△A′BC的面积.【分析】(1)将A点坐标代入y=(2)用函数的观点将不等式问题转化为函数图象问题;(3)求出对称点坐标,求面积.【解答】解:(1)将A(4,﹣2)代入y=,得k2=﹣8.∴y=﹣将(﹣2,n)代入y=﹣n=4.∴k2=﹣8,n=4(2)根据函数图象可知:﹣2<x<0或x>4(3)将A(4,﹣2),B(﹣2,4)代入y=k1x+b,得k1=﹣1,b=2∴一次函数的关系式为y=﹣x+2与x轴交于点C(2,0)∴图象沿x轴翻折后,得A′(4,2),S△A'BC=(4+2)×(4+2)×﹣×4×4﹣×2×2=8∴△A'BC的面积为8.【点评】本题是一次函数和反比例函数综合题,使用的待定系数法,考查用函数的观点解决不等式问题.24.(2018年江苏省连云港市)某村在推进美丽乡村活动中,决定建设幸福广场,计划铺设相同大小规格的红色和蓝色地砖.经过调査.获取信息如下:如果购买红色地砖4000块,蓝色地砖6000块,需付款86000元;如果购买红色地砖10000块,蓝色地砖3500块,需付款99000元. (1)红色地砖与蓝色地砖的单价各多少元?(2)经过测算,需要购置地砖12000块,其中蓝色地砖的数量不少于红色地砖的一半,并且不超过6000块,如何购买付款最少?请说明理由.【分析】(1)根据题意结合表格中数据,购买红色地砖4000块,蓝色地砖6000块,需付款86000元;购买红色地砖10000块,蓝色地砖3500块,需付款99000元,分别得出方程得出答案; (2)利用已知得出x 的取值范围,再利用一次函数增减性得出答案. 【解答】解:(1)设红色地砖每块a 元,蓝色地砖每块b 元,由题意可得:,解得:,答:红色地砖每块8元,蓝色地砖每块10元;(2)设购置蓝色地砖x块,则购置红色地砖(12000﹣x)块,所需的总费用为y元,由题意可得:x≥(12000﹣x),解得:x≥4000,又x≤6000,所以蓝砖块数x的取值范围:4000≤x≤6000,当4000≤x<5000时,y=10x+×0.8(12000﹣x)=76800+3.6x,所以x=4000时,y有最小值91200,当5000≤x≤6000时,y=0.9×10x+8×0.8(1200﹣x)=2.6x+76800,所以x=5000时,y有最小值89800,∵89800<91200,∴购买蓝色地砖5000块,红色地砖7000块,费用最少,最少费用为89800元.【点评】此题主要考查了一次函数的应用以及二元一次方程组的应用,正确得出函数关系式是解题关键.25.(2018年江苏省连云港市)如图1,水坝的横截面是梯形ABCD,∠ABC=37°,坝顶DC=3m,背水坡AD的坡度i(即tan∠DAB)为1:0.5,坝底AB=14m.(1)求坝高;(2)如图2,为了提高堤坝的防洪抗洪能力,防汛指挥部决定在背水坡将坝顶和坝底间时拓宽加固,使得AE=2DF,EF⊥BF,求DF的长.(参考数据:sin37°≈,cos37°≈,tan37°≈)【分析】(1)作DM⊥AB于M,CN⊥AN于N.由题意:tan∠DAB==2,设AM=x,则DM=2x,在Rt△BCN中,求出BN,构建方程即可解决问题;(2)作FH⊥AB于H.设DF=y,设DF=y,则AE=2y,EH=3+2y﹣y=3+y,BH=14+2y﹣(3+y)=11+y,由△EFH∽△FBH,可得=,即=,求出y即可;【解答】解:(1)作DM⊥AB于M,CN⊥AN于N.由题意:tan∠DAB==2,设AM=x,则DM=2x,∵四边形DMNC是矩形,∴DM=CN=2x,在Rt△NBC中,tan37°===,∴BN=x,∵x+3+x=14,∴x=3,∴DM=6,答:坝高为6m.(2)作FH⊥AB于H.设DF=y,设DF=y,则AE=2y,EH=3+2y﹣y=3+y,BH=14+2y﹣(3+y)=11+y,由△EFH∽△FBH,可得=,即=,解得y=﹣7+2或﹣7﹣2(舍弃),∴DF=2﹣7,答:DF的长为(2﹣7)m.【点评】本题考查了坡度坡角的求解,考查了特殊角的三角函数值,考查了三角函数在直角三角形中运用,解题的关键是学会理由参数构建方程解决问题.26.(2018年江苏省连云港市)如图1,图形ABCD是由两个二次函数y1=kx2+m(k<0)与y2=ax2+b (a>0)的部分图象围成的封闭图形.已知A(1,0)、B(0,1)、D(0,﹣3).(1)直接写出这两个二次函数的表达式;(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;(3)如图2,连接BC,CD,AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C与点E 是对应顶点)的点E的坐标【分析】(1)利用待定系数法即可得出结论;(2)先确定出MM'=(1﹣m2)﹣(3m2﹣3)=4﹣4m2,进而建立方程2m=4﹣4m2,即可得出结论;(3)先利用勾股定理求出AD=,同理:CD=,BC=,再分两种情况:①如图1,当△DBC ∽△DAE 时,得出,进而求出DE=,即可得出E (0,﹣),再判断出△DEF ∽△DAO ,得出,求出DF=,EF=,再用面积法求出E'M=,即可得出结论;②如图2,当△DBC ∽△ADE 时,得出,求出AE=,当E 在直线AD 左侧时,先利用勾股定理求出PA=,PO=,进而得出PE=,再判断出即可得出点E 坐标,当E'在直线DA 右侧时,即可得出结论.【解答】解:(1)∵点A (1,0),B (0,1)在二次函数y 1=kx 2+m (k <0)的图象上,∴,∴,∴二次函数解析式为y 1=﹣x 2+1,∵点A (1,0),D (0,﹣3)在二次函数y 2=ax 2+b (a >0)的图象上,∴,∴,∴二次函数y 2=3x 2﹣3;(2)设M (m ,﹣m 2+1)为第一象限内的图形ABCD 上一点,M'(m ,3m 2﹣3)为第四象限的图形上一点,∴MM'=(1﹣m 2)﹣(3m 2﹣3)=4﹣4m 2, 由抛物线的对称性知,若有内接正方形, ∴2m=4﹣4m 2,∴m=或m=(舍),∵0<<1,∴存在内接正方形,此时其边长为;(3)在Rt△AOD中,OA=1,OD=3,∴AD==,同理:CD=,在Rt△BOC中,OB=OC=1,∴BC==,①如图1,当△DBC∽△DAE时,∵∠CDB=∠ADO,∴在y轴上存在E,由,∴,∴DE=,∵D(0,﹣3),∴E(0,﹣),由对称性知,在直线DA右侧还存在一点E'使得△DBC∽△DAE',连接EE'交DA于F点,作E'M⊥OD于M,连接E'D,∵E,E'关于DA对称,∴DF垂直平分线EE',∴△DEF∽△DAO,∴,∴,∴DF=,EF=,∵S △DEE '=DE•E'M=EF×DF=,∴E'M=,∵DE'=DE=,在Rt △DE'M 中,DM==2,∴OM=1,∴E'(,﹣1), ②如图2,当△DBC ∽△ADE 时,有∠BDC=∠DAE ,,∴,∴AE=,当E 在直线AD 左侧时,设AE 交y 轴于P ,作EQ ⊥AC 于Q , ∵∠BDC=∠DAE=∠ODA , ∴PD=PA , 设PD=n ,∴PO=3﹣n ,PA=n ,在Rt △AOP 中,PA 2=OA 2+OP 2,∴n2=(3﹣n)2+1,∴n=,∴PA=,PO=,∵AE=,∴PE=,在AEQ中,OP∥EQ,∴,∴OQ=,∵,∴QE=2,∴E(﹣,﹣2),当E'在直线DA右侧时,根据勾股定理得,AE==,∴AE'=∵∠DAE'=∠BDC,∠BDC=∠BDA,∴∠BDA=∠DAE',∴AE'∥OD,∴E'(1,﹣),综上,使得△BDC与△ADE相似(其中点C与E是对应顶点)的点E的坐标有4个,即:(0,﹣)或(,﹣1)或(1,﹣)或(﹣,﹣2).【点评】此题是二次函数综合题,主要考查了待定系数法,勾股定理,相似三角形的判定和性质,对称性,正确作出辅助线和用分类讨论的思想是解本题的关键.27.(12018年江苏省连云港市)在数学兴趣小组活动中,小亮进行数学探究活动.△ABC是边长为2的等边形,E是AC上一点,小亮以BE为边向BE的右侧作等边三角形BEF,连接CF.(1)如图1,当点E在线段AC上时,EF、BC相交于点D,小亮发现有两个三角形全等,请你找出来,并证明.(2)当点E在线段上运动时,点F也随着运动,若四边形ABFC的面积为,求AE的长.(3)如图2,当点E在AC的延长线上运动时,CF、BE相交于点D,请你探求△ECD的面积S1与△DBF的面积S2之间的数量关系.并说明理由.(4)如图2,当△ECD的面积S1=时,求AE的长.【分析】(1)结论:△ABE≌△CBF.理由等边三角形的性质,根据SAS即可证明;(2)由△ABE≌△CBF,推出S△ABE=S△BCF,推出S四边形BECF=S△BEC+s△BCF=S△BCE+S△ABE=S△ABC=,由S四边形ABCF=,推出S△ABE=,再利用三角形的面积公式求出AE即可;(3)结论:S2﹣S1=.利用全等三角形的性质即可证明;(4)首先求出△BDF的面积,由CF∥AB,则△BDF的BF边上的高为,可得DF=,设CE=x,则2+x=CD+DF=CD+,推出CD=x﹣,由CD∥AB,可得=,即=,求出x 即可;【解答】解:(1)结论:△ABE≌△CBF.理由:如图1中,∴∵△ABC,△BEF都是等边三角形,∴BA=BC,BE=BF,∠ABC=∠EBF,∴∠ABE=∠CBF,∴△ABE≌△CBF.(2)如图1中,∵△ABE≌△CBF,∴S△ABE=S△BCF,∴S四边形BECF=S△BEC+s△BCF=S△BCE+S△ABE=S△ABC=,∵S四边形ABCF=,∴S△ABE=,∴•AE•AB•siin60°=,∴AE=.(3)结论:S2﹣S1=.理由:如图2中,∵∵△ABC,△BEF都是等边三角形,∴BA=BC,BE=BF,∠ABC=∠EBF,∴∠ABE=∠CBF,∴△ABE≌△CBF,∴S△ABE=S△BCF,∵S△BCF﹣S△BCE=S2﹣S1,∴S2﹣S1=S△ABE﹣S△BCE=S△ABC=.(4)由(3)可知:S△BDF﹣S△ECD=,∵S△ECD=,∴S△BDF=,∵△ABE≌△CBF,∴AE=CF,∠BAE=∠BCF=60°,∴∠ABC=∠DCB,∴CF∥AB,则△BDF的BF边上的高为,可得DF=,设CE=x,则2+x=CD+DF=CD+,∴CD=x﹣,∵CD∥AB,∴=,即=,化简得:3x2﹣x﹣2=0,解得x=1或﹣(舍弃),∴CE=1,AE=3.【点评】本题考查四边形综合题、全等三角形的判定和性质、平行线等分线段定理、解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,学会理由参数构建方程解决问题,属。
2018年江苏连云港市中考数学试卷(含解析)
2018年江苏省连云港市初中毕业、升学考试数学(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018江苏连云港,第1题,3分)-8的相反数是A.-8 B.18C.8 D.18【答案】C【解析】解:-8的相反数是8,故选C.【知识点】相反数2.(2018江苏连云港,第2题,3分)下列运算正确的是A.x-2x=-x B.2x-y=-xy C.x2+x2=x4D.(x-1)2=x2-1【答案】A【解析】解:A、x-2x=-x,故计算正确;B、2x-y不能再合并,故计算错误;C、x2+x2=2x2,故计算错误;D、(x-1)2=x2-2x+1,故计算错误,故选A.【知识点】合并同类项;完全平方公式3.(2018江苏连云港,第3题,3分)地球上陆地的面积约为150 000 000 km2把“150 000 000用科学记数法表示为A.1.5×108B.1.5×107C.1.5×109D.1.5×106【答案】A【解析】解:150 000 000=1.5×108,故选A.【知识点】科学记数法4.(2018江苏连云港,第4题,3分)一组数据2,1,2,5,3,2的众数是A.1 B.2 C.3 D.5【答案】B【解析】解:∵这组数据中,出现次数最多的数是2,∴这一组数据的众数是:2.故选B.【知识点】众数5.(2018江苏连云港,第5题,3分)如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是A.23B.16C.13D.12【答案】D【解析】解:∵正六边形被分成6个大小相同的等边三角形,上面分别标有数字1、2、3、4、5、6,转盘转动一次,共有6中可能的结果,其中大于3的有3种情况,∴大于3的概率是:P=31=62,故选D.【知识点】概率6.(2018江苏连云港,第6题,3分)如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是A.B.C.D.【答案】A【解析】解:从上面看第二层有三个左右相邻的正方形,第一层左下角有一个正方形,故选A.【知识点】简单组合体的三视图7.(2018江苏连云港,第7题,3分)已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间r(s)满足函数表达式h=-t2+24t+1.则下列说法中正确的是A.点火后9s和点火后13s的升空高度相同B.点火后24s火箭落于地面C.点火后10s的升空高度为139m D.火箭升空的最大高度为145【答案】D【解析】解:A、当t=9时,h=-81+216+1=136,当t=13时,h=-169+312+1=144,升空高度不相同,故A选项说法错误;B、当t=24时,h=-576+576+1=1,火箭得升空高度是1米,故B选项说法错误;C、当t=10时,h=-100+240+1=141,故C选项说法错误;D、根据题意,可得:最大高度为:24457614544ac ba---==-,故D选项说法正确,故选D.【知识点】二次函数的应用;函数值;二次函数的最大值8.(2018江苏连云港,第8题,3分)如图,菱形ABCD的两个顶点B、D在反比例函数y=kx的图像上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是A.-5 B.-4 C.-3 D.-2【答案】C【思路分析】过点B作BE⊥x轴于点E.根据点A的坐标,求出点到OA的长度,根据菱形的性质可知△ABO是直角三角形,利用锐角三角函数,求出OB的长度,进而求出∠BOE=45°,利用锐角三角函数即可求得点B的坐标即可解答.【解题过程】解:过点B作BE⊥x轴于点E.∵A(1,1),∴OA=2211=2+,在菱形ABCD中,∠ABC=60°,∴AC⊥BD,∠BAO=30°,在Rt△ABO中,OB=2==6tan3033OA︒,∵点A(1,1),∴点A、点C在第一、第三象限的角平分线上,即∠COE=45°,∴∠BOE=45°,在Rt△OBE中,OE=BE=OB•sin∠BOE=26=32•,∴点B(3-,3),∵点B在反比例函数图象上,∴k=xy=-3,故选C.【知识点】锐角三角函数;待定系数法求反比例函数解析式;菱形的性质二、填空题:本大题共14小题,每小题3分,共42分.不需写出解答过程,请把最后结果填在题中横线上.9.(2018江苏连云港,第9题,3分)使2x-有意义的x的取值范围是__________.【答案】x≥2【解析】解:根据题意,得:x-2≥0,解得:x≥2,故答案为:x≥2.【知识点】二次根式有意义10.(2018江苏连云港,第10题,3分)分解因式: 16-x2=__________.【答案】(4+x)(4-x)【解析】解:16-x2=(4+x)(4-x),故答案为:(4+x)(4-x).【知识点】用公式法分解因式11.(2018江苏连云港,第11题,3分)如图,△ABC中,点D,E分别在AB、AC上,DE∥BC,AD:DB=1:2,则△ADE与△ABC的面积的比为__________.【答案】1:9【解析】解:∵DE∥BC,∴13ADAB=,△ADE∽△ABC,∴19ADEABCSS=△△,故答案为:1:9.【知识点】相似三角形的性质与判定12.(2018江苏连云港,第12题,3分)已知A(-4,y1)、B(-1,y2)是反比例函数y=4 x -图像上的两个点,则y1与y2的大小关系为__________.【答案】y1<y2【解析】解:∵k=-4,∴y随x的增大而增大,∵-4<-1,∴y1<y2,故答案为:y1<y2.【知识点】反比例函数的图象和性质13.(2018江苏连云港,第13题,3分)一个扇形的圆心角是120°,它的半径是3cm,则扇形的弧长为__________cm. 【答案】2π【解析】解:由弧长公式,得:120π3180⨯=2π,故答案为:2π.【知识点】弧长公式14.(2018江苏连云港,第14题,3分)如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB=__________°.【答案】44【解析】解:连接OB.∵OA=OB,∴∠OBA=∠OAB=22°,∴∠AOB=136°,∵OC⊥OA,∴∠AOC=90°,∴∠COB=46°,∵CB是⊙O的切线,∴∠OBC=90°,∴∠OCB=90°-46°=44°,故答案为:44°.【知识点】切线的性质;直角三角形的性质15.(2018江苏连云港,第15题,3分)如图,一次函数y=kx+b的图像与x轴、y轴分别相交于A,B两点,⊙O 经过A、B两点,已知AB=2,则kb的值为__________.【答案】22-【解析】解:∵OA=OB,∴∠OBA=45°,在Rt△OAB中,OA=AB•sin45°=2×22=2,即点A(2,0),同理可得点B(0,2),∵一次函数y=kx+b经过点A、B,∴220bk b⎧=⎪⎨+=⎪⎩,,解得:12.kb=-⎧⎪⎨=⎪⎩,∴22kb=-.故答案为:22-.【知识点】锐角三角函数;圆;待定系数法求函数解析式16.(2018江苏连云港,第16题,3分)如图,E、F、G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,连接AC、HE、EC、GA、GF,已知AG⊥GF,AC=6,则AB的长为__________.【答案】2【思路分析】根据相似三角形的判定,可得△GCF∽△ADG,进而可得2GC2=AD2①,再根据勾股定理,可得∴AD2+DC2=6②,将①代入②,可得GC的长度,进而求得AB的长.【解题过程】解:在矩形ABCD中,点E、F、G、F分别是AB、BC、CD、DA的中点,∴CF=12BC=12AD,∠D-90°,∠DCB=90°,∴∠1+∠3=90°,∵AG⊥GF,∴∠1+∠2=90°,∴∠2=∠3,∴△GCF∽△ADG,∴GC CFAD DG=,即12ADGCAD GC=,解得:2GC2=AD2①,∵AC=6,∴AD2+DC2=6②,将①代入②,得:2GC2+(2GC)2=6,解得:GC=1,∴AB=DC=2,故答案为:2.【知识点】矩形的性质;相似三角形的性质和判定;勾股定理三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(2018江苏连云港,第17题,6分)(-2)2+20180-36.【思路分析】先根据平方、0指数幂及算术平方根计算,再合并即可.【解题过程】解:原式=4+1-6=1. ------------------------------------------------------------------- 6分【知识点】有理数的平方;0指数幂;算术平方根18.(2018江苏连云港,第18题,6分)解方程31x--2x=0【思路分析】根据先去分母,将分式方程化成整式方程,解方程即可,最后不要忘记检验.【解题过程】解:去分母,得3x-2(x-1)=0, -------------------------------------------------- 2分解得x=-2. ------------------------------------------------------------------------------------------------ 4分经检验,x=-2是方程的解,所以原方程的解是x=-2. -------------------------------------- 6分【知识点】解分式方程19.(2018江苏连云港,第19题,6分)解不等式组3242(1)3 1. xx x-<⎧⎨-≤+⎩,【思路分析】根据解不等式的步骤,分别解两个两个不等式,再求其解集的公共部分即可.【解题过程】解:解不等式3x-2<4,得:x<2,------------------------------------------------ 2分解不等式2(x-1)≤3x+1,得:x≥-3,---------------------------------------------------------- 4分不等式组的解集为-3≤x<2.