初一数学第一学期月考试卷

合集下载

七年级数学上册第一次月考试卷(附答案)

七年级数学上册第一次月考试卷(附答案)

1. ﹣1 的相反数是( )3A.1B.﹣1C.3D.﹣33 32.某地连续四天每天的平均气温分别是1℃, ﹣1℃, 0℃, 2℃, 则平均气温中最低的是( )A.1℃B.﹣1℃C.0℃D.2℃3.将算式﹣5-(﹣3)+ (﹣4)写成省略加号的和的形式,正确的是( )A.5+3-4B.﹣5﹣3-4C.﹣5+3-4D.﹣5-3+44.一个数是11 0000,这个数用科学记数法表示为().A.11×104B.1.1×105C.1.1×104D.0.11×1065.下列式子成立的是( )A.﹣|﹣5|>4B.﹣3<|﹣3|C.﹣|﹣4|=4D. |﹣5.5|<56.下列四个图形中能围成正方体的是( )A. B. C. D.7.用一个平面截长方体,五棱柱,圆柱和圆锥,不能截出三角形的是( )A.长方体B.无棱柱C. 圆柱D. 圆锥8.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( )A. |a |>|b|B.ab<0C.b-a>0D.a+b<0(第8 题图)(第9题图)9.一个几何体的三视图如图所示,这个几何体是( )A.三棱锥B.三棱柱C. 圆柱D.长方体10.用纸片和小棒做成下面的小旗,快速旋转小棒,所形成的图形正确顺序是( )A.①②③④B.③④①②C.①③②④D.④②①③11.如图是小明收支明细,则小明当天的收支情况是( )A.收入128 元B.收入32 元C.支出128 元D.支出32 元(第11 题图)(第12 题图)12.a,b 在数轴上位置如图所示,把a ,﹣a,b ,﹣b 按照从小到大的顺序排列,正确的是( )A.﹣b<﹣a<a<bB.﹣a<﹣b<a<bC.﹣b<a<﹣a<bD.﹣b<b<﹣a<a13.如果水位升高2m 时记作+2m,水位下降2m 记作.14.一个正n 棱柱,它有18 条棱,则该棱柱有个面,个顶点.15.若( )-(﹣2)=3,则括号内的数是.16.小明同学到学到领n 盒粉笔,整齐摞在讲桌上,其三视图如图,则n 的值是.(第16 题图)17.若|a|=3 ,|b|=5,且a-b<0,则a+b 的值是.18.规定一种新运算,对于任意有理数a ,b 有a☆b=2a-b+1,请计算1☆[2☆(﹣3)]的值是.19.(12 分)计算:(1)(﹣11)+7-(﹣14)(2)(﹣5.3)+ (﹣3.2)-(﹣5.3)(3)﹣100÷4×(﹣1)520.(15 分)计算题.(1)(+8)-(﹣15)+ (﹣9)-(﹣12)(2)﹣3×2+ (﹣2)2-5(3)36×(﹣2+1 --5)9 3 1221.(6 分)如图是由6 个相同的小正方体组成的几何体,请在指定的位置画出从正面看,左面看,上面看到的这个几何体的形状图.22.(6 分)如图,数轴上有三个点 A ,B ,C ,完成下列问题.(1)A 点表示的数是 ,B 点表示的数是 ,C 点表示的数是(2)将点 B 向右移动 5 个单位长度到点 D ,D 点表示的数是 . (3)在数轴上找点 E ,使点 E 到 B ,C 两点距离相等, E 点表示的数是 (4)将点 E 移动 2 个单位长度后到 F ,点 F 表示的数是 ,23.(6 分) 一个长方形的长为4cm ,宽为 3cm ,将其绕它的一边所在的直线旋转一周,得到一 个立体图形.(1)得到的几何图形的名称为 ,这个现象用数学知识解释为 . (2)求此几何体的体积.24.(6 分)已知 a 是最大的负整数, b 是﹣2 的相反数, c 和 d 互为倒数,求 a+b -cd 的值.25.(9 分)当你把纸对折一次时,就得到 2 层,对折 2 次时,就得 4 层,照这样折下去. (1)计算当对折 5 次时,层数是 .(2)对折 n 次时,层数 m 和折纸的次数 n 的关系是 . (3)如果纸的厚度是 0.1mm ,对折 8 次时,总厚度是 .26.(9 分)某粮食仓库管理员统计 10 袋面粉的总质量,以 100 千克为标准,超过的记为正, 不足记为负,通过称量记录如下: +3 ,+4.5,﹣0.5,﹣2,﹣5,﹣1 ,+2 ,+1,﹣4 ,+1,请回 答下列问题.,.(1)第几袋面粉最接近100 千克.(2)面粉总计超过或不足多少千克.(3)这10 袋面粉总质量是多少千克.27.(9 分)某冷库一天的冷冻食品进出记录如表(运进用正数表示,运出用负数表示)(1)这天冷库的冷冻食品比原来增加了还是减少了,请说明理由.(2)根据实际情况,有两种方案:方案一:运进每吨冷冻食品费用500 元,运出每吨冷冻食品费用800 元.方案二:不管运进还是运出每吨冷冻食品费用都是600 元,从节约运费的角度考虑,选用哪一种方案比较合适.1. A2.B3.C4.B5.B6.C7.C8.D9.B10.B11.D12.C13.如果水位升高 2m 时记作+2m ,水位下降 2m 记作 ﹣2m .14.一个正 n 棱柱,它有 18 条棱,则该棱柱有 8 个面, 12 个顶点. 15.若( )-(﹣2)=3,则括号内的数是 1 .16.小明同学到学到领 n 盒粉笔,整齐摞在讲桌上,其三视图如图,则 n 的值是 7 .(第 16 题图)17.若|a|=3 ,|b|=5,且 a -b <0,则 a+b 的值是 8 或 2 .18.规定一种新运算, 对于任意有理数 a ,b 有 a ☆b=2a -b+1,请计算 1☆[2☆(﹣3)]的值是 ﹣ 5 . 三.解答题。

