高考中解析几何命题特点分析
[中学联盟]辽宁省沈阳市第二十一中学高三数学专题复习总结学案:专题四-解析几何.doc
高考命题趋势纵观每年高考全国卷和有关省市自主命题卷,关于解析几何的命题有如下几个显著特点: 1 •高考题型:解析几何的试题一般是选择题、填空题、解答题都会出现。
2•难易程度:考查解析几何的选择题、填空题为基础题或中档题,解答题一般会综合考查, 以中等偏难试题为主。
3•高考热点:解析几何的热点仍然是圆锥曲线的性质,直线和圆锥曲线的位置关系以及轨 迹问题,仍然以考査方程思想及用韦达定理处理弦长和弦中点为重点。
坐标法使平面向量 与平面解析几何自然地联系并有机结合起来。
相关交汇试题应运而生,涉及圆锥曲线参数 的取值范围问题也是命题亮点复习备考方略1. 加强直线和圆锥曲线的基础知识,初步掌握了解决直线与圆锥曲线有关问题的基本技能 和基本方法。
2. 由于直线与圆锥曲线是高考考查的重点内容,选择、填空题灵活多变,思维能力要求 较高,解答题背景新颖、综合性强,代数推理能力要求高,因此有必要对直线与圆锥曲线 的重点内容、高考的热点问题作深入的研究。
3. 在第一轮复习的基础上,再通过纵向深入,横向联系,进一步掌握解决直线与圆锥曲 线问题的思想和方法,提高我们分析问题和解决问题的能力。
【内容解读】点与直线的位置关系有:点在直线上、直线外两种位置关系,点在直线外时, 经常考查点到直线的距离问题;点与圆的位置关系有:点在圆外、圆上、圆外三种;直线 与圆的位置关系有:直线与圆相离、相切、相交三点,经常用圆心到直线之间的距离与圆 的半径比较来确定位置位置关系;圆与圆的位置关系有:两圆外离、外切、相交、内切、 内含五种,一般用两点之间的距离公式求两圆之间的距离,再与两圆的半径之和或差比较。
【命题规律】本节内容一般以选择题或填空题为主,难度不大,属容易题1. 若圆” + / —2①一 4g = 0的圆心到直线x-y-^-a = 0的距离为乎,则a 的值为()2. 若直线y = x + b 与曲线y = 3-yj4x-x 2有公共点,则b 的取值范围是()A.[l-2V2,l + 2>/2]B.[ 1-72,3]考点一:点、直线. 第一讲: 直线和圆的位置关系问题A. 一2或2B.号或書C. 2 或0D. 一2或0C.卜1,1 + 2血] DJ1-2V2 ,3]3.圆Ox: 和圆ft: A/-4.F =0的位置关系是( (A) 相离 (B)相交 (C)外切 考点二:直线、圆的方程问题【内容解读】直线方程的解析式有点斜式、斜截式、两点式、•截距式、一般式五种形式, 各有特点,根据具体问题,选择不同的解析式来方便求解。
立体几何在高考中的命题分析-2023届高三数学一轮复习课件
由于 = 与 = ,底面正方形的边长相等,所以当 =
时,此时正四棱锥的底面积与高都是最小值,此时体积
取得最小值。
方法一
通过求导,判断函数的
单调性,来求最值
方法二
也可以通过三元的基本不
等式来求最大值
2、几何图形的内切球、外接球
(2020 年全国统一高考数学试卷(文科)
(2)夹角,距离问题;
(3)空间几何体的体积、表面积计算;
(4)空间几何体与球的组合体;
(5)立体几何与其它知识的交汇。
3、具体措施:
(1)抓源固本,把握通性通法
近年高考命题的一个显著变化是:由知识立意转为能力立意,在知识网络的交汇点处设计试
题,往往遵循大纲又不拘泥于大纲。但是,对高考试卷进行分析就不难发现,许多题目都能
(1)第一问突破原来的“证明”题型,改为考查“距离”
(2) 从以往由已知棱长求值的直接结构变为需要通过给出的
条件得出棱长再求值的间接结构,且隐性考查的空间中垂直关
系的证明不是特别容易;(该题的一个难点)
方法一
A1
C1
B1
D
E
M
几何法对学生的空间
想象能力要求较高,
是学生的一大弱点,
所以学生通常选择向
(2)理解空间中点、线、面的位置关系,能用空间中线面平行、垂直的有关性质与判定
定理进行证明;
(3)能用向量方法证明线线、线面、面面的平行和垂直;
(4)能用向量方法求解线线、线面、面面的夹角问题;
(5)能用向量方法求解点到直线、点到平面的距离问题。
2、关注考查热点:
(1)空间线线、线面、面面的平行和垂直问题;
高考数学命题特点与命题趋势分析
高考数学命题特点与命题趋势分析一、高考命题特点2007年以来的新课标高考数学试题,从试卷的结构和试卷的难度来看,总体保持稳定,始终坚持对基础知识、数学思想方法进行考查,试卷宽角度、多视点、有层次地考查了数学理性思维能力,考生对数学本质的理解能力及考生的数学素养和潜能。
试卷对课程中新增内容和传统内容进行了科学、规范的结合考查,真正体现了新课程理念。
1.高考命题的主要变化由于新课标数学教材有较大的变化(特别是文科),因此在以能力考查为主导的思想统领下,高考命题进行了大刀阔斧的改革与创新,其主要变化表现在命题内容、能力考查力度、试题难度等方方面面。
大幅度调整命题内容,且变中求稳。
从2007年起,选择题、填空题中增加了复数、程序框图、空间几何体的三视图等,难度属于中低档题。
解答题中,概率统计和立体几何降低了难度;选做题是从选修4-1几何证明选讲、选修4-4坐标系与参数方程、选修4-5不等式选讲三道中选一题做答,分值10分,属中等难度。
这些变化,反映了近年高考命题理论水平的提高和技术水准的成熟。
2.考查内容重点突出,主题鲜明对于支撑学科体系的重点知识重点考查,考题几乎覆盖了高中所学知识的全部重要内容,例如:必做题5道,分别是三角(或数列)、概率统计、立体几何、解析几何、函数与导数,共60分。
注重知识综合方面的考查,在知识交汇点处出题,以不等式为例,不等式是解决数学问题的重要工具,在试卷中,单独出现不等式的题目并不多见,但是,它却多次出现在与其它知识交汇的题目中。
3.充满数学思辨,深入考查数学思想教育部考试中心对全国高考数学考试大纲的说明中指出:“数学的研究对象和特点体现在数学考试中就形成数学考试学科特点。
”数学考试的学科特点的第二个方面就是“充满思辨性:这个特点源于数学的抽象性,系统性和逻辑性,数学不是知识性的学科,而是思维型的学科。
因此,数学试题靠机械记忆,只凭直觉和印象就可以作答的很少,为了正确解答,就要求考生具备一定的观察,分析和推断能力。
高考专题:解析几何常规题型及方法
高考专题:解析几何常规题型及方法一、高考风向分析:高考解析几何试题一般共有3--4题(1--2个选择题, 0--1个填空题, 1个解答题), 共计20多分, 考察的知识点约为20个左右,其命题一般紧扣课本, 突出重点, 全面考察。
选择题和填空题考察直线, 圆, 圆锥曲线中的根底知识,大多概念性较强,小巧灵活,思维多于计算;而解答题重点考察圆锥曲线中的重要知识点及其综合运用,重在考察直线与圆锥曲线的位置关系、轨迹方程,以向量为载体,立意新颖,要求学生综合运用所学代数、三角、几何的知识分析问题,解决问题。
二、本章节处理方法建议:纵观历年全国各省市文、理高考试卷,普遍有一个规律:占解几分值接近一半的填空、选择题难度不大,中等及偏上的学生能将对应分数收入囊中;而占解几分值一 半偏上的解答题得分很不理想,其原因主要表达在以下几个方面:〔1〕解析几何是代数与几何的完美结合,解析几何的问题可以涉及函数、方程、不等式、三角、几何、数列、向 量等知识,形成了轨迹、最值、对称、围、参系数等多种问题,因而成为高中数学综合 能力要求最高的容之一〔2〕解析几何的计算量相对偏大〔3〕在大家的"拿可拿之分〞 的理念下,大题的前三道成了兵家必争之地,而排放位置比拟为难的第21题或22题〔有 时20题〕就成了很多人遗忘的角落,加之时间的限制,此题留白的现象比拟普遍。
鉴于解几的特点,建议在复习中做好以下几个方面.1.由于高考中解几容弹性很 大。
有容易题,有中难题。
因此在复习中基调为狠抓根底。
不能因为高考中的解几解答题 较难,就拼命地去搞难题,套新题,这样往往得不偿失;端正心态:不指望将所有的题攻 下,将时间用在稳固根底、对付"跳一跳便可够得到〞的常规题上,这样复习,高考时就 能保证首先将选择、填空题拿下,然后对于大题的第一个小问争取得分,第二小题能拿几 分算几分。
三、高考核心考点1、准确理解根本概念〔如直线的倾斜角、斜率、距离、截距等〕2、熟练掌握根本公式〔如两点间距离公式、点到直线的距离公式、斜率公式、定比分点的坐标公式、到角公式、夹角公式等〕3、熟练掌握求直线方程的方法〔如根据条件灵活选用各种形式、讨论斜率存在和不存在的各种情况、截距是否为0等等〕4、在解决直线与圆的位置关系问题中,要善于运用圆的几何性质以减少运算5、了解线性规划的意义及简单应用6、熟悉圆锥曲线中根本量的计算7、掌握与圆锥曲线有关的轨迹方程的求解方法〔如:定义法、直接法、相关点法、参数法、交轨法、几何法、待定系数法等〕8、掌握直线与圆锥曲线的位置关系的常见判定方法,能应用直线与圆锥曲线的位置关系解决一些常见问题四、常规题型及解题的技巧方法A:常规题型方面〔1〕中点弦问题具有斜率的弦中点问题,常用设而不求法〔点差法〕:设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。
从近三年高考解析几何大题谈起
【 0 年】 >, 方程为鲁 + =, 2 8 设b0 椭圆 0 鲁 l抛
二口 U
物线方 程为 x_ (_ ). L 6 如图所示 ,过点 F ( ,b 2 _ 8 0 +)
\
平 6直线方程 .
