数理统计--第3章 假设检验
概率论与数理统计-假设检验

14
若
取伪的概率较大.
15
/2
0.12 0.1
0.08 0.06 0.04 0.02
/2 H0 真
60 62.5 65 67.5 70 72.5 75
0.12 0.1
0.08 0.06 0.04 0.02
H0 不真
67.5 70 72.5 75 77.5 80 82.5
16
现增大样本容量,取n = 64, = 66,则
41
两个正态总体
设 X ~ N ( 1 1 2 ), Y ~ N ( 2 2 2 )
两样本 X , Y 相互独立, 样本 (X1, X2 ,…, Xn ), ( Y1, Y2 ,…, Ym ) 样本值 ( x1, x2 ,…, xn ), ( y1, y2 ,…, ym )
显著性水平
42
(1) 关于均值差 1 – 2 的检验
原假设 备择假设 检验统计量及其在
H0
H1
H0为真时的分布拒绝域 Nhomakorabea1 – 2 = 1 – 2
1 – 2 1 – 2 <
1 – 2 1 – 2 > ( 12,22 已知)
43
原假设 备择假设 检验统计量及其在
H0
H1
H0为真时的分布
1 – 2 = 1 – 2
拒绝域
1 – 2 1 – 2 <
1 – 2 1 – 2 >
12, 22未知
12
=
2 2
其中
44
(2)
关于方差比
2 1
/
2 2
的检验
原假设 备择假设 检验统计量及其在
H0
H1
H0为真时的分布
第三章假设检验

《数理统计》试题库假设检验1设2521,,,ξξξ 取自正态母体)9,(μN 其中μ为未知参数,ξ为子样均值,对检验问题0100:,:μμμμ≠=H H 取检验的拒绝域:{}c x x x C ≥-=0251:)(μ , 试决定常数c 使检验的显著性水平为0.05.解:因为),,(9N ~μξ所以),(259N ~μξ 在0H 成立下, ,05.03512C 3553P C P 000=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛Φ-=⎪⎪⎪⎭⎫⎝⎛≥-=≥-C μξμξ)( 96.135,975.035==⎪⎭⎫⎝⎛ΦC C , 所以 C=1.176. 2.设子样),,(1n ξξ 取自正态母体2020),,(σσμN 已知,对检验假设0100:,:μμμμ>=H H 的问题,取临界域{}01:)(c x x x C n ≥= .(i )求此检验犯第一类错误的概率α,犯第二类错误的概率β,并讨论它们之间的关系.(ii )设9,05.0,04.0,5.0200====n ασμ,求65.0=μ时不犯第二类错误的概率.解: (i).在0H 成立下, ),(nN ~200σμξ()⎪⎪⎭⎫⎝⎛-≥-=≥=n C n P C P 0000000σμσμξξα, 0100100μμσμσμαα+=∴=-∴--nC n C其中αμ-1是N (0,1)分布的α-1分位点。
在H 1成立下,),(nN ~20σμξ,()⎪⎪⎭⎫⎝⎛-<-=<=n C n P C P 00011σμσμξξβ =⎪⎪⎭⎫⎝⎛--Φ=⎪⎪⎪⎪⎭⎫⎝⎛-+Φ=⎪⎪⎭⎫ ⎝⎛-Φ--n n n n C 001001000σμμμσμμμσσμαα 当α增加时,αμ-1减少,从而β减少;反之当α减少时,将导致β增加。
(ii )不犯第二类错误的概率为1-β。
⎪⎭⎫ ⎝⎛⨯--Φ-=⎪⎪⎭⎫ ⎝⎛--Φ-=--32.05.065.011105.0001μσμμμβαn =()()().7274.0605.0605.0125.2645.11=Φ=-Φ-=-Φ-3.设一个单一观测的子样ξ取自密度函数为f(x)的母体,对f(x)考虑统计假设:⎩⎨⎧≤≤=≤≤⎩⎨⎧=其它)(:其它10021001)(:1100x x x f H x x f H 试求一个检验函数使犯第一,二类错误的概率满足min 2=+βα,并求其最小值。
《应用数理统计》吴翊李永乐第三章假设检验课后作业参考答案

《应用数理统计》吴翊李永乐第三章假设检验课后作业参考答案-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII第三章 假设检验课后作业参考答案3.1 某电器元件平均电阻值一直保持2.64Ω,今测得采用新工艺生产36个元件的平均电阻值为2.61Ω。
假设在正常条件下,电阻值服从正态分布,而且新工艺不改变电阻值的标准偏差。
已知改变工艺前的标准差为0.06Ω,问新工艺对产品的电阻值是否有显著影响( 01.0=α)解:(1)提出假设64.2:64.2:10≠=μμH H , (2)构造统计量36/06.064.261.2/u 00-=-=-=nX σμ(3)否定域⎭⎬⎫⎩⎨⎧>=⎭⎬⎫⎩⎨⎧>⋃⎭⎬⎫⎩⎨⎧<=--21212αααu u u u u u V(4)给定显著性水平01.0=α时,临界值575.2575.2212=-=-ααuu ,(5) 2αu u <,落入否定域,故拒绝原假设,认为新工艺对电阻值有显著性影响。
3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。
已知这种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。
解:{}01001:1000, H :1000X 950 100 n=25 10002.5V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得:拒绝域:本题中:0.950.950u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。
3.3某厂生产的某种钢索的断裂强度服从正态分布()2,σμN ,其中()2/40cm kg =σ。
现从一批这种钢索的容量为9的一个子样测得断裂强度平均值为X ,与以往正常生产时的μ相比,X 较μ大20(2/cm kg )。
研究生数理统计第三章习题答案

