流体力学课件_第五章_流体运动学基础
合集下载
流体运动学(课件)
由于流线不会相交,根据流管的定 义可以知道,在各个时刻,流体质点不 可能通过流管壁流出或流入,只能在流 管内部或沿流管表面流动。
因此,流管仿佛就是一条实际的管 道,其周界可以视为像固壁一样,日常 生活中的自来水管的内表面就是流管的 实例之一。
图3-13 流管
3.2流体运动的若干基本概念
2. 流束
流管内所有流体质点所形成的流动称为流束,如图3-14所示。流 束可大可小,根据流管的性质,流束中任何流体质点均不能离开流束。 恒定流中流束的形状和位置均不随时间而发生变化。
3.2流体运动的若干基本概念
3.2. 6.2非均匀流
流场中,在给定的某一时刻,各点流速都随位置而变化的流动称 为非均匀流,如图3-21所示。 非均匀流具有以下性质:
1)流线弯曲或者不平行。 2)各点都有位变加速度,位变加速度不为零。 3)过流断面不是一平面,其大小和形状沿流程改变。 4)各过流断面上点速度分布情况不完全相同,断面平均流速沿程 变化。
3.2流体运动的若干基本概念
控制体是指相对于某个坐标系来说,有流体流过的固定不变的空 间区域。
换句话说,控制体是流场中划定的空间,其形状、位置固定不变, 流体可不受影响地通过。
站在系统的角度观察和描述流体的运动及物理量的变化是拉格朗 日方法的特征,而站在控制体的角度观察和描述流体的运动及物理量 的变化是欧拉方法的特征。
图3-1 拉格朗日法
3.1流体运动的描述方法
同理,流体质点的其他物理量如密度ρ、压强p等也可以用拉格朗p=p(a,b,c,t)。
从上面的分析可以看到:拉格朗日法实质上是应用理论力学中的 质点运动学方法来研究流体的运动。
它的优点是:物理概念清晰,直观性强,理论上可以求出每个流 体质点的运动轨迹及其运动参数在运动过程中的变化。
流体力学课件(全)
X 1 p 0 x
Y 1 p 0 y
欧拉平衡方程
Z 1 p 0 z
p p( , T )
t
1 V V T p
1 V V p T
p p(V , T )
1 t T p
p
p
1 p T
V
p y = pn pz = pn
px = p y = pz = pn = p
28/34
第二章
流体静力学
§1 静压强及其特性 §2 流体静力学平衡方程 §3 压力测量 §4 作用在平面上的静压力 §5 作用在曲面上的静压力 §6 物体在流体中的潜浮原理
29/34
§2流体静力学平衡方程
通过分析静止流体中流体微团的受力,可以建立 起平衡微分方程式,然后通过积分便可得到各种不同 情况下流体静压力的分布规律。 why 因此,首先要建立起流体平衡微分方程式。 现在讨论在平衡状态下作用在流体上的力应满足 的关系,建立平衡条件下的流体平衡微分方程式。
《流体力学》
汪志明教授
5/24
第一章 流体的流动性质
§1 流体力学的基本概念
§2 流体的连续介质假设 §3 状态方程 §4 传导系数 §5 表面张力与毛细现象
《流体力学》
汪志明教授
6/24
§2 流体的连续介质假设
虽然流体的真实结构是由分子构成,分子间有一定的孔隙,但流 体力学研究的并不是个别分子微观的运动,而是研究大量分子组成的 宏观流体在外力的作用下所引起的机械运动。 因此在流体力学中引入连续介质假设:即认为流体质点是微观上 充分大,宏观上充分小的流体微团,它完全充满所占空间,没有孔隙 存在。这就摆脱了复杂的分子运动,而着眼于宏观机械运动。
Y 1 p 0 y
欧拉平衡方程
Z 1 p 0 z
p p( , T )
t
1 V V T p
1 V V p T
p p(V , T )
1 t T p
p
p
1 p T
V
p y = pn pz = pn
px = p y = pz = pn = p
28/34
第二章
流体静力学
§1 静压强及其特性 §2 流体静力学平衡方程 §3 压力测量 §4 作用在平面上的静压力 §5 作用在曲面上的静压力 §6 物体在流体中的潜浮原理
29/34
§2流体静力学平衡方程
通过分析静止流体中流体微团的受力,可以建立 起平衡微分方程式,然后通过积分便可得到各种不同 情况下流体静压力的分布规律。 why 因此,首先要建立起流体平衡微分方程式。 现在讨论在平衡状态下作用在流体上的力应满足 的关系,建立平衡条件下的流体平衡微分方程式。
《流体力学》
汪志明教授
5/24
第一章 流体的流动性质
§1 流体力学的基本概念
§2 流体的连续介质假设 §3 状态方程 §4 传导系数 §5 表面张力与毛细现象
《流体力学》
汪志明教授
6/24
§2 流体的连续介质假设
虽然流体的真实结构是由分子构成,分子间有一定的孔隙,但流 体力学研究的并不是个别分子微观的运动,而是研究大量分子组成的 宏观流体在外力的作用下所引起的机械运动。 因此在流体力学中引入连续介质假设:即认为流体质点是微观上 充分大,宏观上充分小的流体微团,它完全充满所占空间,没有孔隙 存在。这就摆脱了复杂的分子运动,而着眼于宏观机械运动。
流体力学基础 ppt课件
➢流体介质是由连续的质点组成的;
➢质点运动过程的连续性。
流体的压缩性
