2011高考数学第一轮复习专项练习题(37)
高考数学一轮复习排列与组合专题练习及答案
高考数学一轮复习排列与组合专题练习及答案高考数学一轮复习排列与组合专题练习及答案一、填空题1.市内某公共汽车站有6个候车位(成一排),现有3名乘客随便坐在某个座位上候车,则恰好有2个连续空座位的候车方式的种数是________.[解析] 由于题目要求的是奇数,那么对于此三位数可以分成两种情况:奇偶奇,偶奇奇.如果是第一种奇偶奇的情况,可以从个位开始分析(3种选择),之后十位(2种选择),最后百位(2种选择),共322=12种;如果是第二种偶奇奇的情况,个位(3种情况),十位(2种情况),百位(不能是0,1种情况),共321=6种,因此总共12+6=18种情况.[答案] 182.若从1,2,3,,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种.[解析] 满足题设的取法可分为三类:一是四个奇数相加,其和为偶数,在5个奇数1,3,5,7,9中,任意取4个,有C=5(种);二是两个奇数加两个偶数其和为偶数,在5个奇数中任取2个,再在4个偶数2,4,6,8中任取2个,有CC=60(种);三是四个偶数相加,其和为偶数,4个偶数的取法有1种,所以满足条件的`取法共有5+60+1=66(种).[答案] 663.(2014福州调研)若一个三位数的十位数字比个位数字和百位数字都大,称这个数为伞数.现从1,2,3,4,5,6这六个数字中取3个数,组成无重复数字的三位数,其中伞数有________个.[解析] 分类讨论:若十位数为6时,有A=20(个);若十位数为5时,有A=12(个);若十位数为4时,有A=6(个);若十位数为3时,有A=2(个).因此一共有40个.[答案] 404.一个平面内的8个点,若只有4个点共圆,其余任何4点不共圆,那么这8个点最多确定的圆的个数为________.[解析] 从8个点中任选3个点有选法C种,因为有4点共圆所以减去C种再加1种,共有圆C-C+1=53个.[答案] 535.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有________种.[解析] 分两种情况:选2本画册,2本集邮册送给4位朋友有C=6(种)方法;选1本画册,3本集邮册送给4位朋友有C=4(种)方法,不同的赠送方法共有6+4=10(种).[答案] 106.用数字1,2,3,4,5,6六个数字组成一个六位数,要求数字1,2都不与数字3相邻,且该数字能被5整除,则这样的五位数有________个.[解析] 由题可知,数字5一定在个位上,先排数字4和6,排法有2种,再往排好的数字4和6形成的3个空位中插入数字1和3,插法有6种,最后再插入数字2,插法有3种,根据分步乘法计数原理,可得这样的六位数有263=36个.[答案] 367.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法有________种.[解析] 第一类,含有1张红色卡片,共有不同的取法CC=264(种);第二类,不含有红色卡片,共有不同的取法C-3C=220-12=208(种).由分类计数原理知不同的取法有264+208=472(种).[答案] 4728.在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为偶数的三位数共有________个.[解析] 在1,2,3,4,5这五个数字中有3个奇数,2个偶数,要求三位数各位数字之和为偶数,则两个奇数一个偶数,符合条件的三位数共有CCA=36(个).[答案] 36二、解答题9.从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是多少?(用数字作答).[解] 分三类:选1名骨科医生,则有C(CC+CC+CC)=360(种);选2名骨科医生,则有C(CC+CC)=210(种);选3名骨科医生,则有CCC=20(种).骨科、脑外科和内科医生都至少有1人的选派方法种数是360+210+20=590种.10.四个不同的小球放入编号为1,2,3,4的四个盒子中.(1)若每个盒子放一球,则有多少种不同的放法?(2)恰有一个空盒的放法共有多少种?[解] (1)每个盒子放一球,共有A=24(种)不同的放法;(2)法一先选后排,分三步完成.第一步:四个盒子中选一只为空盒,有4种选法;第二步:选两球为一个元素,有C种选法;第三步:三个元素放入三个盒中,有A种放法.故共有4CA=144(种)放法.法二先分组后排列,看作分配问题.第一步:在四个盒子中选三个,有C种选法;第二步:将四个球分成2,1,1三组,有C种放法;第三步:将三组分到选定的三个盒子中,有A种放法.故共有CCA=144种放法.。
人教版高三数学一轮复习练习题全套—(含答案)及参考答案
高考数学复习练习题全套(附参考答案)1. 已知:函数()()2411f x x a x =+-+在[)1,+∞上是增函数,则a 的取值范围是 .2. 设,x y 为正实数,且33log log 2x y +=,则11x y+的最小值是 . 3. 已知:()()()()50050A ,,B ,,C cos ,sin ,,αααπ∈. (1)若AC BC ⊥,求2sin α.(2)若31OA OC +=OB 与OC 的夹角.4. 已知:数列{}n a 满足()211232222n n na a a a n N -+++++=∈……. (1)求数列{}n a 的通项. (2)若n nnb a =,求数列{}n b 的前n 项的和n S .姓名 作业时间: 2010 年 月 日 星期 作业编号 002 1. 2275157515cos cos cos cos ++的值等于 .2. 如果实数.x y 满足不等式组22110,220x x y x y x y ≥⎧⎪-+≤+⎨⎪--≤⎩则的最小值是 .3. 北京奥运会纪念章某特许专营店销售纪念章,每枚进价为5元,同时每销售一枚这种纪念章还需向北京奥组委交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售2000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为x 元(x ∈N *).(1)写出该特许专营店一年内销售这种纪念章所获得的利润y (元)与每枚纪念章的销售价格x 的函数关系式(并写出这个函数的定义域);(2)当每枚纪念销售价格x 为多少元时,该特许专营店一年内利润y (元)最大,并求出这个最大值.4. 对于定义域为[]0,1的函数()f x ,如果同时满足以下三条:①对任意的[]0,1x ∈,总有()0f x ≥;②(1)1f =;③若12120,0,1x x x x ≥≥+≤,都有1212()()()f x x f x f x +≥+成立,则称函数()f x 为理想函数.(1) 若函数()f x 为理想函数,求(0)f 的值;(2)判断函数()21xg x =-])1,0[(∈x 是否为理想函数,并予以证明;(3)若函数()f x 为理想函数,假定∃[]00,1x ∈,使得[]0()0,1f x ∈,且00(())f f x x =,求证00()f x x =.0.01频率组距姓名 作业时间: 2010 年 月 日 星期 作业编号 003 1. 复数13i z =+,21i z =-,则复数12z z 在复平面内对应的点位于第_______象限. 2. 一个靶子上有10个同心圆,半径依次为1、2、……、10,击中由内至外的区域的成绩依次为10、9、……、1环,则不考虑技术因素,射击一次,在有成绩的情况下成绩为10环的概率为 . 3. 某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(是不小于40不大于100的整数)分成六段[)50,40,[)60,50…[]100,90后:(1)求第四小组的频率,并补全这个画出如下部分频率分布直方图.(2) 观察频率分布直方图图形的信息,估计这次考试的及格率(60分及以上为及格)和平均分.4. 在ABC ∆中,c ,b ,a 分别是角A 、B 、C 的对边,,a (n ),C cos ,c b (m =-=→→2)A cos ,且→→n //m . (1)求角A 的大小;(2)求)23cos(sin 22B B y -+=π的值域.姓名 作业时间: 2010 年 月 日 星期 作业编号 0041. 如果执行下面的程序框图,那么输出的S =2.△ABC 中,︒=∠==30,1,3B AC AB ,则△ABC 的面积等于 __. 3. 如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 为棱AD 、AB 的中点. (1)求证:EF ∥平面CB 1D 1; (2)求证:平面CAA 1C 1⊥平面CB 1D 1.4. 已知数列{}n a 的首项1213a a ==,,前n 项和为n S ,且1n S +、n S 、1n S -(n ≥2)分别是直线l 上的点A 、B 、C 的横坐标,21n na AB BC a +=,设11b =,12log (1)n n n b a b +=++. ⑴ 判断数列{1}n a +是否为等比数列,并证明你的结论;⑵ 设11114n b n n n n c a a +-++=,证明:11<∑=nk k C .批阅时间 等级ADA B 1C 1D 1E课堂作业参考答案(1)1. 32a ≤;2. 23; 3. 解:(1)()()cos 5,sin ,cos ,sin 5AC BC αααα=-=-…………………………1分AC BC ⊥,∴()()cos cos 5sin sin 50AC BC αααα⋅=-+-=,即1sin cos 5αα+=………………………………………………………………4分 ∴()21sin cos 25αα+=, ∴24sin 225α=-………………………………………7分(2)()5cos ,sin OA OC αα+=+,∴(5OA OC +==……9分∴1cos 2α= 又()0,απ∈,∴sin α=, 1,22C ⎛ ⎝⎭,∴53OB OC ⋅=11分设OB 与OC 夹角为θ,则52cos 512OB OC OB OCθ⋅===⋅⋅,∴30θ︒= , OB 与OC 夹角为30︒……14分。
高考数学《无穷等比数列各项的和》一轮复习练习题(含答案)
高考数学《无穷等比数列各项的和》一轮复习练习题(含答案)一、单选题1.已知无穷等比数列{}n a 的首项为1,公比为13,则{}n a 各项的和为( )A .23B .34 C .43D .322.设无穷等比数列所有奇数项之和为15,所有偶数项之和为3-,1a 为其首项,则1a =( ) A .685B .785C .725D .8453.无穷数列4 ,2-,1,12-,14,的各项和为( )A .83B .53C .43D .734.已知数列{}n a 是等比数列,()121lim 4n n a a a →∞++⋯+=,则1a 的取值范围是( )A .102⎛⎫ ⎪⎝⎭,B .104⎛⎫ ⎪⎝⎭,C .1142⎛⎫ ⎪⎝⎭,D .1110442⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭,,5.已知无穷等比数列{}n a 的公比为2,且13211112lim()3n n a a a →∞-++⋅⋅⋅+=,则242111lim()n na a a →∞++⋅⋅⋅+=( ) A .13B .23C .1D .436.已知无穷等比数列{}n a 的前n 项和()*13n n S a n N =+∈,且a 是常数,则此无穷等比数列各项的和是( ) A .13B .13-C .1D .-17.若数列{}n b 的每一项都是数列{}n a 中的项,则称{}n b 是{}n a 的子数列.已知两个无穷数列{}n a 、{}n b 的各项均为正数,其中321n a n =+,{}n b 是各项和为12的等比数列,且{}n b 是{}n a 的子数列,则满足条件的数列{}n b 的个数为 A .0个B .1个C .2个D .无穷多个8.设无穷等比数列{}n a 的各项和为S ,若数列{}n b 满足32313n n n n b a a a --=++,则数列{}n b 的各项和为( ) A .3SB .2SC .SD .3S9.已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且lim n n S S →∞=,下列条件中,使得()*3n S S n N <∈恒成立的是( )A .10a >,0.80.9q <<B .10a <,0.90.8q -<<-C .10a >,0.70.8q <<D .10a <,0.80.7q -<<-10.无穷数列12,13,14,16,⋅⋅⋅,12n ,1132n -⋅,⋅⋅⋅的各项和为( ) A .83B .53C .43D .7311.已知121,20151,20152n n n n a n --<⎧⎪=⎨⎛⎫-≥ ⎪⎪⎝⎭⎩,n S 是数列{}n a 的前n 项和( )A .lim n n a →∞和lim n n S →∞都存在B .lim n n a →∞和lim n n S →∞都不存在C .lim n n a →∞存在,lim n n S →∞不存在 D .lim n n a →∞不存在,lim n n S →∞存在 12.已知两点 O (0,0)、 Q (a , b ) ,点 P 1是线段 OQ 的中点,点 P 2是线段 QP 1的中点, P 3 是线段 P 1P 2的中点,……,Pn + 2是线段 Pn Pn +1的中点,则点 Pn 的极限位置应是( ) A .(,)22a bB .(,)33a bC .22(,)33a b D .33(,)44a b二、填空题13.首项为1,公比为12-的无穷等比数列{}n a 的各项和为______.14.若{}n a 是无穷等比数列,且12lim()2n n a a a →∞+++⋅⋅⋅=,则1a 的取值范围为___________. 15.已知数列{}n a 是公比为q 无穷等比数列,若12i i a q +∞==∑,则1a 的取值范围是____.16.无穷等比数列{}()*,n n a n a ∈∈N R 的前n 项和为n S ,且lim 2n n S →+∞=,则首项1a 的取值范围是_______.三、解答题17.一个无穷等比数列前n 项和的极限存在,记作S ,首项为12a =,公比0q <,求S 的取值范围.18.一个无穷等比数列的公比q 满足1q <,它的各项和等于6,这个数列的各项平方和等于18,求这个数列的首项1a 与公比q .19.已知数列{}n a 的首项1(0)a b b =≠,它的前n 项之和n S 组成的数列{}()*n S n N ∈是一个公比为(||1)q q <的等比数列.(1)求证:234,,a a a ,…是一个等比数列; (2)设1122n n n W a S a S a S =+++,求lim n n W →∞,(用,b q 表示)20.已知6614=⎛⎫+= ⎪⎝⎭∑i i i x a x .(1)等比数列{}n b 的首项11b a =,公比4=q a ,求1∞=∑i i b 的值;(2)等差数列{}n c 首项15=c a ,公差6=d a ,求{}n c 通项公式和它的前2022项和2022S .21.数列{}n a 中,11a =,22a =,数列{}1n n a a +⋅是公比为(0)q q >的等比数列. (1)求使11223()n n n n n n a a a a a a n N ++++++>∈成立的q 的取值范围; (2)若212()n n n b a a n N -=+∈,求n b 的表达式; (3)若12n n S b b b =+++,求1lim→∞n nS .22.设a b ∈R 、,已知函数2()3bf x ax x=++满足(1)(1)10f f +-=. (1)求a 的值,并讨论函数()f x 的奇偶性(只需写出结论);(2)若函数()f x 在区间,⎛-∞ ⎝上单调递减,求b 的最小值; (3)在(2)的条件下,当b 取最小值时,证明:函数()f x 有且仅有一个零点q ,且存在递增的正整数列{}n a ,使得31223n a a a a q q q q =+++⋅⋅⋅++⋅⋅⋅成立.23.正三棱锥012P A A A -中,01A PA α∠=,侧棱0PA 长为2,点0B 是棱PA 的中点,定义集合{}12,,B B ⋅⋅⋅如下:点n B 是棱n PA 上异于P 的一点,使得11n n n B B PB --=(1n ≥),我们约定:若n除以3的余数r ,则r n A A =(例如:30A A =、20152A A =等等) (1)若3πα=,求三棱锥012P B B B -的体积;(2)若{}12,,B B ⋅⋅⋅是一个只有两个元素的有限集,求α的范围; (3)若{}12,,B B ⋅⋅⋅是一个无限集,求各线段0PB ,1PB ,2PB ,…的长度之和(用α表示).(提示:无穷等比数列各项和公式为11a S q =-(01q <<)参考答案1.D2.C3.A4.D5.A6.D7.C8.C9.D10.B11.A12.C 13.2314.(0,2)(2,4) 15.1(4,0)(0,)2-16.()()0,22,4;17.解:因为无穷等比数列前n 项和的极限存在, 所以()11lim1nn a q q∞→--1211a q q==--,且1q <, 又0q <,所以10q -<<, 又21S q=-在()1,0-上单调递增, 所以()1,2S ∈18.由题意可知:这个数列的各项平方后,依然构成一个等比数列,且公比为2,q 首项为21a ,故112126114,3181a q a q a q⎧=⎪-⎪⇒==⎨⎪=⎪-⎩, 19.(1)由题知11S a b ==,所以1n n S bq -=,当2n ≥时,()12211n n n n n n a S S bq bq bq q ----=-=-=-, 所以()()()112121n n n n bq q a q n a bq q -+--==≥-, 所以234,,a a a ,…是一个等比数列;(2)由(1)知,()2,11,2n n b n a bq q n -=⎧=⎨-≥⎩,所以()2223,11,2n n n b n a S b q q n -⎧=⎪=⎨-≥⎪⎩,则()()22323lim lim 1n n n n W b b q q q q -→∞→∞=+-+++⎡⎤⎣⎦… ()()23232lim lim 1n n n b q q q b q -→∞→∞=+-+++…()2222111q b b b q q q=+-⋅=-+.20.(1)解:614x ⎛⎫+ ⎪⎝⎭的展开式通项为()6161C 6,N 4kk kk T x k k -*+⎛⎫=⋅⋅≤∈ ⎪⎝⎭,则661C 4kk k a -⎛⎫=⋅ ⎪⎝⎭,所以,1151364512b a ==⨯=,2446115C 416q a ⎛⎫==⋅= ⎪⎝⎭,则01q <<, 所以,()111313512lim151132116ni n i b q b b qq ∞→∞=-====---∑.(2)解:1513642c a ==⨯=,61d a ==,则()1112n c c n d n =+-=+, 所以,202212022202132022202210112021204626422d S c ⨯⨯=+=⨯+⨯=.21.(1){}1n n a a +⋅是公比为(0)q q >的等比数列,且12122a a ⋅=⋅=112n n n a a q -+∴⋅=由11223(n n n n n n a a a a a a n +++++⋅+⋅>⋅∈N ),有11222(0)n n n q q q q -++>> 210q q ∴--<解得0q <<(2)121n n n n a a q a a +++=,2n n a q a +∴=,2121,222n n n n a qa a qa +-+∴==212n n n b a a -=+,1123b a a ∴=+=,又12122212212212n n n n nn n n n nb a a qa qa q b a a a a +++---++===++ {}n b ∴是首项为13b =,公比为q 的等比数列,13n n b q -∴=(3)当1q =时,3n S n =,11lim lim 03n n n S n→∞→∞==; 当1q >时,3(1)1n n q S q -=-,11111lim lim lim 03(1)131n n n n n n nn q q q S q q -→∞→∞→∞--===-⎛⎫- ⎪⎝⎭; 当01q <<时,1111lim3lim 31n n n n qS S q→∞→∞-===-即1lim →∞n n S 13q -=. 综上,0,11lim 1,013n n q q S q →∞≥⎧⎪=-⎨<<⎪⎩. 22.(1)(1)(1)10(3)(3)102f f a b a b a +-=⇒+++-+=⇒=2()23bf x x x=++的定义域为(,0)(0,)x ∈-∞⋃+∞ 当20,()()23,()b f x f x x f x =-==+为偶函数; 当0,(1)(1)100,(1)(1),(1)(1)b f f f f f f ≠-+=≠-≠-≠- ∴()f x 既不是偶函数也不是奇函数;(2)由(1)得:2()25bf x x x=++则2()4bf x x x '=-, 若()f x在区间(,-∞上单调递减, 则2()40bf x x x'=-在区间(,-∞上恒成立, 即34b x在区间(,-∞上恒成立,当x =342x =-, 故b 的最小值为2-;(3)22()23,0,()0f x x x f x x -=++<>恒成立, 所以函数22()23f x x x -=++在(,0)-∞上无零点, 当0x >时,22()40f x x x '=+>,所以函数22()23f x x x-=++在(0,)+∞上单调递增, 2112(1)2230,2301444f f -⎛⎫⎛⎫=-+>=⨯++< ⎪ ⎪⎝⎭⎝⎭, 函数()f x 在1,14⎛⎫⎪⎝⎭上有且仅有一个零点q ,23322()230223013q f q q q q q q -=++=⇒-+=⇒=-47323213n q q q q q q -==+++⋅⋅⋅++⋅⋅⋅- 所以存在递增的正整数列{},32n n a a n =-,使得31223n a a a a q q q q =+++⋅⋅⋅++⋅⋅⋅成立. 23.点n B 是正三棱锥012P A A A -棱n PA 上异于P 的一点,且11n n n B B PB --=(1n ≥)1n n PB B -∴是等腰三角形,且1n n B B -、1n PB -为两腰 又正三棱锥012P A A A -中,01A PA α∠=, 01121n n A PA B PB B PB α-∴∠=∠==∠=,()1112cos 2cos 1n n n n n PB PB B PB PB n α---=⋅∠=⋅≥,则数列{}()n PB n N ∈是一个以01PB =为首项,2cos α为公比的等比数列,(1)当3πα=时,2101PB PB PB ===,且011220B PB B PB B PB ∠=∠=∠,则三棱锥012P B B B -为正四面体,其高h ==,底面积01221B B B S ==,故其体积01213P B B B V -==(2){}12,,B B ⋅⋅⋅是一个只有两个元素的有限集,2230,B PA B PA ∴∈∉,即223022PB PA PB PA ≤=⎧⎨>=⎩由()12cos 1n n PB PB n α-=⋅≥,得()2222cos 4cos PB αα==,()3332cos 8cos PB αα==,∴由234cos 28cos 2αα⎧≤⎨>⎩解得213211()cos ()22α<≤ 213211arccos(),arccos()22α⎫⎡∴∈⎪⎢⎣⎭;(3){}12,,B B ⋅⋅⋅是一个无限集,且()12cos 1n n PB PB n α-=⋅≥,则数列{}()n PB n N ∈是一个以01PB =为首项,2cos α为公比的无穷等比数列,01112cos n PB +PB +PB α∴++=-.。