习 题 三1.正常情况下,某炼铁炉的铁水含碳量()24.55,0.108XN .现在测试了5炉铁水,其含碳量分别为4.28,4.40,4.42,4.35,4.37.如果方差没有改变,问总体的均值有无显著变化?如果均值没有改变,问总体方差是否有显著变化()0.05α=? 解 由题意知,()24.55,0.108XN ,5n =,511 4.3645i i x x ===∑,0.05α=,()5220110.095265i i s x μ==-=∑.1)当00.108σ=时,①设统计假设0010: 4.55,: 4.55H H μμμμ==≠=. ②当0.05α=时,0.975121.96uu α-==,临界值121.960.0947c α-===, 拒绝域为000{}{0.0947}K x c x μμ=->=->.③004.364 4.550.186x K μ-=-=∈,所以拒绝0H ,接受1H ,即认为当方差没有改变时,总体的均值有显著变化.2)当0 4.55μ=时,①设统计假设2222220010:0.108,:0.108H H σσσσ==≠=. ②当0.05α=时,临界值()()()()222210.02520.975122111150.1662,5 2.566655c n c n n n ααχχχχ-======, 拒绝域为222202122220000{}{2.56660.1662}ssssK c c σσσσ=><=><或或.③202200.095268.16700.108sK σ==∈,所以拒绝0H ,接受1H ,即均值没有改变时,总体方差有显著变化.2.一种电子元件,要求其寿命不得低于1000h .现抽取25件,得其均值950x h =.该种元件寿命()2,100XN μ,问这批元件是否合格()0.05α=?解 由题意知,()2,100XN μ,25n =,950x =,0.05α=,0100σ=.①设统计假设0010:1000,:1000H H μμμμ≥=<=. ②当0.05α=时,0.05 1.65u u α==-,临界值()1.6533c α==-=-, 拒绝域为000{}{33}K x c x μμ=-<=-<-.③00950100050x K μ-=-=-∈,所以拒绝0H ,接受1H ,即认为这批元件不合格. 3.某食品厂用自动装罐机装罐头食品,每罐标准质量为500g ,现从某天生产的罐头中随机抽测9罐,其质量分别为510,505,498,503,492,502,497,506,495〔单位:g1)机器工作是否正常()0.05α=?2)能否认为这批罐头质量的方差为25.5()0.05α=?解 设X 表示用自动装罐机装罐头食品每罐的质量〔单位:g 〕.由题意知()2500,XN σ,方差2σ未知. 9n =,911500.88899i i x x ===∑,0.05α=,()()222111133.6111118nni i i i s x x x x n ===-=-=-∑∑,()52201130.66679i i s x μ==-=∑1)①设统计假设0010:500,:500H H μμμμ==≠=.②()()0.9751218 2.306tn t α--==,临界值()121 2.306 4.4564c n α-=-==,拒绝域为000{}{ 4.4564}K x c x μμ=->=->.③00500.88895000.8889x K μ-=-=∉,所以接受0H ,拒绝1H ,即认为机器工作正常.2)当0500μ=时,①设统计假设2222220010: 5.5,: 5.5H H σσσσ==≠=. ②当0.05α=时,临界值()()()()222210.02520.975122111190.3,9 2.113399c n c n n n ααχχχχ-======,拒绝域为222202122220000{}{2.11330.3}ssssK c c σσσσ=><=><或或.③2022030.66671.013785.5sK σ==∉,所以接受0H ,拒绝1H ,即为这批罐头质量的方差为25.5.4.某部门对当前市场的鸡蛋价格情况进行调查,抽查某市20个集市上鸡蛋的平均售价为()3.399元/500克,标准差为()0.269元/500克.往年的平均售价一直稳定 ()3.25元/500克左右,问该市场当前的鸡蛋售价是否明显高于往年()0.05α=?解 由题意知,()23.25,XN σ,20n =, 3.399x =,0.05α=,0.269s =.①设统计假设0010: 3.25,: 3.25H H μμμμ≤=>=. ②当0.05α=时,()()10.95119 1.729t n t α--==,临界值()11 1.7290.1067c n α-=-==, 拒绝域为000{}{0.1067}K x c x μμ=->=->③003.399 3.250.149x K μ-=-=∈,所以拒绝0H ,接受1H ,即认为市场当前的鸡蛋售价是明显高于往年. 5.某厂生产的维尼纶纤度()2,0.048XN μ,某日抽测8根纤维,其纤度分别为1.32,1.41,1.55,1.36,1.40,,1.50,1.44,1.39,问这天生产的维尼纶纤度的方差2σ是否明显变大了()0.05α=? 解 由题意知()2,0.048XN μ,8n =,811 1.421258i i x x ===∑,0.05α=,()()22211110.0122118nni i i i s x x x x n ===-=-=-∑∑.①设统计假设2222220010:0.048,:0.048H H σσσσ==>=. ②当0.05α=时,临界值()()2210.951117 2.0117c n n αχχ-=-==-,拒绝域为2202200{}{ 2.01}s s K c σσ=>=>.③202200.012215.29950.048s K σ==∈,所以拒绝0H ,接受1H ,即这天生产的维尼纶纤度的方差2σ明显变大了.6.某种电子元件,要求平均寿命不得低于2000h ,标准差不得超过130h .现从一批该种元件中抽取25个,测得寿命均值为1950h ,标准差148s h =.设元件寿命服从正态分布。
应用数理统计作业题及参考答案(第三章)