-------------------------------------------------------------------------- 6分【知识点】解不等式组20.(2018江苏连云港,第20题,8分)随着我国经济社会的发展,人民对于美好生活的追求越来越高.某社区为了了解家庭对于文化教育的消费情况,随机抽取部分家庭,对每户家庭的文化教育年消费金额进行问卷调查,根据调查结果绘制成两幅不完整的统计图表请你根据统计图表提供的信息,解答下列问题.(1) 本次被调查的家庭有m户,表中m=__________;(2) 次次调查数据的中位数出现在__________;组扇形统计图中,D组所在扇形的围心角是__________;(3)这个社区有2500户家庭,请你估计家庭年文化教育消费10000元以上的家庭有多少户?【思路分析】(1)利用E组别的户数÷E组所占百分比即可;求m则用总数减去各组的数据即可.(2)根据求中位数的方法,直接判断即可;求D组圆心角时只要用D组所占百分比×360°即可.(3)用样本中家庭年文化教育消费10000元以上所占百分比×2500即可.【解题过程】解:(1)30÷20%=150,150-36-27-15-30=42,故答案为:150,42. ------------------------------------------------------------------------------------ 2分(2)第75和第76两个数据都在B组,∴中位数出现在B组;D组所在扇形的圆心角为:15100%360=36 150⨯⨯︒︒,故答案为:B,36. --------------------------------------------------------------------------------- 6分(3)2500×27+15+30150=1200(户)答:估计年家庭文化教育消费10000元以上的家庭有1200户.------------------------------- 8分【知识点】中位数;众数;用样本估计总体21.(2018江苏连云港,第21题,10分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲、乙两队每局获胜的机会相同.(1)若前四局双方战成2:2,那么甲队最终获胜的概率是__________;(2)现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?【思路分析】(1)根据求概率的方法直接计算即可.(2)利用树状图列出所有可能的结果,再求概率即可.【解题过程】(1)12. ------------------------------------------------------------------------------------- 2分(2)解:树状图如图所示:-------------------------------------- 8分如图可知,剩下的三局比赛共有8种等可能的结果,其中甲至少胜一局有7种, 所以,P(甲队最终获胜)=78. 答:甲队最终获胜的概率为78.------------------------------------------------------------------------ 10分 【知识点】用列举法或树状图求概率 22.(2018江苏连云港,第22题,10分)如图,矩形ABCD 中,E 是AD 的中点,延长CE 、BA 交于点F ,连接AC 、DF .(1)求证:四边形ACDF 是平行四边形;(2)当CF 平分∠BCD 时,写出BC 与CD 的数量关系,并说明理由.【思路分析】(1)先根据全等三角形的判定,证明△F AE ≌△CDE ,从而得到CD =F A ,再利用一组对边平行且相等的四边形是平行四边形.(2)先利用等腰直角三角形的判定方法,证明△CDE 是等腰直角三角形,再根据AD =2DE =2DC 即可得证. 【解题过程】(1)证明:∵四边形ABCD 是矩形,∴AB ∥CD ,∴∠F AE =∠CDE ,∵E 是AD 的中点, ∴AE =DE ,又∵∠FEA =∠CED ,所以△F AE ≌△CDE ,∴CD =F A ,又∵CD //AF ,∴四边形ACDF 是平行四边形. --------------------------------------------------- 5分 (2)BC =2CD .∵CF 平分∠BCD ,∴∠DCE =45,∵∠CDE =90°,∴△CDE 是等腰直角三角形, ∴CD =DE ,∵E 是AD 的中点,∴AD =2CD ,∵AD =BC ,∴BC =2CD . ------------------------------------------------------------------------------- 10分【知识点】矩形的性质;等腰直角三角形的判定;全等三角形的性质和判定;角平分线的性质 23.(2018江苏连云港,第23题,10分)如图,在平面直角坐标系中,一次函数y =k 1x +b 的图像与反比例函数y =2kx的图像交于A (4,-2)、B (-2,n )两点,与x 轴交于点C . (1)求k 2、n 的值;(2)请直接写出不等式k 1x +b <2k x的解集; (3)将x 轴下方的图像沿x 轴翻折,点A 落在点A '处,连接A 'B 、A 'C ,求△A 'BC 的面积.【思路分析】(1)将点A 代入反比例函数解析式,求得k 2的值,再将点B 的坐标代入即可求得n 的值. (2)直接根据图象判断即可.(3)利用待定系数法求出一次函数解析式,进而求得点A ′的坐标,再利用三角形的面积公式计算即可. 【解题过程】解:(1)将A (4,-2)代入y =2k x ,得k 2=-8,所以y =8x-, 将B (-2,n )代入y =8x-,得得n =4所以k 2=-8,n =4. -------------------------------------- 2分(2)由图象可知,k 1x +b <2k x的解集为:2<x <0或x >4. ----------------------------------------- 4分 (3)将A (4,-2),B (-2,4)代人y =k 1x +b ,得k =-1,b =2所以一次函数的关系式为y =-x +2,与x 轴交于点C (2,0)图像沿x 轴翻折后,得A ′(4,2),S △A ′BC =(4+2)×(4+2)×12-12×4×4-12×2×2=8.即△A 'BC 的面积为8. ----------------------------------------------------------------------------------- 10分 【知识点】待定系数法求函数解析式;一次函数;反比例函数;24.(2018江苏连云港,第24题,10分)某村在推进美丽乡村活动中,决定建设幸福广场,计划铺设相同大小规格的红色和蓝色地砖经过调查,获取信息如下如果购买红色地砖4 000块,蓝色地砖6 000块,需付款86 000元;如果购买红色地砖10 000块,蓝色地砖3 500块,需付款99 000元.(1)红色地砖与蓝色地砖的单价各多少元?(2)经过测算,需要购置地砖12 000块,其中蓝色地砖的数量不少于红色地砖的一半,并且不超过6 000块,如何购买付款最少?请说明理由.【思路分析】(1)根据购买红色地砖4 000块的价格+购买红色地砖6 000块的价格=86 000,购买红色地砖10 000块的价格+购买红色地砖3 500块的价格=99 000,列二元一次方程组,解答即可.(2)根据蓝色地砖的数量不少于红色地砖的一半,并且不超过6 000,得出购买蓝色地砖的数量范围,再分情况讨论即可.【解题过程】(1)设红色地砖每块a 元,蓝色地砖每块b 元由题意得 400060000.986000100000.8350099000.a b a b +⨯=⎧⎨⨯+=⎩,解得:810.a b =⎧⎨=⎩,答:红色地砖每块8元,蓝色地砖每块10元. ---------------------------------------------------- 5分 (2)设购置蓝色地砖x 块,则购置红色地砖(12000-x )块,所需的总费用为y 元.由题意知x ≥12(12000-x ),得x ≥4000,又x ≤6000 所以蓝砖块数x 的取值范围4000≤x ≤6000当4000≤x <5000时,y =10x +8×0.8(12000-x),即y =76800+3.6x. 所以x =4000时,y 有最小值91200当5000≤x ≤6000时,y =0.9×10x +8×0.8(12000-x )=2.6x +76800. 所以x =5000时,y 有最小值89800. ∵89800<91200,所以购买蓝色地砖5000块,红色地砖7000块,费用最少,最少费用为89800元. ---------------------------------------------------------------------------------- 10分 【知识点】二元一次方程组;一元一次不等式组25.(2018江苏连云港,第25题,10分)如图1,水坝的横截面是梯形ABCD,∠ABC=37°,坝顶DC=3m,背水坡AD的坡度i(即tan∠DAB)为1:0.5,坝底AB=14m.(1)求坝高;(2)如图2,为了提高堤坝的防洪抗洪能力防汛指挥部决定在背水坡将坝顶和坝底同时拓宽加固,使得AE=2DF,EF⊥BF,求DF的长.(参考数据:sin37°≈35,cos37°≈45,tan37≈34)【思路分析】(1)分别过点D、C作AB的垂线,将梯形化为两个三角形和一个矩形,在利用三角函数,用含坝高的式子表示出AB的长度,进而求得坝高.(2) 过点F作FH⊥AB,垂足为H,设DF=y,用含y的式子分别表示出AE、EH、BH的长,在利用相似三角形的判定,证得△EFH∽△FBH,从而得到对应边的比,进而得解.【解题过程】解:(1)过点D作DM⊥AB,垂足为M,过点C作CN⊥AB,垂足为N.因背水坡AD的坡度i为1:0.5,所以tan∠DAB=2,设AM=x,则DM=2x.又四边形DMNC是矩形,所以DM=NC=2x.在Rt△BNC中,tan∠ABC=tan37°=234CN xBN BN==,所以BN=83x,由x+3+83x=14,得x=3,所以DM=6即坝高为6. ------------------------------------------------------------------------------------------------ 4分(2)过点F作FH⊥AB,垂足为H.设DF=y,则AE=2y.EH=3+2y-y=3+y,BH=14+2y-(3+y)=11+y.由FH⊥BE,EF⊥BF,得△EFH∽△FBH,所以HF EHHB FH=,即63116yy+=+. ----------------------------------------------------------------- 8分62=(3+y)(11+y),解得y=-7+213或y=-7-213(舍).所以DF=213-7.答:DF的长为(213-7)米. -------------------------------------------------------------------------- 10分【知识点】锐角三角函数的应用;矩形的性质;相似三角形的性质和判定26.(2018江苏连云港,第26题,12分)如图1,图形ABCD 是由两个二次函数y 1=kx 2+m (k <0)与y 2=ax 2+b (a >0)的部分图像围成的封闭图形,已知A (1,0)、B (0,1)、D (0,-3). (1)直接写出这两个二次函数的表达式;(2)判断图形ABCD 是否存在内接正方形(正方形的四个顶点在图形ABCD 上),并说明理;(3)如图2,连接BC 、CD 、AD ,在坐标平面内,求使得△BDC 与△ADE 相似(其中点C 与点E 是对应顶点)的点E 的坐标.【思路分析】(1)分别将点A 、B 和点A 、D 代入y 1和y 2中,即可得解. (2)分别在第一象限、第四象限图象上各取点M 和点M ′,求出MM ′的长度,根据正方形的邻边相等,可得2x =4-4x 2,求解即可.(3)利用勾股定理分别求出AD 、CD 、BC 的长,分情况讨论:①当△DBC ∽△DAE 时,列式计算即可求出点E ,根据对称性,在DA 右侧存在点E ′,再利用△DBC ∽△DAE ′,根据对应边成比例求解即可;②当△DBC ∽△ADE 时,有∠BDC =∠DAE ,根据对应边成比例,求得AE 的长,当点E 在直线DA 左侧时,在Rt △AOP 中,利用勾股定理,求出PE 的长,再根据平行线分线段成比例,求出E 的坐标;当点E′在直线DA 右侧时,利用平行线的判定求出AE ′的长,进而求得点E ′的坐标.【解题过程】(1)∵二次函数y 1经过点A 、B ,∴01.k m m +=⎧⎨=⎩,解得:11.k m =-⎧⎨=⎩,∴二次函数y 1的解析式为:y 1=-x 2+1;∵二次函数y 2经过点A 、D ,∴03.a b b +=⎧⎨=-⎩,解得:33.a b =⎧⎨=-⎩,∴二次函数y 1的解析式为:y 2=3x 2-3. ------------------------------------------------------------ 2分(2)设M (x ,-x 2+1)为第一象限内的图形ABCD 上一点,M ′(x ,3x 2-3)为第四象限内的图形上一点,所以MM ′=(1-x 2)-(3x 2-3)=4-4x 2,由抛物线的对称性知,若有内接正方形则2x =4-4x 2,即2x 2+x -2=0,x =1174-+或x =1174--(含), ∵0<1174-+<1,所以存在内接正方形,此时其边长为1172-+. --------------------- 5分 (3)在Rt △AOD 中,OA =1,OD =3,所以AD =2210OA OD +=,同理CD =10. 在Rt △BOC 中,OB =OC =1,所以BC =222OC OB +=。
2018中考数学模拟试题附详细解答
连云港市2018年中考数学模拟试题(满分:150分 时间:120分钟)友情提醒:试卷中所有答案都必须书写在答题卷指定的位置上...................,答案写在试卷上无效.........,请 务必注意试题序号和答题序号相对应,考试结束后,只上交答题卷.一、选择题:(每题3分,满分24分)1.下列各数中是负数的是(▲)A .-(-3)B .-(-3)2C .-(-2)3D .|-2|2.若三角形两条边的长分别为1、4,则第三条边的长可以是(▲)A . 2B . 3C .4D . 53.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00 000 0076克,用科学记数法表示是(▲) A .7.6×10-6克 B .7.6×10-7克 C .7.6×10-8克 D .7.6×10-9克4.如图,数轴上A 、B 两点表示的数分别为和5.1,则A 、B 两点之间表示整数的点共有( )5.小明等五位同学以各自的年龄为一组数据,计算出这组数据的方差是0.5,则10年后小 明等五位同学年龄的方差(▲)A .增大B .不变C .减小D .无法确定 6..能说明命题“关于x 的一元二次方程x 2+mx +4=0,当m <-2时必有实数解”是假命题的一个反例为(▲)A. m =﹣4B. m =﹣3C. m =﹣2D. m =4 7如右图,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a b 、上,已知155∠=°,则2∠的度数为(▲) A .45° B .125° C .55° D .35°8.我们定义一种变换§:对于一个由5个数组成的数列S 1,将其中的每个数换成该数在S 1中出现的次数,可得到一个新数列S 2.例如:当数列S 1是 (4,2,3,4,2)时,经过变换§可得到的新数列S 2是(2,2,1,2,2).若数列S 1可以由任意5个数组成,则下列的数列可作为S 2的是 A. (1,2,1,2,2)B. (2,2,2,3,3)C. (1,1,2,2,3)D. (1,2,1,1,2)二、填空题(每空3分,满分27分)9.若53=b a ,则a b a -的值是 ▲ .10.因式分解:x x 93-= ▲11是最简二次根式,则最小的正整数a = ▲ .12.如图①是一张长方形纸条,将纸条沿BD 折叠成图②,∠CBD =20°,再沿DE 折叠成图③,则图③中的∠CDF 的度数是 ▲ .13.一个y 关于x 的函数同时满足两个条件:①图像经过(1,2)点;②当0x >时.y 随x 的增大而减小,这个函数解析式为 ▲ (写出一个即可) .14.如图有一圆形展厅,在其边缘上的点A 处安装了一台监视器,它的监控角度是58°,为了监控整个展厅,最少需在圆形边缘上共安装...这样的监视器 ▲ 台. 15.如图,矩形ABCD 中,由8个面积均为1的小正方形组成的L 型模板如图放置,则矩形ABCD 的周长为 ▲ .16.如图①,将四边形纸片ABCD 沿两组对边中点连线剪切为四部分,将这四部分密铺可得到如图②所示的四边形,这个四边形是 ▲ ,若要密铺后图②的图形为矩形,则四边形ABCD 需要满足的条件是 ▲ .三、解答题(本大题共11题,满分99分)17.(本题满分6分)计算:102014)21()1(91---++-π18.(本题满分6分)解方程组: ⎩⎨⎧=+=-.52,4y x y x19.(本题满分9分)化简代数式22112x x x x x --÷+,并判断当x 满足不等式组()21216x x +<⎧⎪⎨->-⎪⎩时该代数式的符号.20.(本题满分8分)今年我市体育中考的现场选测项目中有一项是“排球30秒对墙垫球”,(第12题图)图①图② 图③D(第14题图)(第16题图)(第15题图)为了了解某学校九年级学生此项目平时的训练情况,随机抽取了该校部分九年级学生进行测试,根据测试结果,制作了如下尚不完整的频数分布表:(1)填空:a=▲,b=▲;(2)这个样本数据的中位数在第▲组;(3)下表为《体育与健康》中考察“排球30秒对墙垫球”的中考评分标准,若该校九年级有550名学生,请你估计该校九年级学生在这一项目中得分在7分以上(包括7分)学生约有多少人?排球30秒对墙垫球的中考评分标准21.(本题满分8分)阅读对话,解答问题:(1)试用树状图或列表法写出满足关于x的方程x2+px+q=0的所有等可能结果;(2)在(1)中方程有实数根的概率是▲ .22.(本题满分8分)如图,在平行四边形ABCD 中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与点C 重合,得GFC △. (1)求证:BE DG =;(2)若60B ∠=°,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.23.(本题满分10分)如图,在平面直角坐标系中有Rt △ABC ,已知∠A =90°,AB =AC ,A (-2,0)、B (0,1)、C (d ,2). (1)求d 的值;(2)将△ABC 沿x 轴的正方向平移,在第一象限内B 、C 两点的对应点B ′、C ′正好落在某反比例函数y 1的图像上.请求出这个反比例函数y 1和此时的直线B ′C ′的解析式y 2; (3)当x 满足什么条件时,y 1>y 2.24.(本题满分8分)如图,在某海滨城市O 附近海面有一股台风,据监测,当前台风中心位于该城市的东偏南70°方向200千米的海面P 处,并以20千米/时的速度向西偏北25°的PQ 方向移动,台风侵袭范围是一个圆形区域,当前半径为60千米,且圆的半径以10千米/时的速度不断扩张.(1)当台风中心移动4小时时,受台风侵袭的圆形区域半径增大到 ▲ 千米;当台风中心移动t 小时时,受台风侵袭的圆形区域半径增大到 ▲ 千米.(2)当台风中心移动到与城市O 距离最近时,这股台风是否侵袭这座海滨城市?请说明理由(1.411.73).(第23题图)A D G CB F E (第22题图)25.(本题满分10分)观察思考某种在同一平面进行传动的机械装置如图1,图2是它的示意图.其工作原理是:滑块Q 在平直滑道l 上可以左右滑动,在Q 滑动的过程中,连杆PQ 也随之运动,并且PQ 带动连杆OP 绕固定点O 摆动.在摆动过程中,两连杆的接点P 在以OP 为半径的⊙O 上运动.数学兴趣小组为进一步研究其中所蕴含的数学知识,过点O 作OH ⊥l 于点H ,并测得OH =4分米,PQ =3分米,OP =2分米. 解决问题⑴点Q 与点O 间的最小距离是 ▲ 分米;点Q 与点O 间的最大距离是 ▲ 分米;点Q 在l 上滑到最左端的位置与滑到最右端位置间的距离是 ▲ 分米.⑵如图3,小明同学说:“当点Q 滑动到点H 的位置时,PQ 与⊙O 是相切的.”你认为他的判断对吗?为什么?请写出理由.⑶①小丽同学发现:“当点P 运动到OH 上时,点P 到l 的距离最小.”事实上,还存在着点P 到l 距离最大的位置,此时,点P 到l 的距离是 ▲ 分米; ②当OP 绕点O 左右摆动时,所扫过的区域为扇形,求这个扇形面积最大时圆心角的度数.26.(本题满分12分)某种商品的进价为每件50元,定价为每件60元.为了促销,决定凡是购买10件以上的,每多买一件,售价就降低0.10元(例如,某人买20件,于是每件降价0.10×(20-10)=1元,就可以按59元/件的价格购买),但是最低价为55元/件.同时,商店在出售中,还需支出税收等其他杂费1.6元/件. (1)求顾客一次至少买多少件,才能以最低价购买?(2)求出当一次出售x 件时(x >10)利润y (元)与出售量x (件)之间的函数关系式; (3)有一天,一位顾客买了47件,另一位顾客买了60件,结果发现卖了60件反而比卖了47件赚的钱少.为了使每次卖的越多赚的钱也越多,在其他促销条件不变的情况下,最低价55元/件至少要提高到多少?请说明理由.l图3l图2图127.(本题满分14分) ⑴探究新知:①如图1,已知AD ∥BC ,AD =BC ,点M 、N 是直线CD 上任意两点.则S △ABM ▲ S △ABN .(填“>”、“<”或者“=”)②如图2,已知AD ∥BE ,AD =BE ,AB ∥CD ∥EF ,点M 是直线CD 上任一点,点N 是直线EF 上任一点.上述结论是否依然成立,请说明理由.⑵结论应用:如图3,抛物线c bx ax y ++=2的顶点为C (1,4),交x 轴于点A (3,0),交y 轴于点D .试探究在抛物线c bx ax y ++=2上是否存在除点C 以外的点E ,使得△ADE 与△ACD 的面积相等?若存在,请求出此时点E 的坐标,若不存在,请说明理由.备用图图 3ABD C M N 图 1 C 图 2A BD M F EN灌南县2018年中考数学模拟试题参考答案(第23题图),(第24题图)到H,60+502≈130.5<141(2)E 点的坐标为E 1(2,3);2E ;3E .。