解
几 e
.
内 容
A C 要 B 求
v ,
v / v ,
作 轴的平行 线 , 与抛物线在 第一象限的交点为 G 已 . 知抛物线在点 G的切线经过椭圆的右焦点 .1求满 () 足条件的椭圆方程和抛物线方程 ;2 ( )设 A, 分别 是 椭 圆长轴 的左 、 右端点 , 试 探究在抛 物线上是 否存在
● , ‘
i 线的斜率 和倾斜角 t . 直
.
v/
( 二 ) 不 断创 新
圆
v/
,
关注 交汇
;
交 切 中点
,
核是线
t
m
/ t
-
数形结 合 的 思 想
.
从 三 年 的试 题 可 以 看 出 在 依 纲 靠 本 的 大 舞 台 上
,
曲线 与方 程
/
年年 有变 化
v,
v,
,
年年 有 新 的动作
,
,
试 题 所 问 三 年都有 所
有
数
.
求直 线与 圆锥 曲线 的交点 坐 标
国
}
从近 三年 高考解析
■江 门市新 会华 侨 中学
广东省 实行新课程后的三年高考中 ,每年 出一道 满分为 1 的解析几何大题. 4分 究其原 因 ,一是解 析几 何是中学数学 的一个重要 组成部分 ,二是 同学们在未
来学习 发展 中的需要所 致. 细细品读这 三年 的解 析
文科高考数学重难点04 解析几何(解析版)
重难点04 解析几何【命题趋势】解析几何一直是高考数学中的计算量代名词,在高考中所占的比例一直是2+1+1模式.即两道选择,一道填空,一道解答题.高考中选择部分,一道圆锥曲线相关的简单概念以及简单性质,另外一道是圆锥曲线的性质会与直线、圆等结合考查一道综合题目,一般难度诶中等.填空题目也是综合题目,难度中等.大题部分一般是以椭圆抛物线性质为主,加之直线与圆的相关性子相结合,常见题型为定值、定点、对应变量的取值范围问题、面积问题等.双曲线一般不出现在解答题中,一般出现在小题中.即复习解答题时也应是以椭圆、抛物线为主.本专题主要通过对高考中解析几何的知识点的统计,整理了高考中常见的解析几何的题型进行详细的分析与总结,通过本专题的学习,能够掌握高考中解析几何出题的脉略,从而能够对于高考中这一重难点有一个比较详细的认知,对于解析几何的题目的做法能够有一定的理解与应用.【满分技巧】定值问题:采用逆推方法,先计算出结果.即一般会求直线过定点,或者是其他曲线过定点.对于此类题目一般采用特殊点求出两组直线,或者是曲线然后求出两组直线或者是曲线的交点即是所要求的的定点.算出结果以后,再去写出一般情况下的步骤.定值问题:一般也是采用利用结果写过程的形式.先求结果一般会也是采用满足条件的特殊点进行带入求值(最好是原点或是(1,0)此类的点).所得答案即是要求的定值.然后再利用答案,写出一般情况下的过程即可.注:过程中比较复杂的解答过程可以不求,因为已经知道答案,直接往答案上凑即可.关于取值范围问题:一般也是采用利用结果写过程的形式.对于答案的求解,一般利用边界点进行求解,答案即是在边界点范围内.知道答案以后再写出一般情况下的步骤比较好写.一般情况下的步骤对于复杂的计算可以不算.方法点睛:求解椭圆或双曲线的离心率的方法如下:a c(1)定义法:通过已知条件列出方程组,求得、的值,根据离心率的定义求解离心率e的值;a c e(2)齐次式法:由已知条件得出关于、的齐次方程,然后转化为关于的方程求解;(3)特殊值法:通过取特殊位置或特殊值,求得离心率.【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)一、单选题一、单选题1.(2020·贵州贵阳一中高三月考(文))已知圆C :(x +3)2+(y +4)2=4上一动点B ,则点B 到直线l :3x +4y +5=0的距离的最小值为()A .6B .4C .2D.【答案】C【分析】因为圆心到直线的距离,Cl 4d ==所以最小值为,422-=故选:C .2.(2020·河南开封市·高三一模(文))已知双曲线的离心率与椭圆221(0)x y m m -=>的离心率互为倒数,则该双曲线的渐近线方程为( )2213x y m m +=A .B .C .D.y =y x =y x =y =【答案】B【分析】双曲线的离心率为221(0)x y m m -=>e =在椭圆中,由于,则,所以焦点在轴上2213x y m m +=0m >30m m >>y 所以椭圆的离心率为2213x y m m +=e =解得:1=2m =所以双曲线的渐近线方程为:2212x y -=y x =±故选:B3.(2020·四川成都市·高三一模(文))已知平行于轴的一条直线与双曲线x 相交于,两点,,(为坐标原()222210,0x y a b a b -=>>P Q 4PQ a=π3PQO ∠=O点),则该双曲线的离心率为().A BC D【答案】D【分析】如图,由题可知,是等边三角形,POQ △,,4PQ a =()2,P a ∴将点P 代入双曲线可得,可得,22224121a a a b -=224b a =离心率.∴c e a ===故选:D.4.(2020·河南周口市·高三月考(文))已知直线:与圆:l 340x y m -+=C 有公共点,则实数的取值范围为( )226430x y x y +-+-=m A .B .C .D .()3,37[]37,3-[]3,4[]4,4-【答案】B 【分析】因为圆的标准方程为,C ()()223216x y -++=所以,半径,()3,2C -4r =所以点到直线C :340l x y m -+=根据题意可知,解得.1745m+≤373m -≤≤故选:B5.(2020·全国福建省漳州市教师进修学校高三三模(文))已知直线:210l kx y k --+=与椭圆交于A 、B 两点,与圆交于C 、D22122:1(0)x y C a b a b +=>>222:(2)(1)1C x y -+-=两点.若存在,使得,则椭圆的离心率的取值范围是( )[2,1]k ∈--AC DB =1CA .B .C .D .10,2⎛⎤ ⎥⎝⎦1,12⎡⎫⎪⎢⎣⎭⎛ ⎝⎫⎪⎪⎭【答案】C【分析】直线,即为,可得直线恒过定点,:210l kx y k --+=(2)10k x y -+-=(2,1)圆的圆心为,半径为1,且,为直径的端点,222:(2)(1)1C x y -+-=(2,1)C D 由,可得的中点为,AC DB =AB (2,1)设,,,,1(A x 1)y 2(B x 2)y 则,,2211221x y a b +=2222221x y a b +=两式相减可得,1212121222()()()()0x x x x y y y y a b +-+-+=由.,124x x +=122y y +=可得,由,即有,2122122y y b k x x a -==--21k -- (2)2112b a……则椭圆的离心率.(0c e a ==故选:C6.(2020·全国高三其他模拟(文))已知,为的两个顶点,点()1,0A ()3,0B ABC :C在抛物线上,且到焦点的距离为13,则的面积为( )24x y =ABC :A .12B .13C .14D .15【答案】A【分析】解:因为点在抛物线上,设,C 24x y =()00,C x y 抛物线的准线方程为,24x y =1y =-根据抛物线的性质,抛物线上的点到焦点的距离等于到准线的距离.由,得,0113y +=012y =所以.()01131121222ABC S AB y =⨯⋅=⨯-⨯=△故选:A7.(2020·四川成都市·高三一模(文))已知抛物线的焦点为,过的直线24x y =F F l 与抛物线相交于,两点,.若,则( ).A B 70,2P ⎛-⎫ ⎪⎝⎭PB AB ⊥AF =A .B .C .D .322523【答案】D【分析】由题意可知,,设,,()0,1F 211,4x A x ⎛⎫ ⎪⎝⎭222,4x B x ⎛⎫ ⎪⎝⎭则,,2227,42x PB x ⎛⎫=+ ⎪⎝⎭ 222,14x BF x ⎛⎫=-- ⎪⎝⎭ 因为,且,,三点共线,则由可得,PB AB ⊥A B F 0AB PB ⋅= 0BF PB ⋅=所以,即,222222710424x x x ⎛⎫⎛⎫-++-= ⎪⎪⎝⎭⎝⎭422226560x x+-=解得或(舍),所以.222x =2228x =-2x =设直线的方程为,与抛物线方程联立,AB 1y kx =+得,消去得,则,所以.214y kx x y =+⎧⎨=⎩y 2440x kx --=124x x =-1x =±则.21124x y ==所以.12213y F pA =+==+故选:D.8.(2020·四川高三一模(文))已知直线与双曲线:y kx =C ()222210,0x y a b a b -=>>相交于不同的两点,,为双曲线的左焦点,且满足,(A B F C 3AF BF=OA b=为坐标原点),则双曲线的离心率为()O C AB C .2D【答案】B【分析】设是右焦点,则,,即,F 'BF AF '=3AF BF=3AF AF '=又,∴,,而,∴22AF AF AF a''-==AF a'=3AF a=,OA b OF c'==,OA AF '⊥由得,AOF AOF π'∠+∠=cos cos 0AOFAOF '∠+∠=∴,整理得.222902b c a b bc c +-+===ce a 故选:B .9.