第三章 假设检验P1313.2 一种元件,要求其使用寿命不得低于1000(小时)。
现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。
已知该种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。
解:本题需检验0H :0μμ≥,1H :0μμ<.元件寿命服从正态分布,0σ已知,∴当0H成立时,选取统计量X u μ-=,其拒绝域为{}V u u α=<.其中950X =,01000μ=,25n =,0100σ=.则 2.5u ==-.查表得0.05 1.645u =-,得0.05u u <,落在拒绝域中,拒绝0H ,即认为这批元件不合格。
3.3 某厂生产的某种钢索的断裂强度服从正态分布()2N μσ,,其中40σ=(kg / cm 2)。
现从一批这种钢索的容量为9的一个子样测得断裂强度平均值为X ,与以往正常生产时的μ相比,X 较μ大20(kg / cm 2)。
设总体方差不变,问在0.01α=下能否认为这批钢索质量有显著提高?解:本题需检验0H :0μμ=,1H :0μμ>.钢索的断裂强度服从正态分布,0σ已知,∴当0H成立时,选取统计量u =,其拒绝域为{}1V u u α-=>.其中040σ=,9n =,020X μ-=,0.01α=.则 1.5u ==.查表得10.990.01 2.33u u u u αα-==-=-=,得0.99u u <,未落在拒绝域中,接受0H ,即认为这批钢索质量没有显著提高。
3.5 测定某种溶液中的水分。
它的10个测定值给出0.452%X =,0.035%S =。
设总体为正态分布()2N μσ,,试在水平5%检验假设:(i )0H :0.5%μ>; 1H :0.5%μ<. (ii )0H :0.04%σ≥; 1H :0.04%σ<. 解:(i )总体服从正态分布,0σ未知,当0H成立时,选取统计量t =(){}1V t t n α=<-.查表得()()0.050.9599 1.8331t t =-=-.而()4.114 1.83311t t n α==-<-=-.落在拒绝域中,拒绝0H .(ii )总体服从正态分布,μ未知, 当0H 成立时,选取统计量222nSχσ=,其拒绝域为(){}221V n αχχ=<-.查表得()20.059 3.325χ=.而()()()2222100.035%7.65610.04%n αχχ⨯==>-.未落在拒绝域中,接受0H .3.6 使用A (电学法)与B (混合法)两种方法来研究冰的潜热,样品都是-0.72℃的冰块,下列数据是每克冰从-0.72℃变成0℃水的过程中的吸热量(卡 / 克):方法A :79.98,80.04,80.02,80.04,80.03,80.03,80.04,79.97,80.05,80.03,80.02,80.00,80.02方法B :80.02,79.94,79.97,79.98,79.97,80.03,79.95,79.97假定用每种方法测得的数据都服从正态分布,且它们的方差相等。
课件-数理统计与多元统计 第三章 假设检验 3.2构造检验统计量的似然比方法

( xi x)2
i 1
2
1
n
t2 2
n
1
其中 t x ,
s/ n
s2
1 n1
n i 1
( xi
x )2
由于( x1, x2 ,L , xn )是t的偶函数,且在t 0
时严格递增,故可取H0的拒绝域为
W (x1, x2,K , xn ) | |t | C
10
在原假设H0: 0为真时,已知
此似然函数L( )的值是在参数为真时,从样
本获得观察值x1, x2 ,L , xn的一种度量。
2
对于假设检验问题:
H0 : 0; H1 : 1 定义此检验问题的似然比函数:
sup L(; x1, x2 ,K , xn )
( x1,
x2 ,K
,
xn )
1
sup
L( ;
x1 ,
x2 ,K
,
xn )
0 n
n
sup f ( xi; )
f ( xi ;ˆ1 )
1 i1 n
i1 n
sup f ( xi; )
f ( xi ;ˆ0 )
0 i 1
i 1
3
其中ˆ0是限定参数空间0时的极大似然估计, ˆ1是限定参数空间1时的极大似然估计。
n
因此,
f
(
xi
;ˆ0
)是当H
真时,样本获得观测值
0
i 1
t X ~ t(n 1) S/ n
由P|t | t/2(n 1) 得临界值
C t /2 (n 1) 故得此似然比检验的拒绝域为:
W (x1, x2,K , xn ) | |t | t/2(n 1)
概率论和数理统计假设检验

05
非参数假设检验
Wilcoxon秩和检验
总结词
用于检验两个独立样本是否来自同一 分布,特别是当样本量较小或总体分 布未知时。
详细描述
Wilcoxon秩和检验通过将每个样本的 观测值替换为其在所有观测值中的秩, 然后比较两组的秩和来进行检验。如 果两个样本来自同一分布,则它们的 秩和应该接近相等。
THANKS
感谢观看
确定检验水准
根据研究目的和样本量等因素,确定检验 水准,如α和β。
计算统计量
根据数据和选择的统计方法,计算出相应 的统计量。
选择合适的统计方法
根据数据类型和假设,选择合适的统计方 法进行检验。
单侧与双侧检验
单侧检验
只考虑一个方向的假设检验,如只考虑增加或只考虑减少。
双侧检验
同时考虑两个方向的假设检验,即同时考虑增加和减少。
检验效能
检验效能是指假设检验能够正确拒绝一个错误假设的能力。在给定样本大小的情况下,提高检验效能 可以提高假设检验的准确性。
假设检验的误用与避免
误用
假设检验的误用通常包括不恰当的假设、错 误的解读、过度推断等。这些错误可能导致 错误的结论,影响科学研究的可靠性和有效 性。
避免方法
为了避免假设检验的误用,研究者应确保假 设合理、解读准确,并避免过度推断。同时, 应采用多种方法进行验证,以提高研究的可 靠性和准确性。
方差齐性检验
01
方差齐性检验
用于检验两组数据或多个组数据的方差是否具有齐性。常 见的方差齐性检验方法包括Bartlett检验、Levene检验等 。
02
总结词
方差齐性检验是假设检验中的重要步骤,它有助于判断不 同组数据之间是否存在显著差异。
概率论与数理统计实验实验3参数估计假设检验

概率论与数理统计实验实验3 参数估计假设检验实验目的实验内容直观了解统计描述的基本内容。
2、假设检验1、参数估计3、实例4、作业一、参数估计参数估计问题的一般提法X1, X2,…, Xn要依据该样本对参数作出估计,或估计的某个已知函数.现从该总体抽样,得样本设有一个统计总体,总体的分布函数向量). 为F(x, ),其中为未知参数( 可以是参数估计点估计区间估计点估计——估计未知参数的值区间估计——根据样本构造出适当的区间,使他以一定的概率包含未知参数或未知参数的已知函数的真?(一)、点估计的求法1、矩估计法基本思想是用样本矩估计总体矩.令设总体分布含有个m未知参数??1 ,…,??m解此方程组得其根为分别估计参数??i ,i=1,...,m,并称其为??i 的矩估计。
2、最大似然估计法(二)、区间估计的求法反复抽取容量为n的样本,都可得到一个区间,这个区间可能包含未知参数的真值,也可能不包含未知参数的真值,包含真值的区间占置信区间的意义1、数学期望的置信区间设样本来自正态母体X(1) 方差?? 2已知, ?? 的置信区间(2) 方差?? 2 未知, ?? 的置信区间2、方差的区间估计未知时, 方差?? 2 的置信区间为(三)参数估计的命令1、正态总体的参数估计设总体服从正态分布,则其点估计和区间估计可同时由以下命令获得:[muhat,sigmahat,muci,sigmaci] = normfit(X,alpha)此命令以alpha 为显著性水平,在数据X下,对参数进行估计。
(alpha缺省时设定为0.05),返回值muhat是X的均值的点估计值,sigmahat是标准差的点估计值, muci是均值的区间估计,sigmaci是标准差的区间估计.例1、给出两列参数?? =10, ??=2正态分布随机数,并以此为样本值,给出?? 和?? 的点估计和区间估计命令:r=normrnd(10,2,100,2);[mu,sigm,muci,sigmci]=normfit(r);[mu1,sigm1,muci1,si gmci1]=normfit(r,0.01);mu=9.8437 9.9803sigm=1.91381.9955muci=9.4639 9.584310.2234 10.3762sigmci=1.68031.75202.2232 2.3181mu1=9.8437 9.9803sigm1=1.91381.9955muci1=9.3410 9.456210.3463 10.5043sigmci1=1.6152 1.68412.3349 2.4346例2、产生正态分布随机数作为样本值,计算区间估计的覆盖率。
研究生数理统计第三章习题答案