不可压缩流体:流体的体积如果不随压力及温度变 化,这种流体称为不可压缩流体。
可压缩流体:流体的体积如果随压力及温度变化, 则称为可压缩流体。
实际上流体都是可压缩的,一般把液体当作不 可压缩流体;气体应当属于可压缩流体。但是,如 果压力或温度变化率很小时,通常也可以当作不可 压缩流体处理。
1.3 压强
垂直作用于流体单位面积上的力,称为流体的压强, 简称压强。习惯上称为压力。垂直作用于整个面上的 力称为总压力。
在静止流体中,从各方向作用于某一点的压强大小 均相等。
压强的单位: ❖ 帕斯卡, Pa, N/m2 (法定单位); ❖ 标准大气压, atm; ❖ 某流体液柱高度; ❖ bar(巴)或kgF/cm2等。
m v
(1-1)
式中 ρ —— 流体的密度,kg/m3;
m —— 流体的质量,kg;
v —— 流体的体积,m3。
不同的流体密度是不同的,对一定的流体,密度是压力p和 温度T的函数,可用下式表示 :
f(p,T)
(1-2)
液体的密度随压力的变化甚小(极高压力下除外),可忽略
不计,但其随温度稍有改变。气体的密度随压力和温度的变化
解: 首先将摄氏度换算成开尔文:
100℃=273+100=373K
1)求干空气的平均分子量:
Mm = M1y1 + M2y2 + … + Mnyn
=32 × 0.21+28 ×0.78+39.9 × 0.01
=28.96
气体的平均密度为:
T0p 0 Tp0
即
2 2..4 6 8 9 2 3 2 7 7 1 9 .8 3 3 .3 0 1 1 1 1 4 30 0 0 .9k2 /g m 3
➢质点运动过程的连续性。
流体的压缩性
不可压缩流体:流体的体积如果不随压力及温度变 化,这种流体称为不可压缩流体。
可压缩流体:流体的体积如果随压力及温度变化, 则称为可压缩流体。
实际上流体都是可压缩的,一般把液体当作不 可压缩流体;气体应当属于可压缩流体。但是,如 果压力或温度变化率很小时,通常也可以当作不可 压缩流体处理。
1.3 压强
垂直作用于流体单位面积上的力,称为流体的压强, 简称压强。习惯上称为压力。垂直作用于整个面上的 力称为总压力。
在静止流体中,从各方向作用于某一点的压强大小 均相等。
压强的单位: ❖ 帕斯卡, Pa, N/m2 (法定单位); ❖ 标准大气压, atm; ❖ 某流体液柱高度; ❖ bar(巴)或kgF/cm2等。
m v
(1-1)
式中 ρ —— 流体的密度,kg/m3;
m —— 流体的质量,kg;
v —— 流体的体积,m3。
不同的流体密度是不同的,对一定的流体,密度是压力p和 温度T的函数,可用下式表示 :
f(p,T)
(1-2)
液体的密度随压力的变化甚小(极高压力下除外),可忽略
不计,但其随温度稍有改变。气体的密度随压力和温度的变化
解: 首先将摄氏度换算成开尔文:
100℃=273+100=373K
1)求干空气的平均分子量:
Mm = M1y1 + M2y2 + … + Mnyn
=32 × 0.21+28 ×0.78+39.9 × 0.01
=28.96
气体的平均密度为:
T0p 0 Tp0
即
2 2..4 6 8 9 2 3 2 7 7 1 9 .8 3 3 .3 0 1 1 1 1 4 30 0 0 .9k2 /g m 3
流体力学基本知识PPT优秀课件
第一章 流体力学基本知识
第一节 流体的主要物理性质 第二节 流体静压强及其分布规律 第三节 流体运动的基本知识 第四节 流动阻力和水头损失 第五节 孔口、管嘴出流及两相流体简介
2021/6/3
1
第一节 流体的主要物理性质
一、密度和容重 密度:对于均质流体,单位体积的质量称为
流体的密度。 容重:对于均质流体,单位体积的 重量称为
等压面:流体中压强相等的各点所组成 的面为等压面。
2021/6/3
10
压强的度量基准:
(1)绝对压强:是以完全真空为零点计算的 压强,用PA表示。
(2)相对压强:是以大气压强为零点计算的 压强,用P表示。
相对压强与绝对压强的关系为: P=PA-Pa (1-9)
2021/6/3
11
第三节 流体运动的基本知识
水力学基本方程式。式中γ和p0都是常数。
方程表示静水压强与水深成正比的直线分布 规律。方程式还表明,作用于液面上的表面 压强p0是等值地传递到静止液体中每一点上。 方程也适用于静止气体压强的计算,只是式 中的气体容重很小,因此,在高差h不大的 情况下,可忽略项,则p=p0。例如研究气 体作用在锅炉壁上的静压强时,可以认为气 体空间各点的静压强相等。
表面压强为: p=△p/△ω (1-6)
点压强为: lim p=dp/dω ( Pa) 点压强就是静压强
2021/6/3
7
流体静压强的两个特征:
(1)流体静压强的方向必定沿着作用面的 内法线方向。
(2)任意点的流体静压强只有一个值,它 不因作用面方位的改变而改变。
2021/6/3
8
二、流体静压强的分布规律
一、流体运动的基本概念
(一)压力流与无压流 1.压力流:流体在压差作用下流动时,流体 整个周围都和固体壁相接触,没有自由表 面。 2.无压流:液体在重力作用下流动时,液体 的部分周界与固体壁相接触,部分周界与 气体接触,形成自由表面。