(2020·河南新乡市·高三一模(文))已知双曲线的左、()2222:10,0x y C a b a b -=>>右焦点分别为、,过原点的右支于点,若1F 2F O C A ,则双曲线的离心率为( )1223F AF π∠=AB 1C D【答案】D 【分析】推导出,可计算出,利用余弦定理求得112F OA F AF :::1F A =2AF =,进而可得出该双曲线的离心率为,即可得解.1212F F e AF AF =-【详解】题可知,,,123F OA π∠=121AF O F AF ∠=∠ 112F OA F AF ∠=∠112F OA F AF ∴:△△,所以,可得.11112F O F AF A F F =1F A =在中,由余弦定理可得,12F AF :22212121222cos3F F AF AF AF AF π=+-⋅即,解得.2220AF c +=2AF=双曲线的离心率为.1212F F e AF AF ===-故选:D.【点睛】10.(2020·全国高三专题练习(文))已知圆,则在轴和轴上22:(2)2C x y ++=x y 的截距相等且与圆相切的直线有几条( )C A .1条B .2条C .3条D .4条【答案】C【分析】若直线不过原点,其斜率为,设其方程为,1-y x m =-+则,解得或,d 0m =4-当时,直线过原点;0m =若过原点,把代入,()0,0()2200242++=>即原点在圆外,所以过原点有2条切线,综上,一共有3条,故选:C .二、解答题11.(2020·四川成都市·高三一模(文))已知椭圆的离心率()2222:10x y C a b a b +=>>,且直线与圆相切.1x ya b +=222x y +=(1)求椭圆的方程;C(2)设直线与椭圆相交于不同的两点﹐,为线段的中点,为坐标原l C A B M AB O 点,射线与椭圆相交于点,且,求的面积.OM C P OP OM=ABO :【答案】(1);(2.22163x y +=【分析】(1,∴(为半焦距).c a=c∵直线与圆.1x ya b +=222x y +==又∵,∴,.222c b a +=26a =23b =∴椭圆的方程为.C 22163x y +=(2)(ⅰ)当直线的斜率不存在时,l 设直线的方程为.l (x nn =<<∵,∴.OP OM==225n =∴.ABOS ==△(ⅱ)当直线的斜率存在时,设直线,l ():0l y kx m m =+≠,.()11,A x y ()22,B x y 由,消去,得.22163y kx mx y =+⎧⎪⎨+=⎪⎩y ()222214260k x kmx m +++-=∴,即.()()()2222221682138630k m k m k m ∆=-+-=-+>22630k m -+>∴,.122421kmx x k +=-+21222621m x x k -=+∴线段的中点.AB 222,2121kmm M k k ⎛⎫- ⎪++⎝⎭当时,∵,∴.0k =OP OM==215m =∴.ABOS =△当时,射线所在的直线方程为.0k ≠OM 12y x k =-由,消去,得,.2212163y x k x y ⎧=-⎪⎪⎨⎪+=⎪⎩y 2221221P k x k =+22321Py k =+∴M POMy OPy ===∴.经检验满足成立.22521m k =+0∆>设点到直线的距离为,则.O ld d =∴212ABOS x =-===△综上,.ABO :12.(2020·云南高三其他模拟(文))已知椭圆的左右焦点分2222:1(0)x y C a b a b +=>>别为,离心率为,椭圆上的点到点的距离之和等于4.12,F F 12C 31,2M ⎛⎫ ⎪⎝⎭12,F F (1)求椭圆的标准方程;C(2)是否存在过点的直线与椭圆相交于不同的两点,,满足()2,1P l C A B 若存在,求出直线的方程;若不存在,请说明理由.2PA PB PM ⋅= l 【答案】(1);(2)存在直线满足条件,其方程为.22143x y +=l 12y x =【分析】解:(1)由题意得,所以.2221224c a a a b c ⎧=⎪⎪=⎨⎪=+⎪⎩21a c b ⎧=⎪=⎨⎪=⎩故椭圆的标准方程为.C 22143x y +=(2)若存在满足条件的直线,则直线的斜率存在,设其方程为.l l (2)1y k x =-+代入椭圆的方程得.C 222(34)8(21)161680k x k k x k k +--+--=设,两点的坐标分别为,,A B ()11,x y ()22,x y 所以.所以,222[8(21)]4(34)(16168)32(63)0k k k k k k ∆=---+--=+>12k >-且,.1228(21)34k k x x k -+=+21221616834k k x x k --=+因为,即,2PA PB PM ⋅= 12125(2)(2)(1)(1)4x x y y --+--=所以.2212(2)(2)(1)54x x k PM --+==即.[]2121252()4(1)4x x x x k -+++=所以,222222161688(21)44524(1)3434344k k k k k k k k k ⎡⎤---+-⋅++==⎢⎥+++⎣⎦解得.12k =±又因为,所以.12k >-12k =所以存在直线满足条件,其方程为.l 12y x =13.(2020·广西北海市·高三一模(文))已知抛物线的准线为2:2(0)C x py p =>,焦点为F .1y =-(1)求抛物线C 的方程;(2)设过焦点F 的直线l 与抛物线C 交于A ,B 两点,且抛物线在A ,B 两点处的切线分别交x 轴于P ,Q 两点,求的最小值.||||AP BQ ⋅【答案】(1);(2)2.24x y =【分析】(1)因为抛物线的准线为,12py =-=-解得,2p =所以抛物线的方程为.24x y =(2)由已知可判断直线l 的斜率存在,设斜率为k ,由(1)得,则直线l 的方程为.(0,1)F 1y kx =+设,,211,4x A x ⎛⎫ ⎪⎝⎭222,4x B x ⎛⎫ ⎪⎝⎭由消去y ,得,214y kx x y =+⎧⎨=⎩2440x kx --=所以,.124x x k +=124x x =-因为抛物线C 也是函数的图象,且,214y x =12y x '=所以直线PA 的方程为.()2111142x y x x x -=-令,解得,所以,0y =112x x =11,02P x ⎛⎫ ⎪⎝⎭从而||AP =同理得||BQ =所以,||||AP BQ ⋅==,=,==当时,取得最小值2.0k =||||AP BQ ⋅14.(2020·广东东莞市·高三其他模拟(文))在平面直角坐标系中,已知两定点xOy,,动点满足.()2,2A -()0,2B P PAPB=(1)求动点的轨迹的方程;P C (2)轨迹上有两点,,它们关于直线:对称,且满足C E F l 40kx y +-=,求的面积.4OE OF ⋅=OEF ∆【答案】(1)动点的轨迹是圆,其方程为(2)P ()()22228x y -+-=【分析】(1)设动点的坐标为,则.P (),xyPAPB==整理得,故动点的轨迹是圆,且方程为.()()22228x y -+-=P ()()22228x y -+-=(2)由(1)知动点的轨迹是圆心为,半径的圆,圆上两点,关P ()2,2C R =E F 于直线对称,由垂径定理可得圆心在直线:上,代入并求得l ()2,2l 40kx y +-=1k =,故直线的方程为.l 40x y +-=易知垂直于直线,且.OC l OC R=设的中点为,则EF M ()()OE OF OM ME OM MF⋅=+⋅+()()OM ME OM ME=+⋅- ,又,.224OM ME =-= 22222OM OC CM R CM =+=+ 222ME R CM =-∴,,∴,.224CM = CM =ME==2FE ME == 易知,故到的距离等于,∴OC FE :O FE CM 12OEF S ∆=⨯=15.(2020·全国高三专题练习)在平面直角坐标系中,已知椭圆xOy 的长轴长为6,且经过点,为左顶点,为下顶点,椭22221(0)x y a b a b +=>>3(2Q A B 圆上的点在第一象限,交轴于点,交轴于点.P PA y C PB x D (1)求椭圆的标准方程(2)若,求线段的长20OB OC +=PA (3)试问:四边形的面积是否为定值?若是,求出该定值,若不是,请说明理由ABCD 【答案】(1);(2;(3)是定值,6.22194x y +=【分析】(1)解:由题意得,解得.26a =3a =把点的坐标代入椭圆C 的方程,得Q 22221x y a b +=229314ab +=由于,解得3a =2b =所以所求的椭圆的标准方程为.22194x y +=(2)解:因为,则得,即,20OB OC += 1(0,1)2OC OB =-=(0,1)C 又因为,所以直线的方程为.(3,0)A -AP 1(3)3y x =+由解得(舍去)或,即得221(3)3194y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩30x y =-⎧⎨=⎩27152415x y ⎧=⎪⎪⎨⎪=⎪⎩2724,1515P ⎛⎫ ⎪⎝⎭所以||AP ==即线段AP (3)由题意知,直线的斜率存在,可设直线.PB 2:23PB y kx k ⎛⎫=-> ⎪⎝⎭令,得,0y =2,0D k ⎛⎫⎪⎝⎭由得,解得(舍去)或222194y kx x y =-⎧⎪⎨+=⎪⎩()2249360k x kx +-=0x =23649kx k =+所以,即2218849k y k -=+22236188,4949k k P k k ⎛⎫- ⎪++⎝⎭于是直线的方程为,即AP 22218849(3)36314k k y x k k -+=⨯+++2(32)(3)3(32)k y x k -=++令,得,即,0x =2(32)32k y k -=+2(32)0,32k C k -⎛⎫ ⎪+⎝⎭所以四边形的面积等于ABDC 1||||2AD BC ⨯⨯122(32)13212326232232k k k k k k k -+⎛⎫⎛⎫=+⋅+=⋅⋅= ⎪ ⎪++⎝⎭⎝⎭即四边形的面积为定值.ABDC 16.