习 题 三1.正常情况下,某炼铁炉的铁水含碳量()24.55,0.108X N :.现在测试了5炉铁水,其含碳量分别为4.28,4.40,4.42,4.35,4.37.如果方差没有改变,问总体的均值有无显著变化?如果均值没有改变,问总体方差是否有显著变化()0.05α=?解 由题意知,()24.55,0.108X N :,5n =,511 4.3645i i x x ===∑,0.05α=,()5220110.095265i i s x μ==-=∑.1)当00.108σ=已知时,①设统计假设0010: 4.55,: 4.55H H μμμμ==≠=. ②当0.05α=时,0.975121.96uu α-==,临界值121.960.0947c α-===, 拒绝域为000{}{0.0947}K x c x μμ=->=->.③004.364 4.550.186x K μ-=-=∈,所以拒绝0H ,接受1H ,即认为当方差没有改变时,总体的均值有显著变化.2)当0 4.55μ=已知时,①设统计假设2222220010:0.108,:0.108H H σσσσ==≠=.②当0.05α=时,临界值()()()()222210.02520.975122111150.1662,5 2.566655c n c n n n ααχχχχ-======, 拒绝域为222202122220000{}{2.56660.1662}ssssK c c σσσσ=><=><或或.③202200.095268.16700.108sK σ==∈,所以拒绝0H ,接受1H ,即均值没有改变时,总体方差有显著变化.2.一种电子元件,要求其寿命不得低于1000h .现抽取25件,得其均值950x h =.已知该种元件寿命()2,100X Nμ:,问这批元件是否合格()0.05α=?解 由题意知,()2,100X Nμ:,25n =,950x =,0.05α=,0100σ=.①设统计假设0010:1000,:1000H H μμμμ≥=<=. ②当0.05α=时,0.05 1.65u u α==-,临界值()1.6533c α==-=-, 拒绝域为000{}{33}K x c x μμ=-<=-<-.③00950100050x K μ-=-=-∈,所以拒绝0H ,接受1H ,即认为这批元件不合格. 3.某食品厂用自动装罐机装罐头食品,每罐标准质量为500g ,现从某天生产的罐头中随机抽测9罐,其质量分别为510,505,498,503,492,502,497,506,495(单位:g ),假定罐头质量服从正态分布.问1)机器工作是否正常()0.05α=?2)能否认为这批罐头质量的方差为25.5()0.05α=?解 设X 表示用自动装罐机装罐头食品每罐的质量(单位:g ).由题意知()2500,X N σ:,方差2σ未知. 9n =,911500.88899i i x x ===∑,0.05α=,()()222111133.6111118nni i i i s x x x x n ===-=-=-∑∑,()52201130.66679i i s x μ==-=∑1)①设统计假设0010:500,:500H H μμμμ==≠=.②()()0.9751218 2.306tn t α--==,临界值()121 2.306 4.4564c n α-=-==, 拒绝域为000{}{ 4.4564}K x c x μμ=->=->.③00500.88895000.8889x K μ-=-=∉,所以接受0H ,拒绝1H ,即认为机器工作正常.2)当0500μ=已知时,①设统计假设2222220010: 5.5,: 5.5H H σσσσ==≠=.②当0.05α=时,临界值()()()()222210.02520.975122111190.3,9 2.113399c n c n n n ααχχχχ-======, 拒绝域为222202122220000{}{2.11330.3}ssssK c c σσσσ=><=><或或.③2022030.66671.013785.5sK σ==∉,所以接受0H ,拒绝1H ,即为这批罐头质量的方差为25.5.4.某部门对当前市场的鸡蛋价格情况进行调查,抽查某市20个集市上鸡蛋的平均售价为()3.399元/500克,标准差为()0.269元/500克.已知往年的平均售价一直稳定 ()3.25元/500克左右,问该市场当前的鸡蛋售价是否明显高于往年()0.05α=?解 由题意知,()23.25,X N σ:,20n =, 3.399x =,0.05α=,0.269s =. ①设统计假设0010: 3.25,: 3.25H H μμμμ≤=>=. ②当0.05α=时,()()10.95119 1.729t n t α--==,临界值()11 1.7290.1067c n α-=-==, 拒绝域为000{}{0.1067}K x c x μμ=->=->③003.399 3.250.149x K μ-=-=∈,所以拒绝0H ,接受1H ,即认为市场当前的鸡蛋售价是明显高于往年.5.已知某厂生产的维尼纶纤度()2,0.048X Nμ:,某日抽测8根纤维,其纤度分别为1.32,1.41,1.55,1.36,1.40,,1.50,1.44,1.39,问这天生产的维尼纶纤度的方差2σ是否明显变大了()0.05α=?解 由题意知()2,0.048X N μ:,8n =,811 1.421258i i x x ===∑,0.05α=,()()22211110.0122118nni i i i s x x x x n ===-=-=-∑∑.①设统计假设2222220010:0.048,:0.048H H σσσσ==>=.②当0.05α=时,临界值()()2210.951117 2.0117c n n αχχ-=-==-,拒绝域为2202200{}{ 2.01}s s K c σσ=>=>.③202200.012215.29950.048s K σ==∈,所以拒绝0H ,接受1H ,即这天生产的维尼纶纤度的方差2σ明显变大了.6.某种电子元件,要求平均寿命不得低于2000h ,标准差不得超过130h .现从一批该种元件中抽取25个,测得寿命均值为1950h ,标准差148s h =.设元件寿命服从正态分布。
数理统计 (研究生课程) :第三章 假设检验