第一节 流体的主要物理性质 第二节 流体静压强及其分布规律 第三节 流体运动的基本知识 第四节 流动阻力和水头损失 第五节 孔口、管嘴出流及两相流体简介
2021/6/3
1
第一节 流体的主要物理性质
一、密度和容重 密度:对于均质流体,单位体积的质量称为
流体的密度。 容重:对于均质流体,单位体积的 重量称为
等压面:流体中压强相等的各点所组成 的面为等压面。
2021/6/3
10
压强的度量基准:
(1)绝对压强:是以完全真空为零点计算的 压强,用PA表示。
(2)相对压强:是以大气压强为零点计算的 压强,用P表示。
相对压强与绝对压强的关系为: P=PA-Pa (1-9)
2021/6/3
11
第三节 流体运动的基本知识
水力学基本方程式。式中γ和p0都是常数。
方程表示静水压强与水深成正比的直线分布 规律。方程式还表明,作用于液面上的表面 压强p0是等值地传递到静止液体中每一点上。 方程也适用于静止气体压强的计算,只是式 中的气体容重很小,因此,在高差h不大的 情况下,可忽略项,则p=p0。例如研究气 体作用在锅炉壁上的静压强时,可以认为气 体空间各点的静压强相等。
表面压强为: p=△p/△ω (1-6)
点压强为: lim p=dp/dω ( Pa) 点压强就是静压强
2021/6/3
7
流体静压强的两个特征:
(1)流体静压强的方向必定沿着作用面的 内法线方向。
(2)任意点的流体静压强只有一个值,它 不因作用面方位的改变而改变。
2021/6/3
8
二、流体静压强的分布规律
一、流体运动的基本概念
(一)压力流与无压流 1.压力流:流体在压差作用下流动时,流体 整个周围都和固体壁相接触,没有自由表 面。 2.无压流:液体在重力作用下流动时,液体 的部分周界与固体壁相接触,部分周界与 气体接触,形成自由表面。
工程流体力学流体运动学-PPT精选文档
流体质点的加速度
du a dt
du x u u u u x x dx x dy x dz ax dt t xdt ydt z dt
同理:
u u u u x x x x u u u x y z t x y z
哈密顿算子
2 2 2 2 2 2 2 x y z
3.3 流体运动的基本概念
加速度:
x x x x ax x y z t x y z y y y y ay x y z t x y z z z z z az x y z t x y z
t 表示在某一固定空间点上,液体质点速度对时间的变化率。也就 是在同一地点,由于时间变化而引起的加速度,称为当地加速度。
u
其余几项表示液体质点在同一时刻因地点变化而引起的加速度,称为
迁移加速度。
u x u x u x u x a x a x ux uy uz D dt t x y z u y u y u y du x u y D a x a y ux uy uz D dt t x y z du x u z u z u z u z D a x a z ux uy uz D dt t x y z du x D
u x u x u x u x a x t u x x u y y u z z u y u y u y u y a y u x u y u z x y z t u z u z u z u z a z u x u y u z x y z t
u x u x u x u x a x t u x x u y y u z z u y u y u y u y a y u x u y u z x y z t u z u z u z u z a z u x u y u z x y z t
du a dt
du x u u u u x x dx x dy x dz ax dt t xdt ydt z dt
同理:
u u u u x x x x u u u x y z t x y z
哈密顿算子
2 2 2 2 2 2 2 x y z
3.3 流体运动的基本概念
加速度:
x x x x ax x y z t x y z y y y y ay x y z t x y z z z z z az x y z t x y z
t 表示在某一固定空间点上,液体质点速度对时间的变化率。也就 是在同一地点,由于时间变化而引起的加速度,称为当地加速度。
u
其余几项表示液体质点在同一时刻因地点变化而引起的加速度,称为
迁移加速度。
u x u x u x u x a x a x ux uy uz D dt t x y z u y u y u y du x u y D a x a y ux uy uz D dt t x y z du x u z u z u z u z D a x a z ux uy uz D dt t x y z du x D
u x u x u x u x a x t u x x u y y u z z u y u y u y u y a y u x u y u z x y z t u z u z u z u z a z u x u y u z x y z t