(2020·江西南昌市·南昌二中高三其他模拟(文))已知抛物线的()220y px p =->焦点为,轴上方的点在抛物线上,且,直线与抛物线交于,F x ()2,M m -52MF =l A 两点(点,与不重合),设直线,的斜率分别为,.B A B M MA MB 1k 2k (Ⅰ)求抛物线的方程;(Ⅱ)当时,求证:直线恒过定点并求出该定点的坐标.122k k +=-l 【答案】(Ⅰ);22y x =-(Ⅱ)见解析.(Ⅰ)由抛物线的定义可以,5(2)22p MF =--=,抛物线的方程为.1p ∴=22y x =-(Ⅱ)由(Ⅰ)可知,点的坐标为M (2,2)-当直线斜率不存在时,此时重合,舍去. l ,A B 当直线斜率存在时,设直线的方程为l l y kx b=+设,将直线与抛物线联立得:()()1122,,,A x y B x y l 2222(22)02y kx bk x kb x b y x=+⎧+++=⎨=-⎩212122222,kb b x x x x k k --+==①又,12121222222y y k k x x --+=+=-++即,()()()()()()1221122222222kx b x kx b x x x +-+++-+=-++,()()()()12121212121222248248kx x k x x b x x x x b x x x x ++++-++-=--+-,()1212(2+2)(2+2)40k x x k b x x b ++++=将①代入得,222(1)0b b k b ---+=即(1)(22)0b b k +--=得或1b =-22b k =+当时,直线为,此时直线恒过;1b =-l 1y kx =-(0,1)-当时,直线为,此时直线恒过(舍去)22b k =+l 22(2)2y kx k k x =++=++(2,2)-所以直线恒过定点.l (0,1)-。
2020高考数学解析几何内容剖析及备考建议
2020高考数学解析几何内容剖析及备考建议解析几何是高中数学的重要内容。
高考主要考查直线与圆、椭圆、抛物线、双曲线的定义、标准方程和简单的几何性质。
其中直线与圆、直线与圆锥曲线的位置关系是考查重点。
运动与变化是研究几何问题的基本观点,利用代数方法研究几何问题是基本方法。
试题强调综合性,综合考查数形结合思想、函数与方程思想、特殊与一般思想等思想方法,突出考查考生推理论证能力和运算求解能力。
一、直线与方程1.在平面直角坐标系下,结合具体图形掌握确定直线位置的几何要素.2. 理解直线的倾斜角概念,掌握过两点的直线斜率的计算公式.3.能根据两条直线的斜率判断两条直线平行或垂直.4.掌握确定直线的几何要素,掌握直线方程的三种形式(点斜式、两点式、一般式),了解斜截式与一次函数的关系.5.能用解方程组的方法求两条相交直线的交点坐标.6.掌握两点间的距离公式,点到直线的距离公式,会求两平行直线间的距离.二、圆的方程1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程.2.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判定圆与圆的位置关系.3.能用直线与圆的方程解决一些简单的问题。
4 .初步了解用代数方法处理几何问题的思想。
三、空间直角坐标系1.了解空间直角坐标系,会用空间直角坐标表示点的位置。
2.会简单应用空间两点间的距离公式。
四、圆锥曲线(理科)1.了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用。
2.掌握椭圆、抛物线的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).3.了解双曲线的定义、几何图形和标准方程,知道双曲线的简单的几何性质(范围、对称轴、顶点、离心率、渐近线).4.了解曲线与方程的对应关系。
5.理解数形结合思想。
了解圆锥曲线的简单应用。
四、圆锥曲线(文科)1.掌握椭圆的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).2.了解双曲线的定义、几何图形和标准方程,知道双曲线的简单的几何性质(范围、对称轴、顶点、离心率、渐近线).3.了解抛物线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称轴、顶点、离心率).4.理解数形结合思想。
高考数学命题预测:解析几何
高考数学命题预测:解析几何高考数学命题预测:解析几何(1)题型稳定:近几年来高考解析几何试题一直稳定在三(或二)个选择题,一个填空题,一个解答题上,分值约为30分左右,占总分值的20%左右。
(2)整体平衡,重点突出:对直线、圆、圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既注意全面,更注意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度。
近四年新教材高考对解析几何内容的考查主要集中在如下几个类型:①求曲线方程( 类型确定、类型未定);②直线与圆锥曲线的交点问题(含切线问题);③与曲线有关的最(极)值问题,复习方法;④与曲线有关的几何证明(对称性或求对称曲线、平行、垂直);⑤探求曲线方程中几何量及参数间的数量特征;要练说,得练看。
看与说是统一的,看不准就难以说得好。
练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。
在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。
(3)能力立意,渗透数学思想:一些虽是常见的基本题型,但如果借助于数形结合的思想,就能快速准确的得到答案。
我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。
特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。
浅谈2006年高考解析几何的命题特点
何 试 题 是 考 查 学 生 分 析 问题 、 决 问 题 能 力 的 重 要 载 解
38 磊 教 0 止 26 07
体 , 过与函数、 通 方程 、 不等 式 、 向量 、 数 等 知 识 的 结 导 合 , 识 网 络 的 交 汇 处 设 计 试 题 , 学 地 检 测 考 生 的 知 科 数 学 能 力及 继 续 学 习 的潜 能 。 ( 5) 考 查 数 学 思 想 方
( ) 求 过 点 0、 F, 并 且 与 椭 圆 的 左 准 线 Z 切 的 1 相
圆的方 程 ;
( 2) 理 科 : 设 过 点 腿
不 与 坐 标 轴 垂 直 交 椭 圆 于
学理 科2 题 、文科 2 题是 对平 面 向量 的基本 知识 、直 线 l 2 与 曲线 的位 置 关系 、韦达定 理 、点到 直线 的距离 、三 角 形面积 、解 方程 等知识 的综 合应 用能 力 的考查 ,考查 分
,
几 基本 知识 考查 + 几 知识 方 法和 函 数知 识 方法 综合 能 解 力 的考 查 。前 两年 福 建解 几试 题 基本 上 以此 方 法构 造 , 区别仅 仅 是 所 选 取知 识 和 方 法 的 不 同 。其 中2 0 年 福 04 建 高考 数 学 理科 2 题 是 对平 几 的相 似 比 、直 线 与 曲线 2
运 算 能 力 有 较 高 的 要 求 , 解题 过 程 中, 据题 目的 要 在 根
求 , 某 一 个 “ 式 ”作 为 一个 整体 处理 , 样 就 可 大 将 因 这 大 简 化 计 算 , 其 中体 现 的 是 “ 块 ”的 思 想 , 就 是 这 模 也
换 元法 。 ( ) 查 解 几 知 识 与 其 他 知 识 综合 : 析 几 4 考 解
关于高考解析几何命题热点的分析
关 于高考解 析几何命题 热点 的分析
王妹 子
解 析 几 何 是 高 中 数 学 的重 要 内
2 + 2( 4 一 b ) x + b 2 - 6 b + 1 = 0 。
的半 径 是 2 ,双 曲线 的 渐 近线 方 程 是
容 ,其核心 内容是直线 、圆以及 圆锥 曲 线 。解析几何 的特点是用代数 的方法研 究并解决几何 问题 , 重点是用 “ 数形结
小问 的,这一 问至关重要 ,因为 只有求
直线
七 4 = 0 对称, 又满足 o - :・
。
2
( 1 ) 求 m的值 ;
( 2)求直线 P p的方程 。
出 了曲线方程 , 才 能进 行下一步的运算。
求曲线方程的方法很多 ,其 中 “ 待定 系 数法”最为常见 。 例2 :已知双 曲线 1( 0> 0 , 一 b> 0)的两 条渐近线 均和 圆 c :
解 ,本题难度适 中。
题,这类试题涉及面广、综合性强、题
目新颖 、灵活多样 ,对学 生解题 能力要 求较高 。 在考基础 、 考能力 、 考素质 、 考 潜能 的考试 目标指导下 ,每年 的高考对 解析几何 的考查都 占有较 大的 比例 ,且 常考常新 。
一
y l y 2 = 6 2 6(
A . 、 / B . 、 / 了 C . 2 D . 3 2
.