七年级数学第一次月考试卷及答案

七年级数学第一次月考试卷及答案

七年级第一学期第一次月考试卷与试题解析一.选择题(共10小题,满分30分)1.(3分)|﹣3|的相反数是(B)A.3B.﹣3 C.D.﹣2.(3分)如果向东走80m记为+80m,那么向西走60m记为(A)A.﹣60m B.|﹣60|m C.﹣(﹣60)m D.m3.(3分)计算2﹣(﹣3)的结果等于(C)A.﹣1 B.1C.5D.64.(3分)数轴上一点从原点正方向移动3个单位,再向负方向移动5个单位,此时这点表示的数为(B)A.8B.﹣2 C.﹣5 D.25.(3分)某市某日的气温是﹣2℃~6℃,则该日的温差是(A)A.8℃B.6℃C.4℃D.一2℃6.(3分)计算2﹣|﹣3|结果正确的是(C)A.5B.1C.﹣1 D.﹣57.(3分)若两个数的和为正数,则这两个数(A)A.至少有一个为正数B.只有一个是正数C.有一个必为0 D.都是正数8.(3分)设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,d是倒数等于自身的有理数,则a+b+c+d 的值为(C)A.1B.3C.1或﹣1 D.2或﹣19.数a,b在数轴上的位置如图所示,则a+b是(C)A.正数B.零C.负数D.都有可能10.(3分)有理数a,b在数轴上的对应点的位置如图所示,则(B)A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b<0二.填空题(共10小题,满分30分,每小题3分)11.(3分)(2014•江西模拟)﹣1+3=2.12.(3分)(2007•遵义)计算:1﹣2=﹣1.13.(3分)(2012•岳阳)计算:|﹣2|=2.14.(3分)(2013•晋江市)化简:﹣(﹣2)=2.15.(3分)写出一个比﹣1大的负有理数是﹣0.4(答案不唯一).16.(3分)(2010•邯郸一模)若a、b互为相反数,则3a+3b+2=2.17.(3分)某种零件,标明要求是φ20±0.02 mm(φ表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm,该零件不合格(填“合格”或“不合格”).18.(3分)(2012•德州)﹣1,0,0.2,,3中正数一共有3个.19.(3分)(2007•崇安区一模)一只昆虫从点A处出发,以每分钟2米的速度在一条直线上运动,它先前进1米,再后退2米,又前进3米,再后退4米,…依此规律继续走下去,则运动1小时时这只昆虫与A点相距8米.20.(3分)(2008•贵阳)符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f()﹣f(2008)=1.三.解答题(共5小题,满分40分)21.(7分)计算:9+(﹣7)+6+(﹣5)考点:有理数的加法.分析:原式结合后,相加即可得到结果.解答:解:原式=(9+6)+[(﹣7)+(﹣5)]=15﹣12=3.点评:此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.22.(7分)计算:(﹣2)+5﹣4﹣(﹣3)﹣3.考点:有理数的加减混合运算.分析:原式利用减法法则变形,然后利用加法的交换结合律,计算即可得到结果解答:解:(﹣2)+5﹣4﹣(﹣3)﹣3=(﹣2)+5+(﹣4)+3+(﹣3)=[(﹣2)+(﹣4)]+[3+(﹣3)]+5=(﹣6)+5=﹣1点评:此题考查了有理数的加减混合运算,熟练掌握运算法则,及用运算律是解本题的关键.23.(8分)计算:.考点:有理数的加减混合运算.分析:有理数的加减混合运算,一般应统一成加法运算,再运用运算律进行简化计算.解答:解:原式=﹣﹣﹣+=﹣1﹣=或.点评:在进行有理数的加减混合运算时,第一步是运用减法法则将减法转化成加法;第二步根据加法法则进行计算.24.(9分)已知|a|=3,|b|=5,且a<b,求a﹣b的值.考点:绝对值.分析:计算绝对值要根据绝对值的定义求解,注意在条件的限制下a,b的值剩下2组.a=3时,b=5或a=﹣3时,b=5,所以a﹣b=﹣2或a﹣b=﹣8.解答:解:∵|a|=3,|b|=5,∴a=±3,b=±5.∵a<b,∴当a=3时,b=5,则a﹣b=﹣2.当a=﹣3时,b=5,则a﹣b=﹣8.点评:本题是绝对值性质的逆向运用,此类题要注意答案一般有2个.两个绝对值条件得出的数据有4组,再添上a,b大小关系的条件,一般剩下两组答案符合要求,解此类题目要仔细,看清条件,以免漏掉答案或写错.25.(9分)小虫从某点A出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为:(单位:厘米)+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)小虫最后是否回到出发点A?(2)小虫离开原点最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫一共得到多少粒芝麻?考点:有理数的加法;正数和负数.专题:应用题.分析:(1)把记录数据相加,结果为0,说明小虫最后回到出发点A;(2)分别计算出每次爬行后距离A点的距离;(3)小虫一共得到的芝麻数,与它爬行的方向无关,只与爬行的距离有关,所以应把绝对值相加,再求得到的芝麻粒数.解答:解:(1)+5﹣3+10﹣8﹣6+12﹣10=27﹣27=0,所以小虫最后回到出发点A;(2)第一次爬行距离原点是5cm,第二次爬行距离原点是5﹣3=2(cm),第三次爬行距离原点是2+10=12(cm),第四次爬行距离原点是12﹣8=4(cm),第五次爬行距离原点是|4﹣6|=|﹣2|(cm),第六次爬行距离原点是﹣2+12=10(cm),第七次爬行距离原点是10﹣10=0(cm),从上面可以看出小虫离开原点最远是12cm;(3)小虫爬行的总路程为:|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|=5+3+10+8+6+12+10=54(cm).所以小虫一共得到54粒芝麻.点评:正负数是表示相反意义的量,如果规定一个量为正,则与它相反的量一定为负;距离即绝对值与正负无关.。

七年级数学上学期第一次月考试卷含答案

七年级数学上学期第一次月考试卷含答案

七年级数学第一学期第一次学科检测(时间:120分钟 总分:150分)第一部分基础题(100分)一.选择题(每题3分,共12分)1 .(午练10T1变式)计算-X (-3)的结果是()32A. -1B. -2C. 2D.--32 .(课本P28习题T4变式)下列化简错误的是()A. - (-5) =5B. -|-4|=4C. - (-3.2) =3.2D. + (+7) =75 53 .(课本P36练一练T1变式)下列各式中,计算结果为正确的是( )A. 6- (-11) =-5B. 6-11=5C. -6-11=-17 4 .(课本P29习题T7变式)下列比较大小结果正确的是(二.填空题(每题3分,共18分) 5 .(午练4T4变式)-1的倒数是 .6 .(课本P14习题T4变式)在一次军事训练中,一架直升机“停”在离海面 80m 的低空,一艘潜水艇潜在水下50m.若直升机的高度记作+80m 则潜水艇的高度记作. 7 .(午练2T8变式)正常人行走时的步长大约是 50(填单位). 8 .(午练 5T12 变式)若|m|=|-5|,则 m=.9 .(午练6T10变式)绝对值大于2且不大于4的整数有 个.10 .(午练10T10变式)从-3, -4, 0, 5中取出两个数,所得的最大乘积是 . 三.解答题(共70分)11. (8分)(课本P17练一练变式)把下列各数填入相应的集合中:-6, 9.3, - 1,15, 0, -0.33, -0.333--, 1.41421356, -3 , 3.3030030003 …,-3.1415926. 6 正数集合:{ 日|}负数集合:{ …} 有理数集合:{ …} 无理数集合:{ …}12. (10分)(午练6T11变式)在数轴上表示下列各数,并用“V”号连接起来-(-5), -|2|, -1 1 , 0.5, -(-3), -[-4|, 3.5.213. (12分)(课本习题2.5-2.6)计算:⑴(-73)-41D. (-6) -(-11)=17 )A. 3V-7B. -5.3 V-5.4C.D. -|-3.71|>-(-0.84)(2)(-1)¥-8)166(3)(- 5)-(-0.2)+114. (12分)(午练10,11变式)计算: (1)( 1 +A- 5)x ( -60)4 12 6⑶(-5)X(-3 6)+ (-7) X ( -3-) +12X (-36) (4) 199 X (-8)7 7 7 1615. (8分)(午练11T12变式)根据下列语句列式并计算:1(2) 32与6的商减去-I 所得的差.3I 40加上-25的和与-3所得的积16. (8 分)果.(2)(-— ) x(-3 —) + (-1—) + 3;2 2 417. (12分)(午练8T13变式)高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正, 向西为负,当天的行驶记录如下(单位:千米)+17, -9, +7, -17, -3, +12, -6, -8, +5, +16.(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远? (2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为 8升/千米,则这次养护共耗油多少升?18 .下列说法中,正确的有()①两个有理数的和不小于每个加数 ③相反数等于本身的数为零A. 0个B. 1个C. 2个19 .计算:1-2+3-4+ • • +99-100 的值为()A. 5050B. 100C. 50D. -5020 .小红在写作业时,不慎将一滴墨水滴在数轴上,根据图中的数据,请确定墨迹遮盖住的整数的和为 .21 .若|a|=3, |b|=5, abv0,贝U a+b=.22 .有三个互不相等的整数 a, b, c,如果abc=3,那么a+b+c=23 .将一列有理数-1, 2,-3, 4,-5, 6,……,如图所示有序排列.根据图中的排列规律可知, “峰 1”中峰顶的位置(C 的位置)是有理数 4,那么,“峰6”中C 的位置是有理数②两个有理数的差不大于被减数④多个不为零的有理数相乘,当负因数有奇数个时积为负.D. 3个三.解答题(共32分)24. (10分)如图,小明有5张写着不同数的卡片,请你按照题目要求抽出卡片,完成下列问题(1)从中取出3张卡片,使这3张卡片上数字的乘积最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?25. (12分)(1)已知十(-a) ]=5,求a的相反数(2)已知x的相反数是2,且2x+3a=5,求a的值.26.(10分)已知点A, B是数轴上的点,且点A表示数-3,请参照图并思考,完成下列各题:I - ।।- .....................-5 -4 -3 -2 -1 0 1 2 3 4 5(1)将A点向右移动4个单位长度,那么终点B表示的数是 ,此时A, B两点间的距离是.(2)若把数轴绕点A对折,则对折后,点B落在数轴上的位置所表示的数为.(3)若(1)中点B以每秒2个单位长度沿数轴向左运动,A不动,多长时间后,点B与点A距离为2个单位长度?试列式计算.七年级数学答案第一部分1.A2.B3.C4.C5.-76. -50m7.厘米.8. ±5.9.4 10.12…}6无理数集合:{-3 , 3.3030030003…,… }12.图略1c / C 、 C , 、—V0.5V- (-3) v 3.5V- (-5) 2(2) 7 (3)0 (4)-12 2(2)-7 (3)0 (4)-159 152(-3户 15 (-3)=-45(2) 32 +6-(- 1)=16 + : =173 3 3 316 .解:输入-1, -1+4-(-3)-5=3+3-5=1<2重新输入1, 1+4-(-3)-5=5+3-5=3>2,可以^^出.输出的结果为 3.17 . (1 )根据题意可得:向东走为“ +”,向西走为“-”;则收工时距离等于 +17-9+7-17-3+12-6-8+5+16=+14 (千米), 所以最后到达出发点正东方向移动 14千米处.(2)最远处离出发点有 17千米; (3)从开始出发,一共走的路程为 |+17|+|-9|+|+7|+|-17|+|-3|+|+12|+|-6|+|-8|+|+5|+|+16|=100 (千米),故从出发开始到结束油耗为 100X 8=800 (升).第二部分18 .C19.D20.-521. ±222.-323.-2924 . (1)抽取的3张卡片是-7、-5、+4,乘积的最大值为140. (2)抽取的2张卡片是-7、1,商的最小值-7.25 .(1)由-[-(-a) ]=5,得-a=5,则 a=-5.,a 的相反数是 8. (2)由x 的相反数是2,知x=-2,则-4+3a=5,有3a=9,解得:a=3 26.(1)1,4. (2)-7(3)[ 1-(-3)-2] 2=1,+1-(-3)+2] 2=3,+所以,1或3秒钟后,点B 与点A 距离为2个单位长度.-|-4|<-|2|<-1 13.(1)-11414.(1)10 15.(1)(40-25)。