u x u x u x u x a x t u x x u y y u z z u y u y u y u y a y u x u y u z x y z t u z u z u z u z a z u x u y u z x y z t
液压流体力学第五章流体动力学基础
液压流体力学
南京工程学院
夏庆章
20150720
第五章 流体动力学基础
• • • • • • 流体动力学概述 5.1理想流体的运动微分方程式 5.3理想流体的伯努利方程式 5.4实际流体总流的伯努利方程式 5.7伯努利方程的应用 5.8动量、动量矩定理及其应用
流体动力学概述
流体动力学是研究流体在外力作用下的运
动规律即研究流体动力学物理量和运动学 物理量之间的关系的科学。 流体动力学主要研究内容就是要建立流体 运动的动量平衡定律、动量矩平衡定律和 能量守恒定律(热力学第一定律)。
5.1 理想流体的运动微分方程式
1、选取控制体:在所研究的运动流体中,任取一 微小平行六面体,如图5-1所示。六面体边长分别 为dx、dy、dz,平均密度为 ,顶点A 处的压强 为 p。 2、受力分析 质量力:fxdxdydz , fydxdydz , fzdxdydz 表面力:设A点压强为p时,则与其相邻的ABCD 、 ADEH、ABGH三个面上的压强均为p,而与这三个 面相对应的EFGH、 BCFG、 CDEF 面上的压强可 由泰勒级数展开略去二阶以上无穷小量而得到,分 p p p p dz p dx p dy 别为 z x y
p V p V z1 1 1 z 2 2 2 h w g 2 g g 2 g
2 2
式(5-1)的几何解释如图5-1所示,实际总水头线沿微元流 束下降,而静水头线则随流束的形状上升或下降。
图5-1 伯努利方程的几何解释
二、黏性流体总流的伯努利方程 流体的实际流动都是由无数微元流束所组成的有效截面为 有限值的总流流动,例如流体在管道中和渠道中的流动等。 微元流束的有效截面是微量,因而在同一截面上流体质点 的位置高度 z 、压强 p 和流速 V 都可认为是相同的。而 总流的同一有效截面上,流体质点的位置高度 z 、压强 p 和流速 V 是不同的。总流是由无数微元流束所组成的。 因此,由黏性流体微元流束的伯努利方程来推导总流的伯 努利方程,对总流有效截面进行积分时,将遇到一定的困 难,这就需要对实际流动作某些必要的限制。为了便于积 分,首先考虑在什么条件下总流有效截面上各点的 p z 常数?这只有在有效截面附近处有缓变流动时 g 才能符合这个要求。
南京工程学院
夏庆章
20150720
第五章 流体动力学基础
• • • • • • 流体动力学概述 5.1理想流体的运动微分方程式 5.3理想流体的伯努利方程式 5.4实际流体总流的伯努利方程式 5.7伯努利方程的应用 5.8动量、动量矩定理及其应用
流体动力学概述
流体动力学是研究流体在外力作用下的运
动规律即研究流体动力学物理量和运动学 物理量之间的关系的科学。 流体动力学主要研究内容就是要建立流体 运动的动量平衡定律、动量矩平衡定律和 能量守恒定律(热力学第一定律)。
5.1 理想流体的运动微分方程式
1、选取控制体:在所研究的运动流体中,任取一 微小平行六面体,如图5-1所示。六面体边长分别 为dx、dy、dz,平均密度为 ,顶点A 处的压强 为 p。 2、受力分析 质量力:fxdxdydz , fydxdydz , fzdxdydz 表面力:设A点压强为p时,则与其相邻的ABCD 、 ADEH、ABGH三个面上的压强均为p,而与这三个 面相对应的EFGH、 BCFG、 CDEF 面上的压强可 由泰勒级数展开略去二阶以上无穷小量而得到,分 p p p p dz p dx p dy 别为 z x y
p V p V z1 1 1 z 2 2 2 h w g 2 g g 2 g
2 2
式(5-1)的几何解释如图5-1所示,实际总水头线沿微元流 束下降,而静水头线则随流束的形状上升或下降。
图5-1 伯努利方程的几何解释
二、黏性流体总流的伯努利方程 流体的实际流动都是由无数微元流束所组成的有效截面为 有限值的总流流动,例如流体在管道中和渠道中的流动等。 微元流束的有效截面是微量,因而在同一截面上流体质点 的位置高度 z 、压强 p 和流速 V 都可认为是相同的。而 总流的同一有效截面上,流体质点的位置高度 z 、压强 p 和流速 V 是不同的。总流是由无数微元流束所组成的。 因此,由黏性流体微元流束的伯努利方程来推导总流的伯 努利方程,对总流有效截面进行积分时,将遇到一定的困 难,这就需要对实际流动作某些必要的限制。为了便于积 分,首先考虑在什么条件下总流有效截面上各点的 p z 常数?这只有在有效截面附近处有缓变流动时 g 才能符合这个要求。
流体力学第五章:旋涡理论
Bˊ Aˊ BA
L
E
C
即 Γc=ΓL (与积分路径方向一致时)
§5-2 汤姆逊定理
假设:
(1)理想流体;
(2)质量力有势; (3)正压流体(流体密度仅为压力的数)
汤姆逊定理: 沿流体质点组成的任一封闭流体 周线的速度环量不随时间而变.