江苏省连云港市2018届九年级下学期全真模拟(三)数学试题(附答案) (1)
2018年中考数学全真模拟试卷(三)一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号 涂在答题卡相应的位置上,每小题3分,满分24分)1.﹣5的相反数是( )A .﹣5B .5C .﹣15D .152.如图,由两个相同的小正方体和一个圆锥组成的几何体,其左视图是( )A .B .C .D . 3.下列计算正确的是( )A .3252a a a +=B .326a a a ⋅=C .32a a a ÷=D .329()a a =4. 已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为( )A .0.21×10-4B .2.1×10-4C .2.1×10-5D .21×10-65.下列调查中,最适宜采用普查方式的是( )A .对我国初中学生视力状况的调查B .对量子科学通信卫星上某种零部件的调查C .对一批节能灯管使用寿命的调查D .对“最强大脑”节目收视率的调查6.分式33+-x x 的值为零,则x 的值为( ) A .3B .﹣3C .±3D .任意实数 7. 如图,在边长为6的菱形ABCD 中,∠DAB =60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是( ) A .183﹣9π B .18﹣3π C .93﹣29π D .183﹣3π 8.如图,P ,Q 分别是双曲线k y x=在第一、三象限上的点,PA ⊥x 轴,QB ⊥y 轴,垂足分别为A ,B ,点C 是PQ 与x 轴的交点.设△PAB 的面积为1S ,△QAB 的面积为2S ,△QAC 的面积为3S ,则有( )A. 123S S S =≠B. 132S S S =≠C. 231S S S =≠D. 123S S S ==二、填空题(本题共8个小题,每小题3分,满分24分)9.在一次“爱心传递”捐款活动中,某班第一小组7名同学捐款的金额(单位:元)分别为7,6,6,14,9,6,9.这组数据的众数和中位数分别是 .10.因式分解:2218x -= .11.一个多边形的每个外角都是72°,则这个多边形边数为 .12.一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为 .13.如图,Rt △ABC 中,AB ⊥BC ,AB =6,BC =4,P 是△ABC 内部的一个动点,且满足∠PAB =∠PBC ,则线段CP 长的最小值为 .14.如图,正方形ABCD 的边长为2,点E 是BC 边的中点,过点B 作BG ⊥AE ,垂足为G ,延长BG 交AC 于点F ,则CF= .第13题 第14题15.一个三角形内有n 个点,在这些点及三角形顶点之间用线段连接起来,使得这些线段互不相交,且又能把原三角形分割为不重叠的小三角形.如图:若三角形内有1个点时此时有3个小三角形;若三角形内有2个点时,此时有5个小三角形.则当三角形内有3个点时,此时有 个小三角形;当三角形内有n 个点时,此时有 个小三角形.16.定义:有三个内角相等的四边形叫三等角四边形.三等角四边形ABCD 中,∠A=∠B =∠C ,则∠A 的取值范围 .三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应位置上,满分72分)17.(5分)计算:|1﹣3|﹣3tan30°﹣(53-)°.18.(5分)解方程组.19.(6分)先化简2213(2)22a aaa a++÷-+++,然后从﹣2,﹣1,1,2四个数中选择一个合适的数作为a的值代入求值.20.(8分)为了提高学生学习信息技术的积极性,某校组织了“信息技术技能竞赛”活动,八年级甲、乙两班根据初赛成绩,各选出5名选手参加复赛,这些选手的复赛成绩(满分为100分)如图所示:(1)根据统计图填写下表:班级平均数(分)众数(分)方差甲班85 85乙班160(2)根据上表可知,两个班选手成绩较稳定的是;(3)选手小明说:“这次竞赛我得了80分,在我们班选手中成绩排名属下游!(后两名)”观察统计图,求出两班选手成绩的中位数,说明小明是哪个班的学生?(4)学校要给其中一个班发集体优胜奖,你认为发给哪个班合适?请综合考评,说明理由.21.(8分)我市某校开展“经典诵读”比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母A、B、C依次表示这三个诵读材料),将A、B、C这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小华和小敏参加诵读比赛,比赛时小华先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小敏从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.(1)小华诵读《弟子规》的概率是;(2)请用列表法或画树状图法求小华和小敏诵读两个不同材料的概率.22.(8分) 某校兴趣小组想测量一座大楼AB的高度.如图,大楼前有一段斜坡BC,已知BC 的长为12米,它的坡度i=1:3.在离C点40米的D处,用测角仪测得大楼顶端A的仰角为37°,测角仪DE的高为1.5米,求大楼AB的高度约为多少米?(结果精确到0.1米) (参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,3≈1.73.)23.(10分)阅读材料:以下是我们教科书中的一段内容,请仔细阅读,并解答有关问题.公元前3世纪,古希腊学家阿基米德发现:若杠杆上的两物体与支点的距离与其重量成反比,则杠杆平衡,后来人们把它归纳为“杠杆原理”,通俗地说,杠杆原理为:阻力×阻力臂=动力×动力臂【问题解决】若工人师傅欲用撬棍动一块大石头,已知阻力和阻力臂不变,分别为1500N和0.4m.(1)动力F(N)与动力臂l(m)有怎样的函数关系?当动力臂为1.5m时,撬动石头需要多大的力?(2)若想使动力F(N)不超过题(1)中所用力的一半,则动力臂至少要加长多少?【数学思考】(3)请用数学知识解释:我们使用撬棍,当阻力与阻力臂一定时,为什么动力臂越长越省力.24.(10分)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,2,求DF的长.25.(10分)某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数;(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?26.(12分)如图,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE与AC 交于点M,EF与AC交于点N,动点P从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,伴随点P 的运动,矩形PEFG在射线AB上滑动;动点K从点P出发沿折线PE﹣﹣EF以每秒1个单位长的速度匀速运动.点P、K同时开始运动,当点K到达点F时停止运动,点P也随之停止.设点P、K运动的时间是t秒(t>0).(1)当t=1时,KE=,EN=;(2)当t为何值时,△APM的面积与△MNE的面积相等?(3)当点K到达点N时,求出t的值;(4)当t为何值时,△PKB是直角三角形?27.(12分)将抛物线c1:2y=x轴翻折,得到抛物线c2,如图1所示.(1)请直接写出抛物线c2的表达式;(2)现将抛物线c1向左平移m个单位长度,平移后得到新抛物线的顶点为M,与x轴的交点从左到右依次为A、B;将抛物线c2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E.①当B、D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A、N、E、M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.2018年中考数学全真模拟试卷答案1. B ;2. D ;3. C ;4. C ;5. B ;6. A ;7. A ;8. D ;9.6和7;10. 2(x+3)(x-3);11. 5;12. 3;13. 2 ;14. ;15. 7,2n+1;16.60°<∠A <120° 17. -2;18.19. 解:原式=22(1)4322a a a a +-+÷++=2(1)22(1)(1)a a a a a ++⋅+-+=11a a +-,当a =2时,原式=2121+-=3. 20.解:(1)乙班选手成绩的平均数为:(70+75+80+100+100)÷5=85(分);因为乙班选手成绩的5个数据中,100分出现了2次,次数最多,所以乙班选手成绩的众数为100分;=[(75﹣85)2+(80﹣85)2+2×(85﹣85)2+(100﹣85)2]=70.填表如下:班级 平均数(分) 众数(分) 方差甲班 85 85 70乙班 85 100 160(2)∵=70,=160,∴<,∴甲班选手成绩较稳定;(3)分别将两个班选手成绩的数据按照由小到大顺序排列为:甲班:75,80,85,85,100,乙班:70,75,80,100,100,∴甲班选手成绩的中位数是85,乙班选手成绩的中位数是80,∵小明成绩排名属下游,∴小明是甲班的学生;(4)因为两个班选手成绩的平均数相同,甲班选手成绩的中位数比乙班大,甲班选手成绩的方差比乙班小,所以集体优胜奖发给甲班合适.故答案为85,100,70;甲班.21.解:(1)小华诵读《弟子规》的概率=31; (2)列表得:由表格可知,共有9种等可能性结果,其中小华和小敏诵读两个不同材料的结果有6种, 所以P (小华和小敏诵读两个不同材料)=3296 . 22.过B 作DC 的垂线交DC 于点H ,设BH=x ,由坡度值得CH=。
2018-2019学年江苏省连云港市中考数学模拟试卷
2018-2019学年江苏省连云港市中考数学模拟试卷一、选择题(共8题;共24分)1.﹣8的绝对值是()A. ﹣8B. 8C. ﹣D.2.下列运算正确的是()A. B. C. D.3.我们学习了数据收集,下列正确的是()A. 折线图易于显示数据的变化趋势B. 条形图能够显示每组中的百分比的大小C. 扇形图显示部分在总体中的具体数据D. 直方图能够显示数据的大小4.若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A. 1:2B. 2:1C. 1:4D. 4:15.如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的左视图是()A. B. C. D.6.有下列说法:①无限小数都是无理数;②数轴上的点和有理数一一对应;③在1和3之间的无理数有且只有,,,,,这6个;④ 是分数,它是有理数;⑤近似数7.30所表示的准确数a的范围是:7.295≤a<7.305;其中正确的是()A. ⑤B. ④⑤C. ③④⑤D. ①④⑤7.若抛物线y=ax2+2ax+4(a<0)上有A(﹣,y1),B(﹣,y2),C(,y3)三点,则y1,y2,y3的大小关系为()A. y1<y2<y3B. y3<y2<y1C. y3<y1<y2D. y2<y3<y18.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合),现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图),若有34枚图钉可供选用,则最多可以展示绘画作品( )A. 16张B. 18张C. 20张D. 21张二、填空题(共8题;共27分)9.函数的自变量x的取值范围是________.10.分解因式:4m2﹣9n2=________.11.地球上海洋面积约为36100万km2,可用科学记数法表示为________km2.12.一元二次方程x2-5x-78=0 根的情况是________.13.平行四边形ABCD中,∠ABC的角平分线BE将边AD分成长度为5cm和6cm的两部分,则平行四边形ABCD的周长为________cm.14.把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为________.15.一次函数y=﹣x+1与反比例函数y=﹣,x与y的对应值如下表:﹣3 ﹣2 ﹣1 1 2 3y=ax+b 4 3 2 0 ﹣1 ﹣2 y=﹣1 2 ﹣2 ﹣1 ﹣方程﹣x+1=﹣的解为________ ;不等式﹣x+1>﹣的解集为________ .16.如图,已知等边三角形OAB与反比例函数y= (k>0,x>0)的图象交于A、B两点,将△OAB沿直线OB翻折,得到△OCB,点A的对应点为点C,线段CB交x轴于点D,则的值为________.(已知sin15°= )三、解答题(共11题;共49分)17.计算:(﹣3)2+20170﹣×sin45°.18.已知=0,求÷(a﹣1)• 的值.19.解不等式组解不等式组,并把它的解集表示在数轴上.20.将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x <6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.(1)这部分男生有多少人?其中成绩合格的有多少人?(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.21.为了解全校学生上学的交通方式,我校九年级(21)班的5名同学联合设计了一份调查问卷,对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:(1)本次接受调查的总人数是________人,其中“步行”的人数是________人;(2)在扇形统计图中,“乘公交车”的人数所占的百分比是________,“其他方式”所在扇形的圆心角度数是________;(3)已知这5名同学中有2名女同学,要从中选两名同学汇报调查结果.请你用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.22.已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G.(1)判断AC与图中的那条线段相等,并证明你的结论;(2)若CE的长为,求BG的长.23.如图,点A、B、C在圆O上,AB为直径,且AB=4,AC=2.(1)求∠ABC的度数;(2)求弧AC的长度.24.“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A型车去年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如表:25.知识改变世界,科技改变生活。
2018年连云港市中考数学试卷(含解析)