必须认为这个差异反映了事物的本质差别,即反映 了生产已不正常.
这种差异称作 “系统误差”
正确
第二类错误
人们总希望犯这两类错误的概率越小越好,但 对样本容量一定时,不可能使得犯这两类错误的 概率都很小。 往往是先控制犯第一类错误的概率在一定限度 内,再考虑尽量减小犯第二类错误的概率。
即: 较小的 (0,1) 使得 P{拒绝H0|H0为真}≤ ,
然后减小P{接受H0|H0不真} 犯两类错误的概率:
如发现不正常,就应停产,找出原因,排除 故障,然后再生产;如没有问题,就继续按规定 时间再抽样,以此监督生产,保证质量.
很明显,不能由5罐容量的数据,在把握不大 的情况下就判断生产 不正常,因为停产的损失是 很大的.
当然也不能总认为正常,有了问题不能及时 发现,这也要造成损失.
如何处理这两者的关系,假设检验面对的就 是这种矛盾.
如果H0不成立,但统计量的实测 值未落入否定域,从而没有作出否定 H0的结论,即接受了错误的H0,那就 犯了“以假为真”的错误 . “取伪错误” 这两类错误出现的可能性是不可能排除的。 原因在于:由样本推导总体
假设检验的两类错误
实际情况 H0为真 H0不真 第一类错误 正确
决定 拒绝H0 接受H0
在上面的例子的叙述中,我们已经初步介绍 了假设检验的基本思想和方法 .
基于概率反证法的逻辑的检验: 如果小概率事件在一次试验中居然发生, 我们就以很大的把握否定原假设.
《应用数理统计》第三章假设检验课后作业参考答案

第三章 假设检验课后作业参考答案3.1 某电器元件平均电阻值一直保持2.64Ω,今测得采用新工艺生产36个元件的平均电阻值为2.61Ω。
假设在正常条件下,电阻值服从正态分布,而且新工艺不改变电阻值的标准偏差。
已知改变工艺前的标准差为0.06Ω,问新工艺对产品的电阻值是否有显著影响?(01.0=α)解:(1)提出假设64.2:64.2:10≠=μμH H , (2)构造统计量36/06.064.261.2/u 00-=-=-=nX σμ(3)否定域⎭⎬⎫⎩⎨⎧>=⎭⎬⎫⎩⎨⎧>⋃⎭⎬⎫⎩⎨⎧<=--21212αααu u uu u u V (4)给定显著性水平01.0=α时,临界值575.2575.2212=-=-ααuu ,(5) 2αu u <,落入否定域,故拒绝原假设,认为新工艺对电阻值有显著性影响。
3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。
已知这种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。
解:{}01001:1000, H :1000X 950 100 n=25 10002.5V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得:拒绝域:本题中:0.950.950u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。
3.3某厂生产的某种钢索的断裂强度服从正态分布()2,σμN ,其中()2/40cm kg =σ。
现从一批这种钢索的容量为9的一个子样测得断裂强度平均值为X ,与以往正常生产时的μ相比,X 较μ大20(2/cm kg )。
设总体方差不变,问在01.0=α下能否认为这批钢索质量显著提高? 解:(1)提出假设0100::μμμμ>=H H , (2)构造统计量5.13/4020/u 00==-=nX σμ (3)否定域{}α->=1u u V(4)给定显著性水平01.0=α时,临界值33.21=-αu(5) α-<1u u ,在否定域之外,故接受原假设,认为这批钢索质量没有显著提高。
假设检验

假设检验假设检验(Hypothesis Testing)是数理统计学中根据一定假设条件由样本推断总体的一种方法。
具体作法是:根据问题的需要对所研究的总体作某种假设,记作H0;选取合适的统计量,这个统计量的选取要使得在假设H0成立时,其分布为已知;由实测的样本,计算出统计量的值,并根据预先给定的显著性水平进行检验,作出拒绝或接受假设H0的判断。
常用的假设检验方法有u—检验法、t检验法、χ2检验法(卡方检验)、F—检验法,秩和检验等。
中文名假设检验外文名 hypothesis test提出者 K.Pearson 提出时间 20世纪初1、简介假设检验又称统计假设检验(注:显著性检验只是假设检验中最常用的一种方法),是一种基本的统计推断形式,也是数理统计学的一个重要的分支,用来判断样本与样本,样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。
其基本原理是先对总体的特征作出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受作出推断。
[1]2、基本思想假设检验的基本思想是小概率反证法思想。
小概率思想是指小概率事件(P<0.01或P<0.05)在一次试验中基本上不会发生。
反证法思想是先提出假设(检验假设H0),再用适当的统计方法确定假设成立的可能性大小,如可能性小,则认为假设不成立,若可能性大,则还不能认为假设成立。
[2] 假设是否正确,要用从总体中抽出的样本进行检验,与此有关的理论和方法,构成假设检验的内容。
设A是关于总体分布的一项命题,所有使命题A成立的总体分布构成一个集合h0,称为原假设(常简称假设)。
使命题A不成立的所有总体分布构成另一个集合h1,称为备择假设。
如果h0可以通过有限个实参数来描述,则称为参数假设,否则称为非参数假设(见非参数统计)。
如果h0(或h1)只包含一个分布,则称原假设(或备择假设)为简单假设,否则为复合假设。
对一个假设h0进行检验,就是要制定一个规则,使得有了样本以后,根据这规则可以决定是接受它(承认命题A正确),还是拒绝它(否认命题A正确)。
数理统计--参数估计、假设检验、方差分析(李志强) (3)讲解