2011高考数学第一轮复习专项练习题(37)
2011高考数学第一轮复习专项练习题(37)2011高考数学第一轮复习专项练习题(37)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设函数)(x f y =与函数)(x g 的图象关于3=x 对称,则)(x g 的表达式为A .)23()(x f x g -=B .)3()(x f x g -=C .)3()(x f x g --=D .)6()(x f x g -= 2.设的大小关系是、、,则,,c b a c b a 243.03.03log 4log-===A .a <b <cB .a <c <bC .c <b <aD .b <a <c 3.指数函数y =f(x)的反函数的图象过点(2,-1),则此指数函数为A .xy )21(= B .x y 2= C .x y 3= D .xy 10= 4.已知函数,,,且、、,00)(32213213>+>+∈--=x x x x R xx x x x x f 13x x +>0,则)()()(321x f x f x f ++的值A .一定大于零B .一定小于零C .等于零D .正负都有可能 5.若函数1log )(+=x x f a在区间(-1,0)上有)(0)(x f x f ,则>的递增区间是A .(-∞,1)B .(1,+∞)C .(-∞,-1)D .(-1,+∞)6.已知ba b a、,则2log 2log0<<的关系是A .0<a <b <1B .0<b <a <1C .b >a >1D .a >b >1 7.已知xaa a xlog 10=<<,则方程的实根个数是A .1个B .2个C .3个D .1个或2个或3个 8.若yx y x+-=,则2log的最小值为A .3322 B .2333 C .332 D .2239.已知函数f (x )是定义在R 上的奇函数,当x <0时,f (x )=(13)x ,那么f -1(-9)的值为 A .2 B .-2 C .3 D .-3 10.若方程mm x x 无实数解,则实数+=-21的取值范围是A .(-∞,-1)B .[0,1)C .[2,+∞)D .(-∞,-1)∪(2,+∞)答题卡已知函数f (x )=a x +12+-x x (a >1) ⑴证明:函数f (x )在(-1,+∞)上为增函数; ⑵用反证法证明f (x )=0没有负数根.17.(本小题满分12分)已知f (x )=2x -1的反函数为1-f (x ),g (x )=log 4(3x +1).⑴若f -1(x )≤g (x ),求x 的取值范围D ;⑵设函数H(x)=g(x)-121 f(x),当x∈D时,求函数H(x)的值域.18.(本小题满分14分)函数f(x)=log a(x-3a)(a>0,且a≠1),当点P(x,y)是函数y=f(x)图象上的点时,Q(x-2a,-y)是函数y=g(x)图象上的点.⑴写出函数y=g(x)的解析式.⑵当x∈[a+2,a+3]时,恒有|f(x)-g(x)|≤1,试确定a的取值范围.19.(本小题满分14分)某化妆品生产企业为了占有更多的市场份额,拟在2005年度进行一系列促销活动,经过市场调查和测算,化妆品的年销量x万件与年促销t万元之间满足3-x与t+1成反比例,如果不搞促销活动,化妆品的年销量只能是1万件,已知2005年生产化妆品的设备折旧,维修等固定费用为3万元,每生产1万件化妆品需再投入32万元的生产费用,若将每件化妆品的售价定为:其生产成本的150%“与平均每件促销费的一半”之和,则当年生产的化妆品正好能销完.⑴将2005年的利润y(万元)表示为促销费t(万元)的函数;⑵该企业2005年的促销费投入多少万元时,企业的年利润最大?(注:利润=销售收入—生产成本—促销费,生产成本=固定费用+生产费用)20.(本小题满分14分)已知f (x )在(-1,1)上有定义,f (21)=-1,且满足x ,y ∈(-1,1)有f (x )+f (y )=f (xy yx ++1)⑴证明:f (x )在(-1,1)上为奇函数;⑵对数列x 1=21,x n +1=212nnx x +,求f (x n );⑶求证252)(1)(1)(121++->+++n n x f x f x f n21.(本小题满分14分)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=ax2+bx+1(a>0)有两个相异的不动点x1,x2.⑴若x1<1<x2,且f(x)的图象关于直线x=m对称,1<m<1;求证:2⑵若|x1|<2且|x1-x2|=2,求b的取值范围.函数参考答案一、选择题(每小题5分,共50分)二、填空题(每小题4分,共20分)11.22;12.x≥2;13.(2,+∞) ;14. 2.5 ;15 (1) (3) (4)三、解答题(共80分)16.略17. 解:(Ⅰ)∵12)(-=xx f∴)1(log )(21+=-x x f (x >-1)由)(1x f-≤g (x ) ∴⎩⎨⎧+≤+〉+13)1(012x x x解得0≤x ≤1 ∴D =[0,1] (Ⅱ)H (x )=g (x )-)123(log 21113log 21)(21221+-=++=-x x x x f∵0≤x ≤1 ∴1≤3-12+x ≤2 ∴0≤H (x )≤21 ∴H (x )的值域为[0,21] 18.解:(Ⅰ)设P (x 0,y 0)是y =f (x )图象上点,Q (x ,y ),则⎩⎨⎧-=-=002y y a x x ,∴⎩⎨⎧-=+=yya x x 002 ∴-y =log a (x +2a -3a ),∴y =log aax -1 (x >a )(Ⅱ)⎩⎨⎧>->-03a x a x ∴x >3a∵f (x )与g (x )在[a +2,a +3]上有意义. ∴3a <a +2 ∴0<a <1 6分∵|f (x )-g (x )|≤1恒成立⇒|log a (x -3a )(x -a )|≤1恒成立.a a a x a a a a x a 1)2(101])2[(log 12222≤--≤⇔⎩⎨⎧<<≤--≤-⇔对x ∈[a +2,a +3]上恒成立,令h (x )=(x -2a )2-a 2其对称轴x =2a ,2a <2,2<a +2 ∴当x ∈[a +2,a +3] h min (x )=h (a +2),h max =h (a +3) ∴原问题等价⎪⎩⎪⎨⎧≥≤)(1)(max min x h ax h a12579069144-≤<⇒⎪⎩⎪⎨⎧-≥-≤⇔a a aaa19.解:(Ⅰ)由题意:13+=-t k x 将123,21,0+-=∴===t x k x t 代入 当年生产x (万件)时,年生产成本=年生产费用+固定费用=32x +3=32(3-12+t )+3,当销售x (万件)时,年销售收入=150%[32(3-12+t +3]+t 21 由题意,生产x 万件化妆品正好销完∴年利润=年销售收入-年生产成本-促销费 即)1(235982+++-=t t t y (t ≥0)(Ⅱ)∵)13221(50+++-=t t y ≤50-162=42万件当且仅当13221+=+t t 即t =7时,y max =42 ∴当促销费定在7万元时,利润增大.20.(Ⅰ)证明:令x =y =0,∴2f (0)=f (0),∴f (0)=0令y =-x ,则f (x )+f (-x )=f (0)=0 ∴f (x )+f (-x )=0 ∴f (-x )=-f (x ) ∴f (x )为奇函数 4分(Ⅱ)解:f (x 1)=f (21)=-1,f (x n +1)=f (212n nxx +)=f (nn nn x x xx ⋅++1)=f (x n )+f (x n )=2f (x n )∴)()(1nn x f x f +=2即{f (x n )}是以-1为首项,2为公比的等比数列∴f (x n )=-2n -1(Ⅲ)解:)2121211()(1)(1)(11221-++++=+++n nx f x f x f2212)212(21121111->+-=--=---=--n n n而2212)212(252-<+--=++-=++-n n n n ∴252)(1)(1)(121++->+++n n x f x f x f n21.(Ⅰ)证明:g (x )=f (x )-x =ax 2+(b -1)x +1且a >0 ∵x 1<1<x 2<2∴(x 1-1)(x 2-1)<0即x 1x 2<(x 1+x 2)-1于是212121)(21)11(212x x x xa ab a b m x -+=---=-==>21)(2121-+x x[(x 1+x 2)-1]=21 又∵x 1<1<x 2<2 ∴x 1x 2>x 1于是有m=21(x 1+x 2)-21x 1x 2<21(x 1+x 2)-21x 1=21x 2<1 ∴21<m <1 (Ⅱ)解:由方程ax x x b axx g 1,01)1()(212==+-+=可知>0,∴x 1x 2同号(ⅰ)若0<x 1<2则x 2-x 1=2 ∴x 2=x 1+2>2 ∴g (2)<0 即4a +2b -1<0 ① 又(x 2-x 1)2=44)1(22=--a a b∴1)1(122+-=+b a ,(∵a >0)代入①式得1)1(22+-b <3-2b ,解之得:b <41 (ⅱ)若-2<x 1<0,则x 2=-2+x 1<-2 ∴g (-2)<0,即4a -2b +3<0 ②又1)1(122+-=+b a 代入②得1)1(22+-b <2b -1解之得b >47综上可知b 的取值范围为⎭⎬⎫⎩⎨⎧〉〈4741b b b 或。
高考数学一轮复习《一元二次不等式》练习题(含答案)
高考数学一轮复习《一元二次不等式》练习题(含答案)一、单选题1.已知集合{}23A x x =-<<,()(){}170B x x x =--<,则A B ⋃=( ) A .{}13x x <<B .{}21x x -<<C .{}37x x <<D .{}27x x -<<2.不等式220x x -->的解集是( ) A .{x |x <-1或x >1} B .{x |-1<x <2} C .{x |x <-1或x >2}D .{x |-2<x <1}3.已知集合{}{}22,1,0,2,3,4,|340A B x x x =--=--<,则A B =( )A .{}1,0,2,3,4-B .{}0,2,3,4C .{}0,2,3D .{}2,34.已知x >0,y >0,且x +2y =1,若不等式21x y+≥m 2+7m 恒成立,则实数m 的取值范围是( ) A .﹣8≤m ≤1B .m ≤﹣8或m ≥1C .﹣1≤m ≤8D .m ≤﹣1或m ≥85.已知集合(){}30A x x x =-<,{}0,1,2,3B =,则A B ⋂( ) A .{}0,1,2,3 B .{}0,1,2 C .{}1,2,3D .{}1,26.已知集合{}1A x x =>,{}240B x x =-≤,则A B =( )A .{}2x x ≥-B .{}12x x <<C .{}12x x <≤D .{}2x x ≥7.若对任意12x ≤≤,有2x a ≤恒成立,则实数的取值范围是( ) A .{|2}a a ≤ B .{|4}a a ≥ C .{|5}a a ≤D .{|5}a a ≥8.已知集合{}2|3440=--<M x x x ,{}||1|1N y y =-≤,则M N ⋂=( )A .[]0,2B .2,03⎛⎫- ⎪⎝⎭C .[]1,2D .∅9.若集合{}220A x x x =--<,{}21B x x =<,则A B =( )A .AB .BC .()1,0-D .()0,210.若命题“x ∃∈R ,()2214(1)30k x k x -+-+≤”是假命题,则k 的范围是( )A .()1,7B .[)1,7C .()7,1--D .(]7,1--11.若关于x 不等式20ax bx c ++≥的解集为[2,3]-,则关于x 不等式20cx bx a ++≥的解集为( ) A .11[,]23-B .11[,]32-C .11(,][,)23-∞-+∞D .11(,][,)32-∞-+∞12.已知一元二次不等式kx 2 -x +1<0的解集为{x |a <x <b } ,则2a +b 的最小值是( )A .3+B .5+C .3+D .5+二、填空题13.若命题:P x R ∀∈,210ax a ++-≥是真命题,则实数a 的取值范围是______.14.已知集合{}2202120200A x x x =-+<,{}B x x a =<,若A B ⊆,则实数a 的取值范围是______.15.若关于x 的一元二次不等式210x ax -+≤的解集为∅,则实数a 的取值范围是______.16.已知命题0:p x ∃∈R ,200(1)10x a x +-+<,若命题p 是假命题,则a 的取值范围为__________.三、解答题17.已知函数)(23f x x ax =-+.(1)若不等式)(f x b <的解集为)(0,2,求实数a ,b 的值;(2)若函数)()()(212g x f x a x =+--在区间](0,2有零点,求实数a 的范围.18.已知不等式组22,780x x x -<⎧⎨+-<⎩的解集为A ,集合{}535B x a x a =-<<-.(1)求A ;(2)若A B B ⋃=,求a 的取值范围.19.已知集合(){}222120A x x a x a a =-+++<.(1)若{}13A x x =<<,求实数a 的值; (2)设,若“x B ∀∈,x A ∈”是真命题,求实数a 的取值范围.20.(1)求不等式2560x x -++>的解集; (2)解不等式:()()20x a x -->;(3)关于x 的不等式210ax ax ++>的解集为R ,求实数a 的取值范围.21.命题p :函数()22lg 43(0)y x ax a a =-+->有意义,命题q :实数x 满足302x x -<-. (1)当1a =且p 和q 都为真命题,求实数x 的取值范围; (2)若q 是p 的充分不必要条件,求实数a 的取值范围.22.已知集合()(){}130A x x x =--≤,集合{}1B x m x m =-≤≤. (1)当1m =时,求A B ⋃和()RA B ⋃.(2)若B A ⊆,求实数m 的取值范围.23.二次函数2(2)3(0)y ax b x a =+-+≠. (1)当1a =,6b =时,求此函数的零点;(2)若不等式0y >的解集为{}11xx -<<∣,求实数a ,b 的值; (3)当1b a =-时,不等式10y ->在R 上恒成立,求实数a 的取值集合。
三角函数综合练习题(单调性、单调区间、最大最小值)
三角函数综合练习题考查单调性,单调区间,最大最小值,周期,零点,对称性,对称中心一、解答题(本大题共30小题,共360.0分)1.已知函数f(x)=cosxsin(x−π3)+√34(x∈R).(1)求f(x)的最小正周期及单调递增区间;(2)求f(x)在区间[−π4,π4]上的最大值和最小值.2.已知函数f(x)=cos(2x+π3).(1)求函数y=f(x)的对称轴方程;(2)求函数f(x)在区间[−π12,π2]上的最大值和最小值.3.设函数f(x)=cosx⋅sin(x+π3)−√3cos2x+√34.(1)求f(x)的最小正周期和对称中心;(2)当x∈[0,π3]时,求函数f(x)的最值.4.已知函数f(x)=cos2x−sin2x−2√3sinxcosx(x∈R).(2)求f(x)的最小正周期及单调递减区间.5.已知函数f(x)=cos(2x−π3)+2sin(x−π4)sin(x+π4).(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)若将函数f(x)图象上每点的横坐标变为原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)在区间[−π12,π]上的值域.6.已知函数f(x)=2sinx⋅sin(π2−x)+√3(cos2x−sin2x).(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)求方程f(x)=2的解构成的集合.7.已知函数f(x)=2sin2x+2√3sinxcosx.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)若x∈[0,5π12],求函数f(x)的值域.8.已知函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<π2)的图象过点P(−5π12,0),且图象上与P点最近的一个最低点坐标为(−π6,−2).(1)求函数的解析式;(2)若将此函数的图象向左平移π6个单位长度后,再向上平移2个单位长度得到g(x)的图象,求g(x)在[−π6,π3]上的值域.9.已知f(x)=2sin(2x+π3).(1)求f(x)的最大值,并写出f(x)取最大值时,x值的集合.(2)求f(x)的单调递增区间.10.已知函数f(x)=cosx(2sinx+√3cosx)−√3sin2x.(Ⅰ)求函数f(x)的最小正周期和单调递减区间;(Ⅱ)若当x∈[0,π2]时,关于x的不等式f(x)≥m有解,求实数m的取值范围.11.已知函数f(x)=2sin(2x−π6).(1)求函数f(x)的对称轴;(2)当x∈[0,π2]时,求函数f(x)的最大值与最小值.12.已知函数f(x)=4sinxcos(x−π3)−√3.(Ⅰ)求f(x)的最小正周期和单调递增区间;(Ⅱ)若方程f(x)=m在(π2,5π3)有两个不同的实根,求m的取值范围.13.已知向量a⃗=(3sinx,cos2x),b⃗ =(cosx,12),x∈R,设函数f(x)=a⃗⋅b⃗ .(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)求函数f(x)在[0,π2]上的最大值和最小值.14.已知函数f(x)=sinωx(sinωx+cosωx)的最小正周期为π,ω为正实数.(1)求ω的值;(2)求函数f(x)的单调递减区间及对称轴方程.15.已知向量m⃗⃗⃗ =(cosx,−1),n⃗=(√3sinx,cos2x),设函数f(x)=m⃗⃗⃗ ⋅n⃗+1.(1)求函数y=f(x)的单调递减区间,并说明由函数y=sinx的图象如何变换可得到函数y=f(x)的图象.(2)若x∈[0,π2],f(x)=56,求cos2x的值.16.已知函数f(x)=(sinx+cosx)2+cos2x.(I)求f(x)的最小正周期;(Ⅱ)求f(x)在[0,π2]上的单调递增区间.17.已知向量a⃗=(√3sinx,cosx),b⃗ =(−cosx,cosx),c⃗=(2,1).(Ⅰ)若a⃗//c⃗,求a⃗⋅b⃗ 的值;(Ⅱ)若x∈[0,π2],求f(x)=a⃗⋅b⃗ 的值域.18.已知函数f(x)=2asinωxcosωx+2√3cos2ωx−√3(a>0,ω>0)的最大值为2,且最小正周期为π.(1)求函数f(x)的对称轴方程;(2)若f(α)=43,求sin(4α+π6)的值.19.设函数f(x)=sinx+√3cosx(x∈R).(1)求函数f(x)的最值和最小正周期;(2)将函数f(x)的图像先保持纵坐标不变,横坐标伸长为原来的2倍,再将图像向π20.已知函数f(x)=Asin(ωx+φ),其中A>0,ω>0,−π2<φ<π2,x∈R其部分图象如图所示.(1)求函数y=f(x)的解析式与单调增区间;(2)当x∈[0,π]时,求函数y=f(x)的最大值与最小值及此时相应x的值.21.已知函数f(x)=2sinx(√3cosx+sinx)−1.