江苏省连云港市2018年中考数学试卷(解析版)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2018年江苏省连云港市)﹣8的相反数是()A.﹣8 B.C.8 D.﹣【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:﹣8的相反数是8,故选:C.【点评】此题主要考查了相反数,关键是掌握相反数的定义.2.(2018年江苏省连云港市)下列运算正确的是()A.x﹣2x=﹣x B.2x﹣y=xy C.x2+x2=x4D.(x﹣l)2=x2﹣1【分析】根据整式的运算法则即可求出答案.【解答】解:(B)原式=2x﹣y,故B错误;(C)原式=2x2,故C错误;(D)原式=x2﹣2x+1,故D错误;故选:A.【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.3.(2018年江苏省连云港市)地球上陆地的面积约为150 000 000km2.把“150 000 000”用科学记数法表示为()A.1.5×108B.1.5×107C.1.5×109D.1.5×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:150 000 000=1.5×108,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(2018年江苏省连云港市)一组数据2,1,2,5,3,2的众数是()A.1 B.2 C.3 D.5【分析】根据众数的定义即一组数据中出现次数最多的数,即可得出答案.【解答】解:在数据2,1,2,5,3,2中2出现3次,次数最多,所以众数为2,故选:B.【点评】此题考查了众数,众数是一组数据中出现次数最多的数.5.(2018年江苏省连云港市)如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A.B.C.D.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵共6个数,大于3的有3个,∴P(大于3)==;故选:D.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6.(2018年江苏省连云港市)如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是()A.B.C.D.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:A.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.7.(2018年江苏省连云港市)已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A.点火后9s和点火后13s的升空高度相同B.点火后24s火箭落于地面C.点火后10s的升空高度为139mD.火箭升空的最大高度为145m【分析】分别求出t=9、13、24、10时h的值可判断A、B、C三个选项,将解析式配方成顶点式可判断D选项.【解答】解:A、当t=9时,h=136;当t=13时,h=144;所以点火后9s和点火后13s的升空高度不相同,此选项错误;B、当t=24时h=1≠0,所以点火后24s火箭离地面的高度为1m,此选项错误;C、当t=10时h=141m,此选项错误;D、由h=﹣t2+24t+1=﹣(t﹣12)2+145知火箭升空的最大高度为145m,此选项正确;故选:D.【点评】本题主要考查二次函数的应用,解题的关键是熟练掌握二次函数的性质.8.(2018年江苏省连云港市)如图,菱形ABCD的两个顶点B、D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()A.﹣5 B.﹣4 C.﹣3 D.﹣2【分析】根据题意可以求得点B的坐标,从而可以求得k的值.【解答】解:∵四边形ABCD是菱形,∴BA=BC,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∵点A(1,1),∴OA=,∴BO=,∵直线AC的解析式为y=x,∴直线BD的解析式为y=﹣x,∵OB=,∴点B的坐标为(,),∵点B在反比例函数y=的图象上,∴,解得,k=﹣3,故选:C.【点评】本题考查反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.二、填空题(本大题共8小题,毎小题3分,共24分,不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9.(2018年江苏省连云港市)使有意义的x的取值范围是x≥2.【分析】当被开方数x﹣2为非负数时,二次根式才有意义,列不等式求解.【解答】解:根据二次根式的意义,得x﹣2≥0,解得x≥2.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.10.(2018年江苏省连云港市)分解因式:16﹣x2=(4+x)(4﹣x).【分析】16和x2都可写成平方形式,且它们符号相反,符合平方差公式特点,利用平方差公式进行因式分解即可.【解答】解:16﹣x2=(4+x)(4﹣x).【点评】本题考查利用平方差公式分解因式,熟记公式结构是解题的关键.11.(2018年江苏省连云港市)如图,△ABC中,点D、E分別在AB、AC上,DE∥BC,AD:DB=1:2,则△ADE与△ABC的面积的比为1:9.【分析】根据DE∥BC得到△ADE∽△ABC,再结合相似比是AD:AB=1:3,因而面积的比是1:9,问题得解.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,∴S△ADE:S△ABC是1:9.故答案为:1:9.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.12.(2018年江苏省连云港市)已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣图象上的两个点,则y1与y2的大小关系为y1<y2.【分析】根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小,从而可以解答本题.【解答】解:∵反比例函数y=﹣,﹣4<0,∴在每个象限内,y随x的增大而增大,∵A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣图象上的两个点,﹣4<﹣1,∴y1<y2,故答案为:y1<y2.【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答.13.(2018年江苏省连云港市)一个扇形的圆心角是120°.它的半径是3cm.则扇形的弧长为2πcm.【分析】根据弧长公式可得结论.【解答】解:根据题意,扇形的弧长为=2π,故答案为:2π【点评】本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.14.(2018年江苏省连云港市)如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB=44°.【分析】首先连接OB,由点C在过点B的切线上,且OC⊥OA,根据等角的余角相等,易证得∠CBP=∠CPB,利用等腰三角形的性质解答即可.【解答】解:连接OB,∵BC是⊙O的切线,∴OB⊥BC,∴∠OBA+∠CBP=90°,∵OC⊥OA,∴∠A+∠APO=90°,∵OA=OB,∠OAB=22°,∴∠OAB=∠OBA=22°,∴∠APO=∠CBP=68°,∵∠APO=∠CPB,∴∠CPB=∠ABP=68°,∴∠OCB=180°﹣68°﹣68°=44°,故答案为:44°【点评】此题考查了切线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.15.(2018年江苏省连云港市)如图,一次函数y=kx+b的图象与x轴、y轴分别相交于A、B两点,⊙O经过A,B两点,已知AB=2,则的值为﹣.【分析】由图形可知:△OAB是等腰直角三角形,AB=2,可得A,B两点坐标,利用待定系数法可求k和b的值,进而得到答案.【解答】解:由图形可知:△OAB是等腰直角三角形,OA=OB∵AB=2,OA2+OB2=AB2∴OA=OB=∴A点坐标是(,0),B点坐标是(0,)∵一次函数y=kx+b的图象与x轴、y轴分别相交于A、B两点∴将A,B两点坐标带入y=kx+b,得k=﹣1,b=∴=﹣故答案为:﹣【点评】本题主要考查图形的分析运用和待定系数法求解析,找出A,B两点的坐标对解题是关键之举.16.(2018年江苏省连云港市)如图,E、F,G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,连接AC、HE、EC,GA,GF.已知AG⊥GF,AC=,则AB的长为2.【分析】如图,连接BD.由△ADG∽△GCF,设CF=BF=a,CG=DG=b,可得=,推出=,可得b=a,在Rt△GCF中,利用勾股定理求出b,即可解决问题;【解答】解:如图,连接BD.∵四边形ABCD是矩形,∴∠ADC=∠DCB=90°,AC=BD=,∵CG=DG,CF=FB,∴GF=BD=,∵AG⊥FG,∴∠AGF=90°,∴∠DAG+∠AGD=90°,∠AGD+∠CGF=90°,∴∠DAG=∠CGF,∴△ADG∽△GCF,设CF=BF=a,CG=DG=b,∴=,∴=,∴b2=2a2,∵a>0.b>0,∴b=a,在Rt△GCF中,3a2=,∴a=,∴AB=2b=2.故答案为2.【点评】本题考查中点四边形、矩形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(本大题共11小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(2018年江苏省连云港市)计算:(﹣2)2+20180﹣【分析】首先计算乘方、零次幂和开平方,然后再计算加减即可.【解答】解:原式=4+1﹣6=﹣1.【点评】此题主要考查了实数的运算,关键是掌握乘方的意义、零次幂计算公式和二次根式的性质.18.(2018年江苏省连云港市)解方程:﹣=0【分析】根据灯饰的性质,可得整式方程,根据解整式方程,可得答案.【解答】解:两边乘x(x﹣1),得3x﹣2(x﹣1)=0,解得x=2,经检验:x=2是原分式方程的解.【点评】本题考查了解分式方程,利用等式的性质将分式方程转化成整式方程是解题关键,要检验方程的根.19.(2018年江苏省连云港市)解不等式组:【分析】根据不等式组的解集的表示方法:大小小大中间找,可得答案.【解答】解:,解不等式①,得x<2,解不等式②,得x≥﹣3,不等式①,不等式②的解集在数轴上表示,如图,原不等式组的解集为﹣3≤x<2.【点评】本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.20.(2018年江苏省连云港市)随着我国经济社会的发展,人民对于美好生活的追求越来越高.某社区为了了解家庭对于文化教育的消费悄况,随机抽取部分家庭,对每户家庭的文化教育年消费金额进行问卷调査,根据调查结果绘制成两幅不完整的统计图表.请你根据统计图表提供的信息,解答下列问题:(1)本次被调査的家庭有150户,表中m=42;(2)本次调查数据的中位数出现在B组.扇形统计图中,D组所在扇形的圆心角是36度;(3)这个社区有2500户家庭,请你估计家庭年文化教育消费10000元以上的家庭有多少组別家庭年文化教育消费金额x(元)户数A x≤5000 36B 5000<x≤10000 mC 10000<x≤15000 27D 15000<x≤20000 15E x>20000 30【分析】(1)依据A组或E组数据,即可得到样本容量,进而得出m的值;(2)依据中位数为第75和76个数据的平均数,即可得到中位数的位置,利用圆心角计算公式,即可得到D组所在扇形的圆心角;(3)依据家庭年文化教育消费10000元以上的家庭所占的比例,即可得到家庭年文化教育消费10000元以上的家庭的数量.【解答】解:(1)样本容量为:36÷24%=150,m=150﹣36﹣27﹣15﹣30=42,故答案为:150,42;(2)中位数为第75和76个数据的平均数,而36+42=78>76,∴中位数落在B组,D组所在扇形的圆心角为360°×=36°,故答案为:B,36;(3)家庭年文化教育消费10000元以上的家庭有2500×=1200(户).【点评】本题考查扇形统计图、用样本估计总体以及中位数的运用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.21.(2018年江苏省连云港市)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.(1)若前四局双方战成2:2,那么甲队最终获胜的概率是;(2)现甲队在前两周比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?【分析】(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求.【解答】解:(1)甲队最终获胜的概率是;故答案为;(2)画树状图为:共有8种等可能的结果数,其中甲至少胜一局的结果数为7,所以甲队最终获胜的概率=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.22.(2018年江苏省连云港市)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.【分析】(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.【解答】解:(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中点,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四边形ACDF是平行四边形;(2)BC=2CD.证明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中点,∴AD=2CD,∵AD=BC,∴BC=2CD.【点评】本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.23.(2018年江苏省连云港市)如图,在平面直角坐标系中,一次函数y=k1x+b的图象与反比例函数y=的图象交于A(4,﹣2)、B(﹣2,n)两点,与x轴交于点C.(1)求k2,n的值;(2)请直接写出不等式k1x+b的解集;(3)将x轴下方的图象沿x轴翻折,点A落在点A′处,连接A′B,A′C,求△A′BC的面积.【分析】(1)将A点坐标代入y=(2)用函数的观点将不等式问题转化为函数图象问题;(3)求出对称点坐标,求面积.【解答】解:(1)将A(4,﹣2)代入y=,得k2=﹣8.∴y=﹣将(﹣2,n)代入y=﹣n=4.∴k2=﹣8,n=4(2)根据函数图象可知:﹣2<x<0或x>4(3)将A(4,﹣2),B(﹣2,4)代入y=k1x+b,得k1=﹣1,b=2∴一次函数的关系式为y=﹣x+2与x轴交于点C(2,0)∴图象沿x轴翻折后,得A′(4,2),S△A'BC=(4+2)×(4+2)×﹣×4×4﹣×2×2=8∴△A'BC的面积为8.【点评】本题是一次函数和反比例函数综合题,使用的待定系数法,考查用函数的观点解决不等式问题.24.(2018年江苏省连云港市)某村在推进美丽乡村活动中,决定建设幸福广场,计划铺购买数量低于5000块购买数量不低于5000块红色地砖原价销售以八折销售蓝色地砖原价销售以九折销售如果购买红色地砖块,蓝色地砖块,需付款元;如果购买红色地砖10000块,蓝色地砖3500块,需付款99000元.(1)红色地砖与蓝色地砖的单价各多少元?(2)经过测算,需要购置地砖12000块,其中蓝色地砖的数量不少于红色地砖的一半,并且不超过6000块,如何购买付款最少?请说明理由.【分析】(1)根据题意结合表格中数据,购买红色地砖4000块,蓝色地砖6000块,需付款86000元;购买红色地砖10000块,蓝色地砖3500块,需付款99000元,分别得出方程得出答案;(2)利用已知得出x的取值范围,再利用一次函数增减性得出答案.【解答】解:(1)设红色地砖每块a元,蓝色地砖每块b元,由题意可得:,解得:,答:红色地砖每块8元,蓝色地砖每块10元;(2)设购置蓝色地砖x块,则购置红色地砖(12000﹣x)块,所需的总费用为y元,由题意可得:x≥(12000﹣x),解得:x≥4000,又x≤6000,所以蓝砖块数x的取值范围:4000≤x≤6000,当4000≤x<5000时,y=10x+×0.8(12000﹣x)=76800+3.6x,所以x=4000时,y有最小值91200,当5000≤x≤6000时,y=0.9×10x+8×0.8(1200﹣x)=2.6x+76800,所以x=5000时,y有最小值89800,∵89800<91200,∴购买蓝色地砖5000块,红色地砖7000块,费用最少,最少费用为89800元.【点评】此题主要考查了一次函数的应用以及二元一次方程组的应用,正确得出函数关系式是解题关键.25.(2018年江苏省连云港市)如图1,水坝的横截面是梯形ABCD,∠ABC=37°,坝顶DC=3m,背水坡AD的坡度i(即tan∠DAB)为1:0.5,坝底AB=14m.(1)求坝高;(2)如图2,为了提高堤坝的防洪抗洪能力,防汛指挥部决定在背水坡将坝顶和坝底间时拓宽加固,使得AE=2DF,EF⊥BF,求DF的长.(参考数据:sin37°≈,cos37°≈,tan37°≈)【分析】(1)作DM⊥AB于M,CN⊥AN于N.由题意:tan∠DAB==2,设AM=x,则DM=2x,在Rt△BCN中,求出BN,构建方程即可解决问题;(2)作FH⊥AB于H.设DF=y,设DF=y,则AE=2y,EH=3+2y﹣y=3+y,BH=14+2y﹣(3+y)=11+y,由△EFH∽△FBH,可得=,即=,求出y即可;【解答】解:(1)作DM⊥AB于M,CN⊥AN于N.由题意:tan∠DAB==2,设AM=x,则DM=2x,∵四边形DMNC是矩形,∴DM=CN=2x,在Rt△NBC中,tan37°===,∴BN=x,∵x+3+x=14,∴x=3,∴DM=6,答:坝高为6m.(2)作FH⊥AB于H.设DF=y,设DF=y,则AE=2y,EH=3+2y﹣y=3+y,BH=14+2y﹣(3+y)=11+y,由△EFH∽△FBH,可得=,即=,解得y=﹣7+2或﹣7﹣2(舍弃),∴DF=2﹣7,答:DF的长为(2﹣7)m.【点评】本题考查了坡度坡角的求解,考查了特殊角的三角函数值,考查了三角函数在直角三角形中运用,解题的关键是学会理由参数构建方程解决问题.26.(2018年江苏省连云港市)如图1,图形ABCD是由两个二次函数y1=kx2+m(k<0)与y2=ax2+b(a>0)的部分图象围成的封闭图形.已知A(1,0)、B(0,1)、D(0,﹣3).(1)直接写出这两个二次函数的表达式;(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;(3)如图2,连接BC,CD,AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标【分析】(1)利用待定系数法即可得出结论;(2)先确定出MM'=(1﹣m2)﹣(3m2﹣3)=4﹣4m2,进而建立方程2m=4﹣4m2,即可得出结论;(3)先利用勾股定理求出AD=,同理:CD=,BC=,再分两种情况:①如图1,当△DBC∽△DAE时,得出,进而求出DE=,即可得出E(0,﹣),再判断出△DEF∽△DAO,得出,求出DF=,EF=,再用面积法求出E'M=,即可得出结论;②如图2,当△DBC∽△ADE时,得出,求出AE=,当E在直线AD左侧时,先利用勾股定理求出PA=,PO=,进而得出PE=,再判断出即可得出点E坐标,当E'在直线DA右侧时,即可得出结论.【解答】解:(1)∵点A(1,0),B(0,1)在二次函数y1=kx2+m(k<0)的图象上,∴,∴,∴二次函数解析式为y1=﹣x2+1,∵点A(1,0),D(0,﹣3)在二次函数y2=ax2+b(a>0)的图象上,∴,∴,∴二次函数y2=3x2﹣3;(2)设M(m,﹣m2+1)为第一象限内的图形ABCD上一点,M'(m,3m2﹣3)为第四象限的图形上一点,∴MM'=(1﹣m2)﹣(3m2﹣3)=4﹣4m2,由抛物线的对称性知,若有内接正方形,∴2m=4﹣4m2,∴m=或m=(舍),∵0<<1,∴存在内接正方形,此时其边长为;(3)在Rt△AOD中,OA=1,OD=3,∴AD==,同理:CD=,在Rt△BOC中,OB=OC=1,∴BC==,①如图1,当△DBC∽△DAE时,∵∠CDB=∠ADO,∴在y轴上存在E,由,∴,∴DE=,∵D(0,﹣3),∴E(0,﹣),由对称性知,在直线DA右侧还存在一点E'使得△DBC∽△DAE',连接EE'交DA于F点,作E'M⊥OD于M,连接E'D,∵E,E'关于DA对称,∴DF垂直平分线EE',∴△DEF∽△DAO,∴,∴,∴DF=,EF=,∵S△DEE'=DE•E'M=EF×DF=,∴E'M=,∵DE'=DE=,在Rt△DE'M中,DM==2,∴OM=1,∴E'(,﹣1),②如图2,当△DBC∽△ADE时,有∠BDC=∠DAE,,∴,∴AE=,当E在直线AD左侧时,设AE交y轴于P,作EQ⊥AC于Q,∵∠BDC=∠DAE=∠ODA,∴PD=PA,设PD=n,∴PO=3﹣n,PA=n,在Rt△AOP中,PA2=OA2+OP2,∴n2=(3﹣n)2+1,∴n=,∴PA=,PO=,∵AE=,∴PE=,在AEQ中,OP∥EQ,∴,∴OQ=,∵,∴QE=2,∴E(﹣,﹣2),当E'在直线DA右侧时,根据勾股定理得,AE==,∴AE'=∵∠DAE'=∠BDC,∠BDC=∠BDA,∴∠BDA=∠DAE',∴AE'∥OD,∴E'(1,﹣),综上,使得△BDC与△ADE相似(其中点C与E是对应顶点)的点E的坐标有4个,即:(0,﹣)或(,﹣1)或(1,﹣)或(﹣,﹣2).【点评】此题是二次函数综合题,主要考查了待定系数法,勾股定理,相似三角形的判定和性质,对称性,正确作出辅助线和用分类讨论的思想是解本题的关键.27.(12018年江苏省连云港市)在数学兴趣小组活动中,小亮进行数学探究活动.△ABC 是边长为2的等边形,E是AC上一点,小亮以BE为边向BE的右侧作等边三角形BEF,连接CF.(1)如图1,当点E在线段AC上时,EF、BC相交于点D,小亮发现有两个三角形全等,请你找出来,并证明.(2)当点E在线段上运动时,点F也随着运动,若四边形ABFC的面积为,求AE的长.(3)如图2,当点E在AC的延长线上运动时,CF、BE相交于点D,请你探求△ECD的面积S1与△DBF的面积S2之间的数量关系.并说明理由.(4)如图2,当△ECD的面积S1=时,求AE的长.【分析】(1)结论:△ABE≌△CBF.理由等边三角形的性质,根据SAS即可证明;(2)由△ABE≌△CBF,推出S△ABE=S△BCF,推出S四边形BECF=S△BEC+s△BCF=S△BCE+S△ABE=S△ABC=,由S四边形ABCF=,推出S△ABE=,再利用三角形的面积公式求出AE即可;(3)结论:S2﹣S1=.利用全等三角形的性质即可证明;(4)首先求出△BDF的面积,由CF∥AB,则△BDF的BF边上的高为,可得DF=,设CE=x,则2+x=CD+DF=CD+,推出CD=x﹣,由CD∥AB,可得=,即=,求出x即可;【解答】解:(1)结论:△ABE≌△CBF.理由:如图1中,∴∵△ABC,△BEF都是等边三角形,∴BA=BC,BE=BF,∠ABC=∠EBF,∴∠ABE=∠CBF,∴△ABE≌△CBF.(2)如图1中,∵△ABE≌△CBF,∴S△ABE=S△BCF,∴S四边形BECF=S△BEC+s△BCF=S△BCE+S△ABE=S△ABC=,∵S四边形ABCF=,∴S△ABE=,∴•AE•AB•siin60°=,∴AE=.(3)结论:S2﹣S1=.理由:如图2中,∵∵△ABC,△BEF都是等边三角形,∴BA=BC,BE=BF,∠ABC=∠EBF,∴∠ABE=∠CBF,∴△ABE≌△CBF,∴S△ABE=S△BCF,∵S△BCF﹣S△BCE=S2﹣S1,∴S2﹣S1=S△ABE﹣S△BCE=S△ABC=.(4)由(3)可知:S△BDF﹣S△ECD=,∵S△ECD=,∴S△BDF=,∵△ABE≌△CBF,∴AE=CF,∠BAE=∠BCF=60°,∴∠ABC=∠DCB,∴CF∥AB,则△BDF的BF边上的高为,可得DF=,设CE=x,则2+x=CD+DF=CD+,∴CD=x﹣,∵CD∥AB,∴=,即=,化简得:3x2﹣x﹣2=0,解得x=1或﹣(舍弃),∴CE=1,AE=3.【点评】本题考查四边形综合题、全等三角形的判定和性质、平行线等分线段定理、解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,学会理由参数构建方程解决问题,属于中考压轴题.。