教学单元案例: 参数估计与假设检验北京化工大学 李志强教学内容:统计量、抽样分布及其基本性质、点估计、区间估计、假设检验、方差分析 教学目的:统计概念及统计推断方法的引入和应用(1)理解总体、样本和统计量等基本概念;了解常用的抽样分布;(2)熟练掌握矩估计和极大似然估计等方法; (3)掌握求区间估计的基本方法; (4)掌握进行假设检验的基本方法; (5) 掌握进行方差分析的基本方法;(6)了解求区间估计、假设检验和方差分析的MA TLAB 命令。
教学难点:区间估计、假设检验、方差分析的性质和求法 教学时间:150分钟教学对象:大一各专业皆可用一、统计问题 引例例1 已知小麦亩产服从正态分布,传统小麦品种平均亩产800斤,现有新品种产量未知,试种10块,每块一亩,产量为:775,816,834,836,858,863,873,877,885,901问:新产品亩产是否超过了800斤?例2 设有一组来自正态总体),(2σμN 的样本0.497, 0.506, 0.518, 0.524, 0.488, 0.510, 0.510, 0.512. (i) 已知2σ=0.012,求μ的95%置信区间; (ii) 未知2σ,求μ的95%置信区间; (iii)求2σ的95%置信区间。
例3现有某型号的电池三批, 分别为甲乙丙3个厂生产的, 为评比其质量, 各随机抽取5只电池进行寿命测试, 数据如下表示, 这里假设第i 种电池的寿命),(.~2σμi i N X .(1) 试在检验水平下,检验电池的平均寿命有无显著差异? (2) 利用区间估计或假设检验比较哪个寿命最短.二 统计的基本概念: 总体、个体和样本(1)总体与样本总体 在数理统计中,我们将研究对象的某项数量指标的值的全体称为总体,总体中的每个元素称为个体比如,对电子元件我们主要关心的是其使用寿命.而该厂生产的所有电子元件的使用寿命取值的全体,就构成了研究对象的全体,即总体,显然它是一个随机变量,常用X 表示 为方便起见,今后我们把总体与随机变量X 等同起来看,即总体就是某随机变量X 可能取值的全体.它客观上存在一个分布,但我们对其分布一无所知,或部分未知,正因为如此,才有必要对总体进行研究.简单随机样本对总体进行研究,首先需要获取总体的有关信息. 一般采用两种方法:一是全面调查.如人口普查,该方法常要消耗大量的人力、物力、财力.有时甚至是不可能的,如测试某厂生产的所有电子元件的使用寿命. 二是抽样调查. 抽样调查是按照一定的方法,从总体X 中抽取n 个个体.这是我们对总体掌握的信息.数理统计就是要利用这一信息,对总体进行分析、估计、推断.因此,要求抽取的这n 个个体应具有很好的代表性.按机会均等的原则随机地从客观存在的总体中抽取一些个体进行观察或测试的过程称为随机抽样.从总体中抽出的部分个体,叫做总体的一个样本.从总体中抽取样本时,不仅要求每一个个体被抽到的机会均等,同时还要求每次的抽取是独立的,即每次抽样的结果不影响其他各次的抽样结果,同时也不受其他各次抽样结果的影响.这种抽样方法称为简单随机抽样.由简单随机抽样得到的样本叫做简单随机样本.往后如不作特别说明,提到“样本”总是指简单随机样本.从总体X 中抽取一个个体,就是对随机变量X 进行一次试验.抽取n 个个体就是对随机变量X 进行n 次试验,分别记为X1,X2,…,Xn.则样本就是n 维随机变量(X1,X2,…,Xn).在一次抽样以后, (X1,X2,…,Xn)就有了一组确定的值(x1,x2,…,xn),称为样本观测值.样本观测值(x1,x2,…,xn)可以看着一个随机试验的一个结果,它的一切可能结果的全体构成一个样本空间,称为子样空间.(2)样本函数与统计量设n x x x ,,,21 为总体的一个样本,称ϕϕ= (n x x x ,,,21 )为样本函数,其中ϕ为一个连续函数。
概率论与数理统计教案假设检验

概率论与数理统计教案-假设检验一、教学目标1. 理解假设检验的基本概念和原理;2. 学会使用假设检验方法对样本数据进行推断;3. 掌握假设检验的类型、步骤和判断准则;4. 能够运用假设检验解决实际问题。
二、教学内容1. 假设检验的基本概念和原理假设检验的定义假设检验的目的是什么假设检验的基本原理2. 假设检验的类型单样本检验双样本检验配对样本检验3. 假设检验的步骤建立假设选择检验统计量确定显著性水平计算检验统计量的值做出判断4. 假设检验的判断准则拒绝域和接受域检验的拒绝准则检验的接受准则5. 假设检验的应用实例应用假设检验解决实际问题实例分析与解答三、教学方法1. 讲授法:讲解假设检验的基本概念、原理、类型、步骤和判断准则;2. 案例分析法:分析实际问题,引导学生运用假设检验方法解决问题;3. 互动教学法:提问、讨论、解答学生提出的问题,促进学生理解和掌握知识;4. 练习法:布置课后作业,让学生巩固所学知识,提高运用能力。
四、教学准备1. 教案、教材、课件等教学资源;2. 投影仪、电脑等教学设备;3. 课后作业及答案。
五、教学过程1. 导入新课:回顾上一节课的内容,引入假设检验的基本概念和原理;2. 讲解假设检验的基本概念和原理,阐述其目的是什么;3. 讲解假设检验的类型,引导学生了解各种类型的假设检验;4. 讲解假设检验的步骤,让学生掌握进行假设检验的方法;5. 讲解假设检验的判断准则,使学生明白如何做出判断;6. 分析实际问题,引导学生运用假设检验方法解决问题;7. 布置课后作业,让学生巩固所学知识;8. 课堂小结,总结本节课的主要内容和知识点。
教学反思:在教学过程中,要注意引导学生理解和掌握假设检验的基本概念、原理和步骤,并通过实际问题让学生学会运用假设检验方法。
要关注学生的学习反馈,及时解答他们提出的问题,提高他们的学习兴趣和积极性。
六、教学评估1. 评估方式:课后作业、课堂练习、小组讨论、个人报告2. 评估内容:学生对假设检验基本概念的理解学生对假设检验类型和步骤的掌握学生对假设检验判断准则的应用学生解决实际问题的能力七、课后作业1. 完成教材后的练习题2. 选择一个实际问题,运用假设检验方法进行分析和解答3. 总结本节课的主要内容和知识点,写下自己的学习心得八、课堂练习1. 例题解析:分析教材中的例题,理解假设检验的步骤和判断准则2. 小组讨论:分组讨论课后作业中的问题,共同解决问题,交流学习心得3. 个人报告:选取一个实际问题,进行假设检验的分析和解题过程报告九、教学拓展1. 假设检验的扩展知识:学习其他类型的假设检验方法,如非参数检验、方差分析等2. 实际应用案例:搜集更多的实际问题,进行假设检验的分析和解答3. 软件操作实践:学习使用统计软件进行假设检验,提高数据分析能力十、教学计划1. 下一节课内容预告:介绍假设检验的扩展知识和实际应用案例2. 学习任务布置:预习下一节课的内容,准备相关问题和建议3. 课后自学计划:鼓励学生自主学习,深入了解假设检验的方法和应用教学反思:在完成本节课的教学后,要关注学生的学习情况,及时解答他们提出的问题,并提供必要的辅导。
第三章 Minitab之假设检验

