高中数学文人教A版一轮参考课件:6-3 等比数列
人教a版高考数学(理)一轮课件:6.3等比数列
1.已知{an}是等比数列,a2=2,a5= ,则公比 q 等于( A.1 2 ������5 ������2 1 8
1 4
) D.
1 2
B.-2
1 2
C.2
【答案】D 【解析】∵ q3= = ,∴ q= .
2.若等差数列{an}的公差不为零,首项 a1=1,a2 是 a1 和 a5 的等比中项,则数列 {an}的前 10 项之和是( A.90 ) B.100 C.145 D.190
1.等比数列的定义 一般地,如果一个数列从第 2 项起,每一项与它前一项的比等于同一个 非零常数,那么这个数列叫做等比数列,这个非零常数叫做等比数列的公比, 等比数列的通项公式为 an=a1qn-1.
等比数列的通项公式还可以改写成 an= 1· qn 的形式,显然 等比数列{an}的图象是函数 y= 1· qx 的图象上的一群孤立的点.
【答案】B 【解析】设等差数列{an}的公差为 d,则(1+d)2=1×(1+4d),∵ d≠0,∴ d=2. 于是,S10=10+
10×9 ×2=100. 2
3.若等比数列{an}满足 anan+1=16n,则其公比 q 为( A.2 B.4 C.8 【答案】B 【解析】令 n=1,得 a1a2=16,① 令 n=2,得 a2a3=162.② ②÷ ①,得 3=16,即 q2=16,于是得 q=± 4. 又由①知 q>0,因此 q=4.
n-1 2
.
1-(-2) S5= =11. 1-(-2)
5
T 题型一等 比数列的定义及判定
例 1 已知数列{an}的前 n 项和为 Sn,数列{bn}
中,b1=a1,bn=an-an-1(n≥2),且 an+Sn=n. (1)设 cn=an-1,求证:{cn}是等比数列; (2)求数列{bn}的通项公式. (1)由 an+Sn=n 及 an+1+Sn+1=n+1 转化成 an 与 an+1 的递推关 系,再构造数列{an-1}. (2)由 cn 求 an 再求 bn.
2024届高考一轮复习数学课件(新教材人教A版):数列的综合问题
所以an=a1qn-1=3 2 .
123456
(2)若bn=log3a2n-1,求数列{bn}的前n项和Tn. 由(1)可得a2n-1=3n-1,所以bn=log3a2n-1=n-1, 故 Tn=0+1+2+…+n-1=nn- 2 1.
123456
2.(2022·潍坊模拟)已知等比数列{an}的前n项和为Sn,且a1=2,S3=a3+6. (1)求数列{an}的通项公式;
当n=1时,整理得a1=ma1-1,解得m=2时,Sn-1=2an-1-1,
(b)
123456
(a)-(b)得 an=2an-2an-1,整理得aan-n 1=2(常数),
所以数列{an}是以1为首项,2为公比的等比数列,
所以an=2n-1.
选条件③时,2a1+3a2+4a3+…+(n+1)an=kn·2n(k∈R),
123456
(2)设{an}的前n项和为Sn,求证:(Sn+1+an+1)bn=Sn+1bn+1-Snbn;
因为bn+1=2bn≠0, 所以要证(Sn+1+an+1)bn=Sn+1bn+1-Snbn, 即证(Sn+1+an+1)bn=Sn+1·2bn-Snbn, 即证Sn+1+an+1=2Sn+1-Sn, 即证an+1=Sn+1-Sn, 而an+1=Sn+1-Sn显然成立, 所以(Sn+1+an+1)bn=Sn+1·bn+1-Sn·bn.
123456
(2)设数列{an}中不在数列{bn}中的项按从小到大的顺序构成数列{cn}, 记数列{cn}的前n项和为Sn,求S100.
123456
由(1)得bn=2n=2·2n-1=a2n-1, 即bn是数列{an}中的第2n-1项. 设数列{an}的前n项和为Pn,数列{bn}的前n项和为Qn, 因为b7=a26=a64,b8=a27=a128, 所以数列{cn}的前100项是由数列{an}的前107项去掉数列{bn}的前7项 后构成的, 所以 S100=P107-Q7=107×22+214-21--228=11 302.
新高考一轮复习人教A版专题三数列课件(36张)
以 2 为公差的等差数列.
(2)解:由(1)知,an+bn=1×12n-1(其中 n∈N*), ③ an-bn=1+(n-1)×2=2n-1(其中 n∈N*), ④ ③+④得 an=1×12n-21+2n-1=21n+n-21,(n∈N*), 即 bn=12n-1-an=12n-n+12,(n∈N*).
[例 2]在①2Sn=3n+1-3,②an+1=2an+3,a1=1 这两 个条件中任选一个,补充在下列问题中并解答.
设数列{an}的前 n 项和为 Sn,若________,bn=2na-n 6, 求数列{bn}的最大值.
解:若选择条件①,∵2Sn=3n+1-3, ∴2Sn+1=3n+2-3, 则 2Sn+1-2Sn=3n+2-3n+1,得 2an+1=3·3n+1-3n+1= 2×3n+1,则 an+1=3n+1,an=3n(n≥2), 故当 n=1 时,2S1=31+1-3 即 a1=S1=3,满足 an= 3n,∴an=3n,bn=2na-n 6=2n3-n 6. 令 2n-6>0,得 n>3,bn>0,令 2n-6<0,又 n∈N*, ∴0<n<3,bn<0.
①-②得34
n k 1
c
2k=41+422+423+…+42n-24nn-+11,
∴
n k 1
c
2k =
5 9
-
6n+5 9×4n
,
因
此
高考数学一轮复习全套课时作业6-3等比数列
题组层级快练 6.3等比数列一、单项选择题1.(2021·泰安模拟)若等比数列{a n }的各项均为正数,a 2=3,4a 32=a 1a 7,则a 5等于( ) A.34 B.38 C .12 D .24 2.在等比数列{a n }中,a 2a 6=16,a 4+a 8=8,则a 20a 10等于( )A .1B .-3C .1或-3D .-1或33.(2020·广州模拟)已知等比数列{a n }的前n 项和S n 满足4S 5=3S 4+S 6,且a 2=1,则a 4=( ) A.127 B .27 C.19D .9 4.(2021·益阳市、湘潭市高三调研)已知等比数列{a n }中,a 5=3,a 4a 7=45,则a 7-a 9a 5-a 7的值为( )A .3B .5C .9D .255.(2021·天津市河西区月考)设{a n }是公比为q 的等比数列,则“q>1”是“{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.《张丘建算经》中“今有马行转迟,次日减半,疾七日,行七百里.问日行几何?”意思是:“现有一匹马行走的速度逐渐变慢,每天走的里数是前一天的一半,连续行走7天,共走了700里路,问每天走的里数为多少?”则该匹马第一天走的里数为( )A.128127B.44 800127C.700127D.17532 7.(2021·深圳一模)已知等比数列{a n }的前n 项和S n =a·3n -1+b ,则a b =( )A .-3B .-1C .1D .38.在14与78之间插入n 个数组成等比数列,若各项总和为778,则此数列的项数为( )A .4B .5C .6D .79.(2021·广东惠州一中月考)已知数列{a n }是等比数列,且a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( )A .16(1-4-n ) B .16(1-2-n ) C.323(1-4-n ) D.323(1-2-n ) 10.等比数列{a n }的前n 项和为S n ,若a 1=a 2+2a 3,S 2是S 1与mS 3的等比中项,则m =( ) A .1 B.97 C.67 D.12二、多项选择题11.已知正项等比数列{a n }满足a 4=4,a 2+a 6=10,则公比q =( ) A.12 B. 2 C .2 D.22 12.已知等比数列{a n }中,满足a 1=1,q =2,则( ) A .数列{a 2n }是等比数列B .数列⎩⎨⎧⎭⎬⎫1a n 是递增数列C .数列{log 2a n }是等差数列D .数列{a n }中,S 10,S 20,S 30仍成等比数列 三、填空题与解答题13.已知等比数列{a n }满足a 1=12,a 2a 8=2a 5+3,则a 9=________.14.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________.15.在等比数列{a n }中,若a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.16.(2020·课标全国Ⅲ,文)设等比数列{a n }满足a 1+a 2=4,a 3-a 1=8. (1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m +1=S m +3,求m.17.(2021·华大新高考联盟质检)设等比数列{a n }的前n 项和为S n ,若a 3a 11=2a 52,且S 4+S 12=λS 8,则λ=________.18.(2021·四川成都一诊)已知数列{a n }满足a 1=-2,a n +1=2a n +4. (1)证明:数列{a n +4}是等比数列; (2)求数列{|a n |}的前n 项和S n .6.3等比数列 参考答案1.答案 D 2.答案 A解析 由a 2a 6=16,得a 42=16⇒a 4=±4.又a 4+a 8=8,可得a 4(1+q 4)=8,∵q 4>0,∴a 4=4.∴q 2=1,a 20a 10=q 10=1. 3.答案 D解析 因为4S 5=3S 4+S 6,所以3S 5-3S 4=S 6-S 5,即3a 5=a 6,故公比q =3.由等比数列的通项公式得a 4=a 2q 4-2=1×32=9.故选D. 4.答案 D解析 设等比数列{a n }的公比为q ,则a 4a 7=a 5q ·a 5q 2=9q =45,所以q =5,所以a 7-a 9a 5-a 7=a 5q 2-a 7q 2a 5-a 7=q 2=25.故选D. 5.答案 D 6.答案 B解析 由题意知每日所走的路程成等比数列{a n },且公比q =12,S 7=700,由等比数列的求和公式得a 1⎝⎛⎭⎫1-1271-12=700,解得a 1=44 800127.故选B.7.答案 A 8.答案 B解析 ∵q ≠1⎝⎛⎭⎫14≠78,∴S n =a 1-a n q 1-q ,∴778=14-78q1-q ,解得q =-12,78=14×⎝⎛⎭⎫-12n +2-1,∴n =3.故该数列共5项. 9.答案 C解析 因为等比数列{a n }中,a 2=2,a 5=14,所以a 5a 2=q 3=18,所以q =12.由等比数列的性质,易知数列{a n a n+1}为等比数列,其首项为a 1a 2=8,公比为q 2=14,所以要求的a 1a 2+a 2a 3+…+a n a n +1为数列{a n a n +1}的前n项和.由等比数列的前n 项和公式得a 1a 2+a 2a 3+…+a n a n +1=8⎝⎛⎭⎫1-14n 1-14=323(1-4-n ).故选C. 10.答案 B解析 设等比数列{a n }的公比为q ,由a 1=a 2+2a 3,得a 1=a 1q +2a 1q 2,解得q =-1或q =12,当q =-1时,S 2=0,这与S 2是S 1与mS 3的等比中项矛盾.当q =12时,S 1=a 1,S 2=32a 1,mS 3=74a 1m ,由S 2是S 1与mS 3的等比中项,得S 22=S 1×mS 3,94a 12=m ×74a 12,所以m =97.故选B.11.答案 BD解析 因为a 4=4,a 2+a 6=10,所以a 4q 2+a 4q 2=10,得2q 4-5q 2+2=0,得q 2=2或q 2=12,又q>0,所以q =2或q =22.故选BD. 12.答案 AC解析 等比数列{a n }中,a 1=1,q =2,所以a n =2n -1,S n =2n -1. 于是a 2n=22n -1,1a n =⎝⎛⎭⎫12n -1,log 2a n =n -1,故数列{a 2n }是等比数列,数列⎩⎨⎧⎭⎬⎫1a n 是递减数列,数列{log 2a n }是等差数列.因为S 10=210-1,S 20=220-1,S 30=230-1,S 20S 10≠S 30S 20,所以S 10,S 20,S 30不成等比数列(应是S 10,S 20-S 10,S 30-S 20成等比数列).故选AC. 13.