(I)求f(x)的单调递增区间;(II)若f(α2)=25,求sin(2α+π6)的值.22.已知函数f(x)=12cos2x+√32sinxcosx+1.(1)求函数f(x)的最小正周期和其图象对称中心的坐标;(2)求函数f(x)在[π12,π4]上的值域.23.已知f(x)=sin(2x+π6)+3cos(2x−π3).(1)求f(x)的最小正周期及单调递减区间;(2)若f(α2)=45,α∈(0,π),试求cosα的值.24.已知函数f(x)=cos2x+2√3sinxcosx−sin2x.(1)求函数f(x)的最小正周期;(2)求f(x)在区间[−π3,π3]上的最大值和最小值.25.已知函数f(x)=(cosx+√3sinx)⋅sin(π2−x)+12.(1)求函数f(x)的最小正周期和单调增区间;(2)求函数f(x)在区间[712π,56π]上的最小值以及取得该最小值时x的值.26.已知函数f(x)=√3sin(ωx+φ)(ω>0,|φ|≤π2)的图像关于直线x=π3对称,且图像上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f(α2)=√34(π6<α<2π3),求sin (α+π3)的值.27.已知函数f(x)=cos2x+√3sinxcosx−12(x∈R).(1)求f(x)的最小正周期;(2)讨论f(x)在区间[−π4,π4]上的单调性;28.已知函数f(x)=2cosx(λsinx−cosx)+sin2x+1(λ<0),且f(x)的最小值为−2.(1)求实数λ的值及函数f(x)的单调递减区间;(2)当x∈[−π12,π2]时,若函数g(x)=f(x)−k有且仅有一个零点,求实数k的取值范围.29. 已知函数f(x)=Acos(ωx +φ)+B(A >0,ω>0,|φ|<π2)的部分图像如下图所示.(Ⅰ)求f (x )的解析式及对称中心坐标;(Ⅱ)先将f (x )的图像纵坐标缩短到原来的12倍,在向右平移π6个单位,最后将图像向上平移1个单位后得到g (x )的图像,求函数y =g (x )在x ∈[π12,3π4]在上的单调减区间和最值.)(x∈R).30.已知函数f(x)=2sinxsin(x+π2(Ⅰ)求f(0)的值;(Ⅱ)求f(x)的最小正周期;)为偶函数,求φ的值.(Ⅲ)若y=f(x+φ)(0<φ<π2答案和解析1.【答案】解:(1)因为f(x)=cosxsin(x−π3)+√34,=12sinxcosx−√32cos2x+√34=14sin2x+√34(1−2cos2x),=14sin2x−√34cos2x,=12sin(2x−π3)所以最小正周期为:T=π;由−π2+2kπ≤2x−π3≤π2+2kπ,k∈Z得−π12+kπ≤x≤5π12+kπ,k∈Z,即单调递增区间是:[−π12+kπ,5π12+kπ],k∈Z,(2)因为x∈[−π4,π4],所以2x−π3∈[−5π6,π6],因此sin(2x−π3)∈[−1,12],当2x−π3=−π2即x=−π12时,取最小值−12;当2x−π3=π6即x=π4时,取最大值14;【解析】(1)先利用和差角公式及辅助角公式进行化简,然后结合周期公式即可求解;(2)结合正弦函数的性质即可直接求解.本题主要和差角公式,辅助角公式在三角化简求值中的应用2.【答案】解:(1)函数f(x)=cos(2x+π3).由2x+π3=kπ得x=kπ2−π6,即函数的对称轴方程为x=kπ2−π6,k∈Z,(2)当−π12≤x≤π2时,−π6≤2x≤π,π6≤2x+π3≤4π3,所以当2x+π3=π,即x=π3时,函数f(x)取得最小值,最小值为f(x)=cosπ=−1,当2x+π3=π6,即x=−π12时,函数f(x)取得最大值,最大值为f(x)=cosπ6=√32.【解析】(1)直接利用余弦型函数的性质和整体思想求出函数的对称轴方程.(2)利用整体思想,进一步利用函数的定义域求出函数的值域,再求出函数的最值.本题考查的知识要点:三角函数关系式的变换,余弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.3.【答案】解:(1)f(x)=cosx⋅sin(x+π3)−√3cos2x+√34=cosx(12sinx+√32cosx)−√3cos2x+√34=14sin2x−√34cos2x=12sin(2x−π3),∴f(x)的最小正周期是2π2=π,令2x−π3=kπ,k∈Z,解得x=12kπ+π6,k∈Z,可得对称中心为(12kπ+π6,0),k∈Z.(2)当x∈[0,π3]时,2x−π3∈[−π3,π3],可得sin(2x−π3)∈[−√32,√32],可得函数f(x)=12sin(2x−π3)∈[−√34,√34],即函数f(x)的最小值为−√34,最大值为√34.【解析】(1)利用三角函数恒等变换的应用可求函数解析式f(x)=12sin(2x−π3),利用三角函数周期公式可求f(x)的最小正周期,利用正弦函数的性质可求其对称中心.(2)由已知可求范围2x−π3∈[−π3,π3],进而根据正弦函数的性质即可求其最值.本题主要考查了三角函数恒等变换的应用,正弦函数的图象和性质,考查了转化思想和函数思想,属于基础题.4.【答案】解:(1)f(x)=cos2x−sin2x−2√3sinxcosx=cos2x−√3sin2x=2cos(2x+π3),则f(π6)=2cos2π3=2×(−12)=−1.(2)f(x)的最小正周期T=2π2=π,令2kπ≤2x+π3≤2kπ+π,k∈Z,得kπ−π6≤x≤kπ+π3,k∈Z,即f(x)的单调递减区间为[kπ−π6,kπ+π3],k∈Z.【解析】(1)利用辅助角公式进行化简,然后代入求值即可.(2)结合三角函数的周期公式,以及单调递减区间的性质建立不等式进行求解.本题主要考查三角函数的图象和性质,利用辅助角公式进行化简,然后结合三角函数的性质是解决本题的关键.难度不大.5.【答案】解:(Ⅰ)函数f(x)=cos(2x−π3)+2sin(x−π4)sin(x+π4)=cos(2x−π3)+sin(2x−π2)=12cos2x+√32sin2x−cos2x=sin(2x−π6),故它的最小正周期为2π2=π.(Ⅱ)若将函数f(x)的图象上每点的横坐标变为原来的2倍,纵坐标不变,得到函数y=g(x)=sin(x−π6)的图象.在区间[−π12,π]上,x−π6∈[−π4,5π6],故g(x)在区间[−π12,π]上的值域为[−√22,1].【解析】(Ⅰ)由题意利用三角恒等变换花简f(x)的解析式,再利用正弦函数的周期性,得出结论.(Ⅱ)由题意利用函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,再利用正弦函数的定义域和值域,得出结论.本题主要考查三角恒等变换,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的周期性、定义域和值域,属于中档题.6.【答案】解:(Ⅰ)∵函数f(x)=2sinx⋅sin(π2−x)+√3(cos2x−sin2x)=sin2x+√3cos2x=2sin(2x+π3),故f(x)的最小正周期为2π2=π.(Ⅱ)方程f(x)=2,即sin(2x+π3)=1,2x+π3=2kπ+π2,即x=kπ+π12,k∈Z.故方程f(x)=2的解构成的集合为{x|x═kπ+π12,k∈Z}.【解析】(Ⅰ)由题意利用三角恒等变换化简函数的解析式,再根据正弦函数的周期性,得出结论.(Ⅱ)根据方程f(x)=2,可得2x+π3=2kπ+π2,由此求得x的取值集合.本题主要考查三角恒等变换,正弦函数的周期性,解三角方程,属于中档题.7.【答案】解:(Ⅰ)∵f(x)=2sin2x+2√3sinxcosx=1−cos2x+√3sin2x=2sin(2x−π6)+1,∴函数f(x)的最小正周期T=2π2=π.(Ⅱ)∵x∈[0,5π12],∴2x−π6∈[−π6,2π3],∴sin(2x−π6)∈[−12,1],∴f(x)=2sin(2x−π6)+1∈[0,3],即函数f(x)的值域为[0,3].【解析】(Ⅰ)利用三角函数的恒等变换化简函数的解析式,再利用正弦函数的周期性求得f(x)的最小正周期.(Ⅱ)利用正弦函数的定义域和值域,即可求解.本题主要考查三角函数的恒等变换,正弦函数的周期性、定义域和值域,属于基础题.8.【答案】解:(1)由题可知,A=2,|−5π12+π6|=14T,∴最小正周期T=π,∴ω=2πT=2,∵函数f(x)过点(−π6,−2),∴−2=2sin[2×(−π6)+φ],∴φ=−π6+2kπ,k∈Z,又|φ|<π2,∴φ=−π6,∴函数的解析式y=2sin(2x−π6).(2)g(x)=2sin[2(x+π6)−π6]+2=2sin(2x+π6)+2,∵x∈[−π6,π3],∴2x+π6∈[−π6,5π6],∴sin(2x+π6)∈[−12,1],g(x)∈[1,4].故g(x)在[−π6,π3]上的值域为[1,4].【解析】(1)由题可知,A=2,|−5π12+π6|=14T,再结合ω=2πT可求得ω的值,然后将点(−π6,−2)代入函数f(x)的解析式中,并利用|φ|<π2,可求出φ的值,故而得解.(2)根据函数图象的变换法则可得g(x)=2sin(2x+π6)+2,然后根据x∈[−π6,π3],求出2x+π6的取值范围,再结合正弦函数的图象即可得解.本题考查正弦型函数解析式的求法、正弦函数的图象变换与性质,考查学生的数形结合思想、逻辑推理能力和运算能力,属于基础题.9.【答案】解:(1)f(x)max=2,当f(x)=2时,有sim(2x+π3)=1∴2x+π3=2kπ+π2(k∈z),解得x=kπ+π12,∴f(x)取最大值时x值的集合为{x|x=kπ+π12,k∈z}.(2)由2kπ−π2≤2x+π3≤2kπ+π2,k∈z,解得kπ−5π12≤x≤kπ+π12∴f(x)的单调递增区间为:[kπ−5π12,kπ+π12],k∈z.【解析】(1)由正弦函数的有界性得出函数的最值,再整体代换解出x的值,写成集合形式;(2)将2x+π3整体代入正弦函数的单调递增区间,解出x的范围写成区间形式.本题考查复合三角函数的单调性与三角函数的最值,考查正弦函数的性质,考查分析与运算能力,属于中档题.10.【答案】解:(Ⅰ)因为f(x)=2sinxcosx+√3cos2x−√3sin2x=sin2x+√3cos2x=2sin(2x+π3),所以函数f(x)的最小正周期T=π,因为函数y=sinx的的单调递减区间为[2kπ+π2,2kπ+3π2],k∈Z,所以2kπ+π2≤2x+π3≤2kπ+3π2(k∈Z),解得kπ+π12≤x≤kπ+7π12(k∈Z),所以函数f(x)的单调递减区间是[kπ+π12,kπ+7π12],(k∈Z).(Ⅱ)由题意可知,不等式f(x)≥m有解,即m≤f(x)max.由(Ⅰ)可知f(x)=2sin(2x+π3),当x∈[0,π2]时,2x+π3∈[π3,4π3],故当2x+π3=π2,即x=π12时,f(x)取得最大值,最大值为2.所以m≤2.故实数m的取值范围是(−∞,2].【解析】(Ⅰ)先将函数f(x)进行化简,然后根据三角函数的图象和性质即可求函数f(x)的最小正周期和单调递减区间;(Ⅱ)转化为m≤f(x)max.结合变量的范围求出其最大值即可求解结论.本题主要考查三角函数的图象和性质,利用三角化简公式将函数化简是解决本题的关键.11.【答案】解:(1)函数f(x)=2sin(2x−π6).令2x−π6=kπ+π2(k∈Z),解得x=kπ2+π3(k∈Z),所以函数f(x)的对称轴方程为:x=kπ2+π3(k∈Z).(2)由于x∈[0,π2],所以2x−π6∈[−π6,5π6],故sin(2x−π6)∈[−12,1].则:−1≤f(x)≤2.故:当x=0时,函数的最小值为−1.当x=π3时,函数的最大值为2.【解析】(1)直接利用正弦型函数的性质的应用求出函数的对称轴方程.(2)利用函数的定义域的应用求出函数的值域,进一步求出函数的最大和最小值.本题考查的知识要点:正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.12.【答案】解:(Ⅰ)f(x)=4sinxcos(x −π3)−√3,=4sinx(12cosx +√32sinx)−√3=2sinxcosx +2√3sin 2x −√3,=sin2x −√3cos2x =2sin(2x −π3), 所以f(x)的最小正周期T =2π2=π,由−π2+2kπ≤2x −π3≤π2+2kπ,k ∈Z 得 −π12+kπ≤x ≤5π12+kπ,k ∈Z ,所以f(x)的单调递增区间是[−π12+kπ,5π12+kπ],k ∈Z , (Ⅱ)令t =2x −π3,因为x ∈(π2,5π3),所以t ∈(2π3,3π), 即方程2sint =m 在t ∈(2π3,3π)有两个不同的实根,由函数y =2sint 的图象可知,当m ∈(−2,0]∪[√3,2)时满足题意,所以m 的取值范围为(−2,0]∪[√3,2).【解析】(I)先结合和差角公式及辅助角公式进行化简,然后结合正弦函数的性质即可求解;(II)由已知可转化为函数图象的交点,结合正弦函数的性质可求.本题主要考出来和差角公式,辅助角公式在三角化简中的应用,体现了转化思想的应用,属于中档试题.13.【答案】解:(1)∵a ⃗ =(3sinx,cos2x),b ⃗ =(cosx,12),x ∈R , ∴函数f(x)=a⃗ ⋅b ⃗ =(3sinx,cos2x)⋅(cosx,12)=3sinxcosx +12cos2x =32sin2x +12cos2x =√102sin(2x +φ)(tanφ=13,取φ为锐角).∴函数f(x)的最小正周期为2π2=π;(2)由(1)得f(x)=√102sin(2x +φ)(tanφ=13,取φ为锐角).∵x ∈[0,π2],∴2x +φ∈[φ,π+φ].则当2x +φ=π+φ时,f(x)取得最小值为√102sin(π+φ)=−√102sinφ=−√102×√1010=−12;当2x +φ=π2时,f(x)取得最大值为√102sin π2=√102.∴函数f(x)在[0,π2]上的最大值和最小值分别为√102,−12.【解析】(Ⅰ)利用平面向量的数量积的坐标运算可得f(x)的解析式,利用周期公式求周期;(Ⅱ)由x 的范围求得相位的范围,进一步求得函数的最值.本题考查平面向量数量积的坐标运算,训练了三角函数最值的求法,是中档题. 14.【答案】解:(1)∵函数f(x)=sinωx(sinωx +cosωx)=sin 2ωx +sinωxcosωx =1−cos2ωx2+12sin2ωx=√22sin(2ωx −π4)+12 的最小正周期为2π2ω=π,∴ω=1,f(x)=√22sin(2x −π4)+12.(2)对于函数f(x)=√22sin(2x −π4)+12,令2kπ+π2≤2x −π4≤2kπ+3π2,求得kπ+3π8≤x ≤π+7π8,可得函数的减区间为[kπ+3π8,π+7π8],k ∈Z .令2x −π4=kπ+π2,求得x =kπ2+3π8,可得函数的图象的对称轴方程为x =kπ2+3π8,k ∈Z .【解析】(1)利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性求出ω的值.(2)由题意利用正弦函数的单调性、以及它的图象的对称性,得出结论.本题主要考查三角恒等变换,正弦函数的周期性和单调性、以及它的图象的对称性,属于中档题.15.【答案】解:(1)由题可知,f(x)=m ⃗⃗⃗ ⋅n ⃗ +1=√3sinxcosx −cos 2x +1 =√32sin2x −12cos2x +12=sin(2x −π6)+12.令π2+2kπ≤2x −π6≤3π2+2kπ,则π3+kπ≤x ≤5π6+kπ,k ∈Z ,∴y =f(x)的单调递减区间为[π3+kπ,5π6+kπ],k ∈Z .由y =sinx 变换成y =f(x)的过程如下所示:y =sinx 的图象纵坐标不变,横坐标先向右平移π6个单位,再缩小为原来的12,然后横坐标不变,纵坐标向上平移12个单位.(2)令f(x)=sin(2x −π6)+12=56,则sin(2x −π6)=13, ∵x ∈[0,π2],∴2x −π6∈[−π6,5π6],∴cos(2x −π6)=±2√23, 而cos2x =cos[(2x −π6)+π6]=√32cos(2x −π6)−12sin(2x −π6),∴当cos(2x −π6)=2√23时,cos2x =√32×2√23−12×13=2√6−16; 当cos(2x −π6)=−2√23时,cos2x =√32×(−2√23)−12×13=−2√6−16, 综上,cos2x 的值为2√6−16或−2√6−16.【解析】(1)结合平面向量数量积的坐标运算和二倍角公式、辅助角公式可将函数f(x)化简为f(x)=sin(2x−π6)+12,再利用正弦函数的单调性即可求得f(x)的单调递减区间;结合三角函数的平移变换与伸缩变换法则即可得解.(2)由题可知,sin(2x−π6)=13,由于x∈[0,π2],所以2x−π6∈[−π6,5π6],利用平方关系可求得cos(2x−π6)=±2√23,然后结合拼凑角的方法可知cos2x=cos[(2x−π6)+π6],利用余弦的两角和公式展开后,代入数据进行运算即可得解.本题主要考查三角恒等变换与三角函数图象的综合,还涉及平面向量数量积的坐标运算,熟练运用二倍角公式、辅助角公式等基本公式是解题的关键,考查学生的分析能力和运算能力,属于基础题.16.【答案】解:f(x)=(sinx+cosx)2+cos2x=1+sin2x+cos2x=√2sin(2x+π4)+1.(I)f(x)的最小正周期T=2π2=π.(Ⅱ)令2kπ−π2≤2x+π4≤2kπ+π2,k∈Z,解得kπ−3π8≤x≤kπ+π8,k∈Z,∴f(x)的单调递增区间为[kπ−3π8,kπ+π8],k∈Z,∵x∈[0,π2],∴k=0,f(x)在[0,π2]上的单调递增区间为[0,π8].【解析】利用平方关系、辅助角公式将函数化简为f(x)=√2sin(2x+π4)+1.(I)根据正弦函数的周期性即可得解;(Ⅱ)根据正弦函数的单调性即可得解,需要注意限定了区间[0,π2].本题考查三角恒等变换与三角函数的综合,考查学生的逻辑推理能力和运算能力,属于基础题.17.【答案】解:(Ⅰ)由a⃗//c⃗可得,√3sinx=2cosx,∴tanx=2√33,∴a⃗⋅b⃗ =−√3sinxcosx+cos2x=−√3sinxcosx+cos2xcos2x+sin2x =−√3tanx+1tan2x+1=−173=−37.(Ⅱ)函数f(x)=a⃗⋅b⃗ =−√3sinxcosx+cos2x=−√32sin2x+1+cos2x2=−sin (2x−π6)+12,∵x∈[0,π2],,∴sin (2x−π6)∈[−12,1],∴−sin (2x−π6)+12∈[−12,1],即f(x)的值域为[−12,1].【解析】本题主要考查两个向量的数量积的运算,三角函数的恒等变换,函数y= Asin(ωx+φ)的图象与性质,平面向量共线的充要条件,属于中档题.(Ⅰ)由a⃗//c⃗求得tanx=2√33,再利用同角三角函数的基本关系以及两个向量的数量积公式求出a⃗⋅b⃗ 的值.(Ⅱ)利用两个向量的数量积公式以及三角恒等变换求出函数f(x)=a⃗⋅b⃗ =−sin (2x−π6)+12,再由x的范围,求出f(x)的值域.18.【答案】解:,其中tanφ=√3a.∵f(x)的最小正周期为T=π,∴2ω=2πT=2,即ω=1.又∵f(x)的最大值为2,∴√a2+3=2,即a=±1,∵a>0,∴a=1.所以不妨取φ=π3,因此,(1)令2x+π3=π2+kπ,(k∈Z).对称轴方程为x=π12+kπ2,(k∈Z).(2)由f(α)=43,得,即,则.【解析】本题考查了两角和与差的三角函数公式,二倍角公式及应用,辅助角公式和函数y=Asin(ωx+φ)的图象与性质.(1)根据条件函数最值和周期,利用三角函数的公式进行化简,即可求a和ω的值,即可求出函数的解析式和对称轴方程;(2)根据f(α)=43,利用余弦函数的倍角公式进行化简即可求sin(4α+π6)的值.19.【答案】解:(1)由辅助角公式得:f(x)=sinx+√3cosx=2sin (x+π3),当sin (x+π3)=±1,故最大值为2,最小值为−2.最小正周期为T=2π|ω|=2π.,令2kπ+π2⩽x2+π4⩽2kπ+3π2(k ∈Z),则4kπ+π2⩽x ⩽4kπ+5π2(k ∈Z),即单调递减区间为:[4kπ+π2,4kπ+5π2](k ∈Z).【解析】本题考查了函数y =Asin(ωx +φ)的图象与性质,是基础题. (1)先由辅助角公式化简f(x),由三角函数性质可得最值和最小正周期;; (2)由三角函数图象变换得g(x)=2sin(x2+π4),令2kπ+π2⩽x2+π4⩽2kπ+3π2(k ∈Z),可得g(x)的单调递减区间.20.【答案】解:(1)根据函数f(x)=Asin(ωx +φ),其中A >0,ω>0,−π2<φ<π2,x ∈R 其部分图象,可得A =2,14⋅2πω=5π6−π3,∴ω=1. 再根据五点法作图,可得1×π3+φ=π2,求得φ=π6, ∴函数f(x)=2sin(x +π6). (2)当x ∈[0,π]时,x +π6∈[π6,7π6],故当x +π6=π2时,即x =π3时,函数f(x)取得最大值为2; 当x +π6=7π6时,即x =π时,函数f(x)取得最小值为−1.【解析】(1)由题意利用由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.(2)根据函数的解析式、正弦函数的最值,求出函数y =f(x)的最大值与最小值及此时相应x 的值.本题主要考查由函数y =Asin(ωx +φ)的部分图象求解析式,由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出φ的值,正弦函数的最值,属于中档题. 21.