单侧检验的例子(续一) 解:
(一)、首先找出总体参数,这里应该是总体的均值m,即谷 物的平均重量,给出原假设和备择假设,即用公式表达两个相 反的意义。 H0: m ≥ 24 (均值至少为 24)
Ha: m < 24 (均值少于24) (二)、确定概率分布和用来做检验的检验统计量。
我们要检验抽取的样本均值是否达到广告宣称的数额,就
就需要提出假设,假设包括零假设H0与备择假设 H1。
零假设的选取
假设检验所使用的逻辑上的间接证明法决定了我们 选取的零假设应当是与我们希望证实的推断相对立 的一种逻辑判断,也就是我们希望否定的那种推断。
零假设的选取(续一)
同时,作为零假设的这个推断是不会轻易被推翻的,只有当样本 数据提供的不利于零假设的证据足够充分,使得我们做出拒绝零 假设的决策时错误的可能性非常小的时候,才能推翻零假设。
4、得出关于H0和关于H1的结论
显著性水平
显著性水平α是当原假设正确却被拒绝的概率
通常人们取0.05或0.01 这表明,当做出接受原假设的决定时,其正确的可能性(概率)为
95%或99%
判定法则
1、如果检验统计量落入拒绝域中,则拒绝原假设 2、如果检验统计量落入接受域中,则我们说不能拒绝原假设
可以用样本均值离标称值的标准离差个数的多少来判断。
因此构造检验统计量
z* x n
单侧检验的例子(续二)
(三)、设定置信水平为95%。收集样本信息,假设选取了 一个数目为40的样本,计算得
x 23.76 n 40 计算检验统计量的值为(σ = 0.2)
z x 23.76 24 7.5895 n 0.2 40
Values
4.9 5.1 4.6
统计学--第三章总体均数的估计与假设检验

总体均数的估计 与假设检验
课件
1
统计推断的目的:
用样本的信息去推论总体。
医学研究中大多数是无限总体, 即使是有限总体,但也经常受各种条 件的限制,不可能直接获得总体的信 息。
课件本科生卫生学(5)
2
第一节 均数的抽样误差与标准误
• 抽样误差(sampling
error):因各样本 包含的个体不同,所得的各个样本统计量 (如均数)往往不相等,这种由于个体差 异和抽样造成的样本统计量与总体参数的 差异,称为抽样误差。
均数的95%可信区间为3.47~ 3.81(mmol / L) 95%参考值范围为1.29~ 5.99(mmol / L)
S 1.20 X u / 2 S X X 1.96 3.64 1.96 n 200 (3.47, 3.81)
X 1.96S 3.64 1.961.20 (1.29, 5.99) 32 课件本科生卫生学(5)
t分布的应用: 总体均数的区间估计 t检验
课件本科生卫生学(5) 18
第三节 总体均数的置信区间估计 confidence interval
可信区间的概念 总体均数可信区间的计算 均数可信区间与参考值范围的区别
课件本科生卫生学(5)
19
一、可信区间的概念
统计推断:参数估计与假设检验。 参数估计: parametric estimation,用样本统 计量估计总体参数的方法。 点(值)估计:point estimation,直接用样 本统计量作为总体参数的估计值。方法简 单但未考虑抽样误差大小。 区间估计:interval estimation,按预先给定 的概率95%,或(1-),确定的包含未知总 体参数的可能范围。考虑了抽样误差。
概率论与数理统计 假设检验