最新-2018年九年级数学中考模拟试卷及答案【连云港市
2018年连云港市初中数学中考模拟试卷(时间:120分钟 总分:150)一、选择题:(每小题4分,共计48分) 1、下列计算中,正确的是( )A 、 2x+3y=5xyB x ·4x =4x C x ·x=2x D ()3632y x yx =2、下列成语中描述的事件是必然事件的是( ) A 、水中捞月B 、拔苗助长C 、守株待兔D 瓮中捉鳖3、三峡工程是世界防洪效益最为显著的水利工程,它能有效控制长江上游洪水,增强长江中下游抗洪能力,据相关报道三峡水库的防洪库容221500000003m ,用科学记数法可记作( ) A 、221.53810m ⨯ B 、391015.22m ⨯ C 、31010215.2m ⨯ D 、37102215m ⨯4、一鞋店试销一种新款女鞋,一周内各种型号的鞋卖出的情况如下表所示:对这个鞋店的经理来说,他最关注的是数据的( )A 、 平均数B 、众数C 、 中位数D 、极差5、古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的。
驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是(A 、5B 、6C 、7D 、86、已知a 0〈,那么a a 22-可化简为( )A 、- aB 、aC 、- 3aD 、3a7、已知,如图,∠AOB 的两边OA 、OB 均为平面反光镜,∠AOB=40°。
在OB 上有一点P ,从P 点射出一束光线经OA 上的Q 点反射后,反射光线QR 恰好与OB 平行,则∠QPB 的度数是( ) A 、60° B 80° C 100° D 120°8、甲、乙、丙、丁四位同学到木工厂参观时,一木工师傅要他们拿尺子帮助检测一个窗框是否是矩形,他们各自做了如下检测,你认为最有说服力的是( )第7题图A 、甲量得窗框的一组邻边相等B 、乙量得窗框两组对边分别相等C 、丙量得窗框的对角线长相等D 、丁量得窗框的两组对边分别相等且两条对角线也相等检测后,他们都说窗框是矩形.9、现有有两枚均匀的小正方体(小正方体的每个面上分别标有数字1,2,3,4,5,6)。
2018年江苏省连云港市中考数学模拟试卷(一)
2018年江苏省连云港市中考数学模拟试卷(一)一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)﹣2017的倒数是()A.2017B.﹣2017C.D.﹣2.(3分)下列计算正确的是()A.3a+2b=5ab B.3a﹣2a=1C.a6÷a2=a3D.(﹣a3b)2=a6b23.(3分)2017年4月21日,位于连云港高新开发区约10万平米土地拍卖,经过众多房地产公司的476轮竞价,最终成交价为20.26亿元人民币.请你将20.26亿元用科学记数法表示为()A.2.026×1010元B.2.026×109元C.2.026×108元D.2.026×1011元4.(3分)对甲、乙两同学100米短跑进行5次测试,他们的成绩通过计算得;=,S2甲=0.25,S2乙=0.026,下列说法正确的是()A.甲短跑成绩比乙好B.乙短跑成绩比甲好C.甲比乙短跑成绩稳定D.乙比甲短跑成绩稳定5.(3分)若顺次连结四边形四条边的中点,所得的四边形是菱形,则原四边形一定是()A.平行四边形B.矩形C.对角线相等的四边形D.对角线互相垂直的四边形6.(3分)如图,点A、B、C是⊙O上的三点,若∠BAC=50°,则∠OBC的度数是()A.25°B.40°C.50°D.80°7.(3分)如图已知扇形AOB的半径为6cm,圆心角的度数为120°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面积为()A.4πcm2B.6πcm2C.9πcm2D.12πcm2 8.(3分)如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=﹣x+6于A,B两点,若反比例函数y=(x>0)的图象与△ABC有公共点,则k 的取值范围是()A.2≤k≤8B.2≤k≤9C.2≤k≤5D.5≤k≤8二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)式子在实数范围内有意义,则x的取值范围是.10.(3分)分解因式:4a2﹣16=.11.(3分)若规定用符号[m]表示不超过实数m的最大整数,例如:[]=0,[3.14]=3.则按此规定[+1]=.12.(3分)某机器人编制一段程序,如果机器人以2cm/s的速度在平地上按照下图中的步骤行走,那么该机器人从开始到停止所需的时间为s.13.(3分)某县2015年农民人均年收入为10000元,计划到2017年,农民人均年收入达到12 100元.设人均年收入的平均增长率为x,则可列方程.14.(3分)如图,小东用长为3.2m的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m、与旗杆相距22m,则旗杆的高为.15.(3分)如图,Rt△ABC中,AC=6,BC=8,∠C=90°.延长AC至点D,使AC=CD,点P是AB边上一动点,连接PD,过点D作DE⊥PD,连接PE,且tan∠DPE=.则当点P从点A运动到B点时,点E运动的路径长为.16.(3分)如图,AB是⊙O的直径,紧挨着的三个正方形依次排列在直径AB 上,且各有一个顶点在⊙O上,若两侧两个正方形边长分别为2和3,则中间正方形的边长为.三、解答题(本大题共10小题,共102分)17.(6分)计算:2﹣1﹣6cos30°+(2﹣)0+|1﹣|.18.(12分)(1)解方程:+=1(2)解不等式组:.19.(8分)一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球2个,黄球1个.若从中任意摸出一个球,这个球是白球的概率为0.5.(1)求口袋中红球的个数.(2)小明认为口袋中共有三种颜色的球,所以从袋中任意摸出一球,摸到红球、白球或黄球的概率都是,你认为对吗?请你用列表或画树状图的方法说明理由.20.(10分)如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF.请你猜想:BE与DF有怎样的位置关系和数量关系?并对你的猜想加以证明.21.(10分)在国家倡导下,“全民阅读”正逐步走向普及,学校要求同学们在家里利用闲暇时光多读些有益的书籍.王刚同学在本学期开学初对本年级部分同学寒假在家平均每天读书的页数进行了抽样调查(结果取整数),所得数据统计如下表:读书页数0.5~20.520.5~40.540.5~60.560.5~80.580.5~100.5频数2025301510(1)抽取样本的容量是.(2)根据表中数据补全图中的频数分布直方图.(3)样本的中位数所在的范围是.(4)若该年级有学生1060人,那么大约有多少学生在寒假平均每天读书60.5~100.5页之间?22.(10分)如图,我市云台山景区内一条笔直的公路a经过三个景点A、B、C,现在市政府决定开发风景优美的景点D.经测量景点D位于景点A的北偏东30°方向12km处,位于景点B的正北方向,还位于景点C的北偏西75°方向上.已知AB=4km.(1)现准备由景点D向公路a修建一条距离最短的公路,不考虑其他因素,求出这条公路的长;(2)求出景点B与景点C之间的距离(结果保留根号).23.(10分)如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,过点D的切线交BC于E.(1)求证:DE=BC;(2)若tan C=,DE=3,求AD的长.24.(10分)某商场试销一种成本为每件120元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)是销售单价x(元)的函数,并且满足如下对应值表:销售单价x(元)130140145销售量y(件)11010095(1)求y与x的函数表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于2000元,试确定销售单价x的范围.25.(12分)如图,已知A(﹣4,0),B(0,4),现以A点为位似中心,相似比为4:9,将OB向右侧放大,B点的对应点为C.(1)求C点坐标及直线BC的解析式;(2)一抛物线经过B、C两点,且顶点落在x轴正半轴上,求该抛物线的解析式并画出函数图象;(3)若点P是直线BC下方抛物线上的一点,求使△PBC面积为10时点P的坐标;(4)现将直线BC绕B点旋转与抛物线相交于另一点Q,请找出抛物线上所有满足到直线AB距离为3的点Q.26.(14分)如图,在平面直角坐标系中,点A(20,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上一动点,连结OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E 为垂足,连结CF.(1)当∠AOB=30°时,求弧OB的长度;(2)当DE=16时,求线段EF的长;(3)在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB相似,若存在,请求出此时点E的坐标;若不存在,请说明理由.2018年江苏省连云港市中考数学模拟试卷(一)参考答案一、选择题(本大题共8小题,每小题3分,共24分)1.D;2.D;3.B;4.D;5.C;6.B;7.A;8.B;二、填空题(本大题共8小题,每小题3分,共24分)9.x≤3;10.4(a+2)(a﹣2);11.4;12.16;13.10000(1+x)2=12100;14.12m;15.4;16.2;三、解答题(本大题共10小题,共102分)17.;18.;19.;20.;21.100;40.5~60.5;22.;23.;24.;25.;26.;。
(完整版)2018年江苏省连云港市中考数学试卷含答案,推荐文档
江苏省连云港市2018年中考数学试卷一、选择题<本大题共有8小题,每小题3分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填在括号里) 1.<3分)<2018•连云港)下列各数中是正数的为< ) A 3 B . .考点 实数. :﹣ C ﹣ D 0. . 分析 根据正数大于0,负数小于0即可选出答案. :解答 解:3是正数,﹣ ,﹣是负数,0既不是正数,也不是负数, :故选:A .点评 此题主要考查了实数,关键是掌握正数大于0. :2.<3分)<2018•连云港)计算a 2•a 4的结果是< )A a 8B . .考点 同底数幂的乘法 :a 6 C . 2a 6D . 2a 8 分析 根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m •a n =a m+n 计 : 算即可.解答 解:a 2•a 4=a 2+4=a 6. : 故选B .点评 主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键. :3. <3分)<2018•连云港)将一包卷筒卫生纸按如图所示的方式摆放在水平桌面上,则它的俯视图是<)B C D ...考点 简单组合体的三视图. :分析 找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中. :解答 解:从几何体的上面看可得两个同心圆, : 故选:D .点评 本题考查了三视图的知识,俯视图是从物体的上面看得到的视图. :4. <3分)<2018•连云港)为了传承和弘扬港口文化,我市将投入6000万元建设一座港口博物馆,其中“6000万”用科学记数法表示为< )A 0.6×108B 6×108C 6×107D 60×106A .....考点科学记数法—表示较大的数:分析科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要:看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答解:将6000万用科学记数法表示为:6×107.:故选:C.点评此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤| :a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.<3分)<2018•连云港)在Rt△ABC中,∠C=90°,若sinA= ,则cosA的值为<)A B C D....考点同角三角函数的关系.:分析根据同一锐角的正弦与余弦的平方和是1,即可求解.:解答解:∵sin2A+cos2A=1,即< )2+cos2A=1,:∴cos2A= ,∴cosA=或﹣<舍去),∴cosA=.故选:D.点评此题主要考查了同角的三角函数,关键是掌握同一锐角的正弦与余弦之间的关系::对任一锐角α,都有sin2α+cos2α=1.6.<3分)<2018•连云港)如图,数轴上的点A、B分别对应实数a、b,下列结论中正确的是< )A a>bB ..考点实数与数轴.:|a|>|b| C.﹣a<b D.a+b<0分析根据数轴确定出a、b的正负情况以及绝对值的大小,然后对各选项分析判断后利用:排除法求解.解答解:根据数轴,a<0,b>0,且|a|<|b|,:A、应为a<b,故本选项错误;B、应为|a|<|b|,故本选项错误;C、∵a<0,b>0,且|a|<|b|,∴a+b<0,∴﹣a<b正确,故本选项正确;D、a+b>0故本选项错误.故选C.点评本题考查了实数与数轴的关系,根据数轴确定出a、b的正负情况以及绝对值的大小:是解题的关键.7.<3分)<2018•连云港)在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,…如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%,②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是<)A ①②③B ①②C ①③D ②③....考点利用频率估计概率:分析根据大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度:越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率,分别分析得出即可.解答解:∵在一个不透明的布袋中,红球、黑球、白球共有若干个,其中摸出红球的频率:稳定于20%,摸出黑球的频率稳定于50%,∴①若进行大量摸球实验,摸出白球的频率稳定于:1﹣20%﹣50%=30%,故此选项正确;∵摸出黑球的频率稳定于50%,大于其它频率,∴②从布袋中任意摸出一个球,该球是黑球的概率最大,故此选项正确;③若再摸球100次,不一定有20次摸出的是红球,故此选项错误;故正确的有①②.故选:B.点评此题主要考查了利用频率估计概率,根据频率与概率的关系得出是解题关键.:8.<3分)<2018•连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE= 22.5°,EF⊥AB,垂足为F,则EF的长为< )A 1B ..考点正方形的性质.:C 4﹣2D..3﹣4分析根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再求出∠DAE的度数,根:据三角形的内角和定理求∠AED,从而得到∠DAE=∠ADE,再根据等角对等边的性质得到AD=DE,然后求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于斜边的倍计算即可得解.解答解:在正方形ABCD中,∠ABD=∠ADB=45°,:∵∠BAE=22.5°,∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠ADE,∴AD=DE=4,∵正方形的边长为4,∴BD=4,∴BE=BD﹣DE=4 ﹣4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF=BE= ×<4 ﹣4)=4﹣2 .故选C.点评本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边:的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD是解题的关键,也是本题的难点.二、填空题<本大题共有8小题,每小题3分,共24分。
2018年江苏省连云港市中考数学试卷含答案