初一数学 七年级数学上册第一次月考试卷附答案

初一数学 七年级数学上册第一次月考试卷附答案

初一数学七年级数学上册第一次月考试卷附答案一、选择题(共10题,每题2分,共20分)1. 请计算:3 + 4 × 5 =A. 23B. 35C. 53D. 702. 请计算:(2 + 3) × (4 - 1) =A. 6B. 9C. 12D. 153. 下列哪个是负数?A. 0B. 5C. -2D. 34. 若a = 3, b = 4,c = 5,则a × b ÷ c 等于A. 0.12B. 1.2C. 12D. 1205. 将7.6写成分数的形式是A. 3/5B. 3 1/5C. 7/6D. 7 3/56. 下列哪个数是最大的?A. -4B. -2C. 0D. 27. 请计算:84 ÷ 6 =A. 7B. 12C. 14D. 218. 下列哪个是正数?A. 0B. -5C. -3D. 49. 请计算:2 + 4 × (5 - 3) =A. 6B. 10C. 12D. 1410. 下列哪个分数是最小的?A. 3/4B. 2/3C. 5/8D. 1/2二、填空题(共10题,每题2分,共20分)1. 小华去动物园看了___只大象。

2. 我们有____队篮球队伍。

3. 今天是2022年2月28日,再过____天就是春节了。

4. (-2) × 5 = ______5. 要把一个13升的装满,需要倒入____升的液体。

6. 一个直角三角形的两条直角边长度分别是3cm和4cm,斜边长度为_____.7. 两个相等的数相加的和是64,这个数是____.8. 60 ÷ 15 = ______.9. 计算:21 × 6 ÷ 7 = ______.10. 如果今天是星期五,再过____天就是星期天。

三、简答题(共5题,每题10分,共50分)1. 请解释下列数学术语的含义并举例:- 分数- 分子和分母- 整数2. 请计算下列算式的值:- 15 ÷ 3 + 2 × 4- 12 - 3(4 - 2)3. 请写出下列数的相反数:- 5- 1/3- 04. 请计算下列算式的积:- 3 × (-4)- (-5) × (-2)5. 请计算下列算式的商:- (-21) ÷ 3- 18 ÷ (-6)初一数学七年级数学上册第一次月考试卷答案一、选择题(共10题,每题2分,共20分)1. B2. D3. C4. B5. D6. D7. C8. D9. C10. B二、填空题(共10题,每题2分,共20分)1. 32. 23. 24. -105. 136. 57. 328. 49. 1810. 2三、简答题(共5题,每题10分,共50分)1.- 分数:指由分子和分母组成的数,分子表示被分割的数量,分母表示分割成几份。

七年级上册数学第一次月考试题及答案

七年级上册数学第一次月考试题及答案

第一学期七年级数学第一次月考试卷一、选择题(每小题3分,共36分)1. –5的绝对值是( ).A.5B.–5C.51D.51- 2.在–2,+3.5,0,32-,–0.7,11中.负分数有( ). A.l 个 B.2个 C.3个 D.4个3.下列各组数中,相等的是( ).A.–1与(–4)+(–3)B.3-与–(–3)C.432与169 D.2)4(-与–16 4. 下面说法正确的有( ).① π的相反数是-3.14;②符号相反的数互为相反数;③ -(-3.8)的相反数是3.8;④ 一个数和它的相反数不可能相等;⑤正数与负数互为相反数.A.0个B.1个 C.2个 D.3个 5.在x 2+2, +4, ab 2, -1, -5x , 0这6个式子中,整式有( )A.6个B.5个C.4个D.3个6.下列结论正确的是( )A.单项式的系数是,次数是4B.单项式-xy 2z 的系数是-1,次数是4C.单项式m 的次数是1,没有系数D.多项式2x 2+xy 2+3是二次三项式 7.单项式x m-1y 3与4xy n 的和是单项式,则n m 的值是( )A.3B.6C.8D.98.已知a+b=4,c-d=-3,则(b-c )-(-d-a )的值为( )A.7B.-7C.1D.-1 9.下列方程中,是一元一次方程的是( )A.x2﹣4x=3 B.x=0 C.x+2y=1 D.x﹣1=10.已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a﹣5=2b B.3a+1=2b+6 C.3ac=2bc+5 D.a=11.一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2 B.x﹣1=(13﹣x)+2 C.x+1=(26﹣x)﹣2 D.x+1=(13﹣x)﹣2 12.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店()A.不赔不赚 B.赚了10元C.赔了10元D.赚了50元二、填空题(每题3分,共15分)13.最大的负整数是,绝对值最小的有理数是.14.用科学记数法表示:2 450 000 000 000=15.如果x=2是关于x的方程2x+3m-1=0的解,那么m的值是.16.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/时,则A港和B港相距千米.17.平移小菱形◇可以得到美丽的“中国结”图案,下面四个图案是由◇平移后得到的类似“中国结”的图案,按图中规律,第20个图案中,小菱形的个数是________.三、解答题(共69分)18.计算1. (-10)+8×(-2)2-(-4)×(-3) (每小题5共10分)1122(1)(1)x x x x ⎡⎤---=-⎢⎥2.19.化简:(每小题6共12分)1. (5a -3a 2+1)-(4a 3-3a 2);2. -2(ab -3a 2)-[2b 2-(5ab +a 2)+2ab].20先化简,再求值:3(2x 2-3xy -5x -1)+6(-x 2+xy -1),其中x 、y 满足(x +2)2+|y -23|=0 (8分)21.解方程:(每小题5共20分)1. 76163x x +=-;2. )5(4)3(2+-=-x x3 . . 4.22.用白铁皮做罐头盒,每张铁片可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?(9分)23.公园门票价格规定如下表:(10分)购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?参考答案一、选择题1. A 2 .B 3 .B 4 .A 5. C 6. B 7. D 8 .A 9. B 10 .C 11 . B 12 . C二、填空题13 -1 0 14. 2.45×101215 , -1 16 , 504 17 , 800三、解答题18 (1)(-10)+8×(-2)2-(-4)×(-3)=(-10)+8×4-12=-10+32-12=10.20(1)原式=5a -3a 2+1-4a 3+3a 2=-4a 3+5a +1.(2)原式=-2ab +6a 2-2b 2+5ab +a 22ab =7a 2+ab -2b 2.21.原式=6x 2-9xy -15x -3-6x 2+6xy -6=-3xy -15x -9.由(x +2)2+|y -23|=0,得x =-2,y =23.当x =-2,y =23时,原式=-3×(-2)×23-15×(-2)-9=4+30-9=25.22.解方程(1)x=-2 (2)y=2/3(3).解:(1)去分母,得18x ﹣6﹣20x+28=24,移项、合并同类项,得﹣2x=2,化未知数的系数为1,得x=﹣1;(4)x=12/2322.用白铁皮做罐头盒,每张铁片可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?解:设x张制盒身,则可用(150﹣x)张制盒底,列方程得:2×16x=43(150﹣x),解方程得:x=86.答:用86张制盒身,64张制盒底,可以正好制成整套罐头盒.23.解:(1)设初一(1)班有x人,则有13x+11(104﹣x)=1240或13x+9(104﹣x)=1240,解得:x=48或x=76(不合题意,舍去).即初一(1)班48人,初一(2)班56人;(2)1240﹣104×9=304,∴可省304元钱;(3)要想享受优惠,由(1)可知初一(1)班48人,只需多买3张,51×11=561,48×13=624>561∴48人买51人的票可以更省钱.附赠材料:如何提高答题的准确率审题三原则如何提高答题的准确率?这是很多初中生想要解决的一个问题。