即 d 0
dt
(5-14)
证明:
C上微分长 ds 经dt时间后移到C′,移动速度 v '
θ: 是ds与r的夹角
dH的方向: 垂直于ds和r所在的平面,按右手法则确定。
流体力学中毕奥——沙伐尔公式的形式 旋涡强度为J(环量Γ=2J)的ds段涡丝
对于P点所产生的诱导速度:
流场中单一有限长涡丝在P点的诱导速度沿 整个涡丝积分:
该式可算出任意单一涡丝所引起的诱导速度场
流场中多条涡丝可组成一涡面, 每条 涡丝的诱导速度求得后,沿涡面积分就可 求得整个涡面上的诱导速度。流体力学中 速度场可以看成是涡丝诱导出来的。
旋涡场的几个基本概念:
一、涡线,涡管,旋涡强度 涡线(vortex line):
3 2
涡线上所有流体质点在
同瞬时的旋转角速度矢量
与此线相切。
涡线微分方程:
1 ds
取涡线上一段微弧长 ds dxi dyj dzk
该处的旋转角速度 xi y j zk
由涡线的定义(涡矢量与涡线相切),得 涡线微分方程式:
c
dt
c
c2
而积分式
d d dt dt
c
vds
c
dv dt
ds
c
v
d dt
ds
由欧拉方程
第一项积分可写成
c
流体力学第五章课件
L v2 hf d 2g 64 64 dv Re
(5-4)
27
第五章
能量损失和有压管流
例. 密度ρ=850kg/m3、粘性系数μ=1.53×10-2kg/m· s的油, 在管径为10cm的管内流动,流量为0.05l/s。试求管轴心 即r=2cm处的速度、沿程损失系数λ 、管壁及r=2cm处切 应力、单位管长的能量损失。 解:由例5-1知道,该流动属于层流,故 umax 2v 12.7cm / s 因为 u umax kr 2 ,当r=r0=5cm,u=0代入得
6
第五章
能量损失和有压管流
实验结果表明:当 流速非常小时,流动成 为层流,沿程损失与速 度一次方成正比,逐渐 加大速度,流动由层流 转变为紊流,曲线突然 变陡,沿BC向上。在紊 流时,沿程损失hf与流 速vn成正比,根据管道 内壁的相对粗糙情况, n值在1.75~2.0范围内。
7
第五章
能量损失和有压管流
能量损失和有压管流
二、层流中的沿程损失 从式(5-8)可以得到 32 L 32L hf 2v v 2 g d gd
这就是圆管层流的沿程损失公式,也称为哈根—泊肃 叶定理(Hagen-Poiseulle Law)。 上式说明,层流的能量损失与速度的一次方成正比, 雷诺实验结果也证明了这一点。同式(5-4)比较,可得 层流的沿程损失系数λ为:
第五章 能量损失和有压管流
第五章 能量损失和有压管流
本章介绍粘性流体的流动状态,分析流动阻力 的产生机理及特征,研究不可压缩粘性流体在管道 中流动的能量损失以及有压管流的计算方法。
1
第五章 能量损失和有压管流
§5-1 沿程损失和局部损失
粘性流体在流动过程中,由于流体之间的相对运动而 产生切应力以及流体与固体壁面之间产生摩擦阻力,这些阻 力的形成将使流动流体的部分机械能不可逆转地转化为热能, 引起流体机械能损失,简称能量损失。由于引起能量损失的 阻力与固体边界条件直接相关,故将根据固体边界的变化情 况,把能量损失分为两类:沿程损失和局部损失。 一、沿程损失 当限制流体流动的固体边壁沿程不变化(如均匀流)或 者变化微小(缓变流)时,过流断面上的速度分布沿程变 化缓慢,则流体内部以及流体与固体边壁之间产生沿程不 变的阻力,由沿程阻力引起的机械能损失称为沿程能量损 失,简称沿程损失,用hf表示。很明显hf与管段的长度成正 比。 2
(5-4)
27
第五章
能量损失和有压管流
例. 密度ρ=850kg/m3、粘性系数μ=1.53×10-2kg/m· s的油, 在管径为10cm的管内流动,流量为0.05l/s。试求管轴心 即r=2cm处的速度、沿程损失系数λ 、管壁及r=2cm处切 应力、单位管长的能量损失。 解:由例5-1知道,该流动属于层流,故 umax 2v 12.7cm / s 因为 u umax kr 2 ,当r=r0=5cm,u=0代入得
6
第五章
能量损失和有压管流
实验结果表明:当 流速非常小时,流动成 为层流,沿程损失与速 度一次方成正比,逐渐 加大速度,流动由层流 转变为紊流,曲线突然 变陡,沿BC向上。在紊 流时,沿程损失hf与流 速vn成正比,根据管道 内壁的相对粗糙情况, n值在1.75~2.0范围内。
7
第五章
能量损失和有压管流
能量损失和有压管流
二、层流中的沿程损失 从式(5-8)可以得到 32 L 32L hf 2v v 2 g d gd
这就是圆管层流的沿程损失公式,也称为哈根—泊肃 叶定理(Hagen-Poiseulle Law)。 上式说明,层流的能量损失与速度的一次方成正比, 雷诺实验结果也证明了这一点。同式(5-4)比较,可得 层流的沿程损失系数λ为:
第五章 能量损失和有压管流
第五章 能量损失和有压管流
本章介绍粘性流体的流动状态,分析流动阻力 的产生机理及特征,研究不可压缩粘性流体在管道 中流动的能量损失以及有压管流的计算方法。
1
第五章 能量损失和有压管流
§5-1 沿程损失和局部损失