江苏省连云港市2018年中考数学试卷一、单项选择题(共8小题,每小题3分,满分24分)1.(3分)(2018•连云港)下列实数中,是无理数的为()A .﹣1B .﹣C .D .3.14分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:A 、是整数,是有理数,选项错误;B 、是分数、是有理数,选项错误;C 、正确;D 、是有限小数,是有理数,选项错误.故选C .点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(3分)(2018•连云港)计算的结果是()A .﹣3B .3C .﹣9D .9考点:二次根式的性质与化简.专题:计算题.分析:原式利用二次根式的化简公式计算即可得到结果.解答:解:原式=|﹣3|=3.故选B点评:此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键.3.(3分)(2018•连云港)在平面直角坐标系内,点P (﹣2,3)关于原点的对称点Q 的坐标为()A .(2,﹣3)B .(2,3)C .(3,﹣2)D .(﹣2,﹣3)考点:关于原点对称的点的坐标.专题:常规题型.分析:平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(﹣x ,﹣y ).解答:解:根据中心对称的性质,得点P (﹣2,3)关于原点对称点P ′的坐标是(2,﹣3).故选A .点评:关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆.4.(3分)(2018•连云港)“丝绸之路”经济带首个实体平台﹣﹣中哈物流合作基地在我市投入使用,其年最大装卸能力达410000标箱.其中“410000”用科学记数法表示为()A .0.41×106B .4.1×105C .41×104D .4.1×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将410000用科学记数法表示为:4.1×105.故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(2018•连云港)一组数据1,3,6,1,2的众数和中位数分别是()A.1,6B.1,1C.2,1D.1,2考点:众数;中位数.分析:根据众数和中位数的定义分别进行解答即可.解答:解:∵1出现了2次,出现的次数最多,∴众数是1,把这组数据从小到大排列1,1,2,3,6,最中间的数是2,则中位数是2;故选D.点评:此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.6.(3分)(2018•连云港)如图,若△ABC和△DEF的面积分别为S1、S2,则()A.S1=S2B.S1=S2C.S1=S2D.S1=S2考点:解直角三角形;三角形的面积.分析:过A点作AG⊥BC于G,过D点作DH⊥EF于H.在Rt△ABG中,根据三角函数可求AG,在Rt△ABG中,根据三角函数可求DH,根据三角形面积公式可得S1,S2,依此即可作出选择.解答:解:过A点作AG⊥BC于G,过D点作DH⊥EF于H.在Rt△ABG中,AG=AB•sin40°=5sin40°,∠DEH=180°﹣140°=40°,在Rt△ABG中,DH=DE•sin40°=8sin40°,S1=8×5sin40°÷2=20sin40°,S2=5×8sin40°÷2=20sin40°.则S1=S2.故选:C.。
江苏省连云港市2018年中考数学一模试卷
b江苏省连云港市2018年中考数学一模试卷1.-5的相反数是 ( )A .51 B .±5 C .5 D .-512.函数y =x 24-中自变量x 的取值范围是 ( ) A .x >2 B .x ≥2 C .x ≤2 D .x ≠23.化简xx x -+-1112的结果是 ( ) A .x +1 B .x +11 C .x -1 D .1-x x4.袋子里有4个黑球,m 个白球,它们除颜色外都相同,经过大量实验,从中任取一个球恰好是白球的频率是0.20,则m 的值是( )A .1 B .2 C .4 D .165.如图,直线a ∥b ,直线与a ,b 分别交于A ,B 两点,过点B 作BC ⊥AB 交直线a 于点C ,若∠1=65°,则∠2的度数为 ( ) A .115° B .65° C .35° D .25°6. 小红随机调查了50名九年级同学某次知识问卷的得分情况,结果如下表:则这50.....) A .16,75 B .80,75 C .75,80 D .16,157.若点A (3,-4)、B (-2,m )在同一个反比例函数的图像上,则m 的值为 ( ) A .6 B .-6 C .12 D .-128.某条公共汽车线路收支差额与乘客量的函数关系如图所示(收支差额车票收入支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)不改变支出费用,提高车票价格;建议(Ⅱ)不改变车票价格,减少支出费用. 下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则( )A . ①反映了建议(Ⅰ),③反映了建议(Ⅱ)B .②反映了建议(Ⅰ),④反映了建议(Ⅱ)C . ①反映了建议(Ⅱ),③反映了建议(Ⅰ)D .②反映了建议(Ⅱ),④反映了建议(Ⅰ)l y x =-① ② ③④(第5题)9. 完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是 ( ) A . 6(m -n ) B . 3(m +n ) C . 4n D . 4m10. 10.如图,点A)和(4,4),抛物线y=a (x ﹣m )2+n 的顶点在线段AB 上运动(抛物线随顶点一起平移),与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为﹣3,则点D 的横坐标最大值为( )A .﹣3B .1C .5D .811.分解因式:a 2-4= .12.某公司开发一个新的项目,总投入约11500000000元,11500000000用科学记数法表示为 . 13. 请写一个随机事件: . 14. 若1=+y x ,5=-y x ,则=xy .15.若正多边形的一个外角是45°,则该正多边形的边数是 . 16.已知扇形的圆心角为90º,半径为6cm ,则用该扇形围成的圆锥的侧面积为 cm. 17.已知﹣1<b <0,0<a <1,则代数式a ﹣b 、a+b 、a+b2、a2+b 中值最大的是 .18.如图,在平面直角坐标系中,OA=AB ,∠OAB=90°,反比例函数y=(x >0)的图象经过A ,B 两点.若点A 的坐标为(n ,1),则k 的值为 .19.(1)计算:20180-tan30°+(﹣13)-1; (2)化简: (x -y )2-x (x -y )20.(1)解方程:0432=-+x x ; (2)解不等式组:⎩⎪⎨⎪⎧2x +7≤x +10,x +23>2-x .21如图,在菱形ABCF 中,∠ABC=60°,延长BA 至点D ,延长CB 至点E ,使BE=AD ,连结CD ,EA ,延长EA 交CD 于点G . (1)求证:△ACE ≌△CBD ; (2)求∠CGE 的度数.22.某校为了解全校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整).(1)这次调查中,一共抽取了多少名学生? (2)补全频数分布直方图;(3)估计全校所有学生中有多少人乘坐公交车上学.23.小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n 个路口,则小明在每个路口都没有遇到红灯...........的概率是 .私家车公交车自行车 30%步行20%其他24.如图,以矩形ABCD 的边CD 为直径作⊙O ,交对角线BD 于点E ,点F 是BC 的中点,连接EF .(1)试判断EF 与⊙O 的位置关系,并说明理由.(2)若DC =2,EFP 是⊙O 上不与E 、C 重合的任意一点,则∠EPC 的度数为 (直接写出答案)25.新房装修后,某居民购买家用品的清单如下表,因污水导致部分信息无法识别,根据下表解决问题:(2)若居民再次购买字画和垃圾桶两种家居用品共花费150元,则有哪几种不同的购买方案?26.如图,在电线杆CD 上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面所成的角∠CED=60°,在离电线杆6m 的B 处安置高为1.5m 的测角仪AB ,在A 处测得电线杆上C 处的仰角为30°,求拉线CE 的长.(结果保留根号)。
2018年江苏省连云港市中考数学模拟试卷(四)
2018年江苏省连云港市中考数学模拟试卷(四)一、选择题(每题3分,共24分)1.(★)6的绝对值是()A.-6 B.6 C. D.-2.(★)下列计算的结果是x 5的为()A.x10÷x2 B.x6-x C.x2•x3 D.(x2)33.(★)一元二次方程x 2=2x的根是()A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=-24.(★)“辽宁号”航母是中国海军航空母舰的首舰,标准排水量57000吨,满载排水量67500吨.满载排水量用科学记数法表示为()吨.A.675×102 B.67.5×103 C.6.75×104 D.6.75×1055.(★)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.706.(★★)一个几何体的三视图如图所示,则该几何体的形状可能是()A. B. C. D.7.(★)如图,已知函数y=- 与函数y=ax 2+bx的交点P的纵坐标为1,则不等式ax 2+bx+ >0的解集是()A.x<-3 B.-3<x<0 C.x<-3或x>0 D.x>08.(★★)如图,△ABC中,AB=2,AC=3,1<BC<5,分别以AB、BC、AC为边向外作正方形ABIH、BCDE和正方形ACFG,则图中阴影部分的最大面积为()A.6 B.9 C.11 D.无法计算二、填空题(每题3分,共24分)9.(★★)若代数式在实数范围内有意义,则实数x的取值范围为 x≤4 .10.(★★)因式分解:16a 3-4a= 4a(2a+1)(2a-1).11.(★)如图,AB∥CD,∠1=62°,FG平分∠EFD,则∠2= 31°.12.(★★★)一个圆锥的高为3 ,侧面展开图是半圆,则圆锥的侧面积是 18π.13.(★★)在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在 A 区域的可能性最大(填A或B或C).14.(★★)如图,矩形ABCD的对角线BD经过的坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y= 的图象上,若点A的坐标为(-2,-3),则k的值为 1或-5 .15.(★★)如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= 60 度.16.(★★★)在△ABC中,∠ABC<20°,三边长分别为a,b,c,将△ABC沿直线BA翻折,得到△ABC 1;然后将△ABC 1沿直线BC 1翻折,得到△A 1BC 1;再将△A 1BC 1沿直线A 1B翻折,得到△A 1BC 2;…,翻折4次后,得到图形A 2BCAC 1A 1C 2的周长为a+c+5b,则翻折11次后,所得图形的周长为 2a+12b (结果用含有a,b,c的式子表示).三、解答题(本大题共11题,共92分)17.(★★)计算:2sin30°-|1- |+()-118.(★★★)解不等式组,并将它的解集在数轴上表示出来.19.(★★★)化简(),并说明原代数式的值能否等于-1.20.(★★★)某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.(1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.请你根据以上图表提供的信息解答下列问题:①a= 100 ,b= 0.15 ;②在扇形统计图中,器乐类所对应扇形的圆心角的度数是 144°;人,请你估计大约有多少学生参加武术类校本课程.21.(★★★)如图,在△ABC中,BC=6 ,AB=AC,E,F分别为AB,AC上的点(E,F不与A重合),且EF∥BC.将△AEF沿着直线EF向下翻折,得到△A′EF,再展开.(1)请判断四边形AEA′F的形状,并说明理由;(2)当四边形AEA′F是正方形,且面积是△ABC的一半时,求AE的长.22.(★★★★★)九(3)班“2017年新年联欢会”中,有一个摸奖游戏,规则如下:有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸.现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌.(1)现小芳有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖.她从中随机翻开一张纸牌,小芳获奖的概率是.(2)如果小芳、小明都有翻两张牌的机会.小芳先翻一张,放回后再翻一张;小明同时翻开两张纸牌.他们翻开的两张纸牌中只要出现一张笑脸就获奖.他们获奖的机会相等吗?通过树状图分析说明理由.23.(★★★)无锡市新区某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示.(1)求日均销售量p(桶)与销售单价x(元)的函数关系;(2)若该经营部希望日均获利1350元,那么销售单价是多少?24.(★★★)我国南水北调中线工程的起点是丹江水库,按照工程计划,需对原水库大坝进行混凝土加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位.如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角∠BAE=68°,新坝体的高为DE,背水坡坡角∠DCE=60°.求工程完工后背水坡坡底端水平方向增加的宽度AC(结果精确到0.1米.参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.50,).25.(★★★★)如图,以O为圆心,4为半径的圆与x轴交于点A,C在⊙O上,∠OAC=60°.(1)求∠AOC的度数;(2)P为x轴正半轴上一点,且PA=OA,连接PC,试判断PC与⊙O的位置关系,并说明理由;(3)有一动点M从A点出发,在⊙O上按顺时针方向运动一周,当S △MAO=S △CAO时,求动点M所经过的弧长,并写出此时M点的坐标.26.(★★★★★)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE∥AB交AC于点F,CE∥AM,连结AE.(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长BD交AC于点H,若BH⊥AC,且BH=AM.①求∠CAM的度数;②当FH= ,DM=4时,求DH的长.27.(★★★★)如图1,在平面直角坐标系xOy中,抛物线C:y=ax 2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4 ,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.。
江苏省连云港市2018届九年级下学期全真模拟(五)数学试题及答案
2018年中考数学全真模拟试题五一、选择题(本大题共8个小题,每小题3分,共24分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案的标号涂黑.1.在﹣4,2,﹣1,3这四个数中,比﹣3小的数是()A.﹣4 B.2 C.﹣1 D.32.下列图形中,是轴对称图形,但不是中心对称图形的是()A. B. C. D.3.下列计算正确的是 ( )A.a3+a2=2a5B.a6÷a2=a3C.(a-b)2=a2-b2D.(-2a3)2=4a64.一个多边形的内角和是外角和的2倍,这个多边形的边数为()A.5 B.6 C.7 D.85.如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为( )A. B.C.3 D.6.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,给出下列四个条件:①AE=CF;②DE=BF;③∠ADE=∠CBF;④∠ABE=∠CDF.其中不能判定四边形DEBF 是平行四边形的有()A.0个 B.1个 C.2个D.3个7.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3 B.m<3 C.m<3且m≠2 D.m≤3且m≠28.如图,已知点A(,y1)、B(2,y2)在反比例函数y=的图像上,动点P(x,0)在x轴正半轴上运动,若AP-BP最大时,则点P的坐标是 ( )A.(,0) B.(,0) C.(,0) D.(1,0)第5题第6题第8题二、填空题(本题共8小题,每小题4分,共32分)请把下列各题正确答案填写在答题卡中对应的横线上9.因式分解: .10.已知△ABC与△DEF相似且周长比为2∶5,则△ABC与△DEF的面积比为.11.已知实数m是关于x的方程x2-3x-1=0的一根,则代数式2m2-6m +2值为.12. 母线长为3,底面圆的直径为2的圆锥的侧面积为.13.若菱形的两条对角线长分别为10 cm和24 cm,则顺次连接这个菱形四条边的中点所得的四边形的对角线长是 cm.14.若函数y=mx2+2x+1的图像与x轴只有一个公共点,则常数m的值是.15.如图,在△ABC中,AB=6,将△ABC绕点B顺时针旋转60°后得到△DBE,点A经过的路径为,则图中阴影部分的面积是.16.如图,正方形纸片ABCD的边长为,对角线相交于点O,第1次将纸片折叠,使点A与点O 重合,折痕与AO交于点P1;设P1O的中点为O1,第2次将纸片折叠,使点A与点O1重合,折痕与AO 交于点P2;设P2O1的中点为O2,第3次将纸片折叠,使点A与点O2重合,折痕与AO交于点P3;…;设P n-1O n-2的中点为O n-1,第n次将纸片折叠,使点A与点O n-1重合,折痕与AO交于点P n(n>2),则AP n的长为.第第15题第16题三、解答题(本大题共11个小题,共14分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.17.(本题5分) 18.(本题5分)计算:2tan60°﹣+(2﹣π)0﹣()﹣1 解不等式组21411 23x xx x-+<+⎧⎪-⎨-≤⎪⎩19.(本题6分)先化简,再求值(﹣)÷.其中x是﹣2、﹣1、0、2中的一个.20.(本题8分)某体院要了解篮球专业学生投篮的命中率,对学生进行定点投篮测试,规定每人投20次.测试结束后随机抽查了一部分学生投中的次数,并分为五类,Ⅰ:投中11次;Ⅱ:投中12次;Ⅲ:投中13次;Ⅳ:投中14次;Ⅴ:投中15次.根据调查结果绘制了下面尚不完整的统计图1,图2:(821)回答下列问题:(1)本次抽查了名学生,图中的m = ;(2)补全条形统计图,并指出中位数在哪一类?(3)求最高的命中率及命中率最高的人数所占的百分比;(4)若体院规定篮球专业学生定点投篮命中率不低于65%记作合格,估计该院篮球专业210名学生中约有多少人不合格...?21.(本题8分)如图,将□ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.(1)求证:△ABF≌△ECF;(2)若∠AFC=2∠ABC,连接AC、BE.求证:四边形ABEC是矩形.22.(本题8分)如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶DD 的仰角为30︒,在A 、C 之间选择一点B (A 、B 、C 三点在同一直线上)用测角仪测得塔顶D 的仰角为75︒,且AB 间的距离为40m.(1)求点B 到AD 的距离; (2)求塔高CD (结果精确到0.1m.)(1.414 1.732≈≈).23.(本题10分)如图,B 为双曲线y=(x >0)上一点,直线AB 平行于y 轴交直线y=x 于点A ,交x 轴于点D ,y=与直线y=x 交于点C ,若OB 2﹣AB 2=4(1)求k 的值; (2)点B 的横坐标为4时,求△ABC 的面积;(3)双曲线上是否存在点B ,使△ABC ∽△AOD ?若存在,求出点B 的坐标;若不存在,请说明理由.24. (本题8分)如图,在△ABC ,AB=AC ,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,点F 在AC 的延长线上,且CBF CAB ∠=∠2.(1)试判断直线BF 与⊙O 的位置关系,并说明理由;(2)若AB=6,BF=8,求CBF ∠tan .25.(本题10分)某中学在开学前去商场购进A 、B 两种品牌的足球,购买A 品牌足球共花费3000元,购买B 品牌足球共花费1600元,且购买A 品牌足球数量是购买B 品牌足球的3倍,已知购买一个B 品牌足球比购买一个A 品牌足球多花30元。
2018年江苏省连云港市中考数学二模试卷(解析版)
21. (8 分)某班“2011 年新春联欢会”中,有一个摸奖游戏,规则如下:有 4 张纸牌,背 面都是喜羊羊头像,正面有 2 张笑脸、2 张哭脸.现将 4 张纸牌洗匀后背面朝上摆放到桌 上,然后让同学去翻纸牌. (1)现小芳有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖.她从中随机 翻开一张纸牌,小芳获奖的概率是 .