当Tail=0时,备择假设为“ 当Tail=1时,备择假设为“
00
”; ”;
当Tail=-1时,备择假设为“ 0 ”;
当H=0表示接受原假设; 当H=1表示拒绝原假设。
例 1、某切割机正常工作时,切割的金属棒的长度服从正态分布 N(100, 4) . 从该切割机切割的一批金属棒中随机抽取 15 根,测得它们的长度(单 位:mm)如下: 97 102 105 112 99 103 102 94 100 95 105 98 102 100 103. 假设总体方差不变,试检验该切割机工作是否正常,即总体均值是否等于
所以拒绝原假设,即平均寿命有显著差异。
算法
1、定义参数,mean,mu,n,alpha,model分别代表样本
均值,总体均值,样本容量,显著性水平,检验模式包括 :左侧,双侧,右侧
2、根据检验模式定义出拒绝域;
3、根据上述参数计算
sample (mean mu) s/ n
4、判断sample是否在第2步定义的拒绝域,如果 在就拒绝原假设返回值0,否则返回值1.
假设:
H0 : 0, H0 : 0, H0 : 0,
H1 : 0 . H1 : 0 H1 : 0
ztest函数 调用格式: h = ztest(x,m,sigma) h = ztest(...,alpha) h = ztest(...,alpha,tail) h = ztest(...,alpha,tail,dim) [h,p] = ztest(...) [h,p,ci] = ztest(...) [h,p,ci,zval] = ztest(...)
[h,p,ci,stats] = ttest(...)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选择:H 0 : 0 110 〈——〉 H1 : 0 110 判断: 接受 H0 ,拒绝 H0 .
§1 假设检验 两类错误
②做法:事先定一个标准,即给定一个常数 c ,
若
x
c
不正常
拒绝H 0
x c 正常 接受H0
( 时( 时 ① ② ① ②要的根 构 根 构要的分求(据 造 据 造分求布检2实 检 布 实 检检己验)己际 验 际 验验知统将问 统 问 统知统)要计;题 计 题 计)计说量;量量提提明量中的出出中不结结原原不含论论假假含任作作设设任何为为和和何未HH备备未知11 择择知参假假参数设设数,;;,且且当当H0H成0 成立立
②②②犯犯 犯两两类类类错错错误误误的的的的概概概概率率率率 犯犯 犯ⅠⅠ的的的概概概率率率PP{P{P拒拒{{拒拒绝绝绝绝 HH0HH0HH0000H成 H成00立成 成立}=}立 立 =P}}P= ={{WWPP{{HHWW0成 0成HH立0立 0成 成}}立 立 PP}}{{XXPP{{WWXX}},,WW}},,00 犯犯 犯ⅡⅡⅡ的的概概率率PP{PP{拒拒{{拒拒绝绝绝绝HH1H1HHH1111成 HH成11立成成立}=}立立=P}}P=={{WWPP{{HWHW1成1成HH立立 11成 成}}立 立PP}}{{XXPP{{WWXX},},WW}},,11
③ ④③ ④ ( 时 ( 时给 依变给 依要 要的 的出 据形出 据分 分求 求显 抽要显 抽布 布检 检著 样求己 己 著 样验 验水 结:水 结知 知统 统(( (平 果平 果) )2计 计13做;;)) )做量量出,随分H出,中中决确0机布成决确不不策定变己立策定含含拒量知时拒任任绝―,绝何何域―不域未未W检含W知知验;任参参;统何数数计未量,,知且且参当当数 HH00 成成立立 (子(③ ③子样给 给样值出 出值落显 显落入著 著入拒水 水拒绝平 平绝域域时,,时拒确确拒绝定定绝原拒拒原假绝绝假设域域设,WW,否;;否则则接接受受原原假假设设)。)。
x
k
若 / n
x
/
n
k
拒绝H 0 接受H 0
若
U U
k k
拒绝H 0 接受H 0
问题: k ?
§1 假设检验 两类错误
实际推断原理: 假设 小概率事件 结果
H0
U k
U k
H0
P{U k} ( :差异显著性水平)
推断
拒绝 H0
U
X 0
H0
~
N (0,1)
/ n
P{U u }
x 108, 0 110, 10, n 25, 得u 1
接受H
,即认为当天生
0
产是正常
的。
说明:假设检验实质上是差异显著性检验。
§1 假设检验 两类错误
((3)3)假假设设检检验验的的步步骤骤
①①根根据据实实际际问问题题提提出出原原假假设设和和备备择择假假设设;;
②② ( (构注构造33:) )(造检1检假 假验)验统设 设H统00计具检 检计量有验 验量保的的“现步步现””骤骤性性
§1 假设检验 两类错误
(1)假设检验
定义:对总体作出某项假设,依据样本进行检验. 包括:①对总体参数的假设检验; ②对总体分布的假设检验.
实际推断原理: 小概率事件在一次试验中几乎不发生.若小概率事件
在一次试验中发生了,有理由怀疑假设的正确性,即 拒绝原假设.
例: 前提
小概率事件
学得不太好 万一不及格
结果 没及格
推断 学得不好
§1 假设检验 两类错误
例 3.1.1 某 厂 自 动 流 水 线 生 产 的 合 金 强 度
X ~ N( ,102 ),正常情况下 110 ,一段时间后, 为检查机器工作是否正常,抽取 25 个样品,测得 x 108 ,试问此时自动流水线的工作是否正常?
①分析: X1, X 2,, X 25 是来自 X ~ N( ,102 )的一个样本,
(5)两类错误
①①①定定定义义义:::
第第一一一类类类错错错误误误(((ⅠⅠⅠⅠ))):):当::当当当HHH0H0成成00 成成立立立立时时时,时,,,却却拒却却拒绝绝拒拒H绝绝H00 HH((00拒拒((真真拒拒))真真)) 第第二二二类类类错错错误误误(((ⅡⅡⅡⅡ))):):当::当当当HHH0H0不不00 不不成成成成立立立时立时,时时,却,,却接却接却受受接接H受受H00((HH受00受((伪伪受受))伪伪))
③, 间的关系
③③③③,,,, 间间间的的的关关关系系系
§1 假设检验 两类错误
图形说明 例:H0 : 0 H1 : 0 W {X c}
0.2 0.15
0.1 0.05
0.2 0.15
0.1 0.05
2
4
6
8
10
2
4
6
8
10
说明:小 c小 大
§1 假设检验 两类错误
例 3.1.2 从 X ~ N(,1) 中任取 100 件,得 x 4.68 , ①检验 H0 : 5 是否成立。( 0.01)
应用统计学
目录
CH1 抽样与抽样分布 CH2 参数估计 CH3 假设检验 CH4 方差分析、正交试验设计 CH5 回归分析
第三章 假设检验
本章问题
依据样本的信息,对总体的某项 假设作出合理的判断。
思想
实际推断原理
第三章 假设检验
§1 假设检验初述,二类错误 §2 检验母体平均数 §3 检验母体方差 §4 单侧假设检验 §5 分布假设检验
2
拒绝域为:W {U u } (W : H1成立时,检验统计量的取值范围)
利用已知算出u,
若uu
Hale Waihona Puke u u拒绝H0 接受H 0
§1 假设检验 两类错误
③具体解题过程
解:H 0 : 0 110 vs H1 : 0 110
检验统计量U X 0
H0
~
N (0,1)
/ n
给定 0.05, W {U u } {U 1.645}
④ ④依 依据 据抽 抽样 样结 结果 果做做出出决决策策 (子样值落入拒绝域时拒绝原假设,否则接受原假设)。
§1 假设检验 两类错误
(4)假设检验与区间估计的关系
①出发点不同 假设检验中参数已知, 区间估计中参数未知
②形式上相同 检验统计量=枢轴量
③
W
置信区间
④先做假设检验,拒绝时再作区间估计
§1 假设检验 两类错误