答案 18解析 方法一:设数列{a n }的公比为q ,由a 2a 8=2a 5+3,得a 12q 8=2a 1q 4+3,又a 1=12,所以q 8-4q 4-12=0,解得q 4=6或q 4=-2(舍去),所以a 9=a 1q 8=12×62=18.方法二:根据等比数列的性质可得a 2a 8=a 52,又a 2a 8=2a 5+3,所以a 52-2a 5-3=0,解得a 5=3或a 5=-1.因为a 1>0,所以a 5=a 1q 4>0,所以a 5=3.因为a 1a 9=a 52,所以a 9=a 52a 1=18.14.答案 -2解析 由S 3+3S 2=0,即a 1+a 2+a 3+3(a 1+a 2)=0,即4a 1+4a 2+a 3=0,即4a 1+4a 1q +a 1q 2=0,即q 2+4q +4=0,所以q =-2. 15.答案 -2 2n -1-12解析 设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以q =-2;等比数列{|a n |}的公比为|q|=2,则|a n |=12×2n -1,所以|a 1|+|a 2|+|a 3|+…+|a n |=12(1+2+22+…+2n -1)=12(2n -1)=2n -1-12.16.答案 (1)a n =3n -1 (2)6解析 (1)设{a n }的公比为q ,则a n =a 1q n -1.由已知得⎩⎪⎨⎪⎧a 1+a 1q =4,a 1q 2-a 1=8,解得a 1=1,q =3,所以{a n }的通项公式为a n =3n -1. (2)由(1)知log 3a n =n -1. 故S n =n (n -1)2. 由S m +S m +1=S m +3得m(m -1)+(m +1)m =(m +3)(m +2),即m 2-5m -6=0. 解得m =-1(舍去)或m =6. 17.答案 83解析 ∵数列{a n }是等比数列,a 3a 11=2a 52,∴a 72=2a 52,∴q 4=2. ∵S 4+S 12=λS 8,∴a 1(1-q 4)1-q +a 1(1-q 12)1-q =λa 1(1-q 8)1-q ,∴1-q 4+1-q 12=λ(1-q 8), 将q 4=2代入计算可得λ=83.18.答案 (1)证明见解析 (2)S n =2n +1-4n +2 解析 (1)证明:∵a 1=-2,∴a 1+4=2. ∵a n +1=2a n +4,∴a n +1+4=2a n +8=2(a n +4), ∴a n +1+4a n +4=2, ∴{a n +4}是以2为首项,2为公比的等比数列. (2)由(1)可知a n +4=2n ,∴a n =2n -4. 当n =1时,a 1=-2<0,∴S 1=|a 1|=2; 当n ≥2时,a n ≥0,∴S n =-a 1+a 2+…+a n =2+(22-4)+…+(2n -4)=2+22+…+2n -4(n -1)=2(1-2n )1-2-4(n -1)=2n +1-4n +2.又当n =1时,上式也满足. ∴S n =2n +1-4n +2.。
高考数学一轮复习第六章数列1数列的概念与表示课件新人教A版文
, ≥ 2.
-24考点1
考点2
考点3
1 , = 1,
解题心得已知数列的前n项和Sn,则通项公式 an=
--1 , ≥ 2.
当n=1时,若a1适合Sn-Sn-1,则n=1的情况可并入n≥2时的通项公式an;
当n=1时,若a1不适合Sn-Sn-1,则用分段函数的形式表示.
-25考点1
函数y=3x+5的定义域是R,an=3n+5的图象是离散的点,且排列在
y=3x+5的图象上.
-8知识梳理
双基自测
5.数列的前n项和
在数列{an}中,Sn=
1
2
3
4
5
a1+a2+…+an
6
叫做数列的前n项和.
-9知识梳理
双基自测
1
2
3
4
5
6
6.数列{an}的an与Sn的关系
若数列{an}的前n项和为Sn,则 an=
式.
思考已知在数列{an}中,an+1=an+f(n),利用什么方法求an?
解 ∵an+1=an+3n+2,
∴an+1-an=3n+2,
∴an-an-1=3n-1(n≥2).
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=(3n-1)+(3n-4)+…+5+2
(3+1)
的大小关
系
分类
递增数列 an+1
>
an
递减数列 an+1
<
an
2020版高考数学一轮复习第六章数列第3讲等比数列及其前n项和教案理(含解析)新人教A版
第3讲 等比数列及其前n 项和基础知识整合1.等比数列的有关概念 (1)定义如果一个数列从第□012项起,每一项与它的前一项的比等于□02同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的□03公比,通常用字母q 表示,定义的表达式为□04a n +1a n=q . (2)等比中项如果a ,G ,b 成等比数列,那么□05G 叫做a 与b 的等比中项,即G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒□06G 2=ab (ab ≠0). 2.等比数列的有关公式 (1)通项公式:a n =□07a 1q n -1.等比数列的常用性质(1)通项公式的推广:a n =a m ·qn -m(n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k .(3)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍然是等比数列.(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n+3k,…为等比数列,公比为q k.(5)公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n.(6)等比数列{a n }满足⎩⎪⎨⎪⎧a 1>0,q >1或⎩⎪⎨⎪⎧a 1<0,0<q <1时,{a n }是递增数列;满足⎩⎪⎨⎪⎧a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1时,{a n }是递减数列.1.(2019·四川成都检测)在等比数列{a n }中,已知a 3=6,a 3+a 5+a 7=78,则a 5=( ) A .12B .18答案 B解析 由题意,a 3+a 5+a 7=a 3(1+q 2+q 4)=78,所以1+q 2+q 4=13,解得q 2=3,所以a 5=a 3q 2=18.故选B.2.已知{a n }是等比数列,且a n >0,a 2a 4+2a 3a 5+a 4a 6=25,那么a 3+a 5的值为( ) A .5 B .10 C .15 D .20答案 A解析 根据等比数列的性质,得a 2a 4=a 23,a 4a 6=a 25, ∴a 2a 4+2a 3a 5+a 4a 6=a 23+2a 3a 5+a 25=(a 3+a 5)2. 而a 2a 4+2a 3a 5+a 4a 6=25,∴(a 3+a 5)2=25, ∵a n >0,∴a 3+a 5=5.3.(2019·广西柳州模拟)设等比数列{a n }中,公比q =2,前n 项和为S n ,则S 4a 3的值为( )A.154B.152C.74D.72答案 A 解析 S 4=a 1-q 41-q=15a 1,a 3=a 1q 2=4a 1,∴S 4a 3=154.故选A.4.若等比数列{a n }满足a n a n +1=16n,则公比为( ) A .2 B .4 C .8 D .16答案 B解析 由a n a n +1=16n,得a n +1·a n +2=16n +1.两式相除得,a n +1·a n +2a n ·a n +1=16n +116n =16,∴q 2=16.∵a n a n +1=16n,可知公比为正数,∴q =4.5.等比数列{a n }的前n 项和为S n ,若a n >0,q >1,a 3+a 5=20,a 2a 6=64,则S 5=( ) A .31 B .36 C .42 D .48答案 A解析 由等比数列的性质,得a 3a 5=a 2a 6=64,于是由⎩⎪⎨⎪⎧a 3+a 5=20,a 3a 5=64,且a n >0,q >1,得a 3=4,a 5=16,所以⎩⎪⎨⎪⎧a 1q 2=4,a 1q 4=16,解得⎩⎪⎨⎪⎧a 1=1,q =2.所以S 5=-251-2=31.故选A.6.(2019·长春模拟)设数列{a n }的前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,且a 2=-2,则a 7=( )A .16B .32答案 C解析 由题意得S n +2+S n +1=2S n ,得a n +2+a n +1+a n +1=0,即a n +2=-2a n +1,∴{a n }从第二项起是公比为-2的等比数列,∴a 7=a 2q 5=64.故选C.核心考向突破考向一 等比数列的基本运算例1 (1)(2019·汕头模拟)已知等比数列{a n }的前n 项和为S n ,S 3=3a 1+a 2,则S 4S 2=( )A .2B .3C .4D .5答案 B解析 设等比数列的公比为q ,由题意a 1+a 2+a 3=3a 1+a 2得a 3=2a 1(a 1≠0),∴q 2=a 3a 1=2,∴S 4S 2=1-q 41-q2=1+q 2=3.故选B.(2)(2018·全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. ①求{a n }的通项公式;②记S n 为{a n }的前n 项和.若S m =63,求m . 解 ①设{a n }的公比为q ,由题设得a n =qn -1.由已知得q 4=4q 2,解得q =0(舍去),q =-2或q =2. 故a n =(-2)n -1或a n =2n -1.②若a n =(-2)n -1,则S n =1--n3.由S m =63得(-2)m=-188,此方程没有正整数解. 若a n =2n -1,则S n =2n-1.由S m =63得2m=64,解得m =6. 综上,m =6.触类旁通等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)所求问题可迎刃而解.解决此类问题的关键是熟练掌握等比数列的有关公式,并灵活运用,在运算过程中,还应善于运用整体代换思想简化运算的过程.即时训练 1.已知等比数列{a n }的前n 项和为S n ,且a 2018=3S 2017+2018,a 2017=3S 2016+2018,则公比q 等于( )A .3B .13C .4D .14答案 C解析 由a 2018=3S 2017+2018,a 2017=3S 2016+2018,得a 2017q -3S 2017=2018,a 2017-3S 2016=2018,∴a 2017q -3S 2017=a 2017-3S 2016,∴a 2017(q -1)=3(S 2017-S 2016)=3a 2017,∴q =4.故选C.2.等比数列{a n }中,a 1+a 3=10,a 2+a 4=30,则数列{a n }的前5项和S 5=( ) A .81 B .90 C .100 D .121答案 D解析 ∵等比数列{a n }中,a 1+a 3=10,a 2+a 4=30, ∴公比q =a 2+a 4a 1+a 3=3010=3,∴a 1+9a 1=10,解得a 1=1,∴数列{a n }的前5项和S 5=-351-3=121.故选D.3.(2019·安徽皖江名校联考)已知S n 是各项均为正数的等比数列{a n }的前n 项和,若a 2·a 4=16,S 3=7,则a 8=________.答案 128解析 ∵a 2·a 4=a 23=16,∴a 3=4(负值舍去),∵a 3=a 1q 2=4,S 3=7,∴q ≠1,S 2=a 1-q 21-q=4q 2+q -q1-q=3,∴3q 2-4q-4=0,解得q =-23或q =2,∵a n >0,∴q =-23舍去,∴q =2,∴a 1=1,∴a 8=27=128.考向二 等比数列的性质角度1 等比数列项的性质例 2 (1)(2019·四川绵阳模拟)等比数列{a n }的各项均为正数,且a 1+2a 2=4,a 24=4a 3a 7,则a 5=( )A.116B.18 C .20 D.40答案 B解析 设等比数列的公比为q .由a 24=4a 3a 7,得a 24=4a 25,所以q 2=⎝ ⎛⎭⎪⎫a 5a 42=14,解得q =±12.又因为数列的各项均为正数,所以q =12.