【答案】解:(I)f(x)=2√3sin xcos x +2sin 2x −1=√3sin2x −cos2x=2(√32sin2x −12cos2x)=2sin(2x −π6),令−π2+2kπ⩽2x −π6⩽π2+2kπ,k ∈Z ,解得−π6+kπ⩽x ⩽π3+kπ,k ∈Z , 故所求单调增区间为[−π6+kπ,π3+kπ](k ∈Z);(Ⅱ)由题意得:f(α2)=25,得sin(α−π6)=15,所以sin(2α+π6)=sin[2(α−π6)+π2]=cos2(α−π6)=1−2sin2(α−π)=2325.【解析】本题考查两角和与差的三角函数,二倍角公式,函数的单调性以及函数求值,考查转化思想以及计算能力,属于中档题.(I)利用二倍角公式、两角和与差的三角函数化简函数的解析式,利用正弦函数的单调性求解函数f(x)的单调递增区间;(II)由(I)可得sin(α−π6)=15,由角之间的关系、诱导公式、二倍角余弦公式的变形求出答案.22.【答案】解:函数f(x)=12cos2x+√32sinxcosx+1,化简可得:f(x)=1+cos2x4+√34sin2x+1=12sin(2x+π6)+54.(1)∴函数f(x)的最小正周期T=2π2=π.令2x+π6=kπ,k∈Z,可得,对称中心的坐标:x=kπ2−π12,k∈Z.∴函数f(x)的对称中心(kπ2−π12,54),k∈Z.(2)∵π12≤x≤π4,∴π3≤2x+π6≤2π3∴√32≤sin(2x+π6)≤1,∴5+√34≤12sin(2x+π6)+54≤74,故得函数f(x)在[π12,π4]上的值域是[5+√34,74].【解析】本题主要考查对三角函数的化简能力和函数y=Asin(ωx+φ)的图象与性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于中档题.(1)利用二倍角和辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期,结合三角函数的图象和性质可求对称中心的坐标;(2)x∈[π12,π4]上时,求出内层函数的取值范围,结合三角函数的图象和性质,即得到f(x)的取值范围.23.【答案】解:f(x)=√32sin2x+12cos2x+32cos2x+3√32sin2x =2√3sin2x+2cos2x=4sin(2x+π6).(1)f(x)的最小正周期T=2π2=π,由π2+2kπ≤2x+π6≤3π2+2kπ,k∈Z,解得π6+kπ≤x≤2π3+kπ,k∈Z,所以f(x)的单调递减区间为[π6+kπ,2π3+kπ],k∈Z.(2)由f(α2)=4sin(α+π6)=45知sin(α+π6)=15,因为α∈(0,π),所以α+π6∈(π6,7π6),又sin(α+π6)=15,所以α+π6∈(5π6,π),所以cos(α+π6)=−2√65,则cosα=cos(α+π6−π6)=−2√65×√32+15×12=1−6√210.【解析】本题考查三角恒等变换以及三角函数的性质,属于中档题.化简得到f(x)=4sin(2x+π6).(1)根据周期公式求得周期,再解不等式得到单调递减区间;(2)运用同角三角函数关系以及两角和差的三角函数公式计算即可得到答案.24.【答案】解:(1)∵f(x)=cos2x+2√3sinxcosx−sin2x=cos2x+√3sin2x= 2sin(2x+π6),∴函数f(x)的最小正周期T=2π2=π.(2)∵x∈[−π3,π3 ],∴2x+π6∈[−π2,5π6],∴sin(2x+π6)∈[−1,1],f(x)=2sin(2x+π6)∈[−2,2],∴f(x)在区间[−π3,π3]上的最大值为2,最小值为−2.【解析】(1)利用三角函数恒等变换的应用化简可得f(x),由周期公式可得;(2)由x的范围逐步可得f(x)的范围,进而利用正弦函数的图象和性质可得最值.本题主要考查了三角函数恒等变换的应用,正弦函数的图象和性质的应用,涉及函数的周期的求解,属于基础题.25.【答案】解:(1)因为函数f(x)=(cosx+√3sinx)⋅sin(π2−x)+12=(cosx+√3sinx)⋅cosx+1 2=cos2x+√3sinxcosx+1 2=1+cos2x2+√32sin2x+12=sin(2x+π6)+1;∴函数f(x)最小正周期是T=π;当2kπ−π2≤2x+π6≤2kπ+π2,k∈Z,即kπ−π3≤x≤kπ+π6,k∈Z,函数f(x)单调递增区间为[kπ−π3,kπ+π6],k∈Z;(2)x∈[712π,56π]⇒4π3≤2x+π6≤11π6;所以当2x+π6=32π时,即x=23π时,f(x)取得最小值0.【解析】(1)函数解析式利用二倍角的余弦函数公式化简,整理后利用两角和与差的正弦函数公式化为一个角的正弦函数,找出ω的值,代入周期公式即可求出函数f(x)的最小正周期,根据正弦函数的单调性即可确定出f(x)的单调递增区间;(2)由x∈[712π,56π]可得:43π≤2x+π6≤116π,所以当2x+π6=32π时,即x=23π时,f(x)取得最小值0.本题主要考查了三角函数的图象和性质,以及三角函数求最值,是中档题.26.【答案】解:(1)因f(x)的图象上相邻两个最高点的距离为π,所以f(x)的最小正周期T=π,从而ω=2πT=2,又因f(x)的图象关于直线x=π3对称,所以2×π3+φ=kπ+π2,k∈Z,因为−π2≤φ≤π2,得k=0,所以φ=−π6;(2)由(1)得f(α2)=√3sin(α−π6)=√34,所以sin(α−π6)=14,由,得,所以,因此sin(α+π3)=sin(α−π6+π2)=cos(α−π6)=√154.【解析】本题考查正弦型函数的图象性,考查诱导公式,属于中档题.(1)由函数图象上相邻两个最高点的距离为π求出周期,再利用公式T=2πω求出ω的值,然后由图象关于x=π3对称,求出φ;(2)由(1)及已知求出sin(α−π6)=14,利用同角关系式求出cos(α−π6)=√154,然后由sin(α+π3)=cos(α−π6)求解即可.27.【答案】解:(1)f(x)=12+12cos2x+√32sin2x−12=sin(2x+π6),∴T=π;(2)依题意,令−π2+2kπ≤2x+π6≤π2+2kπ,k∈Z,解得−π3+kπ≤x≤π6+kπ,k∈Z,∴f(x)的单调递增区间为[−π3+kπ,π6+kπ],k∈Z;设A=[−π4,π4],B=[−π3+kπ,π6+kπ],易知A∩B=[−π4,π6],∴当x∈[−π4,π4]时,f(x)在区间[−π4,π6]上单调递增,区间(π6,π4]上单调递减.【解析】(1)化简可得f(x)=sin(2x+π6),进而求得最小正周期;(2)先求得f(x)的单调递增区间为[−π3+kπ,π6+kπ],k∈Z,进而求得f(x)在区间[−π4,π4]上的单调性.本题考查三角函数的恒等变换,以及三角函数的图象及性质,考查运算化简能力,属于基础题.28.【答案】解:(1)由题意知,f(x)=2cosx(λsinx−cosx)+sin2x+1=(λ+1)sin2x−2cos2x+1=(λ+1)sin2x−cos2x=√(λ+1)2+1sin(2x−φ),其中tanφ=1λ+1,由f(x)的最小值为−2,得−√(λ+1)2+1=−2,解得λ=√3−1或λ=−√3−1,∵λ<0,∴λ=−√3−1,∴f(x)=−√3sin2x−cos2x=−2sin(2x+π6 ).令2kπ−π2≤2x+π6≤2kπ+π2,k∈Z,解得kπ−π3≤x≤kπ+π6,k∈Z,故函数f(x)的单调递减区间为[kπ−π3,kπ+π6],k∈Z.(2)∵g(x)=f(x)−k=−2sin(2x+π6)−k在[−π12,π2]上有且仅有一个零点,∴当x∈[−π12,π2]时,y=−k2与y=sin(2x+π6)的图象有且仅有一个交点.当x∈[−π12,π2]时,2x+π6∈[0,7π6],令t=2x+π6,ℎ(t)=sint,t∈[0,7π6],则y=−k2与ℎ(t)=sint,t∈[0,7π6]的图象有且仅有一个交点,数形结合可知当−k2∈[−12,0)或−k2=1时符合要求,即k∈(0,1]或k=−2时符合要求,故实数k的取值范围为{k|0<k≤1或k=−2}.【解析】本题主要考查二倍角公式、三角恒等变换、三角函数的图象与性质、函数的零点等知识,考查考生的化归与转化能力、运算求解能力,考查的数学核心素养是数学运算.(1)先根据二倍角公式及辅助角公式将函数f(x)化为Asin(ωx+φ)(A,ω,φ为常数,且A≠0,ω≠0)的形式,再根据函数f(x)的最小值求实数λ的值,最后根据正弦函数的单调性求函数f(x)的单调递减区间;(2)将g(x)在[−π12,π2]上有且仅有一个零点等价转化为当看答案x∈[−π12,π2]时,y=−k2与y=sin(2x+π6)的图象有且仅有一个交点,然后数形结合即可求解.29.【答案】解:(Ⅰ)由所给图像知:A=2,B=−1,T2=πω=7π−π12⇒ω=2,∴f(x)=2cos (2x+φ)−1,把点(π12,1)代入得:cos (π6+φ)=1,即π6+φ=2kπ,k∈Z,又∵|φ|<π2,∴φ=−π6,∴f(x)=2cos (2x−π6)−1;由图可知(π3,−1)是其中一对称中心,故所求对称中心坐标为:(π3+kπ2,−1),k∈Z.(Ⅱ)易知g(x)=12f(x−π6)+1=12{2cos [2(x−π6)−π6]−1}+1.化简得g(x)=sin (2x)+12,当x∈[π12,3π4]时,由−π2+2kπ≤2x≤π2+2kπ,k∈Z得增区间是:[π12,π4],由π2+2kπ≤2x≤3π2+2kπ,k∈Z得减区间是:[π4,3π4],故所求求区间为:[π4,3π4],.当x=π12时,g(x)的值:sin(2×π12)+12=1,当x=π4时,g(x)的值32,当x=3π4时,g(x)的值:sin(2×3π4)+12=−12.故所求最大值为:32;最小值为−12.【解析】本题考查了函数y=Asin(ωx+φ)的图象与性质和余弦函数的图象与性质,是中档题.(Ⅰ)由图象可得A,B,周期T可得ω,代入点(π12,1)可得φ,即可得出f(x)的解析式,由图可知(π3,−1)是其中一对称中心,可得对称中心坐标;(Ⅱ)由三角函数图象变换可得g(x)=sin (2x)+12,由三角函数性质可得单调减区间和最值.30.【答案】解:(Ⅰ)由f(x)=2sinxsin(x+π2),得f(0)=2sin0sinπ2=0;(Ⅱ)∵f(x)=2sinxsin(x+π2)=2sinxcosx=sin2x,∴f(x)的最小正周期为π;(Ⅲ)∵y=f(x+φ)=sin(2x+2φ)为偶函数,,∵0<φ<π2,∴φ=π4.【解析】本题考查三角函数的恒等变换应用,考查y=Asin(ωx+φ)型函数的图象与性质,是基础题.(Ⅰ)直接在函数解析式中取x=0求解;(Ⅱ)利用诱导公式及倍角公式变形,再由周期公式求周期;(Ⅲ)由y=f(x+φ)=sin(2x+2φ)为偶函数,可得,再结合φ的范围求解.。
高考数学一轮复习《数列的综合运用》练习题(含答案)
高考数学一轮复习《数列的综合运用》练习题(含答案)一、单选题1.某银行设立了教育助学低息贷款,其中规定一年期以上贷款月均等额还本付息(利息按月以复利计算).如果小新同学贷款10000元,一年还清,假设月利率为0.25%,那么小新同学每月应还的钱约为( )(1.002512≈1.03) A .833B .858C .883D .9022.某企业在今年年初贷款a 万元,年利率为γ,从今年年末开始每年偿还一定金额,预计五年内还清,则每年应偿还( ) A .()()5111a γγ++-万元 B .()()55111a γγγ++-万元C .()()54111a γγγ++-万元 D .()51a γγ+万元3.一种预防新冠病毒的疫苗计划投产两月后,使成本降64%,那么平均每月应降低成本( ) A .20%B .32%C .40%D .50%4.今年元旦,市民小王向朋友小李借款100万元用于购房,双方约定年利率为5%,按复利计算(即本年利息计入次年本金生息),借款分三次等额归还,从明年的元旦开始,连续三年都是在元旦还款,则每次的还款额约是( )万元.(四舍五入,精确到整数) (参考数据:()21.05 1.1025=,()31.05 1.1576=,()41.05 1.2155=) A .36B .37C .38D .395.随着新一轮科技革命和产业变革持续推进,以数字化、网络化、智能化以及融合化为主要特征的新型基础设施建设越来越受到关注.5G 基站建设就是“新基建”的众多工程之一,截至2020年底,我国已累计开通5G 基站超70万个,未来将进一步完善基础网络体系,稳步推进5G 网络建设,实现主要城区及部分重点乡镇5G 网络覆盖.2021年1月计划新建设5万个5G 基站,以后每个月比上一个月多建设1万个,预计我国累计开通500万个5G 基站时要到( ) A .2022年12月B .2023年2月C .2023年4月D .2023年6月6.我们知道,偿还银行贷款时,“等额本金还款法”是一种很常见的还款方式,其本质是将本金平均分配到每一期进行偿还,每一期的还款金额由两部分组成,一部分为每期本金,即贷款本金除以还款期数,另一部分是利息,即贷款本金与已还本金总额的差乘以利率.自主创业的大学生张华向银行贷款的本金为48万元,张华跟银行约定,按照等额本金还款法,每个月还一次款,20年还清,贷款月利率为0.4%,设张华第n 个月的还款金额为n a 元,则n a =( )A .2192B .39128n -C .39208n -D .39288n -7.高阶等差数列是数列逐项差数之差或高次差相等的数列,中国古代许多著名的数学家对推导高阶等差数列的求和公式很感兴趣,创造并发展了名为“垛积术”的算法,展现了聪明才智.如南宋数学家杨辉在《详解九章算法.商功》一书中记载的三角垛、方垛、刍甍垛等的求和都与高阶等差数列有关.如图是一个三角垛,最顶层有1个小球,第二层有3个,第三层有6个,第四层有10个,则第30层小球的个数为( )A .464B .465C .466D .4958.某单位用分期付款方式为职工购买40套住房,总房价1150万元.约定:2021年7月1日先付款150万元,以后每月1日都交付50万元,并加付此前欠款利息,月利率1%,当付清全部房款时,各次付款的总和为( ) A .1205万元B .1255万元C .1305万元D .1360万元9.小李在2022年1月1日采用分期付款的方式贷款购买一台价值a 元的家电,在购买1个月后的2月1日第一次还款,且以后每月的1日等额还款一次,一年内还清全部贷款(2022年12月1日最后一次还款),月利率为r .按复利计算,则小李每个月应还( ) A .()()1111111ar r r ++-元 B .()()1212111ar r r ++-元C .()11111a r +元D .()12111a r +元10.在流行病学中,基本传染数0R 是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.0R 一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.对于0R 1>,而且死亡率较高的传染病,一般要隔离感染者,以控制传染源,切断传播途径.假设某种传染病的基本传染数0R 3=,平均感染周期为7天(初始感染者传染0R 个人为第一轮传染,经过一个周期后这0R 个人每人再传染0R 个人为第二轮传染……)那么感染人数由1个初始感染者增加到1000人大约需要的天数为(参考数据:63729=,541024=)( ) A .35B .42C .49D .5611.为了更好地解决就业问题,国家在2020年提出了“地摊经济”为响应国家号召,有不少地区出台了相关政策去鼓励“地摊经济”.老王2020年6月1日向银行借了免息贷款10000元,用于进货.因质优价廉,供不应求,据测算:每月获得的利润是该月初投入资金的20%,每月底扣除生活费1000元,余款作为资金全部用于下月再进货,如此继续,预计到2021年5月底该摊主的年所得收入为( )(取()111.27.5=,()121.29=) A .32500元B .40000元C .42500元D .50000元12.某病毒研究所为了更好地研究“新冠”病毒,计划改建十个实验室,每个实验室的改建费用分为装修费和设备费,每个实验室的装修费都一样,设备费从第一到第十实验室依次构成等比数列,已知第五实验室比第二实验室的改建费用高28万元,第七实验室比第四实验室的改建费用高112万元,并要求每个实验室改建费用不能超过1100万元.则该研究所改建这十个实验室投入的总费用最多需要( ) A .2806万元B .2906万元C .3106万元D .3206万元二、填空题13.小李向银行贷款14760元,并与银行约定:每年还一次款,分4次还清所有的欠款,且每年还款的钱数都相等,贷款的年利率为0.25,则小李每年所要还款的钱数是___________元.14.从2017年到2020年期间,某人每年6月1日都到银行存入1万元的一年定期储蓄.若年利率为20%保持不变,且每年到期的存款本息均自动转为新的一年定期储蓄,到2020年6月1日,该人去银行不再存款,而是将所有存款的本息全部取回,则取回的金额为_______万元.15.银行一年定期储蓄存款年息为r ,三年定期储蓄存款年息为q ,银行为吸收长期资金,鼓励储户存三年定期的存款,那么q 的值应略大于______.16.今年“五一”期间,北京十家重点公园举行免费游园活动,北海公园免费开放一天,早晨6时30分有2人进入公园,接下来的第一个30分钟内有4人进去1人出来,第二个30分钟内有8人进去2人出来,第三个30分钟内有16人进去3人出来,第四个30分钟内有32人进去4人出来…,按照这种规律进行下去,到上午11时30分公园内的人数是____.三、解答题17.一杯100℃的开水放在室温25℃的房间里,1分钟后水温降到85℃,假设每分钟水温变化量和水温与室温之差成正比. (1)求()*n n N ∈分钟后的水温n t ;(2)当水温在40℃到55℃之间时(包括40℃和55℃),为最适合饮用的温度,则在水烧开后哪个时间段饮用最佳.(参考数据:lg 20.3≈)18.某优秀大学生毕业团队响应国家号召,毕业后自主创业,通过银行贷款等方式筹措资金,投资72万元生产并经营共享单车,第一年维护费用为12万元,以后每年都增加4万元,每年收入租金50万元.(1)若扣除投资和维护费用,则从第几年开始获取纯利润?(2)若年平均获利最大时,该团队计划投资其它项目,问应在第几年转投其它项目?19.去年某地产生的生活垃圾为20万吨,其中14万吨垃圾以填埋方式处理,6万吨垃圾以环保方式处理.预计每年生活垃圾的总量递增5%,同时,通过环保方式处理的垃圾量每年增加1.5万吨.记从今年起每年生活垃圾的总量(单位:万吨)构成数列{}n a ,每年以环保方式处理的垃圾量(单位:万吨)构成数列{}n b . (1)求数列{}n a 和数列{}n b 的通项公式;(2)为了确定处理生活垃圾的预算,请求出从今年起n 年内通过填埋方式处理的垃圾总量的计算公式,并计算从今年起5年内通过填埋方式处理的垃圾总量(精确到0.1万吨).(参考数据41.05 1.215≈,51.05 1.276≈,61.05 1.340≈)20.2020年是充满挑战的一年,但同时也是充满机遇、蓄势待发的一年.突如其来的疫情给世界带来了巨大的冲击与改变,也在客观上使得人们更加重视科技的力量和潜能.某公司一下属企业从事某种高科技产品的生产.假设该企业第一年年初有资金5000万元,并将其全部投入生产,到当年年底资金增长了50%,预计以后每年资金年增长率与第一年相同.公司要求企业从第一年开始,每年年底上缴资金(2500)t t ≤万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为n a 万元. (1)写出1n a +与n a 的关系式,并判断{}2n a t -是否为等比数列;(2)若企业每年年底上缴资金1500t =,第*()m m N ∈年年底企业的剩余资金超过21000万元,求m 的最小值.21.流行性感冒是由流感病毒引起的急性呼吸道传染病.某市去年11月份曾发生流感,据统计,11月1日该市的新感染者有30人,以后每天的新感染者比前一天的新感染者增加50人.由于该市医疗部门采取措施,使该种病毒的传播得到控制,从11月()*1929,k k k +≤≤∈N 日起每天的新感染者比前一天的新感染者减少20人. (1)若9k =,求11月1日至11月10日新感染者总人数;(2)若到11月30日止,该市在这30天内的新感染者总人数为11940人,问11月几日,该市新感染者人数最多?并求这一天的新感染者人数.22.教育储蓄是指个人按国家有关规定在指定银行开户、存入规定数额资金、用于教育目的的专项储蓄,是一种专门为学生支付非义务教育所需教育金的专项储蓄,储蓄存款享受免征利息税的政策.若你的父母在你12岁生日当天向你的银行教育储蓄账户存入1000元,并且每年在你生日当天存入1000元,连续存6年,在你十八岁生日当天一次性取出,假设教育储蓄存款的年利率为10%.(1)在你十八岁生日当天时,一次性取出的金额总数为多少?(参考数据:71.1 1.95≈) (2)当你取出存款后,你就有了第一笔启动资金,你可以用你的这笔资金做理财投资.如果现在有三种投资理财的方案: ①方案一:每天回报40元;②方案二:第一天回报10元,以后每天比前一天多回报10元; ③方案三:第一天回报0.4元,以后每天的回报比前一天翻一番. 你会选择哪种方案?请说明你的理由.23.已知数集{}()1212,,1,2n n A a a a a a a n =≤<<≥具有性质P ;对任意的(),1i j i j n ≤≤≤,i j a a 与j ia a 两数中至少有一个属于A .(Ⅰ)分别判断数集{}1,3,4与{}1,2,3,6是否具有性质P ,并说明理由; (Ⅱ)证明:11a =,且1211112nn na a a a a a a ---+++=+++; (Ⅲ)证明:当5n =时,成等比数列。
高考数学《解三角形》一轮复习练习题(含答案)