课标高考 中占有十分重要 的地位 。一般 焦 点 ,且与 双 曲线 C的一 条对 称 轴垂
例1 : 设 0为 坐 标 原 点, 曲 线
— 1 = 0上有两点 P ,Q满足 关于
而言 ,求 圆锥 曲线 的标准方程是作为解 答题 中考查 “ 直线与 圆锥 曲线 ”的第一
2023年高考全国甲卷理科数学解析几何大题的解法赏析
数学·高考研究2023年高考全国甲卷理科数学解析几何大题的解法赏析贵州兴义市第八中学(562400) 陈胜光[摘 要]解析几何题备受命题者青睐, 是全国以及各省市的必考题型,也一直是考生比较头疼的题型,究其原因主要是考生对解析几何问题的主要思维方法把握不准。
文章着重对2023年全国甲卷理科数学解析几何大题的四种解法进行分析,并阐明解析几何问题的解题思想和方法。
[关键词]2023年高考;全国甲卷;解析几何;一题多解[中图分类号] G 633.6 [文献标识码] A [文章编号] 1674-6058(2024)02-0005-03【名师简介】陈胜光,中学高级教师,贵州省黔西南州高中数学名师工作室主持人,黔西南州高考先进个人,黔西南州“教育立州·质量提升”先进个人。
解析几何作为高中数学的重点、难点及高考数学的必考点之一,一直是学生冲刺高分的必由之路。
考生不要走进“一看到解析几何就开始联立方程,然后用韦达定理”的误区,这绝对不是高考解析几何大题命题的初衷。
考生需要从坐标转换的角度、利用圆锥曲线中点与线的关系对求解的问题进行转化,变成基本点的坐标关系,然后求解。
如何分析好解析几何大题?如何快速从多个角度有效解答解析几何大题?本文主要探讨2023年高考全国甲卷理科数学的解析几何大题的一些较为独特的解法。
一、真题呈现(2023年高考全国甲卷理科数学第20题)已知直线x -2y +1=0与抛物线C :y 2=2px (p >0)交于A 、B 两点,且||AB =415。
(1)求p ;(2)设F 为C 的焦点,M 、N 为C 上的两点,且MF·NF =0,求△MNF 面积的最小值。
二、试题剖析与一题多解该试题的第(1)问不难,代入直线方程后利用韦达定理及弦长公式表示出||AB ,得到关于p 的方程后解方程即可(注意舍去非正根),通过求解可得p =2,解答过程在此不详述。
第(2)问有一定的难度,但若能认真分析,亦能找到不少突破口。
抓住几何特征优化解答过程——以2022年新高考解析几何试题为例
义将 △ADE 的 周 长 转 化 为 △DEF2 的 周 长,再
使用坐标法求解,突出体 现 了 先 用 几 何 眼 光 观 察
与思考,再用坐标法解决的解题思路 .
角度三
角的大小
例3 (
2022 年 新 高 考 卷 Ⅱ 第 10 题)已 知 O
周长为 4
a.由|DE|= 1+
1
k
2
|y1 -y2|=2
c
13
13
×6×4× =6,c= ,得 a =2
c= ,所 以
13
8
4
△ADE 的周长为 13.
反思
解答中没有直接运用弦长公式分别
求出 AE 、
AD 的弦长,而是先找图形中的几何特
征,从 直 线 间 的 位 置 关 系 寻 找 突 破 口,发 现 DE
6
2x0
Rt △MNO 中, 由 勾 股 定 理 | MN | =
线代曲线、韦达定理,会导致思维受阻 .
角度二
图1
轴,
N 两点,且|MA|=|NB|,
y 轴分别交于 M ,
|MN|=2 3,则直线l 的方程为
.
解析 取线段 MN 的中点 C ,由于|MA|=
|NB|,则 点 C 也 为 AB 的 中 点,如 图 1 所 示 .不
Copyright©博看网. All Rights Reserved.
2023 年第 2 期
63
中学数学教学
件成立:
①M 在 AB 上;② PQ ∥ AB ;③|MA|=
|MB|.