又因为a 1+2a 2=4,所以a 1+2a 1q =a 1+2a 1×12=4,解得a 1=2,所以a 5=a 1q 4=2×⎝ ⎛⎭⎪⎫124=18.故选B.(2)在等比数列{a n }中,公比a 1+a m =17,a 2a m -1=16,且前m 项和S m =31,则项数m =________.答案 5解析 由等比数列的性质知a 1a m =a 2a m -1=16,又a 1+a m =17,q >1,所以a 1=1,a m =16,S m =a 1-q m1-q=a 1-a m q 1-q =1-16q 1-q=31,解得q =2,a m =a 1q m -1=2m -1=16.所以m =5.触类旁通在等比数列的基本运算问题中,一般是利用通项公式与前n 项和公式,建立方程组求解,但如果灵活运用等比数列的性质“若m +n =p +q m ,n ,p ,q ∈N*,则有a m a n =a p a q ”,则可减少运算量,解题时,要注意性质成立的前提条件,有时需要进行适当变形.即时训练 4.(2019·福建三明模拟)已知数列{a n }是各项均为正值的等比数列,且a 4a 12+a 3a 5=15,a 4a 8=5,则a 4+a 8=( )A .15 B. 5 C .5 D .25答案 C解析 ∵a 4a 12+a 3a 5=15,∴a 24+a 28=15,又a 4a 8=5,∴(a 4+a 8)2=a 24+a 28+2a 4a 8=25,又a 4+a 8>0,∴a 4+a 8=5.故选C.5.(2019·江西联考)在等比数列{a n }中,若a 2a 5=-34,a 2+a 3+a 4+a 5=54,则1a 2+1a 3+1a 4+1a 5=( ) A .1 B .-34C .-53D .43答案 C解析 因为数列{a n }是等比数列,a 2a 5=-34=a 3a 4,a 2+a 3+a 4+a 5=54,所以1a 2+1a 3+1a 4+1a 5=a 2+a 5a 2a 5+a 3+a 4a 3a 4=54-34=-53.故选C. 角度2 等比数列和的性质例3 (1)已知各项都是正数的等比数列{a n },S n 为其前n 项和,且S 3=10,S 9=70,那么S 12=( )A .150B .-200C .150或-200D .400或-50答案 A解析 解法一:由等比数列的性质知S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列,∴(S 6-10)2=10(70-S 6),解得S 6=30或-20(舍去),又(S 9-S 6)2=(S 6-S 3)·(S 12-S 9),即402=20(S 12-70),解得S 12=150.故选A.解法二:设等比数列前n 项和为S n =A -Aqn,则⎩⎪⎨⎪⎧A -q 9=70,A-q3=10,两式相除得1+q 3+q 6=7,解得q 3=2或-3(舍去),∴A =-10.∴S 12=-10(1-24)=150.故选A.(2)已知等比数列{a n }的前10项中,所有奇数项之和为8514,所有偶数项之和为17012,则S =a 3+a 6+a 9+a 12的值为________.答案 585解析 设公比为q ,由⎩⎪⎨⎪⎧S偶S奇=q =2,S奇=a 1[1-q 25]1-q2=8514,得⎩⎪⎨⎪⎧a 1=14,q =2,∴S =a 3+a 6+a 9+a 12=a 3(1+q 3+q 6+q 9)=a 1q 2(1+q 3)(1+q 6)=585.触类旁通等比数列前n 项和的性质主要是若S n ≠0,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列. (2)注意等比数列前n 项和公式的变形.当q ≠1时,S n =a 1-q n1-q=a 11-q -a 11-q·q n,即S n =A -Aq n(q ≠1).利用等比数列的性质可以减少运算量,提高解题速度.解题时,根据题目条件,分析具体的变化特征,即可找到解决问题的突破口.即时训练 6.(2019·云南玉溪模拟)等比数列{a n }中,公比q =2,a 1+a 4+a 7+…+a 97=11,则数列{a n }的前99项的和S 99=( )A .99B .88C .77D .66答案 C解析 解法一:由等比数列性质知a 1,a 4,a 7,…,a 97是等比数列且其公比为q 3=8,∴a 1-8331-8=11,∴a 1(1-299)=-77,∴S 99=a 1-q 991-q=77.故选C.解法二:令S 0=a 1+a 4+a 7+…+a 97=11,S ′=a 2+a 5+a 8+…+a 98,S ″=a 3+a 6+a 9+…+a 99.由数列{a n }为等比数列,q =2易知S 0,S ′,S ″成等比数列且公比为2,则S ′=2S 0=22,S ″=2S ′=44,所以S 99=S 0+S ′+S ″=11+22+44=77.故选C.7.各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n 等于( ) A .80 B .30 C .26D .16答案 B解析 由题意知公比大于0,由等比数列性质知S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n ,…仍为等比数列.设S 2n =x ,则2,x -2,14-x 成等比数列.由(x -2)2=2×(14-x ),解得x =6或x =-4(舍去).∴S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n ,…是首项为2,公比为2的等比数列.又∵S 3n =14,∴S 4n =14+2×23=30.故选B.考向三 等比数列的判定与证明例4 (1)(2018·全国卷Ⅰ)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n ,设b n =a n n. ①求b 1, b 2, b 3;②判断数列{b n }是否为等比数列,并说明理由; ③求{a n }的通项公式. 解 ①由条件可得a n +1=n +na n .将n =1代入,得a 2=4a 1,而a 1=1,所以a 2=4. 将n =2代入,得a 3=3a 2,所以a 3=12. 从而b 1=1,b 2=2,b 3=4.②{b n }是首项为1,公比为2的等比数列.由题设条件可得a n +1n +1=2a nn,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列.③由②可得a n n=2n -1,所以a n =n ·2n -1.(2)(2019·安徽江南十校联考)已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4. ①证明:{S n -n +2}为等比数列; ②求数列{S n }的前n 项和T n .解 ①证明:当n =1时,a 1=S 1,S 1-2a 1=1-4,解得a 1=3.由S n -2a n =n -4可得S n -2(S n -S n -1)=n -4(n ≥2),即S n =2S n -1-n +4,所以S n -n +2=2[S n -1-(n -1)+2].因为S 1-1+2=4,所以{S n -n +2}是首项为4,公比为2的等比数列. ②由①知S n -n +2=2n +1,所以S n =2n +1+n -2,于是T n =(22+23+…+2n +1)+(1+2+…+n )-2n =-2n1-2+n n +2-2n =2n +3+n 2-3n -82.触类旁通判定一个数列为等比数列的常用方法(1)定义法:若a n +1a n=q (q 是常数),则数列{a n }是等比数列.等比中项法:若a 2n +1=a n a n +2n ∈N *,则数列{a n }是等比数列.通项公式法:若a n =Aq nA ,q 为常数,则数列{a n }是等比数列.即时训练 8.(2019·柳州模拟)已知数列{a n }的前n 项和为S n ,满足S n =2a n -2n (n ∈N *).(1)证明:{a n +2}是等比数列,并求{a n }的通项公式; (2)数列{b n }满足b n =log 2(a n +2),T n 为数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和,若T n <a 对任意正整数n 都成立,求a 的取值范围.解 (1)证明:因为S n =2a n -2n (n ∈N *) ①, 所以a 1=S 1=2a 1-2,得a 1=2.当n ≥2时,S n -1=2a n -1-2(n -1) ②.由①②两式相减得a n =2a n -1+2,变形得a n +2=2(a n -1+2).又因为a 1+2=4,所以{a n +2}是以4为首项,2为公比的等比数列,所以a n +2=4×2n-1,所以a n =4×2n -1-2=2n +1-2(n ≥2).又a 1=2也符合上述表达式,所以a n =2n +1-2(n ∈N *).(2)因为b n =log 2(a n +2)=log 22n +1=n +1,1b n b n +1=1n +n +=1n +1-1n +2, 所以T n =⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2=12-1n +2<12,依题意得a ≥12,即a 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞.。
高考数学一轮第六章数列第三节等比数列及其前n项和人教A版
∴Sann=41-4 21n=2n-1. 2n
[名师微点]
等比数列基本量运算的解题策略 (1)等比数列基本量的运算是等比数列中的一类基本问 题,等比数列中有五个量 a1,n,q,an,Sn,一般可以“知三 求二”,通过列方程(组)便可迎刃而解. (2)等比数列的前 n 项和公式涉及对公比 q 的分类讨论, 当 q=1 时,{an}的前 n 项和 Sn=na1;当 q≠1 时,{an}的前 n 项和 Sn=a111--qqn=a11--aqnq.
解析:设等比数列{an}的公比为 q,
∵aa12++aa34==5254,,
∴aa11+q+a1aq12q=3=52,54,
②
①
由①除以②可得1q++qq23=2,解得 q=12,代入①得 a1=2,
∴an=2×21n-1=24n,Sn=2×11--1212n=41-21n,
等比数列的判定方法
[解题技法]
定义法 若aan+n 1=q(q 为非零常数,n∈N*)或aan-n1=q(q 为 非零常数且 n≥2,n∈N*),则{an}是等比数列
中项公式法 若数列{an}中,an≠0 且 a2n+1=an·an+2(n∈N*), 则{an}是等比数列
通项公式法 若数列{an}的通项公式可写成 an=c·qn-1(c,q 均 为非零常数,n∈N*),则{an}是等比数列
2024届高考一轮复习数学课件(新教材人教A版强基版):数列
5.等比数列{an}中,a1+a2=6,a3+a4=12,则{an}的前 8 项和为
√A.90
B.30( 2+1)
C.45( 2+1)
D.72
等比数列{an}中,a1+a2=6, a3+a4=(a1+a2)q2=12, ∴q2=2,a5+a6=(a3+a4)q2=24, 同理a7+a8=48, 则{an}的前8项和a1+a2+a3+a4+a5+a6+a7+a8=6+12+24+48=90.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
11.数列{an}的前n项和为Sn,若a1=1,an+1=2Sn(n∈N*),则有
√A.Sn=3n-1
√B.{Sn}为等比数列
C.an=2·3n-1
√D.an=12·,3nn-=2,1n,≥2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
8.数列{an}中,a1=5,a2=9.若数列{an+n2}是等差数列,则{an}的最大 值为
A.9
√B.11
45 C. 4
D.12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
令bn=an+n2,又a1=5,a2=9, ∴b2=a2+4=13,b1=a1+1=6, ∴数列{an+n2}的首项为6,公差为13-6=7, 则an+n2=6+7(n-1)=7n-1, ∴an=-n2+7n-1=-n-722+445,又 n∈N*, ∴当 n=3 或 4 时,an 有最大值为-14+445=11.