高考数学《解三角形》一轮复习练习题(含答案)一、单选题1.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若222b c a bc +=+,则角A 的大小为( ) A .6π B .3π C .23π D .56π 2.ABC 内角A ,B ,C 的对边分别为a ,b ,c .若cos =c b A ,则ABC 一定是( ) A .等腰三角形 B .等边三角形 C .直角三角形D .等腰直角三角形3.在ABC 中,c =1b =,30B ∠=︒,则ABC 的面积等于( )AB C D4.在ABC 中,角,,A B C 的对边分别为,,a b c .若2,30a b C ===,则c 的值为( )A .1BC D .5.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且222sin sin sin sin cos 1B C B C A +-+=,则A =( ).A .π6B .5π6 C .π3D .2π36.在ABC 中,1,2,60a c B ===︒,则b =( )A .1B .2CD 7.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2cos (cos cos )C a B b A c +=,若ABC.则ab 的最小值为( ) A .13B .16C .19D .1128.已知抛物线E :22y px =(0p >)的焦点为F ,点A 是抛物线E 的准线与坐标轴的交点,点P 在抛物线E 上,若30PAF ∠=,则sin PFA ∠=( )A .12B C D 9.秦九韶是我国南宋著名数学家,在他的著作《数书九章》中有已知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上以小斜幂乘大斜幂减上,余四约之,为实一为从阳,开平方得积.”如果把以上这段文字写成公式就是S =a ,b ,c 是ABC 的内角A ,B ,C 的对边,若sin 2sin cos C A B =,且224b c +=,则ABC 面积S 的最大值为( )A B C D10.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设()(222b c a bc +=+,且sin B A =,则sin C =( )A .12B C D 11.在锐角△ABC 中,()222S a b c =--,2a =,则△ABC 的周长的取值范围是( )A .(]4,6B .(4,2⎤⎦C .(6,2⎤⎦D .(2⎤⎦ 12.在ABC 中,9AB AC ⋅=,()sin cos sin A C A C +=,6ABCS =,P 为线段AB 上的动点,且CA CBCP x y CACB=⋅+⋅,则21x y +的最小值为( )A .116+B .116C .1112D .1112二、填空题13.在某次海军演习中,已知甲驱逐舰在航母的南偏东15°方向且与航母的距离为12海里,乙护卫舰在甲驱逐舰的正西方向,若测得乙护卫舰在航母的南偏西45°方向,则甲驱逐舰与乙护卫舰的距离为___________海里.14.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若2,1,30a b B ===︒,则A =_________.15.正四棱锥S ABCD -的底面边长为a ,侧棱长为2a ,点P ,Q 分别在BD 和SC 上,并且:1:2=BP PD ,//PQ 平面SAD ,则线段PQ 的长为__________.16.已知三棱锥A BCD -的各棱长都相等,2AP PD =,Q 为AC 上一点,且BQ QP +的最________ 三、解答题17.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足πsin()cos 6⎛⎫+=- ⎪⎝⎭a A C b A .(1)求角A ;(2)若3,5a b c =+=,求ABC 的面积.18.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12331,sin 23S S S B -+==. (1)求ABC 的面积; (2)若2sin sin 3A C =,求b .19.在①()2223sin 2a cb B ac +-=且4B π>;②sin 31cos b A a B =-;③sin sin sin sin B C a A C b c +=--这三个条件中任选一个,补充在下面的问题中,并解答问题. 问题:在ABC 中,角,,A B C 的对边分别为,,a b c ,且__________. (1)求B ;(2)若D 为边AC 的中点,且3,4==a c ,求中线BD 长.20.如图,扇形OMN 的半径为3,圆心角为3π,A 为弧MN 上一动点,B 为半径上一点且满足23OBA π∠=.(1)若1OB =,求AB 的长;(2)求△ABM 面积的最大值.21.如图,在边长为1的正三角形ABC 中,O 为中心,过点O 的直线交边AB 与点M ,交边AC 于点N .(1)用AB ,AC 表示AO ; (2)若34AM =,求AN 的值; (3)求22OM ON +的最大值与最小值.22.在①2cos cos cos a A b C c B =+;②tan tan 33tan B C B C +=这两个条件中任选一个,补充在下面的问题中,并加以解答.在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,已知______. (1)求角A 的大小;(2)若ABC 3G 为ABC 重心,点M 为线段AC 的中点,点N 在线段AB 上,且2AN NB =,线段BM 与线段CN 相交于点P ,求GP 的取值范围. 注:如果选择多个方案分别解答,按 第一个方案解答计分。
高考数学第一轮复习概率专项练习(含答案)
高考数学第一轮复习概率专项练习(含答案)高考数学第一轮复习概率专项练习(含答案)概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。
以下是高考数学第一轮复习概率专项练习,请考生掌握。
一、选择题1.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7527 0293 7140 9857 0347 4373 8636 69471417 4698 0371 6233 2616 8045 6011 36619597 7424 7610 4281根据以上数据估计该射击运动员射击4次至少击中3次的概率为()A.0.852B.0.819 2C.0.8D.0.75答案:D 命题立意:本题主要考查随机模拟法,考查考生的逻辑思维能力.解题思路:因为射击4次至多击中2次对应的随机数组为7140,1417,0371,6011,7610,共5组,所以射击4次至少击中3次的概率为1-=0.75,故选D.2.在菱形ABCD中,ABC=30,BC=4,若在菱形ABCD内任取一C. 1/3D.1/4答案:B 解题思路:由题意知投掷两次骰子所得的数字分别为a,b,则基本事件有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),,(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36个.而方程x2-ax+2b=0有两个不同实根的条件是a2-8b0,因此满足此条件的基本事件有:(3,1),(4,1),(5,1),(5,2),(5,3),(6,1),(6,2),(6,3),(6,4),共有9个,故所求的概率为=.5.在区间内随机取两个数分别为a,b,则使得函数f(x)=x2+2ax-b2+2有零点的概率为()A.1-B.1-C.1-D.1-答案:B 解题思路:函数f(x)=x2+2ax-b2+2有零点,需=4a2-4(-b2+0,即a2+b22成立.而a,b[-],建立平面直角坐标系,满足a2+b22的点(a,b)如图阴影部分所示,所求事件的概率为P===1-,故选B.6.袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于()A.5/6B.11/12C. 1/2D.3/4答案:B 解题思路:将同色小球编号,从袋中任取两球,所有基本事件为:(红,白1),(红,白2),(红,黑1),(红,黑2),(红,黑3),(白1,白2),(白1,黑1),(白1,黑2),(白1,黑3),(白2,黑1),(白2,黑2),(白2,黑3),(黑1,黑2),(黑1,黑3),(黑2,黑3),共有15个基本事件,而为一白一黑的共有6个基本事件,所以所求概率P==.故选B.二、填空题7.已知集合表示的平面区域为,若在区域内任取一点P(x,y),则点P的坐标满足不等式x2+y22的概率为________. 答案:命题立意:本题考查线性规划知识以及几何概型的概率求解,正确作出点对应的平面区域是解答本题的关键,难度中等.解题思路:如图阴影部分为不等式组表示的平面区域,满足条件x2+y22的点分布在以为半径的四分之一圆面内,以面积作为事件的几何度量,由几何概型可得所求概率为=.8.从5名学生中选2名学生参加周六、周日社会实践活动,学生甲被选中而学生乙未被选中的概率是________.答案:命题立意:本题主要考查古典概型,意在考查考生分析问题的能力.解题思路:设5名学生分别为a1,a2,a3,a4,a5(其中甲是a1,乙是a2),从5名学生中选2名的选法有(a1,a2),(a1,a3) ,(a1,a4),(a1,a5),(a2,a3),(a2,a4),(a2,a5),(a3,a4),(a3,a5),(a4,a5),共10种,学生甲被选中而学生乙未被选中的选法有(a1,a3),(a1,a4),(a1,a5),共3种,故所求概率为.9.已知函数f(x)=kx+1,其中实数k随机选自区间,则对x[-1,1],都有f(x)0恒成立的概率是________.答案:命题立意:本题主要考查几何概型,意在考查数形结合思想.解题思路:f(x)=kx+1过定点(0,1),数形结合可知,当且仅当k[-1,1]时满足f(x)0在x[-1,1]上恒成立,而区间[-1,1],[-2,1]的区间长度分别是2,3,故所求的概率为.10.若实数m,n{-2,-1,1,2,3},且mn,则方程+=1表示焦点在y轴上的双曲线的概率是________.解题思路:实数m,n满足mn的基本事件有20种,如下表所示.-2 -1 1 2 3 -2 (-2,-1) (-2,1) (-2,2) (-2,3) -1 (-1,-2) (-1,1) (-1,2) (-1,3) 1 (1,-2) (1,-1) (1,2) (1,3) 2 (2,-2) (2,-1) (2,1) (2,3) 3 (3,-2) (3,-1) (3,1) (3,2) 其中表示焦点在y轴上的双曲线的事件有(-2,1),(-2,2),(-2,3),(-1,1),(-1,2),(-1,3),共6种,因此方程+=1表示焦点在y轴上的双曲线的概率为P==.三、解答题11.袋内装有6个球,这些球依次被编号为1,2,3,,6,设编号为n的球重n2-6n+12(单位:克),这些球等可能地从袋里取出(不受重量、编号的影响).(1)从袋中任意取出1个球,求其重量大于其编号的概率;(2)如果不放回地任意取出2个球,求它们重量相等的概率. 命题立意:本题主要考查古典概型的基础知识,考查考生的计算能力.解析:(1)若编号为n的球的重量大于其编号,则n2-6n+12n,即n2-7n+120.解得n3或n4.所以n=1,2,5,6.所以从袋中任意取出1个球,其重量大于其编号的概率P==.(2)不放回地任意取出2个球,这2个球编号的所有可能情形为:1,2;1,3;1,4;1,5;1,6;2,3;2,4;2,5;2,6;3,4;3,5;3,6;4,5;4,6;5,6.共有15种可能的情形.设编号分别为m与n(m,n{1,2,3,4,5,6},且mn)的球的重量相等,则有m2-6m+12=n2-6n+12,即有(m-n)(m+n-6)=0.所以m=n(舍去)或m+n=6.满足m+n=6的情形为1,5;2,4,共2种情形.故所求事件的概率为.12.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机抽取一个球,将其编号记为a,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为b,求关于x的一元二次方程x2+2ax+b2=0有实根的概率;(2)先从袋中随机取一个球,该球的编号记为m,将球放回袋中,然后从袋中随机取一个球,该球的编号记为n.若以(m,n)作为点P的坐标,求点P落在区域内的概率.命题立意:(1)不放回抽球,列举基本事件的个数时,注意不要出现重复的号码;(2)有放回抽球,列举基本事件的个数时,可以出现重复的号码,然后找出其中随机事件含有的基本事件个数,按照古典概型的公式进行计算.解析:(1)设事件A为方程x2+2ax+b2=0有实根.当a0,b0时,方程x2+2ax+b2=0有实根的充要条件为ab.以下第一个数表示a的取值,第二个数表示b的取值.基本事件共12个:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).事件A中包含6个基本事件:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3).事件A发生的概率为P(A)==.(2)先从袋中随机取一个球,放回后再从袋中随机取一个球,点P(m,n)的所有可能情况为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.落在区域内的有(1,1),(2,1),(2,2),(3,1),共4个,所以点P落在区域内的概率为.13.某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),,[90,100]后得到如图所示的频率分布直方图.(1)求图中实数a的值;(2)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.命题立意:本题以频率分布直方图为载体,考查概率、统计等基础知识,考查数据处理能力、推理论证能力和运算求解能力,考查数形结合、化归与转化等数学思想方法.解析:(1)由已知,得10(0.005+0.01+0.02+a+0.025+0.01)=1,解得a=0.03.(2)根据频率分布直方图可知,成绩不低于60分的频率为1-10(0.005+0.01)=0.85.由于该校高一年级共有学生640人,利用样本估计总体的思想,可估计该校高一年级期中考试数学成绩不低于60分的人数约为6400.85=544.(3)易知成绩在[40,50)分数段内的人数为400.05=2,这2人分别记为A,B;成绩在[90,100]分数段内的人数为400.1=4,这4人分别记为C,D,E,F.若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,则所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个.如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.记这2名学生的数学成绩之差的绝对值不大于10为事件M,则事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个.所以所求概率为P(M)=.14.新能源汽车是指利用除汽油、柴油之外其他能源的汽车,包括燃料电池汽车、混合动力汽车、氢能源动力汽车和太阳能汽车等,其废气排放量比较低,为了配合我国节能减排战略,某汽车厂决定转型生产新能源汽车中的燃料电池轿车、混合动力轿车和氢能源动力轿车,每类轿车均有标准型和豪华型两种型号,某月的产量如下表(单位:辆):燃料电池轿车混合动力轿车氢能源动力轿车标准型 100 150 y 豪华型 300 450 600 按能源类型用分层抽样的方法在这个月生产的轿车中抽取50辆,其中燃料电池轿车有10辆.(1)求y的值;(2)用分层抽样的方法在氢能源动力轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆轿车,求至少有1辆标准型轿车的概率;(3)用随机抽样的方法从混合动力标准型轿车中抽取10辆进行质量检测,经检测它们的得分如下:9.3,8.7,9.1,9.5,8.8,9.4,9.0,8.2,9.6,8.4.把这10辆轿车的得分看作一个样本,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.4的概率.命题立意:本题主要考查概率与统计的相关知识,考查学生的运算求解能力以及分析问题、解决问题的能力.对于第(1)问,设该厂这个月生产轿车n辆,根据分层抽样的方法在这个月生产的轿车中抽取50辆,其中有燃料电池轿车10辆,列出关系式,得到n的值,进而得到y值;对于第(2)问,由题意知本题是一个古典概型,用列举法求出试验发生包含的事件数和满足条件的事件数,根据古典概型的概率公式得到结果;对于第(3)问,首先求出样本的平均数,求出事件发生包含的事件数和满足条件的事件数,根据古典概型的概率公式得到结果.解析:(1)设该厂这个月共生产轿车n辆,由题意,得=,n=2 000,y=2 000-(100+300)-150-450-600=400.(2)设所抽样本中有a辆标准型轿车,由题意得a=2.因此抽取的容量为5的样本中,有2辆标准型轿车,3辆豪华型轿车,用A1,A2表示2辆标准型轿车,用B1,B2,B3表示3辆豪华型轿车,用E表示事件在该样本中任取2辆轿车,其中至少有1辆标准型轿车,则总的基本事件有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3),共10个,事件E包含的基本事件有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),共7个,故所求概率为P(E)=.(3)样本平均数=(9.3+8.7+9.1+9.5+8.8+9.4+9.0+8.2+9.6+8.4)=9.设D表示事件从样本中任取一个数,该数与样本平均数之差的绝对值不超过0.4,则总的基本事件有10个,事件D包括的基本事件有9.3,8.7,9.1,8.8,9.4,9.0,共6个.所求概率为P(D)==.高考数学第一轮复习概率专项练习及答案解析的全部内容就是这些,查字典数学网希望考生可以取得优异的成绩。
数学高考一轮复习基本不等式专项练习(带解析)
数学高考一轮复习基本不等式专项练习(带解析)学习数学能够让我们的思维更清晰,我们在摸索和解决问题的时候,条理更清晰。
小编预备了差不多不等式专项练习,期望你喜爱。
1.若xy0,则对xy+yx说法正确的是()A.有最大值-2B.有最小值2C.无最大值和最小值D.无法确定答案:B2.设x,y满足x+y=40且x,y差不多上正整数,则xy的最大值是()A.400B.100C.40D.20答案:A3.已知x2,则当x=____时,x+4x有最小值____.答案:2 44.已知f(x)=12x+4x.(1)当x0时,求f(x)的最小值;(2)当x0 时,求f(x)的最大值.解:(1)∵x0,12x,4x0.12x+4x212x4x=83.当且仅当12x=4x,即x=3时取最小值83,当x0时,f(x)的最小值为83.(2)∵x0,-x0.则-f(x)=12-x+(-4x)212-x-4x=83,当且仅当12-x=-4x时,即x=-3时取等号.当x0时,f(x)的最大值为-83.一、选择题1.下列各式,能用差不多不等式直截了当求得最值的是()A.x+12xB.x2-1+1x2-1C.2x+2-xD.x(1-x)答案:C2.函数y=3x2+6x2+1的最小值是()A.32-3B.-3C.62D.62-3解析:选D.y=3(x2+2x2+1)=3(x2+1+2x2+1-1)3(22-1)=62-3.3.已知m、nR,mn=100,则m2+n2的最小值是()A.200B.100C.50D.20解析:选A.m2+n22mn=200,当且仅当m=n时等号成立.4.给出下面四个推导过程:①∵a,b(0,+),ba+ab2ba②∵x,y(0,+),lgx+lgy2lgx③∵aR,a0,4a+a 24a④∵x,yR,,xy0,xy+yx=-[(-xy)+(-yx)]-2-xy-yx=-2.其中正确的推导过程为()A.①②B.②③C.③④D.①④解析:选D.从差不多不等式成立的条件考虑.①∵a,b(0,+),ba,ab(0,+),符合差不多不等式的条件,故①的推导过程正确;②尽管x,y(0,+),但当x(0,1)时,lgx是负数,y(0,1)时,lgy是负数,②的推导过程是错误的;③∵aR,不符合差不多不等式的条件,4a+a24aa=4是错误的;④由xy0得xy,yx均为负数,但在推导过程中将全体xy+yx提出负号后,(-xy)均变为正数,符合差不多不等式的条件,故④正确.5.已知a0,b0,则1a+1b+2ab的最小值是()A.2B.22C.4D.5解析:选C.∵1a+1b+2ab2ab+2ab222=4.当且仅当a=bab=1时,等号成立,即a=b=1时,不等式取得最小值4.6.已知x、y均为正数,xy=8x+2y,则xy有()A.最大值64B.最大值164C.最小值64D.最小值164解析:选C.∵x、y均为正数,xy=8x+2y28x2y=8xy,当且仅当8x=2y时等号成立.xy64.二、填空题7.函数y=x+1x+1(x0)的最小值为________.答案:18.若x0,y0,且x+4y=1,则xy有最________值,其值为________.解析:1=x+4y4y=4xy,xy116.答案:大1169.(2021年高考山东卷)已知x,yR+,且满足x3+y4=1,则xy的最大值为________.解析:∵x0,y0且1=x3+y42xy12,xy3.当且仅当x3=y4时取等号.答案:3三、解答题10.(1)设x-1,求函数y=x+4x+1+6的最小值;(2)求函数y=x2+8x-1(x1)的最值.解:(1)∵x-1,x+10.y=x+4x+1+6=x+1+4x+1+52 x+14x+1+5=9,当且仅当x+1=4x+1,即x=1时,取等号.x=1时,函数的最小值是9.(2)y=x2+8x-1=x2-1+9x-1=(x+1)+9x-1=(x-1)+9x-1+2.∵x1,x-10.(x-1)+9x-1+22x-19x-1+2=8.当且仅当x-1=9x-1,即x=4时等号成立,y有最小值8.11.已知a,b,c(0,+),且a+b+c=1,求证:(1a-1)(1b-1)(1c-1)8.证明:∵a,b,c(0,+),a+b+c=1,1a-1=1-aa=b+ca=ba+ca2bca,同理1b-12acb,1c-12abc,以上三个不等式两边分别相乘得(1a-1)(1b-1)(1c-1)8.当且仅当a=b=c时取等号.12.某造纸厂拟建一座平面图形为矩形且面积为200平方米的二级污水处理池,池的深度一定,池的外圈周壁建筑单价为每米400元,中间一条隔壁建筑单价为每米100元,池底建筑单价每平方米60元(池壁忽略不计).问:污水处理池的长设计为多少米时可使总价最低.解:设污水处理池的长为x米,则宽为200x米.总造价f(x)=400(2x+2200x)+100200x+60200=800(x+225x)+120211600x225x+12021=36000(元)家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,小孩一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。
