初三压轴大题系列—阿波罗尼斯圆(解析版)
阿波罗尼斯圆及其直接应用 (解析版)
1专题一:阿波罗尼斯圆介绍及其直接应用主干知识:1、阿波罗尼斯圆的定义在平面上给定两点,A B ,设P 点在同一平面上且满足PAPBλ=,当0λ>且1λ≠时,P 点的轨迹是个圆,称之为阿波罗尼斯圆.(1λ=时P 点的轨迹是线段AB 的中垂线)2、阿波罗尼斯圆的方程【定理1】设()()()1,,,0,,0P x y A a B a -.若PAPBλ=(0λ>且1λ≠),则点P 的轨迹方程是2222221211a x a y λλλλ⎛⎫+⎛⎫-+= ⎪ ⎪--⎝⎭⎝⎭,其轨迹是以221,01a λλ⎛⎫+ ⎪-⎝⎭为圆心,半径为221a r λλ=-的圆.例题讲解例1.(2022·河北盐山中学高二期中)已知两定点()2,1A -,()2,1B -,如果动点P满足PA =,则点P 的轨迹所包围的图形的面积等于___________.【分析】设(,)P x y ,根据题设条件,结合两点距离公式列方程并整理即可得P 的轨迹方程,即知轨迹为圆,进而求其面积即可.【详解】设(,)P x y ,由题设得:2222(2)(1)2[(2)(1)]x y x y ++-=-++,∴22(6)(3)40x y -++=,故P的圆,∴图形的面积等于40π.故答案为:40π例2.(2022四川涪陵月考)若ABC ∆满足条件4, 2 AB AC BC ==,则ABC ∆面积的最大值为__________.【分析】设BC x =,则2AC x =,由余弦定理得出cos B ,根据三角形任意两边之和大于第三边得出x 的范围,再由三角形面积公式,结合二次函数的性质得出答案.【详解】设BC x =,则2AC x =,由余弦定理可得22216(2)163cos 248x x x B x x+--==⨯⨯由三角形任意两边之和大于第三边得2442x x x x +>⎧⎨+>⎩,解得443x <<,即216169x <<14sin 222ABCS x B ∆∴=⋅⋅⋅===当2809x =时,ABC ∆面积取最大值163故答案为:163答案第2页,共3页例3.在平面直角坐标xOy 中,已知点()()1,0,4,0A B ,若直线0x y m -+=上存在点P 使得12PA PB =,则实数m 的取值范围是_______.【分析】根据12PA PB =得出点P 的轨迹方程,又点P 在直线0x y m -+=上,则点P 的轨迹与直线必须有公共点,进而解决问题.【详解】解:设(,)P x y则PA PB ==因为12PA PB ==,同时平方,化简得224x y +=,故点P 的轨迹为圆心在(0,0),半径2为的圆,又点P 在直线0x y m -+=上,故圆224x y +=与直线0x y m -+=必须有公共点,2≤,解得m -≤例4.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,阿波罗尼斯圆就是他的研究成果之一,指的是:已知动点M 与两个定点A ,B 的距离之比为λ(0λ>,且1λ≠),那么点M 的轨迹就是阿波罗尼斯圆.若平面内两定点A ,B 间的距离为2,动点P满足PA PB=22PA PB +的最大值为()A.16+B.8+C.7+D.3【分析】设()()1,0,1,0A B -,(),P x y,由PA PB=P 的轨迹为以()2,0为圆心,半()222221PA PB x y +=++,其中22x y +可看作圆()2223x y -+=上的点(),x y 到原点()0,0的距离的平方,从而根据圆的性质即可求解.【详解】解:由题意,设()()1,0,1,0A B -,(),P x y ,因为PA PB=,即()2223x y-+=,所以点P 的轨迹为以()2,0因为()()()222222221121x y x y x y PA PB =++++-+=++,其中22x y +可看作圆()2223x y -+=上的点(),x y 到原点()0,0的距离的平方,所以()(222max27x y+=+=+,所以()22max2116x y ⎡⎤++=+⎣⎦22PA PB +的最大值为16+3故选:A.例5.(2022四川·成都外国语学校高二月考)古希腊数学家阿波罗尼奥斯(约公元首262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中这样一个命题:平面内与两定点距离的比为常数(0k k >且)1k ≠的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆,已知点()1,0A -,()2,0B ,圆()()()221:204C x y m m -+-=>,在圆上存在点P 满足2PA PB=,则实数m 的取值范围是()A.22⎣⎦B.542⎡⎢⎣⎦C.2⎛ ⎝⎦D.2⎥⎣⎦【分析】设(),P x y ,根据2PA PB =求出点P 的轨迹方程,根据题意可得两个圆有公共点,根据圆心距大于或等于半径之差的绝对值小于或等于半径之和,解不等式即可求解.【详解】设(),P x y ,因为点()1,0A -,()2,0B ,2PA PB =,=22650x y x +-+=,所以()2234x y -+=,可得圆心()3,0,半径2R =,由圆()()221:24C x y m -+-=可得圆心()2,C m ,半径12r =,因为在圆C 上存在点P 满足2PA PB =,所以圆()2234x y -+=与圆()()221:24C x y m -+-=有公共点,所以112222-≤≤+,整理可得:2925144m ≤+≤,解得:22m ≤≤,所以实数m 的取值范围是2⎥⎣⎦,。