2020届高考数学总复习第六章数列6_3等比数列及其前n项和课件文新人教A版
A.1盏
B.3盏
C.5盏
D.9盏
(2)(2019·广州测试)在各项都为正数的等比数列{an}中,已知
a1=2,a2n+2+4a2n=4a2n+1,则数列{an}的通项公式 an=__________.
(3)(2019·洛阳统考)设等比数列{an}的前 n 项和为 Sn,若 a1
+8a4=0,则SS43=(
0 的根,则a1aa917的值为(
)
A.2 2
B.4
C.-2 2或 2 2
D.-4 或 4
(2)(2019·武汉华师附中调研)数列{an}的通项公式为 an=2n-1,
则使不等式 a21+a22+…+a2n<5×2n+1 成立的 n 的最大值为( )
A.2
B.3
C.4
D.5
【解析】 (1)因为 a3,a15 是方程 x2-6x+8=0 的根, 所以 a3a15=8,a3+a15=6, 易知 a3,a15 均为正,由等比数列的性质知,a1a17=a29=a3a15 =8, 所以 a9=2 2,a1aa917=2 2,故选 A. (2)因为 an=2n-1,a2n=4n-1,
【例4】 等比数列{an}中,已知a1+a3=8,a5+a7=4,
则a9+a11+a13+a15的值为( )
A.1
B.2
C.3
D.5
【解析】 法一:因为{an}为等比数列, 所以 a5+a7 是 a1+a3 与 a9+a11 的等比中项, 所以(a5+a7)2=(a1+a3)·(a9+a11), 故 a9+a11=(aa51++aa73)2=482=2. 同理,a9+a11 是 a5+a7 与 a13+a15 的等比中项, 所以(a9+a11)2=(a5+a7)(a13+a15), 故 a13+a15=(aa95++aa117)2=242=1.
2024届高考一轮复习数学课件(新教材人教A版强基版):数列求和
①等差数列的前n项和公式:
na1+an Sn= 2 =
na1+nn- 2 1d
.
②等比数列的前n项和公式:
na1,q=1, Sn= _a_11_--__aq_nq_=__a_1_1_1-_-_q_q_n_,__q_≠__1__.
知识梳理
(2)分组求和法 若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求 和时可用分组求和法,分别求和后相加减. (3)并项求和法 一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如an= (-1)nf(n)类型,可采用两项合并求解.
因为bn=an+ncos nπ=2n+1+(-1)nn, 所以当n为偶数时, Tn=b1+b2+…+bn =[3+5+7+…+(2n+1)]+[-1+2-3+4-…-(n-1)+n] =n3+22n+1+n2 =n2+2n+n2=n2+52n.
当n为奇数时, Tn=Tn+1-bn+1=(n+1)2+52(n+1)-[2(n+1)+1+n+1]=n2+32n-12. 综上,Tn=nn22++3252nn, -12n为 ,偶n为数奇,数.
题型二 并项求和
例2 记数列{an}的前n项和为Sn,已知Sn=2an-2n+1. (1)求数列{an}的通项公式;
当n=1时,由Sn=2an-2n+1,可得a1=S1=2a1-2+1,即有a1=1. 当n≥2时,an=Sn-Sn-1=2an-2n+1-2an-1+2(n-1)-1, 即an=2an-1+2,可得an+2=2(an-1+2),显然an-1+2≠0. 所以数列{an+2}是首项为3,公比为2的等比数列, 则an+2=3·2n-1,即有an=3·2n-1-2.
跟踪训练3 已知等差数列{an}中,a2=5,a3+a5=18. (1)求数列{an}的通项公式;
【走向高考】(2013春季发行)高三数学第一轮总复习 6-3等比数列 新人教A版
6-3等比数列基础巩固强化1.(2012·哈尔滨质检)已知等比数列{a n }中,a 5,a 95为方程x 2+10x +16=0的两根,则a 20·a 50·a 80的值为( )A .256B .±256C .64D .±64 [答案] D[解析] 由韦达定理可得a 5a 95=16,由等比中项可得a 5a 95=(a 50)2=16,故a 50=±4,则a 20a 50a 80=(a 50)3=(±4)3=±64.2.(2012·沈阳质检)已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则该数列的通项a n =( )A .4×(23)n -1B .4×(23)nC .4×(32)nD .4×(32)n -1[答案] D[解析] 据前三项可得(a +1)2=(a -1)(a +4),解得a =5,故等比数列的首项为4,q=a 2a 1=32, 故a n =4×(32)n -1.3.(文)(2011·青岛一模)在等比数列{a n }中,若a 2=9,a 5=243,则数列{a n }的前4项和为( )A .81B .120C .168D .192[答案] B[解析] 设等比数列{a n }的公比为q ,根据题意及等比数列的性质可知:a 5a 2=27=q 3,所以q =3,所以a 1=a 2q =3,所以S 4=31-341-3=120.(理)(2011·吉林长春模拟)已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列{1a n}的前5项和为( )A.8532B.3116C.158D.852[答案] B[解析] ∵9S 3=S 6,∴8(a 1+a 2+a 3)=a 4+a 5+a 6, ∴8=q 3,∴q =2, ∴a n =2n -1,∴1a n =(12)n -1,∴{1a n }的前5项和为1-1251-12=3116,故选B. 4.(2011·江西抚州市高三模拟)等比数列{a n }的前n 项和为S n ,若S 1、S 3、S 2成等差数列,则{a n }的公比等于( )A .1 B.12 C .-12D.1+52[答案] C[解析] 2S 3=S 1+S 2,即2(a 1+a 1q +a 1q 2)=a 1+a 1+a 1q , 得q =-12,故选C.5.(文)(2011·哈尔滨九中模拟)已知数列{a n }的前n 项和S n =2n-1,则数列{a n }的奇数项的前n 项和为( )A.2n +1-13B.2n +1-23C.22n-13D.22n-23[答案] C[解析] 当n =1时,a 1=S 1=1, 当n ≥2时,a n =S n -S n -1=2n-2n -1=2n -1.∴a n =2n -1(n ∈N *),则数列{a n }的奇数项的前n 项和为1-22n1-22=22n-13,故选C. (理)(2011·泉州市质检)等比数列{a n }的前n 项和为S n ,若a 1+a 2+a 3+a 4=1,a 5+a 6+a 7+a 8=2,S n =15,则项数n 为( )A .12B .14C .15D .16[答案] D[解析]a 5+a 6+a 7+a 8a 1+a 2+a 3+a 4=q 4=2,由a 1+a 2+a 3+a 4=1.得a 1(1+q +q 2+q 3)=1, 即a 1·1-q 41-q=1,∴a 1=q -1,又S n =15,即a 11-q n 1-q=15,∴q n=16,又∵q 4=2,∴n =16.故选D.6.(2011·安徽皖南八校联考)设{a n }是公比为q 的等比数列,令b n =a n +1(n =1,2,…),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则q 等于( )A .-43B .-32C .-23或-32D .-34或-43[答案] C[解析] 集合{-53,-23,19,37,82}中的各元素减去1得到集合{-54,-24,18,36,81},其中-24,36,-54,81或81,-54,36,-24成等比数列,∴q =-32或-23.7.已知f (x )是一次函数,若f (3)=5,且f (1)、f (2)、f (5)成等比数列,则f (1)+f (2)+…+f (100)的值是________.[答案] 10000[解析] 设f (x )=kx +b ,f (3)=3k +b =5,由f (1)、f (2)、f (5)成等比数列得(2k +b )2=(k +b )·(5k +b ),可得k =2,b =-1.∴f (n )=2n -1,则f (1)+f (2)+…+f (100)=100×1+100×992×2=10000.8.(文)(2010·浙江金华)如果一个n 位的非零整数a 1a 2…a n 的各个数位上的数字a 1,a 2,…,a n 或适当调整次序后能组成一个等比数列,则称这个非零整数a 1a 2…a n 为n 位“等比数”.如124,913,333等都是三位“等比数”.那么三位“等比数”共有________个.(用数字作答)[答案] 27[解析] 适当调整次序后能组成一个三位“等比数”的非零整数可分为以下几类:(1)111,222,…,999;(2)124,248,139.其中第(1)类“等比数”有9个;第(2)类“等比数”有3×6=18个;因此,满足条件的三位“等比数”共有27个.(理)(2012·北京东城练习)已知等差数列{a n }首项为a ,公差为b ,等比数列{b n }首项为b ,公比为a ,其中a 、b 都是大于1的正整数,且a 1<b 1,b 2<a 3,那么a =________;若对于任意的n ∈N *,总存在m ∈N *,使得b n =a m +3成立,则a n =________.[答案] 2 5n -3[解析] 由已知条件可得⎩⎪⎨⎪⎧a <b ,ab <a +2b ,即⎩⎪⎨⎪⎧a <b ,a -2b <a ,若a =2,显然符合条件;若a >2,则a <b <aa -2,解得a <3,即2<a <3,即不存在a 满足条件,由此可得a =2.当a =2时,a n =2+(n -1)b ,b n =b ×2n -1,若存在m ∈N *,使得b n =a m +3成立,则b ×2n-1=2+(m -1)b +3,即得b ×2n -1=bm +5-b ,当b =5时,方程2n -1=m 总有解,此时a n =5n -3.9.(2011·锦州模拟)在等比数列{a n }中,若公比q >1,且a 2a 8=6,a 4+a 6=5,则a 5a 7=________.[答案] 23[解析] ∵a 2a 8=6,∴a 4a 6=6,又∵a 4+a 6=5,且q >1,∴a 4=2,a 6=3,∴a 5a 7=a 4a 6=23. 10.(文)(2012·北京东城练习)已知数列{a n }的前n 项和为S n ,且S n =4a n -3(n ∈N *). (1)证明:数列{a n }是等比数列;(2)若数列{b n }满足b n +1=a n +b n (n ∈N *),且b 1=2,求数列{b n }的通项公式. [解析] (1)证明:因为S n =4a n -3,所以n =1时,a 1=4a 1-3,解得a 1=1. 因为S n =4a n -3,则S n -1=4a n -1-3(n ≥2), 所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1, 整理得a n =43a n -1.又a 1=1≠0,所以{a n }是首项为1,公比为43的等比数列.(2)因为a n =(43)n -1,b n +1=a n +b n (n ∈N *),所以b n +1-b n =(43)n -1.可得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=2+1-43n -11-43=3·(43)n -1-1(n ≥2),当n =1时符合上式,∴b n =3·(43)n -1-1.(理)(2012·浙江绍兴质量调测)已知数列{a n }中,a 1=1,S n 是数列{a n }的前n 项和,且对任意n ∈N *,有a n +1=kS n +1(k 为常数).(1)当k =2时,求a 2、a 3的值;(2)试判断数列{a n }是否为等比数列?请说明理由. [解析] (1)当k =2时,a n +1=2S n +1, 令n =1得a 2=2S 1+1,又a 1=S 1=1,得a 2=3; 令n =2得a 3=2S 2+1=2(a 1+a 2)+1=9,∴a 3=9. ∴a 2=3,a 3=9.(2)由a n +1=kS n +1,得a n =kS n -1+1, 两式相减,得a n +1-a n =ka n (n ≥2), 即a n +1=(k +1)a n (n ≥2), 且a 2a 1=k +11=k +1,故a n +1=(k +1)a n .故当k =-1时,a n =⎩⎪⎨⎪⎧1,n =10.n ≥2此时,{a n }不是等比数列; 当k ≠-1时,a n +1a n=k +1≠0,此时,{a n }是首项为1,公比为k +1的等比数列. 综上,当k =-1时,{a n }不是等比数列; 当k ≠-1时,{a n }是等比数列.能力拓展提升11.