2011届高考数学第一轮复习全套系列专项测试题(含详解):32
·高三数学·单元测试卷(十一)第十一单元 排列组合、二项式定理(时量:120分钟 150分)一、选择题:本大题共18小题,每小题5分,共90分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.5人排一个5天的值日表,每天排一人值日,每人可以排多天或不排,但相邻两天不能排同一人,值日表排法的总数为 A .120B .324C .720D .12802.一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是 A .40B .74C .84D .2003.以三棱柱的六个顶点中的四个顶点为顶点的三棱锥有 A .18个B .15个C .12个D .9个4.从一架钢琴挑出的十个音键中,分别选择3个,4个,5个,…,10个键同时按下,可发出和弦,若有一个音键不同,则发出不同的和弦,则这样的不同的和弦种数是 A .512B .968C .1013D .1024更多成套系列资源请您访问: (请按ctrl 键单击网址) 成套资源仅2元,以最低成本为您服务,谢谢您的大力支持,欢迎您的宝贵意见!5.如果(n x +的展开式中所有奇数项的系数和等于512,则展开式的中间项是A .6810C xB .5710C xC .468C xD .611C x6.用0,3,4,5,6排成无重复字的五位数,要求偶数字相邻,奇数字也相邻,则这样的五位数的个数是 A .36B .32C .24D .207.若n 是奇数,则112217777n n n n n n n C C C ---+++⋯⋯+被9除的余数是A .0B .2C .7D .88.现有一个碱基A ,2个碱基C ,3个碱基G ,由这6个碱基组成的不同的碱基序列有 A .20个B .60个C .120个D .90个9.某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个节目插入原节目单中,那么不同的插法种数为 A .504B .210C .336D .12010.在342005(1)(1)(1)x x x ++++⋯⋯++的展开式中,x 3的系数等于A .42005CB .42006CC .32005CD .32006C11.现有男女学生共8人,从男生中选2人,从女生中选1人,分别参加数理化三科竞赛,共有90种不同方案,则男、女生人数可能是 A .2男6女B .3男5女C .5男3女D .6男2女12.若x ∈R ,n ∈N + ,定义nx M =x (x +1)(x +2)…(x +n -1),例如55M -=(-5)(-4)(-3)(-2)(-1)=-120,则函数199()x f x xM -=的奇偶性为A .是偶函数而不是奇函数B .是奇函数而不是偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数13.由等式43243212341234(1)(1)(1)(1),x a x a x a x a x b x b x b x b ++++=++++++++定义映射12341234:(,,,)(,,,),f a a a a b b b b →则f (4,3,2,1)等于 A .(1,2,3,4)B .(0,3,4,0)C .(-1,0,2,-2)D .(0,-3,4,-1)14.已知集合A ={1,2,3},B ={4,5,6},从A 到B 的映射f (x ),B 中有且仅有2个元素有原象,则这样的映射个数为 A .8B .9C .24D .2715.有五名学生站成一排照毕业纪念照,其中甲不排在乙的左边,又不与乙相邻,而不同的站法有A.24种B.36种C.60种D.66种16.等腰三角形的三边均为正数,它们周长不大于10,这样不同形状的三角形的种数为A.8 B.9 C.10 D.11 17.甲、乙、丙三同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有A.36种B.42种C.50种D.72种18.若1021022 012100210139 ),()()x a a x a x a x a a a a a a =+++⋯+++⋯+-++⋯+则的值为A.0 B.2 C.-1 D.1答题卡二、填空题:本大题共6小题,每小题4分,共24分.把答案填在横线上.19.某电子器件的电路中,在A,B之间有C,D,E,F四个焊点(如图),如果焊点脱落,则可能导致电路不通.今发现A,B间电路不通,则焊点脱落的不同情况有种.20.设f(x)=x5-5x4+10x3-10x2+5x+1,则f(x)的反函数f-1(x)=.21.正整数a1a2…a n…a2n-2a2n-1称为凹数,如果a1>a2>…a n,且a2n-1>a2n-2>…>a n,其中a i(i=1,2,3,…)∈{0,1,2,…,9},请回答三位凹数a1a2a3(a1≠a3)共有个(用数字作答).22.如果a1(x-1)4+a2(x-1)3+a3(x-1)2+a4(x-1)+a5=x4,那么a2-a3+a4.23.一栋7层的楼房备有电梯,在一楼有甲、乙、丙三人进了电梯,则满足有且仅有一人要上7楼,且甲不在2楼下电梯的所有可能情况种数有.24.已知(x+1)6(ax-1)2的展开式中,x3的系数是56,则实数a的值为.三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.25.(本小题满分12分)将7个相同的小球任意放入四个不同的盒子中,每个盒子都不空,共有多少种不同的方法?26.(本小题满分12分)已知(41x+3x2)n展开式中的倒数第三项的系数为45,求:⑴含x3的项;⑵系数最大的项.27.(本小题满分12分)求证:123114710(31)(32)2.n n n n n n C C C n C n -++++⋯++=+⋅第十一单元 排列组合、二项式定理参考答案一、选择题(每小题5分,共90分):2.B 分三步:33425154545474.C C C C C C ++=3.C 46312.C -=4.B 分8类:34510121012101010101010101010101010()2(11045)968.C C C C C C C C C C C +++⋯+=+++⋯+-++=-++=5.B 12512,10,n n -=∴=中间项为555561010T C x C x==6.D 按首位数字的奇偶性分两类:2332223322()20A A A A A +-=7.C 原式=(7+1)n -1=(9-1)2-1=9k -2=9k ’+7(k 和k ’均为正整数).8.B 分三步:12365360C C C =9.A 939966504,504.A A A ==或10.B 原式=32003320062006442006(1)[1(1)](1)(1)(1).1(1)x x x x x x C x x+-+-+++=+-+即求中的系数为11.B 设有男生x 人,则2138390,(1)(8)30x x C C A x x x -=--=即,检验知B 正确.12.A 2222()(9)(8)(9191)(1)(4)(81).f x x x x x x x x x =--⋯-+-=--⋯- 13.D 比较等式两边x 3的系数,得4=4+b 1,则b 1=0,故排除A ,C ;再比较等式两边的常数项,有1=1+b 1+b 2+b 3+b 4,∴b 1+b 2+b 3+b 4=0. 14.D 223327.C =15.B 先排甲、乙外的3人,有33A 种排法,再插入甲、乙两人,有24A 种方法,又甲排乙的左边和甲排乙的右边各占12 ,故所求不同和站法有3234136().2A A =种16.C 共有(1,1,1),(1,2,2),(1,3,3),(1,4,4),(2,2,2),(2,2,3),(2,3,3),(2,4,4),(3,3,3)(3,3,4)10种.17.B 每人值班2天的排法或减去甲值周一或乙值周六的排法,再加上甲值周一且乙值周六的排法,共有2212264544242().C C A C A -+=种 18.D 设f (x )=(2-x )10,则(a 0+a 2+…+a 10)2-(a 1+a 3+…+a 9)2=(a 0+a 1+…+a 10)(a 0-a 1+a 2-…-a 9+a 10)=f (1)f (-1)=(2+1)10(2-1)10=1。
高考数学一轮复习《等差数列》练习题(含答案)
高考数学一轮复习《等差数列》练习题(含答案)一、单选题1.若3与13的等差中项是4与m 的等比中项,则m =( ) A .12B .16C .8D .202.在等差数列{}n a 中,49a =,且2410,,a a a 构成等比数列,则公差d 等于( ) A .3-B .0C .3D .0或33.已知等差数列{}n a 的前n 项和为n S ,若7614,10S a ==,则{}n a 的公差为( ) A .4B .3C .2D .14.已知数列{}n a ,{}n b 均为等差数列,且125a =,175b =,22120a b +=,则3737a b +的值为( ) A .760B .820C .780D .8605.在等差数列{an }中,若a 2+2a 6+a 10=120,则a 3+a 9等于( ) A .30B .40C .60D .806.在明朝程大位《算法统宗》中有首依筹算钞歌:“甲乙丙丁戊己庚,七人钱本不均平,甲乙念三七钱钞,念六一钱戊己庚,惟有丙丁钱无数,要依等第数分明,请问先生能算者,细推详算莫差争.”题意是:“现有甲、乙、丙、丁、戊、己、庚七人,他们手里钱不一样多,依次成等差数列,已知甲、乙两人共237钱,戊、己、庚三人共261钱,求各人钱数.”根据上题的已知条件,戊有( ) A .107钱B .102钱C .101钱D .94钱7.已知数列{an }是首项为1a ,公差为d 的等差数列,前n 项和为Sn ,满足4325a a =+,则S 9=( ) A .35B .40C .45D .50 8.正项等比数列{}n a 中,5a ,34a ,42a -成等差数列,若212a =,则17a a =( ) A .4B .8C .32D .649.已知{}n a 是公差不为零的等差数列,2414a a +=,且126,,a a a 成等比数列,则公差为( ) A .1B .2C .3D .410.设等差数列{}n a 的公差为d ,10a >,则“50a >”是“0d >”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件11.设等差数列 {}n a 的前n 项和为n S ,若3710a a += ,则9S = ( ) A .22.5B .45C .67.5D .9012.在等差数列{}n a 中n S 为前n 项和,7624a a =- ,则9S =( ) A .28 B .30C .32D .36二、填空题13.记n S 为等差数列{n a }的前n 项和,若24a =,420S =,则9a =_________.14.已知公差不为0的等差数列{}n a 的前n 项和为n S ,若4a ,5S ,{}750S ∈-,,则n S 的最小值为__________.15.已知数列{}n a 中,11a =,()1121n n n n a a n a na ++⋅=+-,则通项公式n a =______. 16.等差数列{}n a 的前n 项和为n S ,若30a =,636S S =+,则7S =_____. 三、解答题17.已知等差数列{}n a 满足32a =,前4项和47S =. (1)求{}n a 的通项公式;(2)设等比数列{}n b 满足23b a =,415b a =,数列{}n b 的通项公式.18.已知等差数列{}n a 满足首项为3331log 15log 10log 42-+的值,且3718a a +=. (1)求数列{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T .19.记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+. (1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.20.已知在n的展开式中,前3项的系数成等差数列,求:(1)展开式中二项式系数最大项的项; (2)展开式中系数最大的项; (3)展开式中所有有理项.21.设等差数列{}n a 的前n 项和为n S ,已知535S =,且4a 是1a 与13a 的等比中项,数列{}n b 的前n 项和245n T n n =+.(1)求数列{}{}n n a b 、的通项公式; (2)若14a <,对任意*n ∈N 总有1122111444n nS b S b S b λ+++≤---恒成立,求实数λ的最小值.22.这三个条件中任选一个,补充在下面题目条件中,并解答.①25a =,()11232,n n n S S S n n *+--+=≥∈N ;②25a =,()111322,n n n n S S S a n n *+--=--≥∈N ;③()132,12n n S S n n n n *--=≥∈-N . 问题:已知数列{}n a 的前n 项和为n S ,12a =,且___________.(1)求数列{}n a 的通项公式;(2)已知n b 是n a 、1n a +的等比中项,求数列21n b ⎧⎫⎨⎬⎩⎭的前n 项和n T参考答案1.B2.D3.A4.B5.C7.C8.D9.C10.B11.B12.D 13.18 14.6- 15.21nn - 16.717.(1)设等差数列{}n a 首项为1a ,公差为d .∵3427a S =⎧⎨=⎩∴()1122441472a d a d +=⎧⎪⎨⨯-+=⎪⎩解得:1112a d =⎧⎪⎨=⎪⎩∴等差数列{}n a 通项公式()11111222n a n n =+-⨯=+(2)设等比数列{}n b 首项为1b ,公比为q∵2341528b a b a ==⎧⎨==⎩∴13128b q b q ⋅=⎧⎨⋅=⎩ 解得:24q =即112b q =⎧⎨=⎩或112b q =-⎧⎨=-⎩ ∴等比数列{}n b 通项公式12n n b -=或()12n n b -=--18.(1)根据题意得,13331log 15log 10log 42a =-+333331533log log log log 2log 211022⎛⎫=+=+=⨯= ⎪⎝⎭,因为数列{}n a 是等差数列,设公差为d ,则由3718a a +=,得112618a d a d +++=,解得2d =,所以()11221n a n n =+-⨯=-.(2)由(1)可得1111(21)(21)22121n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,所以1111111112323522121n T n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭11122121nn n ⎛⎫=-=⎪++⎝⎭. 19.(1)因为221nn S n a n +=+,即222n n S n na n+=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----, 即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈, 所以{}n a 是以1为公差的等差数列. (2)[方法一]:二次函数的性质由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=--⎪⎝⎭, 所以,当12n =或13n =时,()min 78n S =-. [方法二]:【最优解】邻项变号法由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-, 所以13n a n =-,即有1123210,0a a a a <<<<=.则当12n =或13n =时,()min 78n S =-. 20.(1)n展开式的通项公式为1C kn kk k nT -+=⋅3561C 2n kk n k x -=,依题意得122112C 1C 22n n ⋅⋅=+⋅,即2C 4(1)n n =-,得8n =,所以8的展开式有9项,二项式系数最大的项为5项,所以22433584135C 28T x x ==. (2)由(1)知,2456181C 2kk k k T x -+=,设展开式中系数最大的项为第1k +项,则1881188111C C 2211C C 22k k k k k k k k --++⎧≥⎪⎪⎨⎪≥⎪⎩,即()()()()()()8!8!2!8!1!9!8!8!2!8!1!7!k k k k k k k k ⎧≥⋅⎪⋅--⋅-⎪⎨⎪⋅≥⎪⋅-+⋅-⎩,即92228k k k k -≥⎧⎨+≥-⎩,解得23k ≤≤,所以2k =或3k =, 所以展开式中系数最大的项为737x 和327x . (3)由2456181C 2kk k k T x -+=(0,1,2,3,4,5,6,7,8)k =为有理项知,2456k -为整数,得0k =,6.所以展开式中所有有理项为4x 和716x. 21.(1)设等差数列{}n a 的公差为d , 由535S =得151035a d +=, 因为4a 是1a 与13a 的等比中项,所以()()2111312a d a a d +=+.化简得172a d =-且2123a d d =,解方程组得17,0a d ==或13,2a d==.故{}n a 的通项公式为7n a =或21n a n =+(其中N n *∈);因为245n T n n =+,所以214(1)5(1)n T n n -=-+-,(2)n ≥,所以22145[4(1)5(1)]81n n n b T T n n n n n -=-=+--+-=+,因为119b T ==,满足上式,所以()81N n b n n *=+∈;(2)因为14a <,所以21n a n =+, 所以(2)n S n n =+,所以221114488141n n S b n n n n ==-+---,所以22211221111114442141(2)1n n S b S b S b n +++=+++------1111335(21)(21)n n =+++⨯⨯-+111111123352121n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦111221n ⎛⎫=- ⎪+⎝⎭, 易见111221n ⎛⎫- ⎪+⎝⎭随n 的增大而增大,从而11112212n ⎛⎫-< ⎪+⎝⎭恒成立, 所以12λ≥,故λ的最小值为12.22.(1)解:选条件①时,25a =,1123n n n S S S +--+=,整理得()()113n n n n S S S S +----=,故13n n a a +-=(常数),且213a a -=, 所以数列{}n a 是以2为首项,3为公差的等差数列.故()13131n a a n n =+-=-;选条件②时,25a =,()*111322,n n n n S S S a n n +--=--≥∈N ,整理得()1112n n n n n S S S S a +---=--,故112n n n a a a +-+=,故数列{}n a 是等差数列,公差213d a a =-=,故()13131n a a n n =+-=-; 选条件③时,()*132,12n n S S n n n n --=≥∈-N ,且121S =, 所以数列n S n ⎧⎫⎨⎬⎩⎭是以2为首项,32为公差的等差数列,则()33121222n S n n n =+-=+,所以23122n S n n =+,则2n ≥时,131n n n a S S n -=-=-.又112311a S ===⨯-满足31n a n =-,所以31n a n =-,*n ∈N . (2)解:由(1)得:31n a n =-,由于n b 是n a 、1n a +的等比中项,所以()()213132n n n b a a n n +==-+⋅,则()()211111313233132n b n n n n ⎛⎫==- ⎪-+-+⎝⎭, 故()11111111113255831323232232n nT n n n n ⎛⎫⎛⎫=⨯-+-++-=-=⎪ ⎪-+++⎝⎭⎝⎭。