粘性流体在流动过程中,由于流体之间的相对运动而 产生切应力以及流体与固体壁面之间产生摩擦阻力,这些阻 力的形成将使流动流体的部分机械能不可逆转地转化为热能, 引起流体机械能损失,简称能量损失。由于引起能量损失的 阻力与固体边界条件直接相关,故将根据固体边界的变化情 况,把能量损失分为两类:沿程损失和局部损失。 一、沿程损失 当限制流体流动的固体边壁沿程不变化(如均匀流)或 者变化微小(缓变流)时,过流断面上的速度分布沿程变 化缓慢,则流体内部以及流体与固体边壁之间产生沿程不 变的阻力,由沿程阻力引起的机械能损失称为沿程能量损 失,简称沿程损失,用hf表示。很明显hf与管段的长度成正 比。 2
工程流体力学-第五章
……………………
三、Π定理
对于某个物理现象或过程,如果存在有n个变量互为函数关
系, f(a1,a2, …an)=0 而这些变量含有m个基本量纲,可把这n个变量转换成为有 (n-m)=i个无量纲量的函数关系式
F(1,2, … n-m)=0
这样可以表达出物理方程的明确的量间关系,并把方程中的 变量数减少了m个,更为概括集中表示物理过程或物理现 象的内在关系。
之间函数关系的一种方法,也可以得出相似准
则。
量纲分析法有两种:瑞利法和π定理
瑞利法
解题步骤:首先找出影响流动的物理量,并用它们
写出假拟的指数方程; 然后以对应的量纲代替方程中的物理量本身,并 根据量纲和谐性原理求出各物理量的指数,整理 出最后形式。
例题a:自由落体运动的位移s与时间t、重力加速度g有关。 试求位移s的表达式。
实验研究 发展流体 力学理论 验证流体 力学假说 解释流 动现象 解决流体 力学问题
流体力学的研究方法中实验研究既是理论分析 的依据,同时也是检验理论的准绳,具有很重要的 作用。 本章将探讨其理论基础: 量纲分析 相似理论
直接实验法 物理规律 理论分析法 模型研究法 相似理论
从相似的概念入手,引入相似准数; 从相似原理和量纲分析出发导出相似准数的结 构; 分析实际问题与实验模型相似的条件;
[B]=MLT
4 基本量 导出量
一个物理问题中诸多的物理量分成基本物理量(基本量:
具有独立性、唯一性)和其他物理量(导出量),后者可由前 者通过某种关系到除,前者互为独立的物理量。基本量个数取 基本量纲个数,所取定的基本量必须包括三个基本量纲在内, 这就是选取基本量的原则。 流速 密度 力 压强 dimv=LT-1 dimρ=ML-3 dimF=MLT-2 dim p=M L-1 T-2
三、Π定理
对于某个物理现象或过程,如果存在有n个变量互为函数关
系, f(a1,a2, …an)=0 而这些变量含有m个基本量纲,可把这n个变量转换成为有 (n-m)=i个无量纲量的函数关系式
F(1,2, … n-m)=0
这样可以表达出物理方程的明确的量间关系,并把方程中的 变量数减少了m个,更为概括集中表示物理过程或物理现 象的内在关系。
之间函数关系的一种方法,也可以得出相似准
则。
量纲分析法有两种:瑞利法和π定理
瑞利法
解题步骤:首先找出影响流动的物理量,并用它们
写出假拟的指数方程; 然后以对应的量纲代替方程中的物理量本身,并 根据量纲和谐性原理求出各物理量的指数,整理 出最后形式。
例题a:自由落体运动的位移s与时间t、重力加速度g有关。 试求位移s的表达式。
实验研究 发展流体 力学理论 验证流体 力学假说 解释流 动现象 解决流体 力学问题
流体力学的研究方法中实验研究既是理论分析 的依据,同时也是检验理论的准绳,具有很重要的 作用。 本章将探讨其理论基础: 量纲分析 相似理论
直接实验法 物理规律 理论分析法 模型研究法 相似理论
从相似的概念入手,引入相似准数; 从相似原理和量纲分析出发导出相似准数的结 构; 分析实际问题与实验模型相似的条件;
[B]=MLT
4 基本量 导出量
一个物理问题中诸多的物理量分成基本物理量(基本量:
具有独立性、唯一性)和其他物理量(导出量),后者可由前 者通过某种关系到除,前者互为独立的物理量。基本量个数取 基本量纲个数,所取定的基本量必须包括三个基本量纲在内, 这就是选取基本量的原则。 流速 密度 力 压强 dimv=LT-1 dimρ=ML-3 dimF=MLT-2 dim p=M L-1 T-2
水力学教学课件 第五章 实际流体动力学基础
化简移项后得
z
τxy τxz pxx
∂px ∂τ yx ∂τ zx dux + + )= fx + (− ∂z dt ρ ∂x ∂y 1 1 ∂py ∂y
τ'zy
τ’zx p'zz
同理 :
τyx τ pyy yz τ'yz τzx pzz τzy p'yy τ'yx
p'xx τ'xz τ'xy
f y + (−
式中: fr、fθ 、fz 分别为单位质量力在
5-1 实际流体的运动微分方程—纳维-斯托克斯方程
r,θ, z 坐标轴上的分量。
3、纳维-斯托克斯方程求解条件 、纳维 斯托克斯方程求解条件
初始条件:在起始时刻 时 各处的流速、压力值;对于恒定流,则不存在条件。 初始条件:在起始时刻t=0时,各处的流速、压力值;对于恒定流,则不存在条件。
px = p − 2µ
py = p − 2µ
∂ux ∂x ∂uy
∂y ∂u pz = p − 2µ z ∂z