三、解答题(本大题共 11 小题,共 102 分) 17. (6 分)计算: ( )+ 18. (6 分)解方程:
0
﹣|﹣3| ﹣3.
19. (6 分)解不等式组: 20. (8 分)某县九年级有 15000 名学生参加安全应急预案知识竞赛活动,为了了解本次知 识竞赛的成绩分布情况,从中抽取了 400 名学生的得分(得分取正整数,满分 100 分) 进行统计: 频率分布表 分 组 频 20 32 a 124 144 400 数 频 b 0.08 0.20 c 0.36 1 率
(2)如果小芳、小明都有翻两张牌的机会.小芳先翻一张,放回后再翻一张;小明同时翻 开两张纸牌.他们翻开的两张纸牌中只要出现笑脸就获奖.他们获奖的机会相等吗?请 说明理由. 22. (10 分)如图,在▱ ABCD 中,BC=2AB=4,点 E、F 分别是 BC、AD 的中点. (1)求证:△ABE≌△CDF; (2)当四边形 AECF 为菱形时,求出该菱形的面积.
2018 年江苏省连云港市中考数学二模试卷
一、选择题(每小题 3 分,共 24 分) 1. (3 分)下列各选项中的数是无理数的是( A.﹣ B.0 ) C.2 D.
2. (3 分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划, “一 带一路”地区覆盖总人口约为 4 400 000 000 人,这个数用科学记数法表示为( A.44×10
江苏省连云港市2018届九年级数学招生统一文化考试模拟试题(附答案)
江苏省连云港市2018届九年级数学招生统一文化考试(模拟)试题一、选择题(本大题共有8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.-2018的绝对值是( )A .2018B .-2018C .20181D .20181- 2.下列运算结果为a 6的是( )A .a 2+a 3B .a 2•a 3C .(-a 2)3D .a 8÷a 23.据市统计局调查数据显示,2018年第一季度连云港港口吞吐量为58495700吨,数据“58495700”用科学记数法可表示为( )A .0.584957×108B . 5.84957×108C .5.84957×107D .584957×1024.小华五次跳远的成绩如下(单位:m ): 3.9,3.9,3.8,4.1,4.2.关于这组数据,下列说法错误的是( )A .极差是0.4B .众数是3.9C .中位数是3.8D .平均数是3.985.一个几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的体积是( )A .8B .8πC .6πD .2π6.如图,在四边形ABCD 中,AB =CD ,AD ∥BC ,以点B 为圆心,BA 为半径的圆弧与BC 交于点E ,四边形AECD是平行四边形,AB =3,则 ⌒AE 的弧长为( ) A .12π B .π C .23π D .37.如图,圆P 的半径为2,圆心P在函数)0(6>=xxy 的图像上运动,当圆P 与x 轴相切时,点P 的坐标(第6题图)(第7题图)(第8题图)为( )A .(2,3)B .(3,2)C .(6,1)D .(4,1.5)8.如图,在矩形ABCD 中,AB =8,BC =12,点E 是BC 的中点,连接AE ,将△ABE 沿AE 折叠,点B 落在点F 处,连接FC ,则cos ∠ECF =( ) A .43B .34 C .53 D .54 二、填空题(本大题共有8小题,每小题3分,共24分,不需要写出解答过程,请把答案直接填写在答题..卡相应位置.....上) 9.函数y=的自变量x 的取值范围为 .10.因式分解:3a 2-6a +3= .11.抛物线y =mx 2-2x +1与x 轴有且只有一个交点,则m 的值是 .12.函数y = k 1x与y =k 2 x (k 1、k 2均是不为0的常数,)的图像交于A 、B 两点,若点A 的坐标是(2,3),则点B 的坐标是 .13.如图,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是 .14.如图,正方形ABCD 的边长为8cm ,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 上的动点,且AE =BF =CG =DH .则四边形EFGH 面积的最小值是 cm 2.15.如图,△ABC 是斜边AB 的长为3的等腰直角三角形,在△ABC 内作第1个内接正方形A 1B 1D 1E 1(D 1、E 1在AB 上,A 1、B 1分别在AC 、BC 上),再在△A 1B 1C 内接同样的方法作第2个内接正方形A 2B 2D 2E 2,…,如此下去,操作n 次,则第n 个小正方形A n B n Dn E n 的边长是 .16.如图,在平面直角坐标系xOy 中,A (-2,0),B (0,2),⊙O 的半径为1,点C 为⊙O 上一动点,过点B作BP 垂直于直线AC ,垂足为点P ,则P 点纵坐标的最大值为 .(第16题图)(第13题图) A 2 B 2B 1A 1D 2E 2 AE 1 D 1C(第15题图)FDE(第14题图)三、解答题 (本大题共有11小题,共102分,请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本题满分6分)计算:(123tan 302--++o 18.(本题满分6分)解方程:233x x=-. 19.(本题满分6分)化简:221a a +-÷(a +1)+22121a a a --+.20.(本题满分8分)在四张背面完全相同的纸牌A 、B ,C 、D ,其中正面分别画有四个不同的几何图形(如图),小明将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用画树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A 、B 、C 、D 表示); (2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.21.(本题满分10分)某校为提高学生课外阅读能力,决定在学校“悦读周”向九年级学生推荐课外阅读新书:A 《热爱生命》,B 《平凡的世界》,C 《毛泽东传》,D 《牛虻》.并要求学生必须且只能选择其中一本阅读.为了解选择四种课外阅读书的学生人数,随机抽取了部分学生进行调查,并绘制以下两幅不完整的统计图.请你根据统计图提供的信息,回答下列问题(要求写出简要的解答过程). (1)这次活动一共调查了多少名学生? (2)补全条形统计图;(3)若该学校九年级总人数是1300人,请估计选择《毛泽东传》阅读的学生人数.(第20题图)(第21题图)选择书目人数扇形统计选择书目人数条形统计图 (书目)BC(第22题图)(第24题图)22.(本题满分10分)如图,E 是正方形ABCD 的边DC 上的一点,过A 作AF ⊥AE ,交CB 延长线于点F .AE 的延长线交BC 的延长线于点G . (1)求证:AE =AF ;(2)若AF =7,DE =2,求EG 的长.23.(本题满分10分)如图,矩形OABC 的顶点A 、C 分别在x 轴和y 轴上,点B 的坐标为(2,3).双曲线y=(x >0)的图象经过BC 的中点D ,且与AB 交于点E ,连接DE . (1)求k 的值及点E 的坐标;(2)若点F 是OC 边上一点,且△FBC ∽△DEB ,求直线FB 的解析式.24.(本题满分10分)如图,马路的两边CF ,DE 互相平行,线段CD 为人行横道,马路两侧的A ,B 两点分别表示车站和超市,CD 与AB 所在直线互相平行,且都与马路的两边垂直,马路宽20米,A ,B 相距62米,∠A =67°,∠B =37°. (1)求CD 与AB 之间的距离;(2)某人从车站A 出发去超市B ,求他沿折线A →D →C →B 到达超市比直接横穿马路多走多少米? (参考数据:sin 67°≈1213,cos 67°≈513,tan 67°≈125,sin 37°≈35,cos 37°≈45,tan 37°≈34)25.(本题满分12分)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2018年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆. (1)若该商城前4个月的自行车销量的月平均增长率相同,该商城4月份卖出多少辆自行车? (2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A 型车的进价为500元/辆,售价为700元/辆,B 型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A 型车不少于B 型车的2倍,但不超过B 型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?26.(本题满分12分)如图1,对于平面上小于等于90︒的MON ∠,我们给出如下定义:若点P 在MON ∠的(第23题图)内部或边上,作PE OM ⊥于点E ,PF ON ⊥于点F ,则将PE PF +称为点P 与MON ∠的“点角距”,记作d (∠MON ,P ).如图2,在平面直角坐标系xoy 中,x 、y 正半轴所组成的角为∠xOy .(1)已知点A (5,0)、点B (3,2),则d (∠xOy ,A )= ,d (∠xOy ,B ) = . (2)若点P 为∠xOy 内部或边上的动点,满足d (∠xOy ,P ) =5,在图2中画出点P 运动所形成的图形. (3)如图3与图4,在平面直角坐标系xoy 中,射线OT 的函数关系式为y =43x (x ≥0).①在图3中,点C 的坐标为(4,1),试求d (∠xOT ,C ) 的值;②在图4中,抛物线y =-12x 2+2x +52经过A (5,0)与点D (3,4)两点,点Q 是A ,D 两点之间的抛物线上的动点(点Q 可与A ,D 两点重合),求当d (∠xOT ,Q ) 取最大值时点Q 的坐标. 27.(本题满分12分)【操作体验】如图1,已知线段A B 和直线l ,用直尺和圆规在l 上作出所有的点P ,使得∠APB =30°.如图2,小明的作图方法如下:第一步:分别以点A 、B 为圆心,AB 长为半径作弧,两弧在AB 上方交于点O ; 第二步:连接OA 、OB ;图2图3第三步:以O为圆心,OA长为半径作⊙O,交l于P1,P2.所以图中P 1,P2即为所求的点.(1)在图2中,连接P1A,P1B,试说明∠AP1B =30°;【方法迁移】(2)如图3,用直尺和圆规在矩形ABCD内作出所有的点P,使得∠BPC=45°.(不写作法,保留作图痕迹)【深入探究】(3)已知矩形ABCD,BC=2,AB=m,点P为AD 边上的点,若满足∠BPC=45°的点P恰有两个,则m的取值范围为.(4)已知矩形ABCD,AB=3,BC=2,P为矩形ABCD内一点,且∠BPC=135°,若点P绕点A逆时针旋转90°到点Q,则PQ的最小值为.2018年高中段学校招生统一文化模拟考试数学试题参考答案及评分标准二、填空题(本大题共8小题,每小题3分,共24分)9.35≥x 10.()213-a 11. 1 12.()3,2-- 13. 0.5 14. 32 15.131-n 16.213+ 三、解答题(本大题共102分) 17.(本题满分6分)计算: 18.(本题满分6分)解方程:19.(本题满分6分)解:原式=2)1()1)(1(111)1(2--+++⨯-+a a a a a a ··················· 2分 =1112-++-a a a ···························· 4分 =13-+a a ································· 6分20.(本题满分8分)解:(1)画出树状图如下:……………………………4分由图可知,共有16种等可能的结果. ………………………………………………………………5分 (或列表法)(2)∵既是中心对称又是轴对称图形的只有B 、C ,∴16种等可能的结果既是轴对称图形又是中心对称图形的有4种情况.…………………………7分 ∴P (既是轴对称图形又是中心对称图形的概率为)=41164=. 即既是轴对称图形又是中心对称图形的概率为14. …………………………………………………8分 21.(本题满分10分)解:(1)由题意可得:70÷35%=200(人),答:这次活动一共调查了200名学生;…………………………………………………3分 (2)选择《毛泽东传》的人数为:200﹣70﹣10﹣40=80(人),………………………………5分解:去分母,得23(3)x x =-,……1分 去括号得,239x x =-,……………2分移项,合并得,-x =-9,………………3分 系数化为1,得9x =.………………4分 检验:当9x =时,(3)0x x -≠.……5分 所以,原方程的解为9x =.…………6分如图所示:…………………………………………………………8分(3)由题意可得:1300×=520(人),即九年级选择《毛泽东传》阅读的学生人数约为520人.……10分22.(本题满分10分) 解:(1)证明:正方形ABCD 中,∠BAD =90°,AD =A B , ∵AF ⊥AE ,∴∠FAB +∠BAE =90°.∵∠DAE +∠BAE =90°,∴∠FAB =∠DAE .…………………………………………………3分 ∵∠FBA =∠D =90°,∴△ABF ≌△ADE .…………………………………………………4分 ∴AE =AF .……………………………………………………………………………………5分 (2)解:在Rt △ABF 中,∠FBA =90°,AF =7,BF =DE =2. ∴AB =532722=-,∴EC =DC -DE =253-. ……………………………………6分∵∠D =∠ECG =90°,∠DEA=∠CEG,∴△ADE ∽△GCE .…………………………………8分∴EGAE EC DE = ∴EG =72521-.……………………………………………………10分 23.(本题满分10分)解:(1)∵BC ∥x 轴,点B 的坐标为(2,3),∴BC =2,…………………………………………………………………………………1分 ∵点D 为BC 的中点,∴CD =1,…………………………………………………………………………………2分 ∴点D 的坐标为(1,3),代入双曲线y =(x >0)得k =1×3=3;………………………………………………3分 ∵BA ∥y 轴,∴点E 的横坐标与点B 的横坐标相等,为2,………………………………………4分 ∵点E 在双曲线上,∴y=.∴点E 的坐标为(2,);……………………………………………………………5分(2)∵点E 的坐标为(2,),B 的坐标为(2,3),点D 的坐标为(1,3),∴BD =1,BE =,BC=2.………………………………………………………………6分 ∵△FBC ∽△DEB ,∴.即.∴FC =.∴点F 的坐标为(0,)………………………………………………………………8分 设直线FB 的解析式y =kx +b (k ≠0),则,解得:k=,b=.∴直线FB 的解析式y =.……………………………………………………10分24.(本题满分10分) 解:(1)设CD 与AB 之间的距离为x ,则在Rt△BCF 和Rt△ADE 中,∵BF CF =tan37°,AEDE=tan67°, ∴BF =037tan CF ≈34x ,AE =067tan DE ≈125x ,…………………………………………2分 又∵AB =62,CD =20, ∴34x +125x +20=62, 解得x =24.………………………………………………………………………… ……4分 答:CD 与AB 之间的距离约为24米;…………………………………………………5分 (2)在Rt△B CF 和Rt△ADE 中,∵BC =37sin CF ≈5324=40,…………………………………………………………………6分 AD =067sin DE ≈131224=26,…………………………………………………………………7分 ∴AD+DC+CB﹣AB=40+20+26﹣62=24(米).…………………………………………9分答:他沿折线A→D→C→B 到达超市比直接横穿马路多走约24米.…………………10分 25.(本题满分12分)解:(1)设前4个月自行车销量的月平均增长率为x .根据题意列方程:64(1+x )2=100, ·················· 3分 解得x =-225%(舍去), x = 25%. ··················· 4分 100×(1+25%)=125(辆).答:该商城4月份卖出125辆自行车. ················· 5分 (2)设进B 型车x 辆,则进A 型车(60-2 x )辆,根据题意得不等式组2 x ≤60-2 x ≤2.8x , ··············· 7分 解得 12.5≤x ≤15,因为自行车辆数为整数,所以13≤x ≤15. ··············· 9分 销售利润W =(700-500)×(60-2 x )+ (1300-1000)x , 整理得W =-100x +12000. ∵W 随着x 的增大而减小,∴当x =13时,销售利润W 有最大值,此时,60-2 x =34. ········· 11分 答:该商城应进入A 型车34辆,B 型车13辆. ············· 12分 (或其它方法,酌情给分) 26.(本题满分12分)解:(1)则d (∠xO y ,A )= 5 ,d (∠xOy ,B )= 5 . ············ 2分 (2)设点P 的坐标是(x ,y ).∵d (∠xOy ,P )=5,∴x +y =5.…………………………3分 ∴点P 运动所形成的图形是线段y =﹣x+5(0≤x ≤5).(图略) ……………………………5分 (3)①如图,作CE ⊥OT 于点E ,CF ⊥x 轴于点F ,延长FC 交O T 于点H ,则CF =1,∵直线OT 对应的函数关系式为y=x (x≥0),∴点H 的坐标为H (4,),∴CH ==,OH ===.由图易知,Rt△HEC∽Rt△HFO,∴=,即=,∴EC=.,∴d(∠xOT,C)= +1=.…………………………………………………………………8分②如图,过点Q作QG⊥OT于点G,Q H⊥x轴于点H,交OT于点K.设点Q的坐标为(m,n),其中3≤m≤5,则n=﹣m2+2m+,∴点K的坐标为(m,m),∴HK=m,QK=,OK=m.由图易知,Rt△QGK∽Rt△OHK,∴,∴QG=.∴d(∠xOT,Q)=QG+QH=+n==(﹣m2+2m+)=﹣m2+m+1 =(m﹣4)2.………………………………………………………………………10分∵3≤m≤5,∴当m=4时,d(∠xOT,Q)取得最大值.……………………………………11分此时,点Q的坐标为(4,).………………………………………………………………… 12分27.(本题满分12分)解:(1)∵OA=OB=AB,∴△ABC是等边三角形,∴∠AOB=60°,由圆周角定理知,∠AP1B =12∠AOB=30°.………………………………………… 3分(2)如图,弧EF上所有的点(不包括E、F点)即为所求.… 6分(3)2≤m<2……………………………………………… 9分(434.……………………………………………………… 12分。
江苏省连云港市2018届九年级数学下学期全真模拟试题(六) 含答案