(2011·浙江温州质检)一个直角三角形的三内角的正弦成等比数列,其最小角的正弦值为( )A.5-12 B.12 C.5-14D.5+14[答案] A[解析] 设三内角A <B <C , ∵sin A 、sin B 、sin C 成等比数列, ∴a 、b 、c 成等比数列,∴b 2=ac , ∴c 2-a 2=ac ,∴⎝ ⎛⎭⎪⎫a c 2+a c-1=0. ∵a c >0,∴a c =5-12=sin A ,故选A. [点评] 在△ABC 中,由正弦定理a =2R sin A 、b =2R sin B 可知,a <b ⇔A <B ⇔sin A <sin B . 12.(文)(2012·深圳二调)已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n(n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1=( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2[答案] C[解析] 设等比数列{a n }的首项为a 1,公比为q ,∵a 5·a 2n -5=a 1q 4·a 1q2n -6=22n ,即a 21·q2n-2=22n⇒(a 1·qn -1)2=22n⇒a 2n =(2n )2,∵a n >0,∴a n =2n ,∴a 2n -1=22n -1,∴log 2a 1+log 2a 3+…+log 2a 2n -1=log 22+log 223+…+log 222n -1=1+3+…+(2n -1)=1+2n -12·n =n 2,故选C.(理)(2011·辽宁沈阳二中检测,辽宁丹东四校联考)已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *)且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5 D.15[答案] A[分析] 根据数列满足log 3a n +1=log 3a n +1(n ∈N *).由对数的运算法则,得出a n +1与a n的关系,判断数列的类型,再结合a 2+a 4+a 6=9得出a 5+a 7+a 9的值.[解析] 由log 3a n +1=log 3a n +1(n ∈N *)得,a n +1=3a n ,∵a n >0,∴数列{a n }是公比等于3的等比数列,∴a 5+a 7+a 9=(a 2+a 4+a 6)×33=35, ∴log 13(a 5+a 7+a 9)=-log 335=-5.13.(文)(2011·长春模拟)已知正项等比数列{a n }的前n 项和为S n ,b n =a 3na 2n +1,且{b n }的前n 项和为T n ,若对一切正整数n 都有S n >T n ,则数列{a n }的公比q 的取值范围是( )A .0<q <1B .q >1C .q > 2D .1<q < 2[答案] B[解析] 由于{a n }是等比数列,公比为q ,所以b n =a 3na 2n +1=1q 2a n ,于是b 1+b 2+…+b n =1q2(a 1+a 2+…+a n ),即T n =1q 2·S n .又S n >T n ,且T n >0,所以q 2=S n T n>1.因为a n >0对任意n ∈N *都成立,所以q >0,因此公比q 的取值范围是q >1.(理)(2011·榆林模拟)在等比数列{a n }中,a n >0(n ∈N +),公比q ∈(0,1),且a 1a 5+2a 3a 5+a 2a 8=25,又a 3与a 5的等比中项为2,b n =log 2a n ,数列{b n }的前n 项和为S n ,则当S 11+S 22+…+S nn最大时,n 的值等于( )A .8B .9C .8或9D .17[答案] C[解析] ∵a 1a 5+2a 3a 5+a 2a 8=25, ∴a 23+2a 3a 5+a 25=25, 又a n >0,∴a 3+a 5=5, 又q ∈(0,1),∴a 3>a 5, ∵a 3a 5=4,∴a 3=4,a 5=1,∴q =12,a 1=16,a n =16×(12)n -1=25-n,b n =log 2a n =5-n ,b n +1-b n =-1,∴{b n }是以b 1=4为首项,-1为公差的等差数列, ∴S n =n 9-n 2,∴S n n =9-n 2,∴当n ≤8时,S nn>0;当n =9时,S n n=0;当n >9时,S n n<0, ∴当n =8或9时,S 11+S 22+…+S nn最大.14.(2012·江苏,6)现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________.[答案] 35[解析] 本题考查等比数列及古典概型的知识.等比数列的通项公式为a n =(-3)n -1.所以此数列中偶数项都为负值,奇数项全为正值.若a n ≥8,则n 为奇数且(-3)n -1=3n -1≥8,则n -1≥2,∴n ≥3,∴n =3,5,7,9共四项满足要求.∴p =1-410=35.[点评] 直接考虑情况较多时,可以从其对立面来考虑问题.15.(2011·新课标全国文,17)已知等比数列{a n }中,a 1=13,公比q =13.(1)S n 为{a n }的前n 项和,证明:S n =1-a n2;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式. [解析] (1)因为a n =13×⎝ ⎛⎭⎪⎫13n -1=13,S n =13⎝ ⎛⎭⎪⎫1-13n 1-13=1-13n 2,所以S n =1-a n2.(2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n ) =-n n +12.所以{b n }的通项公式为b n =-n n +12.16.(文)(2011·山东淄博一模)设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7,且a 1+3,3a 2,a 3+4构成等差数列.(1)求数列{a n }的通项公式;(2)令b n =ln a 3n +1,n =1,2,…,求数列{b n }的前n 项和T n . [解析] (1)设数列{a n }的公比为q (q >1),由已知,得⎩⎪⎨⎪⎧a 1+a 2+a 3=7,a 1+3+a 3+42=3a 2,即⎩⎪⎨⎪⎧a 1+a 2+a 3=7,a 1-6a 2+a 3=-7,⎩⎪⎨⎪⎧a 11+q +q 2=7,a 11-6q +q 2=-7,解得⎩⎪⎨⎪⎧a 1=1,q =2.故数列{a n }的通项为a n =2n -1.(2)由(1)得a 3n +1=23n,∴b n =ln a 3n +1=ln23n=3n ln2, 又b n +1-b n =3ln2,∴{b n }是以b 1=3ln2为首项,以3ln2为公差的等差数列. ∴T n =b 1+b 2+…+b n =n b 1+b n 2=n 3ln2+3n ln22=3n n +1ln22即T n =3n n +12ln2.(理)(2011·安庆模拟)已知数列{a n }中,a 1=12,点(n,2a n +1-a n )在直线y =x 上,其中n =1,2,3….(1)令b n =a n +1-a n -1,求证数列{b n }是等比数列; (2)求数列{a n }的通项.[解析] (1)由已知得2a n +1=a n +n ,又a 1=12,∴a 2=34,b 1=a 2-a 1-1=34-12-1=-34,又∵b n =a n +1-a n -1,∴b n +1=a n +2-a n +1-1, ∴b n +1b n =a n +2-a n +1-1a n +1-a n -1 =a n +1+n +12-a n +n2-1a n +1-a n -1=a n +1-a n -12a n +1-a n -1=12.∴{b n }是以-34为首项,以12为公比的等比数列.(2)由(1)知,b n =-34×(12)n -1=-3×(12)n +1∴a n +1-a n =1-3×(12)n +1,∴a 2-a 1=1-3×(12)2a 3-a 2=1-3×(12)3……a n -a n -1=1-3×(12)n各式相加得a n =n -1-3×[(12)2+(12)3+…+(12)n ]+12=n -12-3×14×[1-12n -1]1-12=32n +n -2.1.已知数列{a n }的前n 项的和S n 满足S n =2n -1(n ∈N *),则数列{a 2n }的前n 项的和为( )A .4n-1 B.13(4n-1) C.43(4n-1) D .(2n-1)2[答案] B[解析] n ≥2时,a n =S n -S n -1=(2n -1)-(2n -1-1)=2n -1,又a 1=S 1=21-1=1也满足,∴a n =2n -1(n ∈N *).设b n =a 2n ,则b n =(2n -1)2=4n -1,∴数列{b n }是首项b 1=1,公比为4的等比数列,故{b n }的前n 项和T n =1×4n-14-1=13(4n-1). 2.等比数列的首项为1,项数是偶数,所有的奇数项之和为85,所有的偶数项之和为170,则这个等比数列的项数为( )A .4B .6C .8D .10[答案] C[解析] 由题意知,85q =170,∴q =2, ∴85+170=1×2n-12-1,∴n =8.3.(2011·山东济南模拟)已知各项不为0的等差数列{a n },满足2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6b 8等于( )A .2B .4C .8D .16[答案] D[解析] 由题意可知,a 27=2(a 3+a 11)=4a 7.∵a 7≠0,∴a 7=4,∴b 6b 8=b 27=a 27=16. 4.已知等比数列{a n }的公比q >0,其前n 项的和为S n ,则S 4a 5与S 5a 4的大小关系是( )A .S 4a 5<S 5a 4B .S 4a 5>S 5a 4C .S 4a 5=S 5a 4D .不确定 [答案] A[解析] (1)当q =1时,S 4a 5-S 5a 4=4a 21-5a 21=-a 21<0.(2)当q ≠1且q >0时,S 4a 5-S 5a 4=a 211-q (q 4-q 8-q 3+q 8)=a 21q 31-q (q -1) =-a 21q 3<0.[点评] 作差,依据前n 项和与通项公式化简后判断符号是解决这类问题的基本方法,应注意对公比分类讨论.5.(2012·广州一模)两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题.他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类.如下图中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作a 1=1,第2个五角形数记作a 2=5,第3个五角形数记作a 3=12,第4个五角形数记作a 4=22,…,若按此规律继续下去,则a 5=________,若a n =145,则n =________.[答案] 35 10[解析] a 2-a 1=4,a 3-a 2=7,a 4-a 3=10,观察图形可得,数列{a n -a n -1}(n ≥2,n ∈N *)构成首项为4,公差为3的等差数列,所以a 5-a 4=13,所以a 5=35,a n -a n -1=3n -2(n ≥2,n ∈N *),应用累加法得a n -a 1=4+7+10+…+(3n -2)=n -13n +22, 所以a n =n -13n +22+1(n ≥2,n ∈N *),当a n =145时,n -13n +22+1=145,解得n =10.6.已知{a n }是首项为a 1、公比q (q ≠1)为正数的等比数列,其前n 项和为S n ,且有5S 2=4S 4,设b n =q +S n .(1)求q 的值;(2)数列{b n }能否是等比数列?若是,求出a 1的值;若不是,请说明理由.[解析] (1)由题意知5S 2=4S 4,S 2=a 11-q 21-q ,S 4=a 11-q 41-q, ∴5(1-q 2)=4(1-q 4),又q >0,∴q =12. (2)∵S n =a 11-q n 1-q =2a 1-a 1⎝ ⎛⎭⎪⎫12n -1, 于是b n =q +S n =12+2a 1-a 1⎝ ⎛⎭⎪⎫12n -1, 若{b n }是等比数列,则12+2a 1=0, ∴a 1=-14.此时,b n =⎝ ⎛⎭⎪⎫12n +1. ∵b n +1b n =⎝ ⎛⎭⎪⎫12n +2⎝ ⎛⎭⎪⎫12n +1=12,∴数列{b n }是等比数列. 所以存在实数a 1=-14,使数列{b n }为等比数列. 7.已知数列{a n }和{b n },数列{a n }的前n 项和记为S n .若点(n ,S n )在函数y =-x 2+4x 的图象上,点(n ,b n )在函数y =2x的图象上.(1)求数列{a n }的通项公式;(2)求数列{a n b n }的前n 项和T n .[解析] (1)由已知得S n =-n 2+4n ,当n ≥2时,a n =S n -S n -1=-2n +5,又当n =1时,a 1=S 1=3,符合上式.∴a n =-2n +5.(2)由已知得b n =2n ,a n b n =(-2n +5)2n . T n =3×21+1×22+(-1)×23+…+(-2n +5)×2n , 2T n =3×22+1×23+…+(-2n +7)×2n +(-2n +5)×2n +1,两式相减可得, T n =-6+(23+24+…+2n +1)+(-2n +5)×2n +1 =231-2n -11-2+(-2n +5)×2n +1-6 =(7-2n )×2n +1-14.。