人教2024版七年级数学第一次月考试卷

人教2024版七年级数学第一次月考试卷

七年级数学 第1页,共4页七年级数学 第2页,共4页…○…………密…………封…………线…………内…………不…………要…………答…………题…………○………准考证号: 姓名: 班级:2024-2025学年度第一学期第一次学情评估试卷数学(时间:120分钟满分:120 分)题 号 一 二 三 四 五 总分 得 分一、选择题(3分×10=30分) 1、2020的绝对值是( )A 、2020B 、-2020C 、±2020D 、202012、下列计算正确的是( )A 、-2+1=-3B 、-5-2=-3C 、-5-2=-7D 、1)1(2-=- 3、下列各对数互为相反数的是( )A 、-8与-(+8)B 、-(+8)与8C 、-2与1/2D 、-8与+(-8)4、在3-,0.3,0,13这四个数中,绝对值最小的数是( ) A .3- B .0.3 C .0 D .135、两个互为相反数的有理数的和为( )A 、正数B 、负数C 、0D 、负数或0 6、温度由–4°C 上升7°C 后温度是 A .3°CB .–3°CC .11°CD .–11°C7、节约是一种美德,据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为( )A .3.5×107B .3.5×108C .3.5×109D .3.5×10108、数轴上点M 到原点的距离是5,则点M 表示的数是( )A .5B .﹣5C .5或﹣5D .不能确定 9、已知︱x ︱=2,︱y ︱=3,且x ·y<0,则x +y=( )A 、5B 、-1C 、-5或-1D 、±110、下列说法中:①减去一个负数等于加上这个数的相反数;②正数减负数,差为正数;③零减去一个数,仍得这个数;④两数相减,差一定小于被减数;⑤两个数相减,差不一定小于被减数;⑥互为相反数的两数相减得零。

初一数学上册第一次月考试卷四套

初一数学上册第一次月考试卷四套

初一数学上册第一次月考试卷1一、选择题 1、—3的相反数是 ( )A 、13 B 、-3 C 、—13D 、32、 下列式子中,正确的是 ( ) A 、∣-5∣ =5 B 、-∣-5∣ = 5 C 、215.0-=- D 、2121=--3、下列算式正确的是 ( )A 、(—14)—5= —9B 、0 —(—3)=3C 、(—3)—(—3)=—6D 、∣5—3∣= —(5—3) 4、下列说法正确的是 ( ) A .整数包括正整数和负整数; B.零是整数,但不是正数,也不是负数; C.分数包括正分数、负分数和零; D.有理数不是正数就是负数 5、下列各数中互为相反数的是( )A 、12-与0.2B 、13与-0.33C 、-2.25与124D 、5与-(-5)6、在0,-1,∣-2∣,-(-3),5,3.8,215-,16中,正整数的个数是( )A 、1个B 、2个C 、3个D 、4个7、一潜水艇所在的海拔高度是-60米,一条海豚在潜水艇上方20米,则海豚所在的高度是海拔 ( ) A. -60米 B. -80米 C.-40米 D.40米8、下列说法正确的是 ( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小 A ①② B ①③ C ①②③ D ①②③④9、一个数的相反数比它的本身大,则这个数是 ( )A.正数B.负数C.0D.负数和010、若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则mba cd m ++-2 值为 ( )A 、3- B 、3 C 、5- D 、3或5- 11、比较—2.4,—0.5,—(—2),—3的大小,下列正确的是 ( )A 、—3>—2.4>—(—2)>—0.5B 、—(—2)>—3>—2.4>—0.5C 、—(—2)>—0.5>—2.4>—3D 、—3>—(—2)>—2.4>—0.5二、填空题:12、321-的倒数是321-的相反数是的倒数是___________。

初一数学第一学期第一次月考试卷两份(附答案)

初一数学第一学期第一次月考试卷两份(附答案)

数学月考试题(一)一、选择题(每小题3分,共24分)1.如果水库的水位高于正常水位5m 时,记作+5m ,那么低于正常水位3m 时,应记作( )A .-3mB .+3mC .+mD .﹣5m2.下列各数中,不是有理数的是( ) A .3.14 B .C .D .0.10100100013. 下列说法中,正确的是( ) A .0是最小的整数 B .最大的负整数是﹣1C.有理数包括正有理数和负有理数D .一个有理数的平方总是正数4.下列算式正确的是 ( ) A .(-14)-5=-9 B .0-(-3)=3 C .(-3)-(-3)=-6 D .()5353-=--5.如图,在数轴上点M 表示的数可能是( )A .1.5B .﹣1.5C .﹣2.4D .2.46.若a 的倒数为﹣,则a 是( )A .B .﹣C .2D .﹣27.下列各式:①﹣(﹣2);②﹣|﹣2|;③﹣22;④﹣(﹣2)2,计算结果为负数的个数有( ) A .4个B .3个C .2个D .1个8.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是 ( ) A .点C B .点D C .点A D .点B二、填空题(每小题3分,共30分)9. ―2的相反数是_______;10.比较大小:-0.3 ____11.今年2月份某市一天的最高气温为10℃,最低气温为﹣7℃,那么这一天的最高气温比最低气温高.12.绝对值小于3的所有整数和是.13.如果3-m与2m+1互为相反数,则m=________。

14.若|x+2|+|y﹣3|=0,则x+y的值为.15.在数轴上,点A表示的数是1,那么在数轴上与A相距3个单位长度的点表示的数是________。

16.若|﹣x|=5,则x=17.如图,是一个简单的数值计算程序,当输入的x的值为5,则输出的结果为18.a是不为1的有理数,我们把11-a称为a的差倒数.如:2的差倒数是11-2=-1,-1的差倒数11-(-1)=12.已知a1=-13,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,则a2011=________.三、解答题(共96分)19.(8分)把下列各数在数轴上表示,并从小到大的顺序用“<”连接起来.+(﹣4),4,0,﹣|﹣2.5|,﹣(﹣3).20.(8分)若a、b互为相反数,c、d互为倒数,m(m<0)的绝对值为2,求2m﹣cd+的值。

七年级初一数学上册第一次月考试卷3套(含答案)

七年级初一数学上册第一次月考试卷3套(含答案)
3.2020年10月1日上午盛大的国庆阅兵在天安门广场举行,这也是人民军队改革重塑后的首次集中亮相。此次阅兵编69个方(梯队)和联合军团,总规模约1.5万人,将“1.5万”用科学记数法表示应为()
A.1.5×103B.15×103C.1.5×104D.15×104
4下列各式运算正确的是()
A. B. C. D.
卷Ⅱ(时量:20分钟总分:20分)
1.(2分)比较大小: (用“>、<或者=”填空)
2.(2分)如果a,b,c,d均不为零,则 .
3.(8分)计算与化简:
(1) (2)
(3) (4)化简:
4.(3分)2020加上它的 得到一个数,再加上所得的数 的又得到一个数,再加上这次得数的 又得到一个数,...,以此类推,一直加到上一次得数的 .最后得到的数是多少?
A. B. C. D.
10.正方形纸板ABCD在数轴上的位置如图所示,点A,D对应的数分别为1和0,若正方形纸板ABCD绕着顶点顺时针方向在数轴上连续翻转,则在数轴上与2020对应的点是()
A. A B. B C. C D. D
第9题图第10题图
二、填空题(共8小题,每题3分)
11.比较大小: (填“>”或“<”)
负有理数数集合:{...};
正分数集合:{...};
自然数集合:{...};
非正整数集合:{...};
20.(15分)计算:
(1) (2)
(3) (4)
(5)
21.(6分)已知ab互为倒数,c能够使得 有最小值, ,且 ,求 的值。
22.(8分)121路公交车沿东西方向行驶,如果把车站的起点记为原点0,向东行驶记为正,向西行驶记为负,其中一辆车从车站出发以后行驶的路程如下表

福建省厦门第一中学2024—2025学年上学期七年级10月月考数学试卷(解析版)

福建省厦门第一中学2024—2025学年上学期七年级10月月考数学试卷(解析版)