中考最值难点突破阿氏圆问题(解析版 )
中考最值难点突破阿氏圆问题模块一典例剖析+针对训练【模型简介】在圆上找一点P使得PA+k·PB的值最小.类型一:求和最小求PA+k·PB的最小值,PA+k·PB=PA+PC≥AC,当A,P,C三点共线时,最小值为AC1.(2019秋•山西期末)阅读以下材料,并按要求完成相应的任务.已知平面上两点A、B,则所有符合PAPB=k(k>0且k≠1)的点P会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆.阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标系中,在x轴,y轴上分别有点C(m,0),D(0,n),点P是平面内一动点,且OP=r,设OPOD=k,求PC+kPD的最小值.阿氏圆的关键解题步骤:第一步:如图1,在OD上取点M,使得OM:OP=OP:OD=k;第二步:证明kPD=PM;第三步:连接CM,此时CM即为所求的最小值.下面是该题的解答过程(部分):解:在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.任务:(1)将以上解答过程补充完整.(2)如图2,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为△ABC内一动点,满足CD =2,利用(1)中的结论,请直接写出AD+23BD的最小值.思路引领:(1)在OD上取点M,使得OM:OP=OP:OD=k,利用相似三角形的性质以及两点之间线段最短解决问题即可.(2)利用(1)中结论计算即可.解(1)在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.∴MP:PD=k,∴MP=kPD,∴PC+kPD=PC+MP,当PC+kPD取最小值时,PC+MP有最小值,即C,P,M三点共线时有最小值,利用勾股定理得CM=OC2+OM2=m2+(kr)2=m2+k2r2.(2)∵AC=m=4,CDBC =23,在CB上取一点M,使得CM=23CD=43,∴AD+23BD的最小值为42+43 2=4103.总结提升:本题属于相似形综合题,考查了相似三角形的判定和性质,勾股定理,两点之间线段最短等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.针对训练1.如图,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连接AP,BP,求AP+12BP的最小值.思路引领:连接CP,在CB上取点D,使CD=1,连接DP、AD,则有CDCP=CPCB=12,以此可证明△PCD ∽△BCP ,即可得到PD BP=12,AP +12BP =AP +PD ,以此可推出当点A 、P 、D 在同一条直线上时,AP +12BP 的最小值为AD 的长,再根据勾股定理即可求解.解:连接CP ,在CB 上取点D ,使CD =1,连接DP 、AD ,则有CD CP =CP CB=12,∵∠PCD =∠BCP ,∴△PCD ∽△BCP ,∴PD BP =12,∴PD =12BP ,∴AP +12BP =AP +PD ,要使AP +12BP 最小,只要AP +PD 最小,当点A 、P 、D 在同一条直线上时,AP +PD 最小,即AP +12BP 的最小值为AD 的长,在Rt △ACD 中,CD =1,AC =6,∴AD =AC 2+CD 2=37.∴AP +12BP 的最小值为37.总结提升:本题主要考查相似三角形的判定与性质、勾股定理,根据题意分析出点A 、P 、D 在同一条直线上时,AP +12BP 的最小值为AD 的长是解题关键.2.如图,在平面直角坐标系xOy 中,A (6,-1),M (4,4),以M 为圆心,22为半径画圆,O 为原点,P 是⊙M 上一动点,则PO +2PA 的最小值为10.思路引领:连接OM ,在OM 上截取MN ,使得MN =2,连接PN ,AN .证明△PMN ∽△OMP ,推出PN OP=MN MP =12,推出PN =12OP ,推出OP +2OA =212OP +PA =2(PN +PA ),再根据PN +PA ≥AN ,求出AN ,可得结论.