走向高考--2015高考一轮总复习人教A版数学6-3
基础巩固强化一、选择题1.(文)等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则公比q 的值是( )A .2B .-2C .3D .-3 [答案] A[解析] ∵S 6=S 3+S 3q 3=S 3·(1+q 3),∴q =2.(理)在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21.则a 3+a 4+a 5等于( )A .33B .72C .84D .189 [答案] C[解析] 由前三项和为21可知a 1(1+q +q 2)=21,将a 1=3代入解之得q =2或-3(舍).则a 3+a 4+a 5=(a 1+a 2+a 3)q 2=21×4=84.2.(文)(2013·沈阳质检)已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则该数列的通项a n =( )A .4×(23)n -1B .4×(23)nC .4×(32)nD .4×(32)n -1[答案] D[解析] 据前三项可得(a +1)2=(a -1)(a +4),解得a =5,故等比数列的首项为4,q =a 2a 1=32,故a n =4×(32)n -1.(理)(2013·安徽省级示范高中名校联考)三个实数a ,b ,c 成等比数列,且a +b +c =3,则b 的取值范围是( )A .[-1,0)B .(0,1]C .[-1,0)∪(0,3]D .[-3,0)∪(0,1][答案] D[解析] 设公比为q ,显然q ≠0,a +b +c =b (1q +1+q )=3⇒b =31+1q +q. 当q >0时,q +1q ≥2,当且仅当q =1时等号成立,∴0<b ≤1;当q <0时,q +1q ≤-2,当且仅当q =-1时等号成立,∴-3≤b <0.故选D.3.(文)(2013·广东珠海质监)在各项都为正数的等比数列{a n }中,首项为3,前3项和为21,则a 3+a 4+a 5=( )A .33B .72C .84D .189 [答案] C[解析]设公比为q ,则⎩⎪⎨⎪⎧a 1=3,a 1(1+q +q 2)=21,q >0⇒⎩⎪⎨⎪⎧a 1=3,q =2.那么a 3+a 4+a 5=a 1q 2(1+q +q 2)=3×22×7=84. (理)已知数列{a n }的前n 项的和S n 满足S n =2n -1(n ∈N *),则数列{a 2n }的前n 项的和为( )A .4n-1 B.13(4n-1) C.43(4n-1) D .(2n -1)2[答案] B[解析] n ≥2时,a n =S n -S n -1=(2n -1)-(2n -1-1)=2n -1, 又a 1=S 1=21-1=1也满足,∴a n =2n -1(n ∈N *).设b n =a 2n ,则b n =(2n -1)2=4n -1,∴数列{b n }是首项b 1=1,公比为4的等比数列,故{b n }的前n 项和T n =1×(4n -1)4-1=13(4n-1).4.(文)(2013·广元二模)等比数列{a n }的公比q >0.已知a 2=1,a n +2+a n +1=6a n ,则{a n }的前4项和S 4=( )A .-20B .15 C.152 D.203 [答案] C[解析] ∵a n +2+a n +1=6a n ,∴a n ≠0, ∴q 2+q -6=0,∵q >0,∴q =2,∴a 1=12, ∴S 4=12(1-24)1-2=152.(理)(2013·西安标准化考试)等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,则公比q 为( )A .q =-2B .q =1C .q =-2或q =1D .q =2或q =-1[答案] A[解析] 本题有两种处理策略,一是设出首项a 1,建立方程2a 1(1-q n )1-q =a 1(1-q n +1)1-q +a 1(1-q n +2)1-q 求解,解得q =-2.此法为通法,但运算复杂;二是特例探路,不妨设n =1,则S n +1,S n ,S n +2即是S 2,S 1,S 3,根据等差数列的性质可知,2S 1=S 2+S 3,即2a 1=a 1(1+q )+a 1(1+q +q 2),易得q =-2.故选A.5.(文)若数列{a n }是正项递减等比数列,T n 表示其前n 项的积,且T 8=T 12,则当T n 取最大值时,n 的值等于( )A .9B .10C .11D .12 [答案] B[解析] ∵T 8=T 12,∴a 9a 10a 11a 12=1,又a 9a 12=a 10a 11=1,且数列{a n }是正项递减数列,所以a 9>a 10>1>a 11>a 12,因此T 10取最大值.(理)在由正数组成的等比数列{a n }中,设x =a 5+a 10,y =a 2+a 13,则x 与y 的大小关系是( )A .x =yB .x ≥yC .x ≤yD .不确定 [答案] C[解析] x -y =a 1q (1-q 3)(q 8-1). 当q =1时,x =y ;当q >1时,1-q 3<0而q 8-1>0,x -y <0; 当0<q <1时,1-q 3>0而q 8-1<0,x -y <0.故选C.6.将正偶数集合{2,4,6,…}从小到大按第n 组有2n 个偶数进行分组如下:第一组 第二组 第三组 … {2,4} {6,8,10,12} {14,16,18,20,22,24,26,28} … 则2014位于( ) A .第7组B .第8组C .第9组D .第10组[答案] C[解析] 前n 组共有2+4+8+ (2)=2×(2n-1)2-1=2n +1-2个数.由a n =2n =2014知,n =1007,∴2014为第1007个偶数, ∵29=512,210=1024,故前8组共有510个数,前9组共有1022个数,即2014在第9组.二、填空题7.(2013·莆田一模)若等比数列{a n }(a n ∈R )对任意的正整数m ,n 满足a m +n =a m a n ,且a 3=22,那么a 12=________.[答案] 64[解析] 令m =1,则a n +1=a n a 1⇒a 1=q ,a n =q n , ∵a 3=q 3=22,∴a 12=q 12=64.8.(文)在公差不为零的等差数列{a n }中,a 1、a 3、a 7依次成等比数列,前7项和为35,则数列{a n }的通项a n =________.[答案] n +1[解析] 设等差数列首项a 1,公差d ,则∵a 1、a 3、a 7成等比,∴a 23=a 1a 7,∴(a 1+2d )2=a 1(a 1+6d ),∴a 1=2d , 又S 7=7a 1+7×62d =35d =35, ∴d =1,∴a 1=2,∴a n =n +1.(理)(2013·浙江湖州中学)已知数列{a n }是正项等比数列,若a 1=32,a 4=4,则数列{log 2a n }的前n 项和S n 的最大值为________.[答案] 15[解析] ∵a 1=32,a 4=4,∴q =12,a n =32·(12)n -1,log 2a n =log 232·(12)n -1=5+(n -1)log 212=6-n ,由6-n ≥0,得n ≤6,∴前5项(或6项)和最大,S 5=5×(5+1)2=15.9.(2012·江苏,6)现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________.[答案] 35[解析] 等比数列的通项公式为a n =(-3)n -1.所以此数列中偶数项都为负值,奇数项全为正值.若a n ≥8,则n 为奇数且(-3)n -1=3n -1≥8,则n -1≥2,∴n ≥3,∴n =3,5,7,9,共四项满足要求.∴p =1-410=35.[点评] 直接考虑情况较多时,可以从其对立面来考虑问题. 三、解答题10.(文)(2013·陕西)设S n 表示数列{a n }的前n 项和. (1)若{a n }是等差数列,推导S n 的计算公式;(2)若a 1=1,q ≠0,且对所有正整数n ,有S n =1-q n 1-q .判断{a n }是否为等比数列,并证明你的结论.[解析] (1)方法一:设{a n }的公差为d ,则S n =a 1+a 2+…+a n =a 1+(a 1+d )+…+[a 1+(n -1)d ], 又S n =a n +a n -1+…+a 1=[a 1+(n -1)d ]+[a 1+(n -2)d ]+…+a 1,∴2S n =[2a 1+(n -1)d ]+[2a 1+(n -1)d ]+…+[2a 1+(n -1)d ]=2na 1+n (n -1)d ,∴S n =na 1+n (n -1)2d .方法二:设{a n }的公差为d ,则S n =a 1+a 2+…+a n =a 1+(a 1+d )+…+[a 1+(n -1)d ], 又S n =a n +(a n -d )+…+[a n -(n -1)d ],两式相加得2S n =n (a 1+a n ),∴S n =n (a 1+a n )2. (2){a n }是等比数列,证明如下:∵S n =1-q n 1-q ,∴a n +1=S n +1-S n =1-q n +11-q -1-q n 1-q =q n (1-q )1-q =q n.∵a 1=1,q ≠0,∴当n ≥1时,有a n +1a n =q nq n -1=q ,因此,{a n }是首项为1且公比为q 的等比数列.(理)(2013·湖北)已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18.(1)求数列{a n }的通项公式;(2)是否存在正整数n ,使得S n ≥2013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.[解析] (1)设数列{a n }的公比为q ,则a 1≠0,q ≠0,由条件易知q ≠1.由题意得⎩⎪⎨⎪⎧2S 2=S 3+S 4,a 2+a 3+a 4=-18.即⎩⎪⎨⎪⎧2a 1(1-q 2)1-q =a 1(1-q 3)1-q +a 1(1-q 4)1-q ,a 1q (1+q +q 2)=-18.解得⎩⎪⎨⎪⎧a 1=3,q =-2.故数列{a n }的通项公式为a n =3×(-2)n -1. (2)由(1)有S n =3·[1-(-2)n ]1-(-2)=1-(-2)n .若存在n ,使得S n ≥2013,则1-(-2)n ≥2013, 即(-2)n ≤-2012.当n 为偶数时,(-2)n >0,上式不成立;当n 为奇数时,(-2)n =-2n ≤-2012,即2n ≥2012,则n ≥11. 综上,存在符合条件的正整数n ,且所有这样的n 的集合为{n |n =2k +1,k ∈N ,k ≥5}.能力拓展提升一、选择题11.(文)已知等比数列{a n }的公比q >0,其前n 项的和为S n ,则S 4a 5与S 5a 4的大小关系是( )A .S 4a 5<S 5a 4B .S 4a 5>S 5a 4C .S 4a 5=S 5a 4D .不确定[答案] A[解析] (1)当q =1时,S 4a 5-S 5a 4=4a 21-5a 21=-a 21<0.(2)当q ≠1且q >0时,S 4a 5-S 5a 4=a 211-q (q 4-q 8-q 3+q 8)=a 21q 31-q (q -1)=-a 21q 3<0.[点评] 作差,依据前n 项和与通项公式化简后判断符号是解决这类问题的基本方法,应注意对公比分类讨论,请再做下题:已知等比数列{a n }中,a 1>0,q >0,前n 项和为S n ,试比较S 3a 3与S 5a5的大小.[解析] 当q =1时,S 3a 3=3,S 5a 5=5,所以S 3a 3<S 5a 5;当q >0且q ≠1时,S 3a 3-S 5a 5=a 1(1-q 3)a 1q 2(1-q )-a 1(1-q 5)a 1q 4(1-q )=q 2(1-q 3)-(1-q 5)q 4(1-q )=-q -1q 4<0,所以有S 3a 3<S 5a 5.综上可知有S 3a 3<S 5a 5.(理)(2012·云南省二检)已知等比数列{a n }的公比q =2,它的前9项的平均值等于5113,若从中去掉一项a m ,剩下的8项的平均值等于14378,则m 等于( )A .5B .6C .7D .8 [答案] B[解析] 数列{a n }前9项的和为S 9=5113×9=1533,即a 1(1-29)1-2=1533,解得a 1=3.