福建省厦门第一中学2024—2025学年度第一学期10月学业调研评估初一年数学学科练习第Ⅰ卷说明:(1)考试时间60分钟.满分120分.(2)所有答案都必须写在答题卡指定方框内,答在框外一律不得分.(3)选择题用2B铅笔填涂,其余一律用黑色水笔做答;不能使用涂改液/带.第Ⅰ卷(选择题)一、选择题(每题3分,共30分)1. 如果收入100元记作+100元.那么−80元表示()A. 支出20元B. 支出80元C. 收入20元D. 收入80元【答案】B【解析】【分析】根据正负数的意义进一步求解即可.【详解】∵收入100元记作+100元,∴−80元表示支出80元,故选:B.【点睛】本题主要考查了正负数的意义,熟练掌握相关概念是解题关键.2. –2017的相反数是()A. -2017B. 2017C.12017− D.12017【答案】B【解析】【分析】一个数的相反数就是在这个数前面添上“-”号,据此可得.【详解】解:–2017的相反数是2017,故选B.【点睛】本题考查了相反数的概念.解题的关键是掌握相反数的概念.只有符号不同的两个数互为相反数.3. 数轴上的点A到原点的距离是5,则点A表示的数为()A. -5B. 5C. 5或-5D. 2.5或-2.5【答案】C【解析】【详解】根据题意知:到数轴原点的距离是5的点表示的数,即绝对值是5的数,应是±5.故选C .4. 化学老师在实验室中发现了四个因操作不规范沾染污垢或被腐蚀的砝码,经过测量,超出标准质量的部分记为正数、不足的部分记为负数,它们中质量最接近标准的是( )A. B. C. D.【答案】B【解析】【分析】求出超过标准的克数和低于标准的克数的绝对值,绝对值小的则是最接近标准的球.本题考查正数与负数以及绝对值,熟练掌握绝对值的意义是解题的关键.【详解】解:通过求4个排球的绝对值得:| 1.1| 1.1−=,|0.6|0.6−=,|0.9|0.9+=,|1|1+=.0.6−的绝对值最小,所以这个砝码是最接近标准的球.故选:B .5. 数轴上的点M 对应的数是2−,那么将点M 向右移动4个单位长度,此时点M 表示的数是( )A. 6−B. 2C. 6−或2D. 6 【答案】B【解析】【分析】本题考查了数轴上数的表示以及数轴上点的变化规律,熟练掌握点在数轴上移动的规律是解题的关键.根据点在数轴上移动的规律,左减右加;列出算式,计算即可;【详解】解:242−+=故选:B .6. 3x =,4y =,则x y −的值是( )A. 7−B. 1C. 1−或7D. 1或7−【答案】C【解析】【分析】本题考查绝对值的意义,有理数的减法;求出y 的值,然后代入x y −中即可求出答案.【详解】解:由题意可知:3x =,4y =±,当4y =时,341x y −=−=−,当4y =−时,347x y −=+=,故选:C .7. 魏晋时期数学家刘徽在《九章算术注》中用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(白色为正,黑色为负),图(1)表示的是()()235431++−=−的计算过程,则图(2)表示的计算过程是( )A. ()()22231−++=B. ()()223210−++=C. ()()223210++−=−D. ()()22231++−=−【答案】B【解析】 【分析】由白色算筹表示正数,灰色算筹表示负数,即可列式计算.详解】解:由题意可得:图(2)表示的计算过程是()()223210−++=, 故选B .【点睛】本题考查正负数的表示,关键是明白白色算筹表示正数,灰色算筹表示负数.8. 有理数a 、b 在数轴上的位置如图所示,则下列各式运算结果符号为正的是( )A. a b −B. a bC. abD. a b +【答案】D【【解析】 【分析】本题考查了数轴,有理数的加减乘除运算法则,根据数轴可得0,a b a b <<<,进而逐项分析判断,即可求解. 【详解】解:根据数轴可得0,a b a b <<<,∴0a b −<,0a b<,0ab <,0a b +>, 故选:D .9. 体育课上全班女生进行百米测验,达标成绩为18秒,第一小组8名女生的成绩如下:30.500.11 2.6 1.60.3−+−−−+−,,,,,,,其中“+”表示成绩小于18秒,“﹣”表示成绩大于18秒,则这个小组的达标率是( )A. 25%B. 37.5%C. 50%D. 62.5%【答案】B【解析】【分析】根据正负数的意义可得达标的有3人,然后计算即可.【详解】解:由题意得,达标的有3人, 则这个小组达标率是3100%37.5%8×=, 故选:B .【点睛】本题考查了正负数的意义,有理数的除法,根据正负数的意义得出达标的人数是解题的关键. 10. 已知整数1234a a a a ……,,,,满足下列条件:12101a a a ==−+,,324323a a a a ++……-,=,=-依此类推,则2023a 的值为( )A. 1011−B. 1010−C. 2022−D. 2023−【答案】A【解析】【分析】分别求出234567a a a a a a ,,,,,的值,观察其数值的变化规律,进而求出2023a 的值.【详解】解:根据题意可得, 10a =,2111a a +=-=-,3221a a +=−=-,的4332a a =−+=−,5442a a =−+=−,6553a a =−+=−,7663a a =−+=−,…观察其规律可得,202312022−=,202221011÷=,20231011a ∴=−,故选:A .【点睛】本题考查了数的变化规律,通过计算前面几个数的数值观察其规律是解本题的关键,综合性较强,难度适中.第Ⅱ卷(非选择题)二、填空题(第11题每空2分,其余每空3分,共25分)11. (1)化简:2−−=______;()2−−=______;2128−=______; (2)9−的倒数是______; (3)比较大小:32−______43−(填“>”或“<”). 【答案】 ①. 2− ②. 2 ③. 34−##0.75− ④. 19− ⑤. < 【解析】【分析】本题主要考查了求一个数的绝对值,化简多重符号,有理数大小的比较,求一个数的倒数,根据相关的定义进行计算即可.(1)根据绝对值的意义,相反数定义进行计算即可;(2)根据“乘积为1的两个数互为倒数”进行计算即可;(3)根据两个负数比较大小的方法:绝对值大的反而小,进行比较大小即可.【详解】解:(1)2=2−−−;()2=2−−;213284−=−; 故答案为:2−;2;34−;(2)9−的倒数是19−; 故答案为:19−;(3)3322−=,4433−=, ∵3423>, ∴3423−<−, 故答案为:<.12. 比3−小8的数是________.【答案】11−【解析】【分析】本题主要考查了有理数减法计算,只需要求出38−−的结果即可得到答案.【详解】解:3811−−=−,∴比3−小8的数是11−,故答案为:11−.13. 如图,数轴上的两个点分别表示3−和m ,请写出一个符合条件的m 的整数值:______________.【答案】4−(答案不唯一). 【解析】【分析】本题主要考查数轴,解题关键是熟知当数轴方向朝右时,右边的数总比左边的数大.由题图可知,3m <−,写出一个符合条件的m 值即可.【详解】解:由题图可知,3m <−,∴符合条件的m 的整数值可以为4−(答案不唯一).故答案为:4−(答案不唯一). 14. 绝对值小于3的所有整数的和是______.【答案】0【解析】【分析】根据绝对值的性质得出绝对值小于3的所有整数,再求和即可.【详解】解:绝对值小于3的所有整数有:21012−−,,,,,它们的和为:0,故答案为:0.【点睛】本题考查了绝对值的性质,解题的关键是熟知绝对值的概念及性质,并正确求一个数的绝对值.15. 若320x y ++−=,则x y +=_________________ . 【答案】1−【解析】【分析】本题主要考查绝对值的非负性,熟练掌握绝对值的非负性是解题的关键.根据绝对值的非负性求出x y 、的值即可得到答案.【详解】解: 320x y ++−=, 30x ∴+=,20y −=, 3,2x y ∴=−=,321x y ∴+=−+=−,故答案为:1−.16. 在一条可以折叠的数轴上,点A ,B 表示的数分别是10−,3,(如图1)以点C 为折点,将此数轴向右对折,折叠后若点A 落在点B 的右边(如图2),且A 、B 两点距离是1,则点C 表示的数是______.【答案】3−【解析】【分析】本题主要考查数轴,熟练掌握数轴上两点的距离与点表示的数的运算关系是解答的关键.先根据A B 、表示的数求得的长,再由折叠后AB 的长求得BC 的长,进而可确定点C 表示的数.【详解】解:A B ,表示的数分别是10−,3,()31013AB ∴=−−=,∵折叠后点A 在点B 的右边,且1AB =,131162BC +∴=−=, C ∴点表示的数是363−=−,故答案为:3−.三、解答题(本大题共8题,共65分)17. 把下列各数的序号填在相应的集合里:①35−,②0.2,③47−,④0,⑤122−,⑥π,⑦ 2.3 ,⑧320+. 整数集合:{_________________________}⋅⋅⋅;负分数集合:{_________________________}⋅⋅⋅;正有理数集合:{_________________________}⋅⋅⋅.【答案】①④⑧;③⑤⑦;②⑧【解析】【分析】本题考查了实数的分类,掌握有理数的概念和实数的分类方法是解题的关键.按照实数的分类填写,实数分为有理数和无理数,无理数是无限不循环小数,有理数分为整数和分数,整数分为正整数,0和负整数,分数分为正分数和负分数.【详解】解:整数集合{①35−,④0,⑧320+…}负分数集合{③47−,⑤122−,⑦ 2.3 …} 正有理数集合{②0.2,⑧320+…}., 故答案为:①④⑧;③⑤⑦;②⑧.18. 