九年级学情检测数学试卷六一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.9的算术平方根是( )A .-9B .9C .3D .±3 2.计算(-3a 2b )2的结果正确的是 ( )A .246b a -B .246b aC .249b a -D .249b a 3.函数y =2-x 中自变量x 的取值范围是( ) A .x >2B .x ≤2C . x ≥2D .x ≠24.如图所示,一个斜插吸管的盒装饮料从后面看到的图形是( )5.将抛物线y =x 2物线( )A .y=(x -2) 2+1B .y=(x -2) 2-1C .y=(x+2) 2+1D .y=(x+2) 2-16.已知样本数据l ,0,6,l ,2,下列说法不正确...的是( ) A .中位数是6 B .平均数是2 C .众数是l D .极差是67.钟面上的分针的长为1,从3点到3点30分,分针在钟面上扫过的面积是( ) A .12πB .14πC .18π D .π8.如图,一个足够大的五边形,它的一个内角是120°,将120°角的顶点绕一个小正三角 形的中心O 旋转,则重叠部分的面积为正三角形面积的( ) A .51B .41 C .31D .不断变化二、填空题(本大题共8小题,每小题3分,共24分,不需要写出解答过程,请把答案直接填写在答题卡...相应位置....上) 9.已知a 是1-17的整数部分,则a = . 10.分解因式:23a a - = .11.我国因环境污染造成的巨大经济损失每年高达680 000 000元, 680 000 000用科学记数法表示为 .12. 如图,AB ∥CD ,点E 在BC 上,且CD =CE ,∠ABC 的度数为32°,则∠D 的度数为 . 13.若关于x 的一元二次方程(a -2) x 2-2x +1=0有两个实数根,则a 的取值范围是 .(第8题)(第12题)E DCBA正面 A . B .C .D .14.如图,点B 是反比例函数上一点,矩形OABC 的周长是20,正方形BCGH 和正方形OCDF 的面积之和为68,则反比例函数的解析式是 .15.把三张大小相同的正方形卡片A 、B 、C 叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示,若按图1摆放时,阴影部分的面积为S 1;若按图2摆放时,阴影部分的面积为S 2,则S 1 S 2(填“>”、“<”或“=”).16.如图,在△BDE 中,∠BDE =90 °,BD =22,点D 的坐标是(3,0),∠BDO =15 °, 将△BDE 旋转到△ABC 的位置,点C 在BD 上,则旋转中心的坐标为 .20.九(3)班“2018年新年联欢会”中,有一个摸奖游戏,规则如下:有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、 2张哭脸.现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌. (1)现小芳有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖.她从中随机翻开一张纸牌,小芳获奖的概率是 .(2)如果小芳、小明都有翻两张牌...的机会.小芳先翻一张,放回后再翻一张;小明同时翻开两张纸牌.他们翻开的两张纸牌中只要出现笑脸就获奖.他们获奖的机会相等吗?通过树状图或者列表法分析说明理由.九年级学情检测数学试卷一、选择题:二、填空题(共8小题,每小题4分,共32分)(第14题)(第15题)(第16题)9. ; 13. ; 10. ; 14. ; 11. ; 15. ; 12. ; 16. . 三、解答题 (本大题共11小题,共102分,) 17. (6分)计算:()2018112260sin 4-+---︒.18.(6分)解不等式组: ⎪⎩⎪⎨⎧->++≤332142x x x x ,.19.(6分)先化简)225(262---÷--x x x x ,再从−3,0,2,3中选择一个合适..的数代入,求出这个代数式的值.20.(本题8分)21.(本题8分)某校学生会准备调查本校九年级同学每天(除课间操外)课外锻炼的平均时间.(1)确定调查方式时,①甲同学说:“我到九年级1班去调查全体同学”;②乙同学说:“我到体育场上去询问参加锻炼的同学”;③丙同学说:“我到九年级每个班去随机调查一定数量的同学”.上面同学所说的三种调查方式中最为合理的是 (只填写序号);(2)他们采用了最为合理的调查方式收集数据,并绘制出如图1所示的条形统计图和如图2所示的扇形统计图,请将图...1.补充完整....; (3)若该校九年级共有1140名同学,请你估计九年级每天(除课间操外)课外锻炼平均时间不大于20分钟的人数. (注:图2中相邻两虚线形成的圆心角为30°)22. (本题10分)如图,△ABC 内接于⊙O ,且AB =AC ,BD 是⊙O 的直径,AD 与BC 交于点E ,F 在DA 的延长线上,且BF =BE .(1)试判断BF 与⊙O 的位置关系,并说明理由; (2)若BF =6,∠C =30O,求阴影的面积.23.(本题10分)某海域有A 、B 两个港口,B 港口在A 港口北偏西30°方向上,距A 港口60海里,有一艘船从A 港口出发,沿东北方向行驶一段距离后,到达位于B 港口南偏东75°方向的C 处,求:(1)∠C = °;(2)此时刻船与B 港口之间的距离CB 的长(结果保留根号).(第21题)24.(本题10分)A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,相遇前两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a.25.(本题12分)定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段b的距离.已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中四点.(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是;当m=5,n=2时,如图2,线段BC与线段OA的距离为;(2)若点B落在x轴上,线段BC与线段OA的距离记为d,求d关于m的函数解析式;(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M.①请在图3中画出..并求出..点M随线段BC运动所围成的封闭图形的周长;②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值使以A、M、H为顶点的三角形与△AOD相似?若存在,求出m图1 图2 图326.(12分)某文化用品商店新进一批毕业纪念册,该纪念册每本进价10元,售价定为每本18元.该商店计划出台如下促销方案:“凡一次购买该纪念册6本以上的(不含6本),每多买1本,所购买的每本纪念册的售价就降低0.2元;但是每本纪念册的最低售价不低于13元.”(1)问一次购买该纪念册至少多少本时才能用最低价购买?(2)求当一次购买该纪念册()6>x x本时,商店所获利润W(元)与购买量x(本)之间的函数关系式;(3)在研讨促销方案过程中,店员发现了一个奇怪的现象:“如果商店一次售出30本纪念册所获的利润,比一次售出26本纪念册所获的利润低.”请你解释其中的道理,并根据其中的道理帮助该商店修改一下促销方案,使卖的纪念册越多商店所获的利润越大..................27.(本题14分)如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).九年级中考数学全真模拟试卷答案61. C2. D3. B4. D5. C6. A7. A8.C9. 3 10. a (a-3) 11. 6.8×10812. 74013. a ≤3且a ≠2 14. xy 16= 15. = 16.(2,3) 17. -1 18. 0.6<x <4 19. 32+-x , x ≠-3,2,3,x =0时值为32-. 20. (1)0.5 ; (2)列表法或树状图略,P (小芳获奖)=123164=, P (小明获奖)=105126= 因为3546≠,所以他们获奖的机会不相等. 21. (1)丙同学的调查方式最为合理;(2)锻炼时间约为10分钟的人数为35人,图略;(3)该年级每天(除课间操外)课外锻炼时间不大于20分钟的人数为1045人.22. (1)BF 与⊙O 的位置关系是相切,证明略;(2) -23. (1)∠C =60°;(2)CB =(30+10)海里.24. (1)y =-90x +300;(2)s =-150x +300;(3)a =90(千米/时) 25. (1)2,5;(2)当m <-4时,d =-m -4;当-4≤m ≤4时,d =0;当m >4时,d =m -4; (3)①周长为16+4π,如图②m =1,3,5.2.26. (1)至少买31本才能用最低价购买;(2)①当x ≤6时,W =8x (x 为整数);②当6<x ≤31时,W = =-0.2x 2+9.2x ( x 为整数);③当x >31时,W =3x (x 为整数);(3)商店把促销方案中:“纪念册的最低售价不低于13元”改为“纪念册的最低售价不低 于14.6元”.27. 解:(1)AB =9,OC =9.(2)s =m 2(0<m <9).(3)△CDE 的最大面积为, S ⊙E =.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5题图 2018年中考数学模拟试题一、选择题:(本大题共有8个小题,每小题3分,共24分)1.计算-2的相反数是 ( ▲ )A .-2B .2C .-12D .12【命题意图】考查相反数的概念,让学生区别倒数、相反数、绝对值的不同,简单,注重基础。
【参考答案】B 【试题来源】:原创 2.下列计算正确的一个是 ( ▲ )A . a 5+ a 5 =2a 10B . a 3·a 5= a 15C .(a 2b)3=a 2b 3D .(2)(2)a a +-= 24a - 【命题意图】考查学生幂的有关运算,区别幂的四则混合运算法则,简单,重视基础。
【参考答案】D 【试题来源】原创3.某几何体的三视图如左图所示,则此几何体是( ▲ )A .正三棱柱 B .圆柱 C .长方 D .圆锥【命题意图】本题比较容易,考查三视图。
讲评时根据主 视图、俯视图和左视图,很容易得出这个几何体是正三 棱柱。
【参考答案】A 【试题来源】原创4.在ABC ∆中, ︒=∠90C ,13=AB ,12=BC ,则A tan 的值为( ▲ )A .1312 B . 135C . 512D . 125【命题意图】考查直角三角形中正切问题及勾股定理运用。
【参考答案】 C 【试题来源】原创5.二次函数22y x x =--的图象如图所示,则函数值y <0时,x 的取值范围是( ▲ )A .x <-1B .x >2C .-1<x <2D .x <-1或x >2【命题意图】以坐标图形为依托,着重考查学生对二次函数性质的理解。
渗透了数形结合的数学思想。
第3题图B F CED A【参考答案】C 【试题来源】原创6.截至2014度,我国人口已超过13亿人.数据“13亿”用科学记数可表示为( ▲ )A .1.3×108B .13×108C .13×109D .1.3×109【命题意图】在现实背景下考查学生对科学记数法的理解及百、千、万、亿等与数之间的互化。
【参考答案】D 【试题来源】原创7.如图,直线AB 与半径为2的⊙O 相切于点C D ,是⊙O 上 一点,且30EDC ∠=,弦EF AB ∥,则EF 的长度为( ) A .2 B.D.【命题意图】 考察圆心角与圆周角的关系,切线与过切点的半径的关系及如何求弦长,构造弦心距半径之间的关系。
第7题图 【参考答案】 B 【试题来源】原创8.如图,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若6CD =,则AF 的长是( ). A .7.5B .8C .53D .34第8题图【命题意图】变换是新课程所提倡的,本题主要考查在折叠这一过程中的一些量 的不变性,同时考查了学生对矩形、直角三角形之间的边角关系。
本题也可用勾 股定理来求解。
【参考答案】D【试题来源】改编。
二、填空题(本大题共8小题,每小题3分,共24分) 9.一组数据2,4,x ,2,3,4的众数是2,则x = . 【命题意图】本题比较容易,考查数据的分析。
【参考答案】2x = 【试题来源】原创10.分解因式:=-1822x 。
【命题意图】考查学生对因式分解知识的理解,需提取公因数2,再用平方差公式分解。
【参考答案】)3)(3(21822-+=-x x x 。
【试题来源】原创11.已知关于x 的一元二次方程022=-++k kx x 的一个根是2,那么这个方程的另一个根是 __。
【命题意图】考查学生对一元二次方程根的意义的理解,本题可以用定义求出k 的值,然后选择合适的方法求解,对定义理解不透的学生可能会用求根公式,将陷入繁琐的计算之中。
【参考答案】34-。
【试题来源】改编。
12.若一个函数的图象经过点(2,3-),则这个函数的解析式为_______________(写出一个即可).【命题意图】考查学生对函数知识理解。
学生可以根据自己的喜好从学过的正比例函数、一次函数、反比例函数及二次函数写出一个函数即可。
体现对学生的人文关怀。
【参考答案】xy 32-=…… 【试题来源】原创 13.函数41-=x y 中自变量x 的取值范围是 .【命题意图】考查自变量的取值范围,涉及根式与分式的自变量的取值情况 【参考答案】4>x 【试题来源】原创14.用一张半径为9cm 、圆心角为︒120的扇形纸片,做成一个圆锥形冰淇淋的侧面(不计接缝),那么这个圆锥形冰淇淋的底面半径是 cm . 【命题意图】考查圆锥及其展开后得到的扇形的内在关系 【参考答案】 3 【试题来源】原创15.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明A OB AOB '''∠=∠的依据是 .【命题意图】考察学生对尺规作图的理解。
亮点:用理论指导实践,让学生明白尺规作图是有理论依据的【参考答案】“边边边”定理。
【试题来源】原创 16.如图,在反比例函数()的图象上,有点,它们的横坐标依次为1,2,3,4.分别过这些点作轴与轴的垂线,图中所构成的阴影部分的面积从左到右依次为,则. (第16题图)【命题意图】考查目的:考查反比例函数的图像及性质 【参考答案】 23【试题来源】改编三、解答题(本大题共有11个小题,共102分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(本题共6分)计算:01)121(|2|45cos 2)21(-⨯-+-- . 【命题意图】考查简单的有理数计算,包含零指数,负指数,绝对值及特殊角的余弦值 【参考答案】2 【试题来源】原创 18. (本题共6分)解方程:1221=---xx x x 【命题意图】考查学生解分式方程的一般步骤,同事考查了一元二次方程的解法,尤其考查了学生容易遗忘检验所解的整式方程的根是否是分式方程的增根。
【参考答案】解:方程两边同时乘以)1(-x x ,得)1()1)(1(22-=---x x x x xC 'C A 'B 'D 'O 'O D B A整理,得02522=+-x x解这个方程,得2,2121==x x经检验: 2,2121==x x 是原方程的解【试题来源】原创19. (本题共10分)如图,在ABC △中,D 是BC 边上的一点,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于F ,且AF DC =,连接CF . (1)求证:D 是BC 的中点;(2)如果AB AC =,试猜测四边形ADCF 的形状,并证明你的结论.【命题意图】此题是一道几何结论开放题,可以大大激发学生的思考兴趣,拓展学生的思维空间,培养学生求异、求变的创新精神。
【参考答案】 (1)证明:AF BC ∥, AFE DBE ∴∠=∠. E 是AD 的中点, AE DE ∴=.又A E F D E B ∠=∠, AEF DEB ∴△≌△. AF DB ∴=. AF DC =, DB DC ∴=.即D 是BC 的中点.(2)解:四边形ADCF 是矩形证明:AF DC ∥,AF DC =, ∴四边形ADCF 是平行四边形. AB AC =,D 是BC 的中点, AD BC ∴⊥. 即90ADC ∠=. ∴四边形ADCF 是矩形. 【试题来源】改编20.(本题共10分)灌云教育局为了解今年九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩为样本,按A 、B 、C 、D 四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:B 46%C 24%D A 20%5B A FC ED 第19题图(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)样本中D级的学生人数占全班学生人数的百分比是;(3)扇形统计图中A级所在的扇形的圆心角度数是;(4)若该县九年级有8000名学生,请你用此样本估计体育测试中A级和B级的学生人数之和.【命题意图】试题联系学生实际,特别是在学生参加完体育考试,对体育成绩比较熟悉的时候,以体育成绩为背景考察学生整理数据的能力。
【参考答案】(1)略(2)10% (3)72°(4)5280【试题来源】改编21.(本题共10分) 甲、乙两超市(大型商场)同时开业,为了吸引顾客,都举行有奖酬宾活动:凡购物满100元,均可得到一次摸奖的机会.在一个纸盒里装有2个红球和2个白球,除颜色外其它都相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少(如下表).甲超市乙超市(1)用树状图表示得到一次摸奖机会时摸出彩球的所有情况;(2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由.【命题意图】考查树状图的画法及简单的概率计算问题【参考答案】解:(1)树状图为:(2)Array∵去甲超市购物摸一次奖获10元礼金券的概率是P (甲)4263==, 去乙超市购物摸一次奖获10元礼金券的概率是P (乙)2163==, ∴ 我选择去甲超市购物. 【试题来源】改编22.(本题共12分)如图,AB 是⊙O 的直径,弦BC=5,∠BOC=50°,OE⊥AC,垂足为E .(1)求OE 的长.(2)求劣弧AC 的长(结果精确到0.1).【命题意图】本题考查学生对圆的有关知识、三角形中位线以及弧长公式的掌握和灵活运用情况。
考查学生对所学知识的综合运用能力。
【参考答案】解:(1) ∵OE⊥A C,垂足为E , ..AE=EC , ∵A O=B0,∴OE=12BC=5/2(2)∠A=12∠BD C =25°,在Rt△AOE 中,sinA=OE/OA , ∵∠AOC=180°-50°=130°∴弧AC 的长=130 2.5180sin 25⨯︒π≈13.4.【试题来源】改编23. (本题共10分)美丽的洪泽湖周边景点密布.如图A ,B 为湖滨的两个景点,C 为湖心一个景点.景点B 在景点C 的正东,从景点A 看,景点B 在北偏东75°方向,景点C 在北偏东30°方向.一游客自景点A 驾船以每分钟20米的速度行驶了10分钟到达景点CC 到景点B 需用多长时间(精确到1【命题意图】考查方位角,三角函数的应用以及近似数的取值 【参考答案】根据题意,得AC =20×10=200.过点A 作AD 垂直于直线BC ,垂足为D.在Rt △ADC 中,AD =AC ×cos ∠CAD =200×cos30°=DC =AC×sin ∠CAD =200×sin30°=100.在Rt △ADB 中,DB =AD ×tan ∠BAD =tan75°.所以CB =DB -DC =tan75°-100.所以20CB=75°-5≈27.即该游客自景点C 驶向景点B 约需27分钟. 【试题来源】自编 24. (本题共12分)在△ABC 中,∠BAC=45°,若BD=2,CD=3,AD ⊥BC 于D ,将△ABD 沿AB 所在的直线折叠,使点D 落在点E 处;将△ACD 沿AC 所在的直线折叠,使点D 落在点F 处,分别延长EB 、FC 使其交于点M .(1)判断四边形AEMF 的形状,并给予证明.(2)设x AD =,利用勾股定理,建立关于x 的方程模型,求四边形AEMF 的面积【命题意图】考查轴对称变换的性质,正方形的判定及直角三角形的勾股定理的应用。