又知a m =S 9-14378×8=96,而a m =3·2m -1,即3·2m-1=96,解得m =6.12.(文)已知等比数列{a n }的各项均为正数,公比q ≠1,设P =12(log 0.5a 5+log 0.5a 7),Q =log 0.5a 3+a 92,P 与Q 的大小关系是( )A .P ≥QB .P <QC .P ≤QD .P >Q[答案] D[解析] P =log 0.5a 5a 7=log 0.5a 3a 9,Q =log 0.5a 3+a 92, ∵q ≠1,∴a 3≠a 9, ∴a 3+a 92>a 3a 9,又∵y =log 0.5x 在(0,+∞)上递减, ∴log 0.5a 3+a 92<log 0.5a 3a 9,即Q <P .故选D.(理)两个正数a 、b 的等差中项是52,一个等比中项是6,且a >b ,则双曲线x 2a 2-y 2b 2=1的离心率e 等于( )A.32B.152C.13D.133 [答案] D[解析] ∵a +b =5,a ·b =6,a >b >0, ∴a =3,b =2.∴e =c a =a 2+b 2a =133.13.(文)某程序框图如图所示,该程序运行后输出的k 的值是( )A .4B .5C .6D .7 [答案] D[解析] 由程序框图可知,S =1+2+22+…+2k =2k +1-1,由S <100得,2k +1<101,∵26=64,27=128,∴k +1=7,∴k =6,结合语句k =k +1在S =S +2k 后面知,当k =6时,S =127,k 的值再增加1后输出k 值为7.[点评] 这是最容易出错的地方,解这类题时,既要考虑等比数列求和,在k 取何值时,恰满足S ≥100,又要顾及S 与k 的赋值语句的先后顺序.(理)已知a n =⎝ ⎛⎭⎪⎫13n,把数列{a n }的各项排列成如下的三角形状:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 ……………………记A (m ,n )表示第m 行的第n 个数,则A (11,12)=( )A.⎝ ⎛⎭⎪⎫1367 B.⎝ ⎛⎭⎪⎫1368C.⎝ ⎛⎭⎪⎫13111D.⎝ ⎛⎭⎪⎫13112 [答案] D[解析] 由图形知,各行数字的个数构成首项为1,公差为2的等差数列,∴前10行数字个数的和为10×1+10×92×2=100,故A (11,12)为{a n }的第112项,∴A (11,12)=a 112=⎝ ⎛⎭⎪⎫13112.二、填空题14.(文)已知a 、b 、c 成等比数列,如果a 、x 、b 和b 、y 、c 都成等差数列,则a x +cy =________.[答案] 2[解析] 由条件知x =a +b 2,y =b +c 2,c =bq ,a =bq , ∴a x +c y =2a a +b +2c b +c =2b q b q +b +2bqb +bq=21+q +2q 1+q=2. (理)(2012·北京东城练习)已知等差数列{a n }首项为a ,公差为b ,等比数列{b n }首项为b ,公比为a ,其中a 、b 都是大于1的正整数,且a 1<b 1,b 2<a 3,那么a =________;若对于任意的n ∈N *,总存在m ∈N *,使得b n =a m +3成立,则a n =________.[答案] 2 5n -3[解析] 由已知条件可得⎩⎪⎨⎪⎧ a <b ,ab <a +2b ,即⎩⎪⎨⎪⎧a <b ,(a -2)b <a ,若a =2,显然符合条件;若a >2,则a <b <aa -2,解得a <3,即2<a <3,即不存在a 满足条件,由此可得a =2.当a =2时,a n =2+(n -1)b ,b n =b ×2n -1,若存在m ∈N *,使得b n =a m +3成立,则b ×2n -1=2+(m -1)b +3,即得b ×2n -1=bm +5-b ,当b =5时,方程2n -1=m 总有解,此时a n =5n -3.15.(2013·合肥二模)已知等比数列{a n }中,a 2>a 3=1,则使不等式(a 1-1a 1)+(a 2-1a 2)+…+(a n -1a n)≥0成立的最大自然数是________.[答案] 5[解析] ∵a 2>a 3=1,∴0<q =a 3a 2<1,a 1=1q 2>1.由(a 1-1a 1)+(a 2-1a 2)+…+(a n -1a n)=(a 1+a 2+…+a n )-(1a 1+1a2+…+1a n)=a 1(1-q n )1-q-1a 1(1-1q n )1-1q =a 1(1-q n )1-q -1-q n a 1(1-q )q n -1≥0,得a 1(1-q n )1-q ≥1-q n a 1(1-q )q n -1.∵0<q <1,∴上式可化为a 21≥1qn -1,∴q 4≤q n -1.∴4≥n -1,n ≤5,即n 的最大值为5.三、解答题16.(文)(2013·洛阳统考)已知数列{a n }中,a 1=2,其前n 项和S n满足S n +1-S n =2n +1(n ∈N *).(1)求数列{a n }的通项公式a n 以及前n 项和S n ; (2)令b n =2log 2a n +1,求数列{1b n ·b n +1}的前n 项和T n .[解析] (1)由S n +1-S n =2n +1得a n +1=2n +1,即a n =2n (n ≥2). 又a 1=2,所以a n =2n (n ∈N *).从而S n =2+22+…+2n =2(1-2n )1-2=2n +1-2.(2)因为b n =2log 2a n +1=2log 22n +1=2n +1, 所以1b n ·b n +1=1(2n +1)·(2n +3)=12(12n +1-12n +3).于是T n =12[(13-15)+(15-17)+…+(12n +1-12n +3)]=12(13-12n +3)=n3(2n +3). (理)(2013·长春三校调研)已知等比数列{a n }满足a n +1+a n =9·2n -1,n ∈N .(1)求数列{a n }的通项公式;(2)设数列{a n }的前n 项和为S n ,若不等式S n >ka n -2对一切n ∈N *恒成立,求实数k 的取值范围.[解析] (1)设等比数列{a n }的公比为q ,∵a n +1+a n =9·2n -1,n ∈N *,∴a 2+a 1=9,a 3+a 2=18, ∴q =a 3+a 2a 2+a 1=189=2,∴2a 1+a 1=9,∴a 1=3.∴a n =3·2n -1,n ∈N *.(2)由(1)知S n =a 1(1-q n )1-q =3(1-2n )1-2=3(2n -1),∴不等式化为3(2n -1)>k ·3·2n -1-2, 即k <2-13·2-对一切n ∈N *恒成立.令f (n )=2-13·2n -1,易知f (n )随n 的增大而增大,∴f (n )min =f (1)=2-13=53,∴k <53. ∴实数k 的取值范围为(-∞,53).考纲要求1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题.4.了解等比数列与指数函数的关系. 补充说明与等比数列有关的常用求和方法 (1)分组求和法若数列{a n }是由等差数列与等比数列的和形式给出的,可先分别对它们求和,再将其和相加,该方法称为分组求和法.(2)错位相减法一般地,{a n }是等差数列,{b n }是等比数列(公差d ≠0,公比q ≠1),c n =a n b n ,求数列{c n }前n 项的和用“乘公比、错位相减法”.备选习题1.(2013·温州第一次适应性测试)已知等比数列{a n }中,a 1=2,且a 4a 6=4a 27,则a 3=( )A.12 B .1 C .2 D.14 [答案] B[解析] 设等比数列{a n }的公比为q ,依题意可得a 25=a 4a 6=4a 27=4·a 25q 4,∴q 4=14,q 2=12,∴a 3=a 1q 2=2×12=1.2.(2013·深圳第一次调研)设数列{(-1)n }的前n 项和为S n ,则对任意正整数n ,S n =( )A.n [(-1)n -1]2B.(-1)n -1+12 C.(-1)n +12 D.(-1)n -12[答案] D[解析] 因为数列{(-1)n }是首项与公比均为-1的等比数列,所以S n =-1·[1-(-1)n ]1-(-1)=(-1)n -12,选D. 3.已知数列{a n }中,a 1=1,S n 是数列{a n }的前n 项和,且对任意n ∈N *,有a n +1=kS n +1(k 为常数).(1)当k =2时,求a 2、a 3的值;(2)试判断数列{a n }是否为等比数列?请说明理由. [解析] (1)当k =2时,a n +1=2S n +1,令n =1得a 2=2S 1+1,又a 1=S 1=1,得a 2=3; 令n =2得a 3=2S 2+1=2(a 1+a 2)+1=9,∴a 3=9.∴a 2=3,a 3=9.(2)由a n +1=kS n +1,得a n =kS n -1+1, 两式相减,得a n +1-a n =ka n (n ≥2), 即a n +1=(k +1)a n (n ≥2),且a 2a 1=k +11=k +1,故a n +1=(k +1)a n .故当k =-1时,a n =⎩⎪⎨⎪⎧1,(n =1),0.(n ≥2).此时,{a n }不是等比数列;当k ≠-1时,a n +1a n=k +1≠0,此时,{a n }是首项为1,公比为k+1的等比数列.综上,当k =-1时,{a n }不是等比数列; 当k ≠-1时,{a n }是等比数列.4.已知数列{a n }的前n 项和为S n ,点(a n +2,S n +1)在直线y =4x -5上,其中n ∈N *.令b n =a n +1-2a n ,且a 1=1.(1)求数列{b n }的通项公式;(2)若f (x )=b 1x +b 2x 2+b 3x 3+…+b n x n ,求f ′(1)的表达式. [解析] (1)∵S n +1=4(a n +2)-5,∴S n +1=4a n +3. ∴S n =4a n -1+3(n ≥2),∴a n +1=4a n -4a n -1(n ≥2), ∴a n +1-2a n =2(a n -2a n -1)(n ≥2). ∴b n b n -1=a n +1-2a n a n -2a n -1=2(n ≥2). ∴数列{b n }为等比数列,其公比为q =2,首项b 1=a 2-2a 1, 而a 1+a 2=4a 1+3,且a 1=1,∴a 2=6. ∴b 1=6-2=4,∴b n =4×2n -1=2n +1. (2)∵f (x )=b 1x +b 2x 2+b 3x 3+…+b n x n ,∴f ′(1)=b 1+2b 2+3b 3+…+nb n . ∴f ′(1)=22+2·23+3·24+…+n ·2n +1① ∴2f ′(1)=23+2·24+3·25+…+n ·2n +2② ①-②得-f ′(1)=22+23+24+…+2n +1-n ·2n +2 =4(1-2n )1-2-n ·2n +2=-4(1-2n )-n ·2n +2,∴f ′(1)=4+(n -1)·2n +2.5.(2012·北京东城练习)已知数列{a n }的前n 项和为S n ,且S n =4a n -3(n ∈N *).(1)证明:数列{a n }是等比数列;(2)若数列{b n }满足b n +1=a n +b n (n ∈N *),且b 1=2,求数列{b n }的通项公式.[解析] (1)证明:因为S n =4a n -3,所以n =1时,a 1=4a 1-3,解得a 1=1.因为S n =4a n -3,则S n -1=4a n -1-3(n ≥2), 所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1, 整理得a n =43a n -1. 又a 1=1≠0,所以{a n }是首项为1,公比为43的等比数列. (2)因为a n =(43)n -1,b n +1=a n +b n (n ∈N *), 所以b n +1-b n =(43)n -1.可得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=2+1-(43)n -11-43=3·(43)n -1-1(n ≥2),当n =1时也符合上式,∴b n =3·(43)n -1-1.。
人教A版高考总复习一轮数学精品课件 第六章 数列 第三节 等比数列 (2)
,S9=
.由
1-
1-
1+3 +6
1+3
=
3
1
3
,解得 q =- 或 q3=1(舍去).由
2
2
a1-a4=3 得 a1(1-q )=3,于是得 a1=2,则有 an=2·
q .由
3
1
−
2
-1
3
=
1 2
=
2
1 2
-1
− ,从而有 =2,解得
2
3
n-1
1
am=2得
·
=
(+2) +1
2 ·
(+1)
∴数列{bn}是首项为 2,公比为 4
=
(+2) 4(+1)2
2 ·(+2) =4,且
(+1)
+1
的等比数列,∴bn= ·
an=2·
4n-1,则
an= ·
22n-1.