新高考2023版高考数学一轮总复习练案37第六章第四讲数列求和
第四讲 数列求和A 组基础巩固一、单选题1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( A )A .n 2+1-12nB .2n 2-n +1-12nC .n 2+1-12n -1D .n 2-n +1-12n[解析] 该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+⎝ ⎛⎭⎪⎫12+122+…+12n =n 2+1-12n. 2.已知数列{a n }满足a 1=1,且对任意的n ∈N *都有a n +1=a 1+a n +n ,则⎩⎨⎧⎭⎬⎫1a n 的前100项和为( D )A .100101B .99100C .101100D .200101[解析] ∵a n +1=a 1+a n +n ,a 1=1,∴a n +1-a n =1+n . ∴a n -a n -1=n (n ≥2).∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n +(n -1)+…+2+1=n n +12.∴1a n =2nn +1=2⎝ ⎛⎭⎪⎫1n -1n +1. ∴⎩⎨⎧⎭⎬⎫1a n 的前100项和为2⎝ ⎛⎭⎪⎫1-12+12-13+…+1100-1101=2⎝ ⎛⎭⎪⎫1-1101=200101.故选D.3.已知数列{a n }的通项公式是a n =2n-12n ,其前n 项和S n =32164,则项数n 等于( D )A .13B .10C .9D .6[解析] ∵a n =2n-12n =1-12n ,∴S n =n -⎝ ⎛⎭⎪⎫12+122+…+12n =n -1+12n .而32164=5+164,∴n -1+12n =5+164.∴n =6.4.在数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n 等于( B )A .(3n-1)2B .12(9n-1) C .9n -1D .14(3n-1) [解析] 因为a 1+a 2+…+a n =3n-1,所以a 1+a 2+…+a n -1=3n -1-1(n ≥2).则当n ≥2时,a n =2·3n -1.当n =1时,a 1=3-1=2,适合上式,所以a n =2·3n -1(n ∈N *).则数列{a 2n }是首项为4,公比为9的等比数列,a 21+…+a 2n =41-9n1-9=12(9n-1).故选B.5.(2021·黑龙江哈尔滨三中期末)数列{a n }的前n 项和为S n ,且a n =(-1)n(2n -1),则S 2 023=( C )A .2 021B .-2 021C .-2 023D .2 023[解析] 本题考查用并项相加求数列的前n 项和.由已知a n =(-1)n·(2n -1),a 2 023=(-1)2 023(2×2 023-1)=-4 045,且a n +a n +1=(-1)n (2n -1)+(-1)n +1(2n +1)=(-1)n +1(2n +1-2n +1)=2×(-1)n +1,因而S 2 023=(a 1+a 2)+(a 3+a 4)+…+(a 2 021+a 2 022)+a 2 023=2×1 011-4 045=-2 023.故选C.6.我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:(1)构造数列1,12,13,14,…,1n;①(2)将数列①的各项乘以n2,得到一个新数列a 1,a 2,a 3,a 4,…,a n .则a 1a 2+a 2a 3+a 3a 4+…+a n -1a n =( C ) A .n 24B .n -124 C .n n -14D .n n +14[解析] 依题意可得新数列为n 2,n 4,n 6,…,1n ×n2,所以a 1a 2+a 2a 3+…+a n -1a n =n 24⎣⎢⎡11×2+12×3+…+⎦⎥⎤1n -1n=n 24⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1-1n=n 24×n -1n =n n -14.故选C. 二、多选题7.(2022·重庆月考)已知数列{a n }满足a 1=-2,a n a n -1=2n n -1(n ≥2,n ∈N *),{a n }的前n 项和为S n ,则( ABD )A .a 2=-8B .a n =-2n·n C .S 3=-30D .S n =(1-n )·2n +1-2[解析] 由题意可得,a 2a 1=2×21,a 3a 2=2×32,a 4a 3=2×43,…,a n a n -1=2×n n -1(n ≥2,n ∈N *),以上式子左、右分别相乘得a n a 1=2n -1·n (n ≥2,n ∈N *),把a 1=-2代入,得a n =-2n·n (n ≥2,n ∈N *),又a 1=-2符合上式,故数列{a n }的通项公式为a n =-2n·n (n ∈N *),a 2=-8,故A ,B 正确;S n =-(1×2+2×22+…+n ·2n ),则2S n =-[1×22+2×23+…+(n -1)·2n+n ·2n +1],两式相减,得S n =2+22+23+…+2n -n ·2n +1=2n +1-2-n ·2n +1=(1-n )·2n +1-2(n ∈N *),故S 3=-34,故C 错误,D 正确.8.数列{a n }的前n 项和为S n ,若数列{a n }的各项按如下规律:12,13,23,14,24,34,15,25,35,45,…,1n ,2n ,…,n -1n,以下说法正确的是( ACD ) A .a 24=38B .数列a 1,a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9+a 10,…是等比数列C .数列a 1,a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9+a 10,…的前n 项和为T n =n 2+n4D .若存在正整数k ,使S k <10,S k +1≥10,则a k =57[解析] 对于选项A ,a 22=18,a 23=28,a 24=38,故A 正确.对于选项B 、C ,数列12,1,32,2,…等差数列,T n =n 2+n4,故B 错,C 正确.对于选项D ,S 21>10,S 20<10,a 20=57,正确.故选A 、C 、D.三、填空题 9.数列{a n }中,a n =1nn +1,若{a n }的前n 项和为2 0222 023,则项数n 为 2 022 . [解析] a n =1nn +1=1n -1n +1,S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1=2 0222 023,所以n =2 022. 10.122-1+132-1+142-1+…+1n +12-1= 34-12⎝ ⎛⎭⎪⎫1n +1+1n +2 .[解析] ∵1n +12-1=1n 2+2n =1nn +2=12⎝ ⎛⎭⎪⎫1n -1n +2, ∴122-1+132-1+142-1+…+1n +12-1=12⎝ ⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1n +2=12⎝ ⎛⎭⎪⎫32-1n +1-1n +2=34-12⎝ ⎛⎭⎪⎫1n +1+1n +2.11.(2021·海南三亚模拟)已知数列{a n }的前n 项和S n =10n -n 2,数列{b n }满足b n =|a n |,设数列{b n }的前n 项和为T n ,则T 4= 24 ,T 30= 650 .[解析] 当n =1时,a 1=S 1=9,当n ≥2时,a n =S n -S n -1=10n -n 2-[10(n -1)-(n -1)2]=-2n +11,当n =1时也满足,所以a n =-2n +11(n ∈N *),所以当n ≤5时,a n >0,b n =a n ,当n >5时,a n <0,b n =-a n ,所以T 4=S 4=10×4-42=24,T 30=S 5-a 6-a 7-…-a 30=2S 5-S 30=2×(10×5-52)-(10×30-302)=650.12.(2021·广东省五校协作体高三第一次联考)已知数列{a n }满足:a 1为正整数,a n +1=⎩⎪⎨⎪⎧a n 2,a n 为偶数3a n +1,a n 为奇数,如果a 1=1,则a 1+a 2+a 3+…+a 2 018= 4 709 .[解析] 由已知得a 1=1,a 2=4,a 3=2,a 4=1,a 5=4,a 6=2,周期为3的数列,a 1+a 2+…+a 2 018=(1+4+2)×672+1+4=4 709.四、解答题13.(2021·宁夏银川金凤模拟)已知数列{a n }满足a 1=2,na n +1-(n +1)a n =2n (n +1),设b n =a nn.(1)证明数列{b n }是等差数列,并求其通项公式; (2)若c n =2b n -n ,求数列{c n }的前n 项和. [解析] (1)∵na n +1-(n +1)a n =2n (n +1), ∴a n +1n +1-a nn=2, ∵b n =a nn ,∴b n +1-b n =2,b 1=a 11=2,∴数列{b n }是等差数列,首项与公差都为2. ∴b n =2+2(n -1)=2n . (2)c n =2b n -n =22n-n =4n-n , ∴数列{c n }的前n 项和为41-4n1-4-n n +12=4n +1-43-n n +12.14.(2021·太原二模)已知数列{a n }的前n 项和S n =2n +1-2,数列{b n }满足b n =a n +a n +1(n∈N *).(1)求数列{b n }的通项公式;(2)若c n =log 2a n (n ∈N *),求数列{b n ·c n }的前n 项和T n . [解析] (1)当n =1时,a 1=S 1=2, 当n ≥2时,a n =S n -S n -1=2n, 又a 1=2满足上式,∴a n =2n (n ∈N *),∴b n =a n +a n +1=3×2n. (2)由(1)得a n =2n ,b n =3×2n, ∴c n =log 2a n =n ,∴b n ·c n =3n ×2n,∴T n =3×(1×2+2×22+3×23+…+n ×2n),① ①×2,得2T n =3×(1×22+2×23+3×24+…+n ×2n +1),②①-②,得-T n =3×(2+22+…+2n -n ×2n +1)=3×[(1-n )×2n +1-2],∴T n =3(n -1)×2n +1+6.B 组能力提升1.(多选题)(2021·山东济宁期末)若S n 为数列{a n }的前n 项和,且S n =2a n +1,则下列说法正确的是( AC )A .a 5=-16B .S 5=-63C .数列{a n }是等比数列D .数列{S n +1}是等比数列[解析] 因为S n 为数列{a n }的前n 项和,且S n =2a n +1,所以a 1=S 1=2a 1+1,所以a 1=-1.当n ≥2时,a n =S n -S n -1=2a n -2a n -1,即a n =2a n -1,所以数列{a n }是以-1为首项,2为公比的等比数列,故C 正确;a 5=-1×24=-16,故A 正确;S n =2a n +1=-2n+1,所以S 5=-25+1=-31,故B 错误;因为S 1+1=0,所以数列{S n +1}不是等比数列,故D 错误.故选AC.2.已知T n 为数列⎩⎨⎧⎭⎬⎫2n+12n 的前n 项和,若m >T 10+1 013恒成立,则整数m 的最小值为( C )A .1 026B .1 025C .1 024D .1 023[解析] ∵2n+12n =1+⎝ ⎛⎭⎪⎫12n,∴T n =n +1-12n ,∴T 10+1 013=11-1210+1 013=1 024-1210,又m >T 10+1 013,恒成立 ∴整数m 的最小值为1 024.3.已知等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}的前2 020项的和为( D )A .1 009B .1 010C .2 019D .2 020[解析] 设{a n }的公差为d ,则有⎩⎪⎨⎪⎧2a 1+6d =a 1+3d +7,a 1+9d =19,解得⎩⎪⎨⎪⎧a 1=1,d =2,∴a n =2n -1,设b n =a n cos n π,则b 1+b 2=a 1cos π+a 2cos 2π=2,b 3+b 4=a 3cos 3π+a 4cos 4π=2,……,∴数列{a n cos n π}的前2 020项的和为(b 1+b 2)+(b 3+b 4)+…+(b 2 019+b 2 020)=2×2 0202=2 020.4.记S n 为等差数列{a n }的前n 项和,已知,S 9=-a 5,若a 1>0,使得S n ≥a n 的n 的取值范围 [1,10]n ∈N .[解析] 由S 9=-a 5得a 5=0即d =-a 14故a n =-n -5a 14,S n =-n n -9a 18由S n ≥a n 可得-n n -9a 18≥-n -5a 14由于a 1>0,故S n ≥a n 等价于-n n -98≥-n -54即:n 2-11n +10≤0 解得1≤n ≤10所以n 的取值范围是[1,10]n ∈N .5.(2021·山东省济南市历城第二中学高三模拟考试)等差数列{a n }的前n 项和为S n ,数列{b n }是等比数列,满足a 1=3,b 1=1,b 2+S 2=10,a 5-2b 2=a 3.(1)求数列{a n }和{b n }的通项公式; (2)令c n =⎩⎪⎨⎪⎧2S n,n 为奇数b n ,n 为偶数,设数列{c n }的前n 项和T n ,求T 2n .[解析] (1)设数列{a n }的公差为d ,数列{b n }的公比为q , 由b 2+S 2=10,a 5-2b 2=a 3,得⎩⎪⎨⎪⎧q +6+d =103+4d -2q =3+2d ,解得⎩⎪⎨⎪⎧d =2q =2.∴a n =3+2(n -1)=2n +1,b n =2n -1.(2)由a 1=3,a n =2n +1得S n =n (n +2), 当n 为奇数,c n =2S n =1n -1n +2,当为偶数,c n =2n -1.∴T 2n =(c 1+c 3+…+c 2n -1)+(c 2+c 4+…+c 2n )=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1+(2+23+…+22n -1) =1-12n +1+21-4n1-4=2n 2n +1+23(4n-1).。
高考数学《平面向量的数量积》一轮复习练习题(含答案)
高考数学《平面向量的数量积》一轮复习练习题(含答案)一、单选题1.已知向量()()1,1,2,1a b ==-,则a 在b 上的投影向量为( ) A .42(,)55-B .21(,)55-C .42(,)55-D .21(,)55-2.已知3a =,23b =,3a b ⋅=-,则a 与b 的夹角是( ) A .30°B .60°C .120°D .150°3.已知向量()1,2a =,()2,2b =,则向量a 在向量b 上的投影向量为( ) A .33,22⎛⎫ ⎪⎝⎭B .33,44⎛⎫ ⎪⎝⎭C .()2,2D .22,22⎛⎫ ⎪ ⎪⎝⎭4.设e →为单位向量,||2a →=,当a e →→,的夹角为3π时,a →在e →上的投影向量为( ) A .-12e →B .e →C .12e →D .32e →5.已知直角三角形ABC 中,90A ∠=︒,AB =2,AC =4,点P 在以A 为圆心且与边BC 相切的圆上,则PB PC ⋅的最大值为( )A 16165+B 1685+ C .165D .5656.在ABC 中,已知5AB =,3BC =,4CA =,则AB BC ⋅=( ) A .16B .9C .-9D .-167.窗花是贴在窗纸或窗户玻璃上的剪纸,它是中国古老的传统民间艺术之一.在2022年虎年新春来临之际,人们设计了一种由外围四个大小相等的半圆和中间正方形所构成的剪纸窗花(如图1).已知正方形ABCD 的边长为2,中心为O ,四个半圆的圆心均在正方形ABCD 各边的中点(如图2,若点P 在四个半圆的圆弧上运动,则AB OP 的取值范围是( )A .[]22-,B .22,22⎡⎤⎣⎦-C .32,32⎡⎤-⎣⎦D .[]4,4-8.如图,AB 为半圆的直径,点C 为AB 的中点,点M 为线段AB 上的一点(含端点A ,B ),若2AB =,则AC MB +的取值范围是( )A .[]1,3B .2,3⎡⎤⎣⎦C .10⎡⎣D .2,10⎡⎣9.已知圆M :()()22114x y -+-=.设P 是直线l :3480x y ++=上的动点,PA 是圆M 的切线,A 为切点,则PA PM ⋅的最小值为( ) A 3B 5C .3D .510.在三棱锥D ABC -中,DA ⊥平面,,ABC AB BC DA AB BC ⊥==;记直线DB 与直线AC 所成的角为α,直线DC 与平面ABD 所成的角为β,二面角D BC A --的平面角为γ,则( ) A .βγα<< B .γβα<< C .βαγ<<D .αγβ<<11.已知2OA OB ==,点C 在线段AB 上,且OC 的最小值为3OA tOB +(t ∈R )的最小值为( ) A 2B 3C .2D 512.如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥BD ,△BCD 为边长为23形,点P 为边BD 上一动点,则AP CP ⋅的取值范围为( )A .[]6,0-B .25,04⎡⎤-⎢⎥⎣⎦C .27,04⎡⎤-⎢⎥⎣⎦D .[]7,0-二、填空题13.已知向量(,3),(1,1)a m b m ==+.若a b ⊥,则m =______________.14.已知在ABC 中,90C ∠=︒,4CA =,3CB =,D 为BC 的中点,2AE EB =,CE 交AD 于F ,则CE AD ⋅=_______15.已知向量0a b c ++=,1a =,2b c ==,a b b c c a ⋅+⋅+⋅=_______. 16.已知,a b 是两个单位向量,2c a b =+,且b c ⊥,则()a ab ⋅+=__________. 三、解答题(17.已知()1,2a =,()2,3b =-,c a b λ=+. (1)当1λ=-时,求a c ⋅的值; (2)若()a b c +⊥,求实数λ的值.18.在①()cos2cos A B C =+,②sin 3cos a C c A =这两个条件中任选一个作为已知条件,然后解答问题.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,______. (1)求角A ;(2)若2b =,4c =,求ABC 的BC 边上的中线AD 的长.19.已知()1,2,2a m m =-,()3,21,1b n =-. (1)若a b ∥,求m 与n 的值; (2)若()3,,3c m =-且a c ⊥,求a .20.已知2,1a b ==,(3)()3a b a b -⋅+= (1)求a b +的值; (2)求a 与2a b -的夹角.21.已知()1,2a =,(1,1)b =-. (1)若2a b +与ka b -垂直,求k 的值; (2)若θ为2a b +与a b -的夹角,求θ的值.22.已知ABC 中,角A 、B 、C 对应的边分别为a 、b 、c ,若2a =,且满足2c s 2o c aB b-=. (1)求角A ;(2)求BA BC ⋅的取值范围.23.已知向量()()32,,1,=-=a b x . (1)若()()22a b a b +⊥-,求实数x 的值;(2)若()()8,1,//=--+c a b c ,求向量a 与b 的夹角θ.24.在直角梯形ABCD 中,已知//AB CD ,90DAB ∠=︒,224AB AD CD ===,点F 是BC 边上的中点,点E 是CD 边上一个动点.(1)若12DE DC =,求AC EF ⋅的值; (2)求EA EF ⋅的取值范围。
高考数学一轮复习《空间几何体》练习题(含答案)
