保时捷刹车舒适性模拟的高级方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Advanced Approaches in the Simulation of Brake Comfort -PERMAS User‘s Conference -Leinfelden 2014 -

S. Carvajal, Dr. D. Wallner -Dr. Ing. h.c. F. Porsche AG

Dr. O. Jakubský, P. Sedláček-Porsche Engineering Services s.r.o.

Integrated NVH Development Process

Simulation Method for Brake Comfort Evaluation •Complex Eigenvalue Analysis (CEA): Theoretical Background •CEA: Application of the Method

•CEA: Influence of Disc Cyclic-Symmetry

•CEA: Process

•CEA: Representation of an Unstable Complex Eigenshape •CEA: Results Parameter Variation

Sensitivity Analysis of Friction Material Constants

•Modal Analysis

•CEA

Summary

Integrated NVH Development Process

Development Methodology NVH Brakes

Virtual Optimization Boundary Samples Tests Customer Oriented Field Test

NVH Optimization Simulation

Test Bench Vehicle

NVH Short Test Drive

NVH Release Test Drive Mojácar

NVH Validation Axle Operational Deflection Shape Experimental Modal Analysis

CEA Sensitivity Analysis NVH Basic Optimization Parts

CEA Corner Model NVH Validation Vehicle

NVH Test Drive Mojácar

Simulation Method for Brake Comfort Evaluation

Complex Eigenvalue Analysis (CEA): Theoretical Background

Squealing phenomena are produced by dynamic instabilities of a brake system.In certain frequencies, the system is not able to dampen the energy of self-excited vibration. In unfavourable conditions, this results in the emission of sound waves, which manifest themselves as squealing.Motion equation of the system:

Due to the contribution of the damping matrix the eigenvalues have following form:

The stability of the system is characterised for every Eigen frequency by the damping parameter:

DR > 0:unstable system => risk of squeal events!DR < 0:stable system

-Dr. Ing. h.c. F.Porsche AG -Slide 4where:

M mass matrix G gyroscopic matrix D damping matrix N circulatory matrix K stiffness matrix λeigenvalue

eigenvector

where:

d damping parameter f Eigenfrequency DR damping ratio i ∙

² 0

CEA: Application of the Method

2010

2014

Elements 240 000222 288 Nodes 416 000383 990 DOFs 1150 000 1 121 349 Contact DOFs 5 412 6 828 Eigenmodes

142217Complex Eigenmodes 141228 Rotational speeds 8080 Permas Version V12.XX.XXX V14.00.432CPU 8*AMD Opteron

@ 3GHz 8* Intel Xeon @ 2.9 GHz Memory

7.5 GB RAM 4.75GB scratch

40 GB RAM 15.65 GB scratch Total calculation time

90 min

18 min / -80 %

相关文档
最新文档