△PMQ ,所 以
GP
GE
一道解析几何高考题的解析与探究——以 2020年全国卷Ⅰ理科第 20题为例
解析:设点 P、C、D 的坐标为 P(6,t),C(x1,y1),D(x2,y2),则
t
t
直线 PA 的方程是 y = ( x + 3 ),直线 PB 的方程是 y = ( x 9
3
t
ì
ïy = 9 ( x + 3 ),
ï
消 元 得 ( t 2 + 9 ) x 2 + 6t 2 x + 9t 2 3 );联 立 í 2
ï + y = 1,
î9
技法点拨
106
2mny + n2 - 9 = 0,设 C(x1,y1),D(x2,y2),则 y 1 + y 2 = y1 y2 =
n2 - 9
m2 + 9
(1)。又直线 AC 的方程为 y =
直线 BD 的方程为 y =
共点 P,所以
9y 1
x1 + 3
=
y2
x2 - 3
后对 C、D 横坐标分两种情况考虑,考查了分类与整合的数学
思想,强调思维的严谨性。
思路 3:先求直线带参数的方程(即共点的直线系方程)。
先引进直线 CD 的方程,当斜率不为零时,设其为 x=my+
n,联立直线 CD 与椭圆 E 的方程,利用韦达定理找到 C、D 坐标
的关系(用参数 m,n 表示),然后写出直线 AC、BD 的方程,利用
功能,以下着重讨论第二问的解法。
二、试题解析
思路 1:从命题者的角度寻找答案。
此题的命题背景是极点和极线的位置关系,即寻找极线
x=6 对应的极点。
解析:由于椭圆及直线 x=6 都是关于 x 轴对称的图形,若
高考数学命题特点及解题方法研究
普洱学院毕业论文(设计)开题报告(初稿)
论文(设计)主要内容(提纲):
引言
一、解析几何的概念及重要性
(一)解析几何的概念
(二)解析几何在高考中的重要性
二、高考解析几何考察的目的
(一)数学思维方式
(二)问题化繁为简
(三)学生分析问题能力
(四)学生解决问题能力
三、高考解析几何常用的解题思路
(一)数形结合
(二)化归与转化
(三)函数与方程
四、全国Ⅲ卷解析几何考察类型及解题方法(一)坐标系伸缩变换的应用
(二)抛物线的相关题目和证明
(三)圆锥曲线中点问题的证明和拓展(四)坐标系与参数方程
(五)圆锥曲线的定理及其应用
五、结论
备注:题目类别栏应填:应用研究、理论研究、艺术设计、程序软件开发、案例、调研报告、试验报告等。
本表可打印及续页。
专题八 解析几何
专题八解析几何【命题特点】解析几何高考每年出一道满分为13分的大题.命题特点可概括如下:依纲靠本,查基考能;朴实取材,独具匠心;不断创新,关注交汇;交切中点,核是线圆;长度面积,最值定值;平行垂直,向量驾驭;求轨探迹,运动探究;数形结合,各领风骚;灵气十足,回味无穷;文理有别,意境深远.复习建议1.加强直线和圆锥曲线的基础知识,初步掌握了解决直线与圆锥曲线有关问题的基本技能和基本方法。
2.由于直线与圆锥曲线是高考考查的重点内容,选择、填空题灵活多变,思维能力要求较高,解答题背景新颖、综合性强,代数推理能力要求高,因此有必要对直线与圆锥曲线的重点内容、高考的热点问题作深入的研究。
3.在第一轮复习的基础上,再通过纵向深入,横向联系,进一步掌握解决直线与圆锥曲线问题的思想和方法,提高我们分析问题和解决问题的能力。
4.在注重提高计算能力的同时,要加强心理素质,克服惧怕计算的心态。
【试题常见设计形式】新教材高考对解析几何内容的考查主要集中在如下几个类型:①求曲线方程(类型确定、类型未定);②直线与圆锥曲线的交点问题(含切线问题);③与曲线有关的最(极)值问题;④与曲线有关的几何证明(对称性或求对称曲线、平行、垂直);⑤探求曲线方程中几何量及参数间的数量特征;对各类问题,从宏观上把握解决直线与圆锥曲线问题的解题要点,能找到解题切入点,优化解题过程,常用的解题策略有:①建立适当的平面直角坐标系;②设而不求,变式消元;③利用韦达定理沟通坐标与参数的关系;④发掘平面几何性质,简化代数运算;⑤用函数与方程思想沟通等与不等的关系;⑥注意对特殊情形的检验和补充;⑦充分利用向量的工具作用;⑧注意运算的可行性分析,等等。
运算是解析几何的瓶颈,它严重制约考生得分的高低,甚至形成心理障碍.要注重算理、算法,细化运算过程,转化相关条件,回避非必求量,注意整体代换等运算技能,从能力的角度提高对运算的认识,反思运算失误的经验教训,不断提高运算水平.【突破方法技巧】1.突出解析几何的基本思想:解析几何的实质是用代数方法研究几何问题,通过曲线的方程研究曲线的性质,因此要掌握求曲线方程的思路和方法,它是解析几何的核心之一.求曲线的方程的常用方法有两类:一类是曲线形状明确,方程形式已知(如直线、圆、圆锥曲线的标准方程等),常用待定系数法求方程.另一类是曲线形状不明确或不便于用标准形式表示,一般采用以下方法:(1)直译法:将原题中由文字语言明确给出动点所满足的等量关系直接翻译成由动点坐标表示的等量关系式.(2)代入法:所求动点与已知动点有着相互关系,可用所求动点坐标(x,y)表示出已知动点的坐标,然后代入已知的曲线方程.(3)参数法:通过一个(或多个)中间变量的引入,使所求点的坐标之间的关系更容易确立,消去参数得坐标的直接关系便是普通方程.(4)交轨法:动点是两条动曲线的交点构成的,由x ,y 满足的两个动曲线方程中消去参数,可得所求方程.故交轨法也属参数法.2.熟练掌握直线、圆及圆锥曲线的基本知识 (1)直线和圆①直线的倾斜角及其斜率确定了直线的方向.需要注意的是:(ⅰ)倾斜角α的范围是:0≤α<π;(ⅱ)所有的直线必有倾斜角,但未必有斜率.②直线方程的四种特殊形式,每一种形式都有各自成立的条件,应在不同的题设条件下灵活使用.如截距式不能表示平行于x 轴,y 轴以及过原点的直线,在求直线方程时尤其是要注意斜率不存在的情况.③讨论点与圆、直线与圆、圆与圆的位置关系时,一般可从代数特征(方程组解的个数)或几何特征(点或直线到圆心的距离与两圆的圆心距与半径的关系)去考虑,其中几何特征较为简捷、实用.(2)椭圆①完整地理解椭圆的定义并重视定义在解题中的应用.椭圆是平面内到两定点F 1,F 2的距离之和等于常数2a (2a >|F 1F 2|)的动点的轨迹.还有另一种定义(圆锥曲线的统一定义):平面内到定点的距离和到定直线的距离之比为常数e (0<e <1)的动点轨迹为椭圆,(顺便指出:e >1,e =1时的轨迹分别为双曲线和抛物线).②椭圆的标准方程有两种形式,决定于焦点所在的坐标轴.焦点是F (±c ,0)时,标准方程为2222x y a b +=1(a >b >0);焦点是F (0,±c )时,标准方程为2222y x a b+=1(a >b >0).这里隐含222a b c =+,此关系体现在△OFB (B 为短轴端点)中.③深刻理解a ,b ,c ,e ,2a c的本质含义及相互关系,实际上就掌握了几何性质.(3)双曲线①类比椭圆,双曲线也有两种定义,两种标准方程形式.同样要重视定义在解题中的运用,要深刻理解几何量a ,b ,c ,e ,2a c的本质含义及其相互间的关系.②双曲线的渐近线是区别于椭圆的一道“风景线”,其实它是矩形的两条对角线所在的直线(参照课本).③双曲线2222x y a b-=±1(a >0,b >0)隐含了一个附加公式222c a b =+此关系体现在△OAB (A ,B 分别为实轴,虚轴的一个端点)中;特别地,当a =b 时的双曲线称为等轴(边).(4)抛物线①抛物线的定义:平面内到一个定点F 和一条定直线l 的距离相等的点的轨迹(F ∉l ).定义指明了抛物线上的点到焦点与准线的距离相等,并在解题中有突出的运用.②抛物线方程(标准)有四种形式:22y px =±和22x py =± (p >0),选择时必须判定开口与对称轴.③掌握几何性质,注意分清2p , p ,2p的几何意义. 3.掌握直线与圆锥曲线的位置关系的研究方法(1)判断直线l 与圆锥曲线C 的位置关系,可将直线l 的方程代入曲线C 的方程,消去y (也可以消去x )得到一个关于变量x 的一元方程ax 2+bx +c =0,然后利用“Δ”法.(2)有关弦长问题,应用弦长公式及韦达定理,设而不求;有关焦点弦长问题,要重视圆锥曲线的定义的运用,以简化运算.(3)有关弦的中点问题,除了利用韦达定理外,要注意灵活运用“点差法”,设而不求,简化运算.(4)有关垂直关系问题,应注意运用斜率关系(或向量方法)及韦达定理,设而不求,整体处理.(5)有关圆锥曲线关于直线l 的对称问题中,若A ,A ′是对称点,则应抓住AA ′的中点在l 上及kAA ′·kl =-1这两个关键条件解决问题.(6)有关直线与圆锥曲线的位置关系中的存在性问题,一般采用“假设反证法”或“假设验证法”来解决.【典型例题分析】考点一、曲线(轨迹)方程的求法【例1】设12,F F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过1F 斜率为1的直线l 与E 相交于,A B 两点,且22,,AF AB BF 成等差数列。
高考数学知识点复习:圆锥曲线命题分析
高考数学知识点复习:圆锥曲线命题分析高中数学难,圆锥曲线又是难中之难,这差不多成为几乎所有高三学生的心头痛。
事实上,解析几何题目自有路径可循,方法可依。
只要通过认确实预备和正确的点拨,完全能够让高考数学的圆锥曲线难题变成让同学们都专门有信心的中等题目。
圆锥曲线高考的命题趋势:(1)题型稳固:近几年来高考解析几何试题一直稳固在两个选填题,一个解答题上,分值约为25分左右,占总分值的近20%。
(2)整体平稳,重点突出:《考试说明》中解析几何部分19个知识点,一样会考查到其中的半数以上,其中对直线、圆、圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既注意全面,更注意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度。
近几年高考对圆锥曲线内容的考查要紧集中在如下几个类型:曲线方程(类型确定、类型未定);直线与圆锥曲线的交点问题(含切线问题);与曲线有关的最(极)值问题;与曲线有关的几何证明(对称性或求对称曲线、平行、垂直);探求曲线方程中几何量及参数间的数量特点;(3)能力立意,渗透数学思想:一些常见的差不多题型,假如借助于数形结合的思想,就能快速准确的得到答案,比死算要节约专门多时刻。
(4)题型新颖,位置不定:近几年解析几何试题的难度有所下降,选择题、填空题均属易中等题,且解答题未必会有大难点。
因此与相关知识的联系加深加大(如向量、函数、方程、不等式等),将会是今后解析几何的出题重心。
下面具体的来看一下,圆锥曲线到底考些什么。
直线与圆的内容要紧考查两部分:(1)以选择题题型考查本章的差不多概念和性质,此类题一样难度不大,但每年必考,考查内容要紧有以下几类:①与本章概念(倾斜角、斜率、夹角、距离、平行与垂直、线性规划等)有关的问题;②对称问题(包括关于点对称,关于直线对称)要熟记解法;③与圆的位置有关的问题,其常规方法是研究圆心到直线的距离。
(2)以解答题考查直线与圆锥曲线的位置关系,此类题综合性比较强,难度也较大。
解析几何高考命题热点探析
龙源期刊网
解析几何高考命题热点探析
作者:蔡远光
来源:《广东教育·高中》2014年第03期
近三年广东高考数学对解析几何的考查主要特点有五个:(1)题量为“一大一小” 分数在19分左、右;(2)教材中的技能与方法在试题中有所体现,比如:高考涉及的交轨法、相关点法、基本量法、定义法等,这些方法在教材的例题、习题的求轨迹中都体现出来了,细心的考生一定都会很熟练;(3)双曲线、抛物线、椭圆轮翻上阵,圆虽然也有出现,但不在主导地位,仅考到“皮毛”而已.试题以“多曲线”型为主;(4)解答题总是排行第四或第五,按照高考试题由易到难的排列顺序可知,总体难度不是最大的;(5)解答题以多问形式,第一问较基础,第二问及以后有难度、有技巧,既注重解几的章节知识特点与常规的运算技能、技巧,又注重数学思想方法的应用,特别是数形结合思想、方程思想、分类讨论思想、等价转化思想的应用等.