将下列各数在数轴上表示出来,并用“<”把这些数连接起来.5+,0.5−,4−,0,112,123− 【答案】11420.501532−<−<−<<<+,数轴见解析 【解析】【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来即可.【详解】解:如图所示,11420.501532−<−<−<<<+; 19. 计算(1)()()4282924−−−−+−;(2)()11324864 −−+×−;(3)()()()2584−×+−÷−;(4)()1481227349−÷×−−−÷.【答案】(1)27−(2)11−(3)8−(4)7−【解析】【分析】本题主要考查了有理数混合运算,解题的关键是熟练掌握有理数混合运算法则,“先算乘方,再算乘除,最后算加减,有小括号的先算小括号里面的”.(1)根据有理数加减混合运算法则进行计算即可;(2)根据乘法分配律进行计算即可;(3)根据有理数四则混合运算法则进行计算即可;(4)先计算绝对值,然后根据有理数四则混合运算法则进行计算即可.【小问1详解】解:()()4282924−−−−+−4282924=−−+−32292432427=−;【小问2详解】 解:()11324864−−+×−()()()113242424864=−×−−×−+×−3418=+−11=−;【小问3详解】解:()()()2584−×+−÷−102=−+8=−;【小问4详解】 解:()1481227349−÷×−−−÷ ()4481999=−××−− 169=−+7=−.20. 出租车沿东西方向的道路上来回行驶,早上从A 地出发,中午到达B 地,约定向东为正方向,当天行驶路程记录如下:4+,6−,8+,5−,4,6+,10+,9−.(单位:千米) (1)B 地在A 地什么方向?距离A 地多远?(2)若汽车每千米耗油0.1升,出发前汽车油箱有油10升,求到达B 地后汽车油箱还剩多少升油?【答案】(1)B 地在A 地的正东方向,距离A 地12千米(2)到达B 地后汽车还剩4.8升油【解析】【分析】本题考查有理数四则混合运算应用、正负数的应用,关键是理解题意,正确列出算式. (1)将记录数据相加,根据和的符号可作出判断;(2)求得记录数据绝对值的和,即为行驶的路程,进而列式计算即可.【小问1详解】解:∵()()()46854610912++−++−++++−=(千米), ∴B 地在A 地的正东方向,距离A 地12千米.小问2详解】 解:这一天走的总路程为:46854610952+−++−++++−=(千米), 应耗油520.1 5.2×=(升), 10 5.2 4.8−=(升), 答:到达B 地后汽车还剩4.8升油.21. 食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负来表示,记录如下表: 与标准质量的差值(单位:克) 5− 2− 0 1 3 6的【袋数1 4 3 4 5 3(1)这批样品的平均质量比标准质量是超过还是不足?平均每袋超过或不足多少克?(2)若每袋标准质量为450克,求抽样检测的样品总质量是多少?【答案】(1)这批样品的平均质量比标准质量多,平均每袋多1.2克(2)抽样检测的样品总质量是9024克【解析】【分析】本题主要考查了正负数的实际应用,有理数混合计算的实际应用,熟知相关计算法则是解题的关键.(1)根据有理数的加法,可得总质量比标准质量多,根据平均数的意义,可得答案;(2)根据标准质量加上比标准质量多的,可得答案.【小问1详解】解:根据题意,得:()()512403143563−×+−×+×+×+×+×()5841518=−+−+++24=(克), 平均质量为2420 1.2÷=(克), 答:这批样品的平均质量比标准质量多,平均每袋多1.2克;【小问2详解】45020249024×+=(克), 答:抽样检测的样品总质量是9024克.22. 已知有理数x 、y 满足||9x =,||5y =.(1)若0x <,0y >,求+x y 的值;(2)若||x y x y +=+,求x y −的值.【答案】(1)4−(2)4或14【解析】【分析】(1)先根据绝对值的定义和0x <,0y >求出x 和y 的值,再代入+x y 计算;(2)先根据绝对值的定义和||x y x y +=+求出x 和y 的值,再代入x y −计算【小问1详解】解:∵||9x =,||5y =,∴x =±9,y =±5.∵0x <,0y >∴x =−9,y =5,∴x +y =−9+5=−4.【小问2详解】解:∵||9x =,||5y =,∴x =±9,y =±5.∵||x y x y +=+,∴x +y ≥0,∴x =9,y =5或x =9,y =−5,∴x y −=9−5=4或x y −=9−(−5)=14.【点睛】本题考查了绝对值的定义和有理数的加减运算,正确求出x 和y 的值是解答本题的关键. 23. 定义新运算:11a b a b ∗=−,1a b ab⊗=(右边的运算为平常的加、减、乘、除). 例如:114373721∗=−=,11373721⊗==×. 若a b a b ⊗=∗,则称有理数,a b 为“隔一数对”.例如:1123236⊗==×,11123236∗=−=,2323⊗=∗,所以2,3就是一对“隔一数对”. (1)下列各组数是“隔一数对”的是 (请填序号) ①1,2a b ==; ②1,1a b =−=; ③41,33a b =−=−. (2)计算:(3)4(3)4(31415)(31415)−∗−−⊗+−∗−(3)已知两个连续的非零整数都是“隔一数对”.计算:1223344520202021⊗+⊗+⊗+⊗++⊗ .【答案】(1)①③;(2)12−;(3)20202021 【解析】【分析】(1)按照题干定义进行计算,判断是否满足条件即可;(2)直接根据题目定义分别计算各项,然后再合并求解即可;(3)根据定义进行变形和拆项,然后根据规律求解即可.【详解】解:(1)①1,2a b ==; ∵111122a b ∗=−=,11122a b ⊗==×, ∴a b a b ⊗=∗,则①是“隔一数对”;②1,1a b =−=; ∵11211a b ∗=−=−−,1111a b ⊗==−−×, ∴a b a b ⊗≠∗,则②不是“隔一数对”; ③41,33a b =−=−; ∵94131143a b −−∗=−=,1941433a b ⊗== −×−, ∴a b a b ⊗=∗,则③是“隔一数对”;故答案为:①③;(2)根据定义,原式()1111134343141531415−−+−−−×−− 111034(3)4−−+−−× 711212=−+ 12=−; (3)根据定义,原式1223344520202021=∗+∗+∗+∗++∗1111111111()()()()()1223344520202021=−+−+−+−++− 112021=− 20202021=. 【点睛】本题考查有理数的定义新运算,仔细审题,理解题干中的新定义,熟练掌握有理数的混合运算法则是解题关键.24. 数轴上有A ,B ,C 三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“关联点”.例:如图1所示,数轴上点A ,B ,C 所表示的数分别为1,3,4,因为3124312AB BC AB BC =−==−==,,,所以称点B 是点A ,C 的“关联点”.图1(1)如图2所示,点A 表示数2−,点B 表示数1,下列各数2,4,6所对应的点分别是C 1,C 2,C 3其中是点A ,B 的“关联点”的是 ;图2(2)如图3所示,点A 表示数10−,点B 表示数15,P 为数轴上一个动点:①若点P 在点B 的左侧,且P 是点A ,B 的“关联点”,求此时点P 表示的数;②若点P 在点B 的右侧,点P ,A ,B 中,有一个点恰好是其它两个点的“关联点”, 请求出此时点P 表示的数.图3【答案】(1)C 2 (2)①点P 35−,520,33−;②点P 表示的数为5540652,, 【解析】【分析】(1)分别求出点C 1,C 2,C 3到,A B 两点间的距离,再进行验证即可;(2)①分类讨论点P 在AAAA 之间和点P 在A 点左侧时的情况即可;②分类讨论点P 为点,A B 的“关联点”、点B 为点,A P 的“关联点”、点A 为点,B P 的“关联点”即可求解.【小问1详解】解:∵()11224,211AC BC =−−==−=∴点C 1不是点A ,B 的“关联点”∵()22426,413AC BC =−−==−=∴222AC BC =即:点2C 是点A ,B 的“关联点”∵()33628,615AC BC =−−==−=∴点3C 不是点A ,B 的“关联点”故答案为:2C【小问2详解】解:解:设点P 在数轴上表示的数为p①(i )当点P 在AAAA 之间时,若2AP BP =,则()10215p p +=− 解得:203p =若2BP AP =,则()15210p p −=+ 解得:53p =−(ii )当点P 在A 点左侧时,则2BP AP =,即:()15210p p −=−− 解得:35p =−故:点P 表示的数为35−,520,33−;②(i )当点P 为点,A B 的“关联点”时,则2PA PB =,即:()10215p p +=−解得:40p =(ii )当点B 为点,A P “关联点”时,则2AB PB =,即:()1510215p +=− 解得:552p =或2BP AB =,即:()1521510p −=+解得:65p =(iii )当点A 为点,B P 的“关联点”时,则2AP AB =,即:()1021510p +=+的解得:40p=故:点P表示的数为55 40652,,【点睛】本题以新定义题型为背景,考查了数轴上两点间的距离公式.掌握相关结论,进行分类讨论是解题关键.。