+1
(2)解 ∵bn=2·
4 ,∴Tn=2×(1+4+…+4
或 Sn= 1 -
1-
, ≠ 1
1-
, ≠ 1.
微点拨在运用等比数列前n项和公式时,必须注意对q=1和q≠1分类讨论,防
止因忽略q=1这一特殊情况而导致解答错误.
3.等比数列的性质
(1)通项公式的推广:an=amqn-m(n,m∈N*).
(2)若数列{an}为等比数列,且m+n=p+q,则aman=apaq(m,n,p,q∈N*).
=q(n∈N*).
高考数学一轮复习第6章数列第4节数列求和课件理新人教A版
(2)由(1)得 bn=3n+2n-1,
所以
Sn
=
(3
+
32
+
33
+
…
+
3n)
+
(1
+
3
+
5
+
…
+
2n
-
1)
=
3(1-3n) 1-3
+
n(1+2n-1) 2
=32(3n-1)+n2
=3n2+1+n2-32.
考点二 裂项相消法求和问题 【例 2】 (2020 届合肥调研)已知在等差数列{an}中,a2=12,a5=24,数列{bn}满 足 b1=4,bn+1-bn=an(n∈N*). (1)求数列{an},{bn}的通项公式; (2)求使得b11+b12+b13+…+b1n>187成立的最小正整数 n 的值.
(2)由(1)得b1n=2n2+1 2n=2n(n1+1)=121n-n+1 1, ∴b11+b12+b13+…+b1n=121-12+12-13+…+1n-n+1 1=121-n+1 1=2(nn+1),即 2(nn+1)>187,解得 n>16, ∴满足条件的最小正整数 n 的值为 17.
►名师点津 利用裂项相消法求和的注意事项
|跟踪训练| 2.(2019 届安徽模拟)已知数列{an}满足 a1=1,an+1=2an+1. (1)证明:{an+1}是等比数列,并求{an}的通项公式; (2)求证:aa1+1a21+aa2+2a31+…+aanna+n+11<1._________
证明:(1)由 an+1=2an+1,得 an+1+1=2(an+1). 又 a1+1=2,所以{an+1}是首项为 2,公比为 2 的等比数列. 所以 an+1=2n,因此{an}的通项公式为 an=2n-1. (2)由(1)知aanna+n+11=(2n-1)2(n 2n+1-1)=2n-1 1-2n+11-1,于是aa1+1a21+aa2+2a31+…+ aanna+n+11=21-1 1-22-1 1+22-1 1-23-1 1+…+2n-1 1-2n+11-1=1-2n+11-1,所以aa1+1a21+ aa2+2a31+…+aanna+n+11<1.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主干梳理
要点梳理
考点自测
1
2
3
4
5
4.设首项为 1,公比为 的等比数列{an}的前 n 项和为 Sn,则( 3 A.Sn=2an-1 B.Sn=3an-2 C.Sn=4-3an D.Sn=3-2an
������1 (1-������������ ) 解析:Sn= 1-������
2
)
=
������1 -������������ q 1-������
主干梳理
要点梳理
考点自测
3.等比数列及前 n 项和的性质 (1)若{an}为等比数列,且 k+l=m+n(k,l,m,n∈N*),则 ak· al=am· an.若
2 m+n=2k(k,m,n∈N*),则 am· an=������������ . (2)等比数列相隔等距离的项组成的数列仍是等比数列,即
第3讲 等比数列
考纲解读
1.理解等比数列的概念,掌握等比数列的通项公式及前 n 项和公式. 2.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决 相应的问题. 3.了解等比数列与指数函数的关系.
主干梳理
要点梳理
考点自测
1.等比数列的概念
定义 公比 公式 表示 等比 中项 一般地,如果一个数列从第 2 项起,每一项与它的前一项的比都等于同 一个非零常数,则这个数列为等比数列 等比数列定义中的常数叫做等比数列的公比,常用字母 q(q≠0)表示
������
做是一个常数与一个关于 n 的指数函数的积,其图象是函数的图象上一群 孤立的点. (2)等比数列的单调性 设等比数列{an}的首项为 a1,公比为 q. ①当 q>1,a1>0 或 0<q<1,a1<0 时,数列{an}为递增数列. ②当 q>1,a1<0 或 0<q<1,a1>0 时,数列{an}为递减数列. ③当 q=1 时,数列{an}是(非零)常数列. ④当 q<0 时,数列{an}是摆动数列.
an an-1
=q(n≥2),或
an+1 an
=q(n∈N*),q 为常数
如果 a,G,b 成等比数列,则 G 叫做 a,b 的等比中项,即:G 是 a 与 b 的等 比中项⇔a,G,b 成等比数列⇒G2=ab
主干梳理
要点梳理
考点自测
2.等比数列的通项公式及前 n 项和公式 (1)等比数列的通项公式(其中 n,m∈N*)
主干梳理
要点梳理
考点自测
1
ቤተ መጻሕፍቲ ባይዱ
2
3
4
5
1.下列说法正确的有( )个. (1)常数列必为等比数列. (2)如果-1,a,b,c,-9 成等比数列,那么 b=-3,ac=9. (3)三个数 a,b,c 成等比数列的充要条件是 b2=ac. ������ (4)若三个数成等比数列,那么这三个数可以设为 ,a,aq.
������
(5)数列{an}的通项公式是 an=a ,则其前 n 项和为 A.1 B.2 C.3
n
������(1-������������ ) Sn= . 1-������
D.4
主干梳理
要点梳理
考点自测
1
2
3
4
5
解析:(1)错误.a=0 时为等差数列,a≠0 时既为等比数列又为等差数列. (2)正确.∵b 是-1,-9 的等比中项,∴b2=9,b=±3.又由等比数列奇数项符号 相同,得 b<0,故 b=-3,而 b 又是 a,c 的等比中项,故 b2=ac,ac=9. (3)错误.当 a=b=c=0 时,b2=ac.此时,不是等比数列. ������ (4)正确.设中间的数为 a,公比为 q,可构造出 ,a,aq.
ak,ak+m,ak+2m,…仍是等比数列,公比为 qm. (3)当 q≠-1,或 q=-1 且 n 为奇数时,Sn,������2 ������ -Sn,S3n-S2n 仍成等比数列,其公比 为 qn. (4)若{an},{bn}(项数相同)是等比数列,则 {λan}(λ≠0),
1 ������������
1 8
1 2
主干梳理
要点梳理
考点自测
1
2
3
4
5
3.若等差数列{an}的公差不为零,首项 a1=1,a2 是 a1 和 a5 的等比中项,则数列 {an}的公差为( ) A.-2 B.2 C.4 D.-4 解析:设等差数列{an}的公差为 d,则(1+d)2=1×(1+4d),∵d≠0,∴d=2. 答案:B
=
1-3������������ 1-3
2
2
=3-2an,故选 D.
答案:D
主干梳理
要点梳理
考点自测
1
2
3
4
5
5.若等比数列{an}中,a5=4,则 a2· a8 等于( A.4 B.8 C.16 解析:∵{an}是等比数列且 2+8=2×5,
2 ∴a2· a8=������5 =16. 答案:C
) D.32
考向一
考向二
考向三
创新题型解析
考向 1
等比数列的基本量求解
【例 1】(1)(2014 江苏,文 7)在各项均为正数的等比数列{an}中,若 a2=1,a8=a6+2a4,则 a6 的值是 . (2)等比数列 x,3x+3,6x+6,…的第四项等于( )
2 ,{������������ },{an· bn},
������������ ������������
,{|an|}仍是等比数列.
������偶 ������奇
(5)若等比数列{an}的项数为 2n,则 项和与奇数项和.
=q,其中 S 偶,S 奇分别是数列的偶数
主干梳理
要点梳理
考点自测
4.等比数列通项公式的函数特性 ������ n (1)等比数列的通项公式 an=a1qn-1= 1· q ,从函数的角度来看,它可以看
已知条件 a1,q am,q 通项公式 an=a1qn-1 an=amqn-m
(2)等比数列的前 n 项和公式(其中 n∈N*)
已知条件 a1,n,q(q≠1) a1,an,q(q≠1) a1,q=1 前 n 项和公式 Sn= Sn=
a1 (1-qn ) 1-q a1 -an q 1-q
Sn=na1
������
(5)错误.a=1 时,不能用上述公式,此时 Sn=na1=n. 答案:B
主干梳理
要点梳理
考点自测
1
2
3
4
5
2.已知{an}是等比数列,a2=2,a5= ,则公比 q 等于( A.1 2
1 4
) D.
1 2
B.-2
������5 ������2
C.2
解析:∵q3= 答案:D
= ,∴q= .