点评本题建立在新定义“相关弦”的基础上展开,第一问比较常规,第二问转化为函数的最值问题,通过闭区间上的二次函数产生结论.
好了,关于圆锥曲线的命题热点就谈到此,希望对你真的有所帮助.
(作者单位:中山市第一中学)
责任编校徐国坚。
解析几何问题命题分析及备考建议
www 考频道2020年第12期中学数学教学参考(下旬)解析几何问题命题分析_备考建议郝腾飞(河南省濮阳市第二高级中学)摘要:解析几何一直是高考中的重要知识,通过解读解析几何试题的考点和命题特点等,对相关问题进 行探究,总结规律,展望趋势,可引导数学教学与学习。
关键词:解析几何;命题研究;圆锥曲线文章编号:1002-2171 (2020) 12-0063-03在近几年高考中,解析几何题的数量一直比较稳 定,即1一2个选择题,1个填空题,1个解答题,分值 约22分,占总分值的16%左右。
《考试大纲》中解析 几何部分有27个知识点,一般考査18—22个,其中 对直线、圆、圆锥曲线等知识的考查几乎没有遗漏。
通过对这些知识的重新组合,考査内容更全面,重点 更突出,并且这些内容通常与导数、平面向量、函数、 不等式等知识点综合考査。
近几年,解析几何部分的化。
学生对平行问题的解决要比垂直问题稍好一些, 从这个角度讲,此题可能更符合大多数考生的心理预 期,有利于他们静下心来解题。
(3)虽然此题看似是一般的线面平行问题,但需 要学生具备一定的数学思维含量和逻辑推理能力,体 现了新髙考对考生的要求,尤其是辅助线的添加不再 是三角形直接找中位线或平行四边形找对角线构造 新中点,而是加人新的变换,考虑不同平面、不同架构 下的关联方式,凸显新的立意,考査考生的临场应变 能力,如单一的对角线也可能成为突破口。
本题通过 联结和M E 来构造平行四边形,如图2,或者取 A D 的中点P ,联结FJV 和来构造平行四边形,如 图3。
这些技巧源于日常训练的经验积累,又不落窠 臼,有新的变化和升华,正是新高考潮流所向。
(4)空间向量类问题的建立坐标系是重中之重。
本题第(n )问通过建立坐标系求角比较直接,但有 的学生想当然地用D C 作纵轴,这时需要教师加强试题难度略有降低,其中选择题、填空题均属于简单、 中等难度,而且解析几何部分的解答题大部分不再处 于压轴题位置.相对来说,计算量有所降低,但思考量 有所增加。
新高考数学解析几何试题分析及教学建议
新高考数学解析几何试题分析及教学建议作者:***来源:《广东教育(综合)》2021年第09期2021年是广东省实施新高考改革的第一年,高考数学不再分文理科,不同选科(3+1+2)的考生都采用同一套试题. 新高考仍然坚持中国高考评价体系“一核、四层、四翼”的命题指导思想,试题将“四层”的考查内容及学科关键能力的考查与思想道德的渗透有机结合,通过科学设置“学科核心素养”考查的总体布局,实现融知识、能力、价值的综合测评,从而使“立德树人”真正在高考评价实践中落地. 新高考数学试卷呈现新的特点:首先表现在试卷结构上,全卷共22道试题,其中选择题(单选)8道,选择题(多选)4道,填空题4道,解答题6道;其次在试卷的考查内容上,依据课程标准的要求,取消了原来高考数学试题中的选做题(坐标系与参数方程、不等式选讲);在具体题目的设计上也有新的变化. 本文对2021年新高考全国数学Ⅰ卷解析几何试题进行分析并提出教学建议.一、2021年新高考数学解析几何考查的知识点和核心素养情况由右上表可知,2021年新高考全国卷解析几何试题特点为:从内容来看,覆盖了直线、圆、椭圆、双曲线、抛物线等知识,着力于圆锥曲线的定义、方程、几何性质等主干知识的价值和考查力度;从思想方法来看,突出对数形结合、函数与方程、化归与转化、分类与整合等数学思想、方法的理解与应用;从核心素养来看,试题体现对数学运算、直观想象、逻辑推理等核心素养的考查. 其中,特别凸显直观想象与数学运算素养的考查,解析几何中的逻辑推理可利用“形”的特征,结合曲线的定义与平面几何的有关性质予以证明或转化为代数运算来证明. 也就是说,逻辑推理核心素养的考查一般寓于直观想象和数学运算之中. 由于每道试题的解法多样,不同的解法体现不同的数学核心素养,同一解法中也不只涉及一种核心素养. 一道试题的完成需要学生具有良好的数学素养,要综合运用多方面的核心素养分析问题并解决问题. 上表中试题体现的数学核心素养的水平判断,是依据《普通高中数学课程标准(2017版2020年修订)》中核心素养水平的界定原则而确定的.二、2021年新高考数学解析几何典型试题分析新高考数学解析几何试题解法入口宽,且隐含着一般性结论. 也就是说,命题者是将一般化的结论特殊化处理后得到了高考试题.例1.(2021年新高考全国数学Ⅰ卷第5题)已知F1,F2是椭圆C:+=1的两个焦点,点M在C上,则MF1·MF2的最大值为()A. 13B. 12C. 9D. 6分析:这是一道单选题,解题方法多,既可用基本不等式也可用二次函数最值进行求解.解法1:由椭圆定义得MF1+MF2=2a=6,再根据基本不等式MF1·MF2≤()2(等号当且仅当MF1=MF2=3时成立),故选C.解法2:设MF1=t,则MF2=6-t,则MF1·MF2=-(t-3)2+9,由二次函数性质知,MF1·MF2的最大值为9,故选C.此题隐含的一般结论为:定理1:已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,点M在C上,则MF1·MF2的最大值为a2,最小值为b2.证明:设MF1=t,则MF2=2a-t,且a-c≤t≤a+c,c为半焦距.则MF1·MF2=-(t-a)2+a2,而a-c≤t≤a+c,当t=a时,MF1·MF2的最大值为a2,当t=a+c 或t=a-c时,MF1·MF2的最小值为a2-c2,即为b2.例2.(2021年新高考全国数学Ⅰ卷第21题)在平面直角坐标系xOy中,已知点F1(-,0),F2(,0),点M满足MF1-MF2=2. 记M的轨迹为C.(1)求C的方程;(2)设点T在直线x=上,过T的两条直线分别交C于A,B两点和P,Q两点,且TA·TB=TP·TQ,求直线AB的斜率与直线PQ的斜率之和.分析:本题第1问,利用双曲线的定义即可求解,但要注意双曲线定义的严谨性,由于MF1-MF2=2<2=F1F2,故只能是双曲线的右支;第1问还可以直接建立动点M的方程,然后通过化简得出所求的轨迹.当然,这种方法在化简方程时较为繁琐. 第一种方法比较快捷.(1)因为MF1-MF2=2<2=F1F2,所以轨迹C是以F1,F2为焦点,实轴长2a=2的双曲线的右支,则a=1,c=,所以b2=c2-a2=16,所以C的方程为x2-=1(x≥1).第2问可根据两点间的距离公式,直接求出TA·TB以及TP·TQ,从而得出直线AB的斜率与直线PQ的斜率关系;也可利用平面几何知识转化为A,B,P,Q四点共圆问题,从而找出经过A,B,P,Q四点的曲线方程,根据圆的方程特征,确定直线AB的斜率与直线PQ的斜率关系.(2)解法1:用直线的点斜式方程和弦长公式求解.设点T(,t),若过点T的直线的斜率不存在,此时该直线与曲线C无公共点,不妨设直线AB的方程为y-t=k1(x-),即y=k1x+t-k1,联立y=k1x+t-k1,16x2-y2=16,消去y并整理可得:(k12-16)x2+k1(2t-k1)x+(t-k1)2+16=0設点A(x1,y1)、B(x2,y2),则x1>且x2>. 由韦达定理可得x1+x2=,x1x2= 所以:TA·TB=(1+k12)·x1-·x2-=(1+k12)·(x1x2-+)=.设直线PQ的斜率为k2,同理可得TP·TQ=,因为TA·TB=TP·TQ,即=,整理得k12=k22,即(k1-k2)(k1+k2)=0,显然k1-k2≠0,故k1+k2=0. 