------(5------(5-5) (5
5-1 实际流体的运动微分方程—纳维-斯托克斯方程
3、实际流体中任一点的应力状态讨论
(1)理想流体,μ=0, 理想流体,
px =py =pz =p
实际流体具有粘性。 实际流体具有粘性。在作用面上的表面力不仅有压 应力即动压强,还有切应力。 应力即动压强,还有切应力。
2、作用在一平面上M点的表面应力 作用在一平面上 点的表面应力
三个轴向都有三个分量: 表面应力 pn 在x、y、z三个轴向都有三个分量: 、 三个轴向都有三个分量 即动压强; 与平面成法向的压应力p 与平面成法向的压应力 zz,即动压强; 与平面成切向的切应力τ 与平面成切向的切应力 zx,和τzy。
z
τxy τxz pxx
∂px ∂τ yx ∂τ zx dux + + )= fx + (− ∂z dt ρ ∂x ∂y 1 1 ∂py ∂y
τ'zy
τ’zx p'zz
同理 :
τyx τ pyy yz τ'yz τzx pzz τzy p'yy τ'yx
p'xx τ'xz τ'xy
f y + (−
式中: fr、fθ 、fz 分别为单位质量力在
5-1 实际流体的运动微分方程—纳维-斯托克斯方程
r,θ, z 坐标轴上的分量。
3、纳维-斯托克斯方程求解条件 、纳维 斯托克斯方程求解条件
初始条件:在起始时刻 时 各处的流速、压力值;对于恒定流,则不存在条件。 初始条件:在起始时刻t=0时,各处的流速、压力值;对于恒定流,则不存在条件。
px = p − 2µ
py = p − 2µ
∂ux ∂x ∂uy
∂y ∂u pz = p − 2µ z ∂z
------(5------(5-5) (5
5-1 实际流体的运动微分方程—纳维-斯托克斯方程
3、实际流体中任一点的应力状态讨论
(1)理想流体,μ=0, 理想流体,
px =py =pz =p
实际流体具有粘性。 实际流体具有粘性。在作用面上的表面力不仅有压 应力即动压强,还有切应力。 应力即动压强,还有切应力。
2、作用在一平面上M点的表面应力 作用在一平面上 点的表面应力
三个轴向都有三个分量: 表面应力 pn 在x、y、z三个轴向都有三个分量: 、 三个轴向都有三个分量 即动压强; 与平面成法向的压应力p 与平面成法向的压应力 zz,即动压强; 与平面成切向的切应力τ 与平面成切向的切应力 zx,和τzy。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
gQ
2g
2g
u dA v A
3
3
——动能修正系数
g
1
v1
2
2g
z2
p2
g
2
v2
2
层流α=2 紊流α=1.05~1.1≈1
2g
——总流的伯努利方程
5.3 理想流体的伯努利方程
丹· 伯努利(Daniel Bernoull,1700—1782):瑞 士科学家,曾在俄国彼得堡科学院任教,他在流体力 学、气体动力学、微分方程和概率论等方面都有重大 贡献,是理论流体力学的创始人。 伯努利以《流体动力学》(1738)一书著称于世, 书中提出流体力学的一个定理,反映了理想流体(不 可压缩、不计粘性的流体)中能量守恒定律。这个定 理和相应的公式称为伯努利定理和伯努利公式。 他的固体力学论著也很多。他对好友 欧拉提出 建议,使欧拉解出弹性压杆失稳后的形状,即获得弹 性曲线的精确结果。1733—1734年他和欧拉在研究上 端悬挂重链的振动问题中用了贝塞尔函数,并在由若 干个重质点串联成离散模型的相应振动问题中引用了 拉格尔多项式。他在1735年得出悬臂梁振动方程; 1742年提出弹性振动中的叠加原理,并用具体的振动 试验进行验证;他还考虑过不对称浮体在液面上的晃 动方程等。
g
1
v1
2
2g
z3
g
3
v3
2
3
2g
5.7 伯努利方程的应用 毕托管测流速
p1
h
h p2 p1
g
u
2
p2
2g
g
g
g
u
2 gh c
2 gh c——流速系数
1
2
例 实际的测量中,所测为水的流速,并在外部接有U形管
p 1 ' gh p 2 gh
5.3 理想流体的伯努利方程
伯努利方程的物理意 义 理想不可压缩流体在重力作用下作定常流动时,沿同一流线 (或微元流束)上各点的单位重量流体所具有的位势能、压强势能 和动能之和保持不变,即机械能是一常数,但位势能、压强势能和 动能三种能量之间可以相互转换,所以伯努利方程是能量守恒定律 在流体力学中的一种特殊表现形式。 伯努利方程的几何意 义 p ——单位重量流体的总势能(m) z
第五章
流体动力学基础
流体动力学是研究流体在外力作用下的运动规
律,即建立动力学物理量和运动学物理量之间的关系。 流体动力学主要研究内容就是要建立流体运动的动量 平衡定律、动量矩平衡定律和能量守恒定律。
5.1 理想流体的运动方程
选取控制体:在所研究的运动流体中,任取一微小平行六面体,如图所示。
六面体边长分别为dx、dy、dz,平均密度为 ,顶点A 处的压强为 p。
2 3
所以管内流量
qV
4
d V 2 0 . 785 0 . 12 20 . 78 0 . 235 m / s
5.7 伯努利方程的应用