解:连接OM ,在OM 上截取MN ,使得MN =2,连接PN ,AN .∵M(4,4),∴OM=42+42=42,∵PM=22,MN=2,∴PM2=MN•MO,∴PM MN =MO PM,∵∠PMN=∠OMP,∴△PMN∽△OMP,∴PN OP =MNMP=12,∴PN=12OP,∵N(3,3),A(6,-1),∴AN=32+42=5,∴OP+2OA=212OP+PA=2(PN+PA),∵PN+PA≥AN,∴PN+PA≥5,∴OP+2OA≥10,∴OP+2OA的最小值为10,故答案为:10.总结提升:本题考查相似三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.3.(2018•碑林区校级三模)问题提出:(1)如图1,在△ABC中,AB=AC,BD是AC边上的中线,请用尺规作图做出AB边上的中线CE,并证明BD=CE:问题探究:(2)如图2,已知点P是边长为6的正方形ABCD内部一动点,PA=3,求PC+ 12PD的最小值;问题解决:(3)如图3,在矩形ABCD中,AB=18,BC=25,点M是矩形内部一动点,MA=15,当MC+35MD最小时,画出点M的位置,并求出MC+35MD的最小值.思路引领:(1)如图1中,作线段AB的垂直平分线MN交AB于点E,连接EC.线段EC即为所求,再根据SAS证明△BAD≌△CAE即可解决问题;(2)如图2中,在AD上截取AE,使得AE=32.首先证明△PAE∽△DAP,推出PE DP=PA AD =12,可得PE=12PD,推出PC+12PD=PC+PE,利用三角形的三边关系即可解决问题;(3)如图3中,如图2中,在AD上截取AE,使得AE=9.由△MAE∽△DAM,推出EMMD =MA AD =1525=35,可得ME=35MD,推出MC+35MD=MC+ME,利用三角形的三边关系即可解决问题;解:(1)如图1中,作线段AB的垂直平分线MN交AB于点E,连接EC.线段EC即为所求;∵AB=AC,AE=EC,AD=CD,∴AE=AD,∵AB=AC,∠A=∠A,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE.(2)如图2中,在AD上截取AE,使得AE=32.∵PA2=9,AE•AD=32×6=9,∴PA2=AE•AD,∴PA AD =AEPA,∵∠PAE=∠DAP,∴△PAE∽△DAP,∴PE DP =PAAD=12,∴PE=12PD,∴PC+12PD=PC+PE,∵PC+PE≥EC,∴PC+12PD的最小值为EC的长,在Rt△CDE中,∵∠CDE=90°,CD=6,DE=9 2,∴EC=62+92 2=152,∴PC+12PD的最小值为152.(3)如图3中,在AD上截取AE,使得AE=9.∵MA2=225,AE•AD=9×25=225,∴MA2=AE•AE,∴MA AD =AE MA,∵∠MAE=∠DAM,∴△MAE∽△DAM,∴EM MD =MAAD=1525=35,∴ME=35MD,∴MC+35MD=MC+ME,∵MC+ME≥EC,∴MC+35MD的最小值为EC的长,此时点M在线段EC上(如图M′).在Rt△CDE中,∠CDE=90°,CD=18,DE=16,∴EC=162+182=2145,∴MC+35MD的最小值为2145.总结提升:本题属于四边形综合题,考查了正方形的性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,三角形的三边关系,最短问题等知识,解题的关键是运用数形结合的思想解决问题,添加常用辅助线,构造相似三角形解决问题,用转化的思想思考问题,属于中考压轴题.类型二: 求差最大2.(2020秋•天宁区校级月考)如图,已知菱形ABCD的边长为8,∠B=60°,圆B的半径为4,点P是圆B上的一个动点,则PD-12PC的最大值为 237 .思路引领:连接PB,在BC上取一点G,使得BG=2,连接PG,DG,过点D作DH⊥BC交BC的延长线于H.利用相似三角形的性质证明PG=12PC,再根据PD-12PC=PD-PG≤DG,求出DG,可得结论.解:连接PB,在BC上取一点G,使得BG=2,连接PG,DG,过点D作DH⊥BC交BC的延长线于H.∵PB=4,BG=2,BC=8,∴PB2=BG•BC,∴PB BG =BC PB,∵∠PBG=∠CBP,∴△PBG∽△CBP,∴PG PC =PBBC=12,∴PG=12PC,∵四边形ABCD是菱形,∴AB∥CD,AB=CD=BC=8,∴∠DCH=∠ABC=60°,在Rt△CDH中,CH=CD•cos60°=4,DH=CD•sin60°=43,∴GH=CG+CH=6+4=10,∴DG=GH2+DH2=102+(43)2=237,∵PD-12PC=PD-PG≤DG,∴PD-12PC≤237,∴PD-12PC的最大值为237.