人教版数学七年级上册第一次月考数学试题含答案

人教版数学七年级上册第一次月考数学试题含答案

人教版数学七年级上册第一次月考数学试卷一、选择题(每小题3分,共36分)1、在下列各数:(2)-+,23-,41()3-,225-,2013(1)--,3--中,负数有()A.2个B.3个C.4个D.5个2、水池中的水位在某天八个不同时间测得的记录如下:(规定与前一天相比上升为正,单位:cm )+3,-6,-1,+5,-4,+2,-3,-2,那么这天水池中水位的最终变化情况是()A.上升6cmB.下降6cmC.没升没降D.下降26cm 3、下列各式中,一定成立的是()A.222(2)=- B.2222-=- C.33(2)2--=-- D.332(2)=-4、下列说法正确的是()A.有理数包括正整数、零和负分数B.a -不一定是整数C.-5和+(-5)互为相反数D.两个有理数的和一定大于每一个加数5、如图,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C ,若点C 表示的数为1,则点A 表示的数是()A.7B.3C.-3D.-26、下列结论正确的是()A.若x y =-,则x y =-B.若x y =-,则x y =C.若0a <,则()0a -->D.a -一定是负数7、若m 是有理数,则m m -一定是()A.零 B.非负数 C.正数D.负数8、小于2014且不小于-2013的所有整数的和是()A.0B.1C.2013D.20149、下列计算:①0-(-5)=-5;②(-3)+(-9)=-12;③293()342⨯-=-;④(-36)÷(-9)=-4.其中正确的个数是()A.1个B.2个C.3个D.4个10、下列各式中的大小关系成立的是()A.10.33-<-B.6756->- C.32(2)(2)->- D.910109->-11、按下面的程序计算,若开始输入的值为正数,最后输出的结果为656,则满足条件的的不同值最多有()A.2个B.3个C.4个D.5个12、在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为()A.1,2B.1,3C.4,2D.4,3二、填空题(每小题3分,共21分)13、1(1)3--的绝对值的倒数是.14、20122013(0.125)(8)-⨯-=.15、若21x +是-9的相反数,则x =.16、若21(2)0x y ++-=,则()()y x x y --=.17、若2a =-,则在3a -,4a ,24a,2a ,0这五个数中,最大的数是.18、已知a a =-,化简12a a ---=.19、绝对值比2大并且比6小的整数共有个.20、已知5a =,3b =,且a b b a -=-,那么a b +=.21、如图是一个由六个小正方体堆积而成的几何体,每个小正方体的六个面上都分别写着-1,2,3,-4,5,-6六个数字,那么图中所有看不见的面上的数字和是.22、从-3,-2,-1,4,5中取3个不同的数相乘,可得到的最大乘积为a ,最小乘积为b ,则()a b --÷=.23、在计算机程序中,二叉树是一种表示数据结构的方法.如图,一层二叉树的结点总数为1,二层二叉树的结点的总数为3,三层二叉树的结点总数为7,四层二叉树的结点总数为15…,照此规律,七层二叉树的结点总数为.三、解答题24、计算(每小题5分,共15分)(1)2152(0.6)33-÷-⨯(2)232211(3)(5)(2)18()23--+-÷--⨯--(3)2211113(()(24)(1)(324362⎡⎤⎡⎤-+-+-⨯---÷--⎢⎥⎢⎥⎣⎦⎣⎦25、(6分)把(1)--,112--,4,-3,5分别表示在数轴上,并用“<”号把它们连接起来.26、(4分)(探究题)①若数轴上点AB 对应的数分别是-1、-4,则线段AB 的中点C 对应的数是;②若数轴上点AB 对应的数分别是2、4,则线段AB 的中点C 对应的数是;③若数轴上点AB 对应的数分别是-2、3,则线段AB 的中点C 对应的数是;④若数轴上点AB 对应的数分别是a 、b ,则线段AB 的中点C 对应的数是.27、(6分)阅读下列材料并解决有关问题.我们知道,(0)0(0)(0)x x x x x x ⎧-<⎪==⎨⎪>⎩现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x-2|时,可令x+1=0和x-2=0,分别求得x=-1,x=2(称-1,2分别为|x+1|与|x-2|的零点值).在实数范围内,零点值x=-1和x=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)x <-1;(2)-1≤x <2;(3)x ≥2.从而化简代数式|x+1|+|x-2|可分以下3种情况:(1)当x <-1时,原式=-(x+1)-(x-2)=-2x+1;(2)当-1≤x <2时,原式=x+1-(x-2)=3;(3)当x ≥2时,原式=x+1+x-2=2x-1.综上讨论,原式=21(1)3(12)21(2)x x x x x ⎧-+<-⎪-≤<⎨⎪-≥⎩通过以上阅读,请你解决以下问题:(1)分别求出|x+3|和|x-5|的零点值;(2)化简|x+3|+|x-5|.参考答案一、选择题123456789101112C B A BD B B A B D C A二、填空题13、3414、-815、416、-2717、618、-119、620、-2或-821、-1322、12-23、127三、解答题24、(1)6(2)-31(3)518-25、-3<112--<(1)--<4<526、①-2.5②3③0.5④2a b+27、(1)|x+3|和|x-5|的零点值分别为-3、5.(2)当x<-3时,原式=2x+2;当-3≤x<5时,原式=8;当x≥5时,原式=2x-2.。

2023—2024学年度第一学期第一次月考试题 初一数学

2023—2024学年度第一学期第一次月考试题 初一数学

2023—2024学年度第一学期第一次月考试题初一数学试卷满分:150分 考试时间:120分钟一、选择(每小题3分,计24分.请把正确选项的字母填在答题纸相应的位置)1.43-的倒数是( ) A .43- B .34 C .34- D .43 2. 在,0,1,-2这四个数中,最小的数是( )A.B. 0C. 1D. -2 3.如图,表示的数轴正确的是( )A .B .C .D .4.若|2|2a a -=-,则a 的范围( )A .2a ≤B .2a >C .2a <D .2a ≥5.数a 、b 、c 在数轴上对应的位置如图,化简|a +b |﹣|c ﹣b |+|c +a ﹣b |的结果( )A .﹣bB .c ﹣aC .﹣c ﹣aD .2a +b6.已知有理数a 、b 、c ,其中a 是最大的负整数,b 是绝对值最小的数,c 是倒数等于本身的数,则a +b +c 的值是( )A .0B .﹣2C .﹣2或0D .﹣1或17.设[x ]表示不超过x 的最大整数,如[2.7]=2,[-4.5]=-5,则[3.7]和[-6.5]所表示的点在数轴上的距离是( )A. 4B. 11C. 10D.98.下列说法中,正确的个数是( )①若11a a=,则a ≥0;②若|a |>|b |,则有(a +b )(a ﹣b )是正数; ③A 、B 、C 三点在数轴上对应的数分别是﹣2、6、x ,若相邻两点的距离相等,则x =2;④若代数式2x +|9﹣3x |+|1﹣x |+2011的值与x 无关,则该代数式值为2021;⑤a +b +c =0,abc <0,则||||b c a c a b a b c +++++的值为±1. A .1个 B .2个 C .3个 D .4个二、填空(每小题3分,计30分.请把正确答案填在答题纸相应的位置)9.若海平面以上500米,记作+500米,则海平面以下100米可记作 .10.在数轴上,点A 表示的数是4,点B 与点A 的距离是5,则点B 表示的数是 . 11.若m ,n 为相反数,则m +(﹣2023)+n 为 .12. 绝对值不大于6的非负整数的和为 .13.若y x y x <==,8||,2||,则=+y x .14.数轴上一动点A ,向左移动2个单位长度到B ,再向右移动3个单位长度到C 点,若点 C 表示的数为5,则点A 表示的数为 .15.某公交车原坐有22人,经过4个站点时上下车情况如下(上车为正,下车为负):(+4,-8),(-5,6),(-3,2),(1,-7),则车上还有__ ______人.16.小明在写作业时不慎将一滴墨水滴在数轴上,根据图所示的数轴,请你计算墨迹盖住的所有整数的和为______.17.观察下列等式(式子中的“!”是一种数学运算符号)1!1=,2!21=⨯,3!321=⨯⨯,4!4321=⨯⨯⨯,…,那么计算的值是______.18.将正偶数按下表排列5列:根据上面规律,则2000应在______.!!20222023三、解答题(共96分.请写出必要的计算步骤或推演过程)19.计算(每题4分,共16分)(1)10+(-12) (2) (-12)-(-17)+(-10)(3) 18-2+(-2)×3; (4) )36()1279543(-⨯+-- 20.(本题8分)把下列各数填在相应的括号里:-5,13+,0.62,0,-6.4,173-,7 (1)正整数:{ …}; (2)负整数:{ …};(3)分数:{ …}; (4)整数:{ …};21.(本题8分)用数轴上的点表示下列各数: 12-, 3-- , ()3-- ,0, 2.5- ,并用“<”把它们连接起来.22.(本题满分10分)若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,求m 2﹣cd+的值。