【例】 水流通过如图所示管路流入大气,已知:U形测压管中水银柱 高差Δh=0.2m,h1=0.72m H2O,管径d1=0.1m,管嘴出口直径d2=0.05m, 不计管中水头损失,试求管中流量qv。
2
0
p2
V2
2
由流体静力学
所以 V 2
2( p1 p 2 )
p 1 p 2 ( 液 ) gh 液
所以
[1 ( A 2 / A 1 ) ]
2
若ρ液, ρ ,A2,A1已知,只要测量出h液,就 可以确定流体的速度。流量为:
V2
2 g ( 液 ) h液
l
p2 z2 0 θ G
p1
l cos z 1 z 2
z1 p1 z2 p2 c
z1
0
g
g
——服从流体静力学规律
FI
急变流压强的分布
沿惯性力方向,压强增加、流速减小
5.3 理想流体的伯努利方程
元流的伯努利方程 总流即流束的总体,两边同乘以ρgdQ,积分
势能积 分 动能积分 所以
【解】首先计算1-1断面管路中心的压强。因为A-B为等压 面,列等压面方程得:
p1
g
Hg
Hg g h p 1 gh 1
h h 1 13 . 6 0 . 2 0 . 72 2 mH 2 O
列1-1和2-2断面的伯努利方程 z 1 由连续性方程
5.3 理想流体的伯努利方程
理想流体总流的伯努利方程—缓变流动
均匀流 非均匀流
——流线平行 渐变流 急变流 ——流线近于平行
均匀流
急变流
渐变流
过流断面的选取——均匀流、渐变流
5.3 理想流体的伯努利方程
理想流体总流的伯努利方程—缓变流动 ΔA
过流断面的压强分布
p 1 A gl A cos p 2 A
dp
1 2
dV
2
0
V 2
2
常数
或
z
p
g
V
2
常数
2g
——理想流体沿流 线的伯努利方程
5.3 理想流体的伯努利方程
理想流体总流的伯努利方程—动能修正系数 用平均速度表示的单位时间内通过 某一过流断面的流体动能为:
1 2 qm v
2
1 2
v A
3
单位时间内通过同一过流断面的真 实流体动能为: 1 1 2 3
由连续性方程和运动方程联立,可得
t 0
u x
v y
w z
fx fy fz
1 p
0
x
1 p
u u u
u x v x w x
v v v
u y v y w y
w w w
u z v z w z
1 2
v A
3
2
3
vu dA
2 A 3
v A
3
1 2
v A
1
3 v A
2
u dA 1
2 A
5.3 理想流体的伯努利方程
理想流体总流的伯努利方程—缓变流动
缓变流动:流线间夹角很小,流线曲
率很小,即流线几乎是一些平行直线的流 动。
缓变过流断面:如果在流束的某一过
流断面上的流动为缓变流动,则称此断面 为缓变过流断面。 缓变流动具有以下两条主要特性: (1)在缓变流动中,质量力只有重力。 (2)在同一缓变过流断面上,任何点上 的静压水头都相等。
[1 ( A 2 / A 1 ) ]
2
q V A 2V 2
4
d2
2
2 g ( 液 ) h液
[1 ( A 2 / A 1 ) ]
2
5.7 伯努利方程的应用
伯努利方程是流体力学的基本方程之一,与连续性方程和流体静 力学方程联立,可以全面地解决一维流动的流速(或流量)和压强的计 算问题,用这些方程求解问题时,应注意下面几点: (1) 弄清题意,看清已知什么,求解什么。 (2) 选好有效截面,选择合适的有效截面,应包括问题中所求的 参数,同时使已知参数尽可能多。 (3) 选好基准面,基准面原则上可以选在任何位置,但选择得当, 可使解题大大简化,通常选在管轴线的水平面或自由液面,要注 意的是,基准面必须选为水平面。 (4) 求解流量时,一般要结合连续性方程求解。 (5) 有效截面上的参数,如速度、位置高度和压强应为同一点的。
5.7 伯努利方程的应用
【例】 有一贮水装置如图,贮水池足够大,当阀门关闭时,压强计读数 为2.8个大气压强。而当将阀门全开,水从管中流出时,压强计读数是0.6个 大气压强,试求当水管直径d=12cm时,通过出口的体积流量(不计流动损 失)。 【解】当阀门全开时列1-l、2-2截面的伯努利方程
H pa
p z
dz )dxdy f zdxdydz dxdydz
1 p u t
t
dw dt
u y
y
fx fy
1 p
x
1 p
du dt dv dt
fx
x
1 p
u
u x
x
w
u z
z
y
1 p
fy
y
1 p
u
w
fz
z
dw dt
fz
z
w t
u
w x
w y
w
w z
理想流体的运动微分方程即欧拉运动微分方程
5.3 理想流体的伯努利方程
在下列几个假定条件下: (1)不可压缩理想流体的定常流动; (2)沿同一微元流束(也就是沿流线)积分; (3)质量力只有重力。
5.6 伯努利方程的推广
总流的伯努利方程成立的条件: (1)不可压缩理想流体的定常流动; (2)质量力只有重力; (3)两截面处在缓变流中,但两截面之间可以出现急变流。 有分流(或汇流)的伯努利方程
p1 v1
2
z1
g
p1
1
2g
z2
p2
g
p3
2
v2
2
2g
1 1 3
2
2
z1
A
2
dqmu
2 u dA1 2 NhomakorabeaA
1 2
u dA
3 A
1 2 1 2
(v u ) dA