因此,直线AB与直线PQ的斜率之和为0.解法2:用圆的方程特征求解.因为点T在直线x=上,故设T(,n),设过点T的直线AB的方程为y-n=k1(x-),设过点T的直线PQ的方程为y-n=k2(x-),则直线AB,PQ的方程为(k1x-y+n-k1)(k2x-y+n-k2)=0.又A,B,P,Q四点在曲线C上,即x2-=1,所以A,B,P,Q四点在如下的曲线上,(k1x-y+n-k1)(k2x-y+n-k2)+x2--1=0.因为TA·TB=TP·TQ,根据圆的切割线定理的逆定理,知A,B,P,Q四点共圆,所以上面这个方程表示过A,B,P,Q四点的圆,所以左边展开后x2,y2项的系数相等,且xy项的系数为零. 而xy项的系数为-(k1+k2),故 k1+k2=0.解法2充分利用了曲线与方程的关系,结合圆的方程的特征得出结论.此题第2问隐含的一般结论为:定理2:过点T的两条直线分别交曲线C:ax2+by2=c(a≠b)于A,B两点和P,Q两点,且TA·TB=TP·TQ,则直线AB的斜率与PQ直线的斜率之和为零.定理3:设两条直线y=kix+bi(i=1,2)与曲线ax2+by2+cx+dy+e=0(a≠b)有四个不同的交点,若这四个交点共圆,则k1+k2=0.定理2与定理3本质相同,因为由平面几何切割线定理的逆定理知:TA·TB=TP·TQ等价于A,B,P,Q四点共圆.证明:两直线组成的曲线方程为(k1x-y+b1)(k2x-y+b2)=0,则过四个交点的曲线方程可设为:(k1x-y+b1)(k2x-y+b2)+λ(ax2+by2+cx+dy+e)=0……①若四点共圆,则方程①表示圆,那么①式左边展开式中xy项的系数为零,即有k1+k2=0.显然,例2是定理2、定理3的一个特例,近年高考命题常以一般结论为源,将其特殊化而得. 由于将一般命题特殊化的题目往往有多种解法,为不同水平的考生提供展示才能的机会.三、新高考数学解析几何的教学建议解析几何是高中数学的重要内容,也是高考数学的重点和难点,学生得分一直不太理想. 教师要加强研究,明晰高考解析几何的试题特点,调整教学策略,提升学生数学核心素养.(一)注重通性通法,强化四种意识解析几何的教学要狠抓基础,熟练方法. 对定义法、待定系数法、数形结合、求轨迹的几种常见方法、定点、定值、最值等基本方法要牢固掌握;解析几何教学与复习要强化四种意识.1. 回归定义的意识圆锥曲线定义体现了圆锥曲线的本质属性,运用圆锥曲线定义解题是一种最直接、最本质的方法,往往能收到立竿见影之效. 回归定义与数形结合相得益彰,成为解题中最美的风景,体现几何直观与数学推理的素养. 教师要提醒学生千万不可“忘本忘形”. 波利亚说:“当你不能解决一个问题时,不妨回到定义去.”定义是解决问题的原动力. 不可忽视定义在解题中的应用. 凡涉及圆锥曲线焦点、准线、离心率与曲线上的点的有关问题,可考虑借助圆锥曲线定义来转化.2. 数形结合意识华罗庚先生曾这样描述数形关系:“数与形,本是相倚依,焉能分作兩边飞. 数缺形时少直觉,形少数时难入微. 数形结合百般好,隔裂分家万事非. 切莫忘,几何代数统一体,永远联系,切莫分离!”数形结合是解析几何的基本方法,是直观想象与数学运算、逻辑推理的具体体现.3. 设而不求的意识用解析法处理几何问题,常常设出点的坐标而不具体求出. 根据点在曲线上,坐标是有关方程解的代数特征,灵活运用方程理论,通过整体思想处理坐标关系,是设而不求的实质. 如果涉及曲线交点的问题,可不求出交点的坐标,而是转化为利用韦达定理或“点差法”的形式,可快速做出正确的解答.4. 应用“韦达定理”的意识如果直线与二次曲线的位置关系,联立直线方程和二次曲线方程,消去一个变量后得到一个一元二次方程,利用判别式和韦达定理. 其中判别式是前提,通过判别式确定参数范围,应引起重视.(二)活用四种思想,加强知识联系高考解析几何解答题综合性强,需要综合运用多种数学思想,对学生的数学素养要求高. 函数思想、方程思想、不等式思想以及化归与转化思想等在解析几何中有着广泛的应用. 解析几何中的参数范围、圆锥曲线的几何性质以及直线与圆锥曲线的位置关系,一直是高考考查的热点. 求解的关键是根据圆锥曲线的有关性质,构造方程或不等式,根据直线与圆锥曲线的位置关系确立目标函数,将问题化归为目标函数的最大值或最小值等问题. 这些都需要灵活运用函数、方程、不等式以及化归与转化等数学思想.注:本文系广东省教育科研“十三五”规划课题“高中数学核心素养的培养及评价研究”(课题批准号:2017 YQJK023)的阶段性成果.责任编辑罗峰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高考中解析几何命题特点分析
(1)题型稳定:近几年来高考解析几何试题一直稳定在三(或二)个选择题,一个填空题,一个解答题上,分值约为30分左右,占总分值的20%左右。
(2)整体平衡,重点突出:对直线、圆、圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既注意全面,更注意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度。
近四年新教材高考对解析几何内容的考查主要集中在如下几个类型:
①求曲线方程(类型确定、类型未定);
②直线与圆锥曲线的交点问题(含切线问题);
③与曲线有关的最(极)值问题;
④与曲线有关的几何证明(对称性或求对称曲线、平行、垂直);
⑤探求曲线方程中几何量及参数间的数量特征;
与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。
金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。
”于是看,宋元时期小学教师被称为“老师”有案可稽。
清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。
可见,“教师”一说是比较晚的事了。
如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。
辛亥革命后,
教师与其他官员一样依法令任命,故又称“教师”为“教员”。
宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。
至元明清之县学一律循之不变。
明朝入选翰林院的进士之师称“教习”。
到清末,学堂兴起,各科教师仍沿用“教习”一称。
其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。
而相应府和州掌管教育生员者则谓“教授”和“学正”。
“教授”“学正”和“教谕”的副手一律称“训导”。
于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。
在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。
(3)能力立意,渗透数学思想:一些虽是常见的基本题型,但如果借助于数形结合的思想,就能快速准确的得到答案。
要练说,得练看。
看与说是统一的,看不准就难以说得好。
练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。
在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。
(4)题型新颖,位置不定:近几年解析几何试题的难度有所下降,选择题、填空题均属易中等题,且解答题未必处于压轴题的位置,计算量减少,思考量增大。
加大与相关知识的联系(如向量、函数、方程、不等式等),凸现教材中研
究性学习的能力要求。
加大探索性题型的分量。