初一数学上册第一次月考试卷

初一数学上册第一次月考试卷

初一数学上册第一次月考试卷一、选择题(每题3分,共30分)1. -2的相反数是()A. 2B. -2C. (1)/(2)D. -(1)/(2)2. 下列四个数中,最小的数是()A. 0B. -(1)/(2)C. -2D. 1.3. 计算:1 - (-2)的结果是()A. -1B. 1C. -3D. 3.4. 有理数a、b在数轴上的位置如图所示,则下列结论正确的是()(此处可画一个简单数轴,数轴上a在原点左边,b在原点右边,且a离原点距离比b离原点距离远)A. a > bB. a < -bC. -a < bD. -a > b.5. 一个数的绝对值是5,则这个数是()A. 5B. -5C. ±5D. (1)/(5)6. 计算:(-2)+3 - 5的结果是()A. -4B. 0C. 4D. 6.7. 如果规定向东为正,那么向西走3米记作()A. +3米B. -3米C. 3D. -3。

8. 某天的最高气温是5℃,最低气温是 -3℃,这天的温差是()A. 2℃B. -2℃C. 8℃D. -8℃.9. 下列式子中,正确的是()A. - -5 = 5B. -5 = -5C. -(-5) = 5D. -(-5) = -5.10. 若a = 3,b = 2,且a > b,则a + b的值为()A. 5或1B. -5或 -1C. 5或 -1D. 1或 -1。

二、填空题(每题3分,共15分)1. 比较大小:-3___-4(填“>”或“<”)。

2. 数轴上表示 -2的点与表示3的点之间的距离是___。

3. 绝对值不大于3的整数有___个。

4. 若a与 -2互为相反数,则a =___。

5. 计算:(-1)^2023=___。

三、解答题(共55分)1. (8分)计算:(1) (-3)+(-4)-(-11);(2) -2^2+(-3)×(-4)。

2. (8分)把下列各数在数轴上表示出来,并按照从小到大的顺序用“<”连接起来:-3,0,1.5,-1,(1)/(2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学第一学期月考试卷
(满分:100分;考试时间:120分钟)得分____________ 一、选择题(2分×12=24分)
12
12
1. -2的相反数是()
A. +2
B.
C. -
D. -2
2. 冬季某天我国三个城市的最高气温分别是-10℃,1℃,-7℃,它们任意两城市中最大
的温差是:()
A. 11℃
B. 17℃
C. 8℃
D.3℃
3. 关于0,下列几种说法不正确的是( ) ...
A. 0既不是正数,也不是负数
B. 0的相反数是0
C. 0的绝对值是0
D. 0是最小的数4. 一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的( )
A.24.70千克B.25.30千克C.24.80千克D.25.51千克
5. 如图,把一条绳子折成3折,用剪刀从中剪断,得到几条绳子? ( )
A、3
B、4
C、5
D、6
6. a、b为有理数,下列式子成立的是
2
33
7. 学校、家、书店依次座落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在( )
A. 在家
B. 在学校
C. 在书店
D. 不在上述地方
8. 火车票上的车次号有两个意义,一是数字越小表示车速快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京,根据以上规定,北京开往杭州的某一直快列车的车次号可能是( )
A.20 B.119 C.120 D.319
9. 一个有理数的平方是正数,那么这个有理数的立方是() A.整数 B.正数 C.负数 D.正数或负数10. 五个有理数的积为负数,则五个数中负数的个数是()
A.1
B.3
C.5
D.1或3或5
11. 下列说法中错误的是()
A、—a的绝对值为a
B、—a的相反数为a
C、1
a的倒数是a D、—a的平方等于a的平方
12. ……依次观察左边三个图形,并判断照此规律从左到右第四个图形是()
A、B、C、D、
二、填空(2分×10=20分)
13. 若某次数学考试标准成绩定为85分,规定高于标准记为正,两位学生的成绩分别记作:+9;-3,则两名学生的实际得分为_______ _______。

14. 数轴的三要素为__________________,___________________,_________________。

15. 环境污染日益严重,据统计,全球每分钟约有8500000吨污水排入江河湖海,这个排
污量用科学计数法表示为_____吨。

16. 池塘里浮萍面积每天长大一倍,若经7天长满整个池塘,问需_________天浮萍长满半
个池塘。

17. 赵老师的身份证号码是321022************,你可知道赵老师的生日是:___年___月___日。

18. 将一张完好无缺的白纸对折n次后,数了一下共有128层,则n=__________________.
19. 写出两个负数,比较它们的大小,并用“&lt;”或“&gt;”连接起来:_____ ______。

20. 用“数字牌”做24点游戏,抽出的四张牌分别表示2、-3、-4、6(每张牌只能用一次,可以用加、减、乘、除等运算)请写出一个算式,使结果为24:
________________________________________。

21. 若︱x︱+x=0,则x_______; 若x
x=-1,则x_________。

22. 规定一种新的运算:如,请比较
大小:(填>,<或=)。

三、解答题
23. 计算(3分×4=12分)
(1)22+(-4)+(-2)+4;(2)
(3)
--;(4) (-
(5)-;(6)-14-
24.(3分)将下列各数在数轴上表示出来,并按从小到大的顺序用“<”号连接起来: -32, -︱-2.5︱, -(-21
2), 0, -(-1)2008, -︱-4︱
25.(4分)把下列各数分别填入相应的集合里.
0,2008,
(1)正数集合:{…};
(2)负数集合:{…};
(3)整数集合:{…};
(4)分数集合:{…}.
26(5分)根据输入的数字,按图中程序计算,并把输出的结果填入表内:
27.(4分)已知|a|=3,|b|=5,且a<b,求a-b的值.
28.(6分)一振子从一点A开始左右来回振动8次,如果规定向右为正,向左为
负,这8次振动记录为(单位mm): +10,-9,+8,-6,+7.5,-6,+8,-7.
(1)求停止时所在位置距A点何方向,有多远?
(2)如果每毫米需时0.02秒,则共用多少秒?
29.(7分)下表列出了国外几个城市与首都北京的时差(带正号的表示同一时刻比北京时间早的时数),如北京时间的上午10:00时,东京时间的10点已过去了1小时,现在已是10+1=11:00。

(1)如果现在是北京时间8:00,那么现在的纽约时间是多少?(2分)(2)此时(北京时间8:00)小明想给远在巴黎姑妈打电话,你认为合适吗?(3分)为什么?
(3)如果现在是芝加哥时间上午6:00,那么现在北京时间是多少?(2分)30.(6分)已知与互为相反数。

(1) 求a,b的值.(2分) (2) 试求
式子
1ab
1
2
值。

(4分)
31. 探索性问题:(9分)
已知A,B在数轴上分别表示m,n。

(1)填写下表:(3分)

m,n
(3)在数轴上标出所有符合条件的整数点P使它到10和-10的距离之和为20,并求出所有这些整数的和。

(3分)
参考答案
一:AADCB DBBDD AA
二:13、94分82分14、原点单位长度正方向15、8.5×106 16、6 17、1978.7.5 18、7
19、答案不唯一20、答案不唯一21、x≤0,x&lt;0
22、&lt;
23、1、20 2、1 3、23 4、1 5、—96/5
6、1/6
24、略25、略26、略
27、1、a-b=-8 2、a-b=-2
28、(1)在A点右边5.5m处(2)1.23秒
29、(1)前一天晚上7点或前一天19点
(2)不合适,因为巴黎现在在当地时间是凌晨1点
(3)当天北京时间20点
30、(1)a=2 b=1 (2)原式= 2008/2009
31、(1)略(2)d=|m-n| (3)图略(4)和为0。

相关文档
最新文档