高考数学一轮复习《空间几何体》练习题(含答案)一、单选题1.降水量(precipitation[amount]):从天空降落到地面上的液态或固态(经融化后)水,未经蒸发、渗透、流失,而在水平面上积聚的深度.降水量以mm 为单位,气象观测中一般取一位小数,现某地10分钟的降雨量为13.1mm ,小王在此地此时间段内用口径为10cm 的圆柱型量筒收集的雨水体积约为( )(其中π 3.14≈)A .331.0210mm ⨯B .331.0310mm ⨯C .531.0210mm ⨯D .531.0310mm ⨯2.某几何体的三视图如图所示(单位:cm ),则该几何体的表面积(单位:2cm )是( )A .()256122cm +B .()248162cm + C .()280122cm + D .()272162cm + 3.阿基米德(Archimedes ,公元前287年-公元前212年)是古希腊伟大的数学家,物理学家和天文学家,在他墓碑上刻着的一个圆柱容器里放了一个球,该球与圆柱的两个底面及侧面均相切,如图所示,则在该几何体中,圆柱表面积与球表面积的比值为( )A .32B .43C .32或23D .234.已知一个几何体的三视图如图所示,则这个几何体的表面积为( )A .33πB .2πC .3πD .4π5.某圆锥的母线长为2,高为423,其三视图如下图所示,圆锥表面上的点M 在正视图上的对应点为A ,圆锥表面上的点N 在侧视图上的对应点为B ,则在此圆锥侧面上,从M 到N 的路径中,最短路径的长度为A .2B .22C .823+D .223- 6.已知某空间几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .323B .163C .4D .87.已知正方体的六个面的中心可构成一个正八面体,现从正方体内部任取一个点,则该点落在这个正八面体内部的概率为( )A .12B .13C .16D .1128.某几何体的三视图如图所示,则该几何体的表面积为( )A .810+16B .40C .810++24D .489.棱长为1的正方体1111ABCD A B C D -中,点E 是侧面11CC B B 上的一个动点(包含边界),则下面结论正确的有( )①若点E 满足1AE B C ⊥,则动点E 的轨迹是线段;②若点E 满足130EA C ∠=,则动点E 的轨迹是椭圆的一部分;③在线段1BC 上存在点E ,使直线1A E 与CD .所成的角为30;④当E 在棱1BB 上移动时,1EC ED +的最小值是352+. A .1个 B .2个 C .3个 D .4个10.某锥体的正视图和侧视图均为如图所示的等腰三角形,则该几何体的体积最小值为A .4πB .12C .1D .211.已知四棱锥S ABCD -的所有顶点都在同一球面上,底面ABCD 是正方形且和球心O 在同一平面内,当此四棱锥体积取得最大值时,其表面积等于443+,则球O 的体积等于( )A .3223πB .1623πC .823πD .423π 12.一个长方体被一平面截去一部分后,所剩几何体的三视图如图所示,则该几何体的体积为A .36B .48C .64D .72二、填空题13.如果用半径为r 的半圆形铁皮卷成一个圆锥筒,那么这个圆锥筒的高等于____. 14.点A ,B ,C ,D 在同一个球的球面上,3AB BC AC ==,若四面体ABCD 体积的3________.15.“方锥”,在《九章算术》卷商功中解释为正四棱锥.现有“方锥”S ABCD -,其中4AB =,SA 与平面ABCD 32,则此“方锥”的外接球表面积为________. 16.棱长为6的正方体内有一个棱长为x 的正四面体,正四面体的中心(正四面体的中心就是该四面体外接球的球心)与正方体的中心重合,且该四面体可以在正方体内任意转动,则x 的最大值为______.三、解答题17.如图,已知直三棱柱111ABC A B C ,其底面是等腰直角三角形,且22AB BC ==14AC AA ==.(1)求该几何体的表面积;(2)若把两个这样的直三棱柱拼成一个大棱柱,求拼得的棱柱表面积的最小值.18.如图是一个以111A B C为底面的直三棱柱被一平面所截得到的几何体,截面为ABC,已知11112A B B C==,11190A B C∠=︒,14AA=,13BB=,12CC=,求该几何体的体积.19.如图是某几何体的三视图,请你指出这个几何体的结构特征,并求出它的表面积与体积.(单位:cm)20.如图所示,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面ABCD 是矩形,2PA AB ==,2AD =,过点B 作BE ⊥AC ,交AD 于点E ,点F ,G 分别为线段PD ,DC 的中点.(1)证明:AC ⊥平面BEF ;(2)求三棱锥F -BGE 的体积.21.如图,多面体ABCDEF 中,四边形ABCD 是边长为2的菱形,AC =23,△ADE 为等腰直角三角形,∠AED =90°,平面ADE ⊥平面ABCD ,且EF //AB ,EF =1.(1)证明:AC ⊥平面BDF ;(2)若G 为棱BF 的中点,求三棱锥G —DEF 的体积.22.如图,在三棱锥-P ABC 中,2AB BC ==,22PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离.23.如图,在三棱锥S -ABC 中,SA =SC ,D 为AC 的中点,SD ⊥AB .(1)证明:平面SAC ⊥平面ABC ;(2)若△BCD 是边长为3的等边三角形,点P 在棱SC 上,PC =2SP ,且932S ABC V -=,求三棱锥A -PBC 的体积.24.如图,在四棱锥P ABCD -中,底面ABCD 是边长为4的菱形,60DAB ∠=︒,7PA PD ==,O F 、分别为AD AB 、的中点,PF AC ⊥.(1)求证:面POF ⊥面ABCD ;(2)求三棱锥B PCF -的体积。
高考数学一轮复习《函数》复习练习题(含答案)
高考数学一轮复习《函数》复习练习题(含答案)一、单选题1.函数ln e x y =的单调增区间是( )A .(0,)+∞B .[0,)+∞C .(,)e +∞D .(,)-∞+∞2.若函数1311()log [(23]2)f x a x a ⎛⎫=-+≠ ⎪⎝⎭的定义域为R ,则下列叙述正确的是 A .()f x 在R 上是增函数B .()f x 在R 上是减函数C .()f x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递减 D .()f x 在[0,)+∞上单调递减,在(,0]-∞上单调递增3.已知函数()2e e x x f x ax =--有且只有一个零点,则实数a 的取值范围为( )A .(],0-∞B .[)0,+∞C .()()0,11,+∞D .(]{},01-∞4.下列函数中,是奇函数且在区间(0,)+∞上单调递增的是 A .x y e -= B .||y x = C .tan y x =D .1y x x =- 5.已知函数,如果关于x 的方程只有一个实根,那么实数的取值范围是A .B .C .D .6.函数34()e ex x x x f x --=+的部分图象大致为( ) A . B .C .D .7.下列函数中,既是奇函数又是增函数的为( )A .1y x =+B .()30y x x =>C .1y x x =+D .y x x = 8.使212x x +-有意义的实数x 的取值范围是( )A .(][),43,-∞-+∞ B .(-∞,-4)∪(3,+∞) C .(-4,3)D .[-4,3]9.函数2cos y x x =的部分图象是( ) A . B .C .D .10.设函数3,10,()((5)),10,x x f x f f x x -≥⎧=⎨+<⎩则(7)f 的值为( ) A .5 B .6 C .7 D .811.下列函数中与y x =具有相同图象的一个函数是A .B .C .ln x y e =D .ln x y e = 12.函数sin (0)ln x y x x=≠的部分图象大致是 A . B .C .D .二、填空题13.已知集合{|12}A x x =<<,集合2{|}B x y m x ==-,若A B A =,则m 的取值范围是______14.如图所示,,OA OB 是两个不共线向量(AOB ∠为锐角),N 为线段OB 的中点,M 为线段OA 上靠近点A 的三等分点,点C 在MN 上,且OC xOA yOB =+(,)x y R ∈,则22x y +的最小值为______.15.函数2(2)3,[,]y x a x x a b =+++∈的图像关于直线1x =对称,则b 的值为________. 16.定义在R 上的函数f (x )满足f (2+x )=f (2﹣x ),若当x ∈(0,2)时,f (x )=2x ,则f (3)=_____.17.已知函数()()()333322f x x a x b x a x =++-+--有五个不同的零点,且所有零点之和为52,则实数b 的值为______. 18.已知常数0a >,函数2()2xx f x ax =+的图象经过点6()5P p ,、1()5Q q -,,若216p q pq += ,则a =___19.函数()21f x x --的定义域为______. 20.已知函数()()233424x log x x f x x -⎧-≥⎪=⎨⎪⎩,,<,若方程()3f x m =-有两个根,则实数m 的取值范围为_____.三、解答题21.已知函数()1log (01amx f x a x -=>-且1)a ≠的图象关于原点对称. (1)求m 的值;(2)判断函数()f x 在区间()1,+∞,上的单调性并加以证明;(3)当()1,,a x t a >∈时,()f x 的值域是()1,+∞,求a 与t 的值.22.已知函数()log (23)1(0,1)a f x x a a =-+>≠.(1)当2a =时,求不等式()3f x <的解集;(2)当10a =时,设()()1g x f x =-,且(3),(4)==g m g n ,求6log 45(用,m n 表示);(3)在(2)的条件下,是否存在正整数...k ,使得不等式22(1)lg()+>g x kx 在区间[]3,5上有解,若存在,求出k 的最大值,若不存在,请说明理由.23.判断下列函数的奇偶性:(1)()f x =(2)()f x =(3)2()2||1,[1,1]f x x x x =-+∈-.(4)22(0)()(0).x x x f x x x x ⎧+<=⎨-+>⎩,24.定义在(1,1)-上的函数()f x 满足:①对任意,(1,1)x y ∈-都有()()1x y f x f y f xy ⎛⎫++= ⎪+⎝⎭;②当0x <,()0f x >.(1)判断函数()f x 的奇偶性,并说明理由;(2)判断函数()f x 在(0,1)上的单调性,并说明理由;(3)若11()52f =,试求111()()()21119f f f --的值.25.某商场销售一种水果的经验表明,该水果每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式()22115a y x x =+--,其中511x <<,a 为常数.已知销售价格为6元/千克时,每日可售出该水果52千克.(1)求a 的值;(2)若该水果的成本为5元/千克,试确定销售价格x 的值,使商场每日销售该水果所获得的利润最大,并求出最大利润.26.已知()21f x x =-,()()()1020x x g x x x ⎧-≥⎪=⎨-<⎪⎩. (1)求()g f x ⎡⎤⎣⎦;(2)设()()(){}max ,F x f x g x =,作函数()F x 的图象,并由此求出()F x 的最小值.27.已知函数()()2f x x x a =-, ()()21g x x a x a =-+-+ (其中a R ∈).(Ⅰ)如果函数()y f x =和()y g x =有相同的极值点,求a 的值,并直接写出函数()f x 的单调区间;(Ⅱ)令()()()F x f x g x =-,讨论函数()y F x =在区间[]1,3-上零点的个数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011高考数学第一轮复习专项练习题(37)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设函数)(x f y =与函数)(x g 的图象关于3=x 对称,则)(x g 的表达式为A .)23()(x f x g -= B .)3()(x f x g -= C .)3()(x f x g --=D .)6()(x f x g -=2.设的大小关系是、、,则,,c b a c b a 243.03.03log 4log -=== A .a <b <c B .a <c <b C .c <b <a D .b <a <c 3.指数函数y =f(x)的反函数的图象过点(2,-1),则此指数函数为A .x y )21(= B .x y 2= C .x y 3= D .x y 10=4.已知函数,,,且、、,00)(32213213>+>+∈--=x x x x R x x x x x x f 13x x +>0,则)()()(321x f x f x f ++的值A .一定大于零B .一定小于零C .等于零D .正负都有可能5.若函数1log )(+=x x f a 在区间(-1,0)上有)(0)(x f x f ,则>的递增区间是A .(-∞,1)B .(1,+∞)C .(-∞,-1)D .(-1,+∞)6.已知b a b a 、,则2log 2log 0<<的关系是A .0<a <b <1B .0<b <a <1C .b >a >1D .a >b >17.已知x aa a xlog 10=<<,则方程的实根个数是A .1个B .2个C .3个D .1个或2个或3个8.若y x y x +-=,则2log 的最小值为A .3322B .2333C .332D .2239.已知函数f (x )是定义在R 上的奇函数,当x <0时,f (x )=(13)x ,那么f -1(-9)的值为A .2B .-2C .3D .-310.若方程m m x x 无实数解,则实数+=-21的取值范围是A .(-∞,-1)B .[0,1)C .[2,+∞)D .(-∞,-1)∪(2,+∞)答题卡二、填空题:本大题共5小题,每小题4分,共20分.把答案填在横线上. 11.)2log (2)9(log )(91-==-ff x x f a ,则满足函数的值是__________________.12.使函数542+-=x x y 具有反函数的一个条件是____________________________.(只填上一个条件即可,不必考虑所有情形).13.函数)2(log 221x x y -=的单调递减区间是________________________.14.已知)(x f 是定义在R 上的偶函数,并且)(1)2(x f x f -=+,当32≤≤x 时,x x f =)(,则=)5.105(f _________________.15.关于函数),0(||1lg )(2R x x x x x f ∈≠+=有下列命题:①函数)(x f y =的图象关于y 轴对称; ②在区间)0,(-∞上,函数)(x f y =是减函数; ③函数)(x f 的最小值为2lg ;④在区间),1(∞上,函数)(x f 是增函数. 其中正确命题序号为_______________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知函数f (x )=a x +12+-x x (a >1) ⑴证明:函数f (x )在(-1,+∞)上为增函数; ⑵用反证法证明f (x )=0没有负数根.17.(本小题满分12分)已知f (x )=2x -1的反函数为1-f(x ),g (x )=log 4(3x +1).⑴若f -1(x )≤g (x ),求x 的取值范围D ; ⑵设函数H (x )=g (x )-121-f (x ),当x ∈D 时,求函数H (x )的值域.18.(本小题满分14分)函数f (x )=log a (x -3a )(a >0,且a ≠1),当点P (x ,y )是函数y =f (x )图象上的点时, Q (x -2a ,-y )是函数y =g (x )图象上的点. ⑴写出函数y =g (x )的解析式.⑵当x ∈[a +2,a +3]时,恒有|f (x )-g (x )|≤1,试确定a 的取值范围.19.(本小题满分14分)某化妆品生产企业为了占有更多的市场份额,拟在2005年度进行一系列促销活动,经过市场调查和测算,化妆品的年销量x 万件与年促销t万元之间满足3-x 与t+1成反比例,如果不搞促销活动,化妆品的年销量只能是1万件,已知2005年生产化妆品的设备折旧,维修等固定费用为3万元,每生产1万件化妆品需再投入32万元的生产费用,若将每件化妆品的售价定为:其生产成本的150%“与平均每件促销费的一半”之和,则当年生产的化妆品正好能销完.⑴将2005年的利润y (万元)表示为促销费t(万元)的函数;⑵该企业2005年的促销费投入多少万元时,企业的年利润最大?(注:利润=销售收入—生产成本—促销费,生产成本=固定费用+生产费用)20.(本小题满分14分)已知f (x )在(-1,1)上有定义,f (21)=-1,且满足x ,y ∈(-1,1)有f (x )+f (y )=f (xyy x ++1) ⑴证明:f (x )在(-1,1)上为奇函数; ⑵对数列x 1=21,x n +1=212nn x x +,求f (x n ); ⑶求证252)(1)(1)(121++->+++n n x f x f x f n21.(本小题满分14分)对于函数f (x ),若存在x 0∈R ,使f (x 0)=x 0成立,则称x 0为f (x )的不动点.如果函数 f (x )=ax 2+bx +1(a >0)有两个相异的不动点x 1,x 2.⑴若x 1<1<x 2,且f (x )的图象关于直线x =m 对称,求证:21<m <1; ⑵若|x 1|<2且|x 1-x 2|=2,求b 的取值范围.函数参考答案一、选择题(每小题5分,共50分)二、填空题(每小题4分,共20分) 11.22; 12.x ≥2; 13. (2,+∞) ; 14. 2.5 ; 15 (1) (3) (4) 三、解答题(共80分)16.略17. 解:(Ⅰ)∵12)(-=x x f ∴)1(log )(21+=-x x f (x >-1) 由)(1x f-≤g (x ) ∴⎩⎨⎧+≤+〉+13)1(012x x x解得0≤x ≤1 ∴D =[0,1](Ⅱ)H (x )=g (x )-)123(log 21113log 21)(21221+-=++=-x x x x f ∵0≤x ≤1 ∴1≤3-12+x ≤2∴0≤H (x )≤21 ∴H (x )的值域为[0,21]18.解:(Ⅰ)设P (x 0,y 0)是y =f (x )图象上点,Q (x ,y ),则⎩⎨⎧-=-=002y y ax x ,∴⎩⎨⎧-=+=y y a x x 002 ∴-y =log a (x +2a -3a ),∴y =log a a x -1(x >a )(Ⅱ)⎩⎨⎧>->-03a x a x∴x >3a∵f (x )与g (x )在[a +2,a +3]上有意义. ∴3a <a +2∴0<a <1 6分∵|f (x )-g (x )|≤1恒成立⇒|log a (x -3a )(x -a )|≤1恒成立.a a a x a a a a x a 1)2(101])2[(log 12222≤--≤⇔⎩⎨⎧<<≤--≤-⇔对x ∈[a +2,a +3]上恒成立,令h (x )=(x -2a )2-a 2其对称轴x =2a ,2a <2,2<a +2 ∴当x ∈[a +2,a +3]h min (x )=h (a +2),h max =h (a +3)∴原问题等价⎪⎩⎪⎨⎧≥≤)(1)(max min x h a x h a12579069144-≤<⇒⎪⎩⎪⎨⎧-≥-≤⇔a a aaa19.解:(Ⅰ)由题意:13+=-t k x 将123,21,0+-=∴===t x k x t 代入 当年生产x (万件)时,年生产成本=年生产费用+固定费用=32x +3=32(3-12+t )+3,当销售x (万件)时,年销售收入=150%[32(3-12+t +3]+t 21 由题意,生产x 万件化妆品正好销完∴年利润=年销售收入-年生产成本-促销费即)1(235982+++-=t t t y (t ≥0)(Ⅱ)∵)13221(50+++-=t t y ≤50-162=42万件 当且仅当13221+=+t t 即t =7时,y max =42 ∴当促销费定在7万元时,利润增大.20.(Ⅰ)证明:令x =y =0,∴2f (0)=f (0),∴f (0)=0 令y =-x ,则f (x )+f (-x )=f (0)=0 ∴f (x )+f (-x )=0 ∴f (-x )=-f (x ) ∴f (x )为奇函数 4分(Ⅱ)解:f (x 1)=f (21)=-1,f (x n +1)=f (212nn x x +)=f (n n n n x x x x ⋅++1)=f (x n )+f (x n )=2f (x n ) ∴)()(1n n x f x f +=2即{f (x n )}是以-1为首项,2为公比的等比数列∴f (x n )=-2n -1 (Ⅲ)解:)2121211()(1)(1)(11221-++++=+++n n x f x f x f 2212)212(2121111->+-=--=---=--n n n 而2212)212(252-<+--=++-=++-n n n n ∴252)(1)(1)(121++->+++n n x f x f x f n 21.(Ⅰ)证明:g (x )=f (x )-x =ax 2+(b -1)x +1 且a >0 ∵x 1<1<x 2<2 ∴(x 1-1)(x 2-1)<0即x 1x 2<(x 1+x 2)-1于是212121)(21)11(212x x x x a a b a b m x -+=---=-== >21)(2121-+x x [(x 1+x 2)-1]=21又∵x 1<1<x 2<2 ∴x 1x 2>x 1于是有m=21(x 1+x 2)-21x 1x 2<21(x 1+x 2)-21x 1=21x 2<1 ∴21<m <1(Ⅱ)解:由方程ax x x b ax x g 1,01)1()(212==+-+=可知>0,∴x 1x 2同号(ⅰ)若0<x 1<2则x 2-x 1=2 ∴x 2=x 1+2>2 ∴g (2)<0 即4a +2b -1<0 ①又(x 2-x 1)2=44)1(22=--a ab ∴1)1(122+-=+b a ,(∵a >0)代入①式得1)1(22+-b <3-2b ,解之得:b <41(ⅱ)若-2<x 1<0,则x 2=-2+x 1<-2 ∴g (-2)<0,即4a -2b +3<0 ② 又1)1(122+-=+b a 代入②得1)1(22+-b <2b -1解之得b >47 综上可知b 的取值范围为⎭⎬⎫⎩⎨⎧〉〈4741b b b 或。