总结提升:本题考查阿氏圆问题,菱形的性质,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.针对训练1.(2022•常熟市二模)如图,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上的一个动点,则PD-12PC的最大值为5.思路引领:由PD-12PC=PD-PG≤DG,当点P在DG的延长线上时,PD-12PC的值最大,最大值为DG=5.解:在BC上取一点G,使得BG=1,如图,∵PB BG =21=2,BCPB=42=2,∴PB BG =BC PB,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴PG PC =BGPB=12,∴PG=12PC,当点P在DG的延长线上时,PD-12PC的值最大,最大值为DG=42+32=5.故答案为:5总结提升:本题考查圆综合题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.2.(2021•商河县校级模拟)(1)初步思考:如图1,在△PCB中,已知PB=2,BC=4,N为BC上一点且BN=1,试证明:PN=12 PC(2)问题提出:如图2,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求PD+ 12PC的最小值.(3)推广运用:如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一个动点,求PD-12PC的最大值.思路引领:(1)通过相似三角形△BPN∽△BCP的性质证得结论;(2)如图2中,在BC上取一点G,使得BG=1.由△PBG∽△CBP,推出PGPC =BGPB=12,推出PG=12PC,推出PD+12PC=DP+PG,由DP+PG≥DG,当D、G、P共线时,PD+12PC的值最小,最小值为DG=42+32=5.由PD-12PC=PD-PG≤DG;(3)如图3中,在BC上取一点G,使得BG=1,作DF⊥BC于F.解法类似(2);解:(1)证明:如图1,∵PB=2,BC=4,BN=1,∴PB2=4,BN•BC=4.∴PB2=BN•BC.∴BN BP =BP BC.又∵∠B=∠B,∴△BPN∽△BCP.∴PN PC =BNBP=12.∴PN=12PC;(2)如图2,在BC上取一点G,使得BG=1,∵PB BG =21=2,BCPB=42=2∴PB BG =BCPB,∠PBG=∠PBC∴△PBG∽△CBP∴PG PC =BGPB=12∴PG=12PC∴PD+12PC=DP+PG∵DP+PG≥DG∴当D、P、G共线时,PD+12PC的值最小,最小值为DG=42+32=5 (3)同(2)中证法,如图3,当点P在DG的延长线上时,PD-12PC的最大值,最大值为DG=37.总结提升:本题考查圆综合题、正方形的性质、菱形的性质、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.类型三:综合应用3.((2020•成华区校级模拟)如图1,抛物线y=mx2-3mx+n(m≠0)与x轴交于点C( -1,0)与y轴交于点B(0,3),在线段OA上有一动点E(不与O、A重合),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)分别求出抛物线和直线AB的函数表达式;(2)设△PMN的面积为S1,△AEN的面积为S2,当S1S2=3625时,求点P的坐标;(3)如图2,在(2)的条件下,将线段OE绕点O逆时针旋转的到OE′,旋转角为α(0°<α< 90°),连接E′A、E′B,求E'A+23E'B的最小值.思路引领:(1)令y =0,求出抛物线与x 轴交点,列出方程即可求出a ,根据待定系数法可以确定直线AB 解析式.(2)由△PNM ∽△ANE ,推出PN AN =65,列出方程即可解决问题.(3)在y 轴上取一点M 使得OM ′=43,构造相似三角形,可以证明AM ′就是E ′A +23E ′B 的最小值.解:(1)∵抛物线y =mx 2-3mx +n (m ≠0)与x 轴交于点C (-1,0)与y 轴交于点B (0,3),则有n =3m +3m +n =0 ,解得m =-34n =3,∴抛物线y =-34x 2+94x +3,令y =0,得到-34x 2+94x +3=0,解得:x =4或-1,∴A (4,0),B (0,3),设直线AB 解析式为y =kx +b ,则b =34k +b =0,解得k =-34b =3 ,∴直线AB 解析式为y =-34x +3.(2)如图1中,设P m ,-34m 2+94m +3 ,则E (m ,0),∵PM ⊥AB ,PE ⊥OA ,∴∠PMN =∠AEN ,∵∠PNM =∠ANE ,∴△PNM ∽△ANE ,∵△PMN 的面积为S 1,△AEN 的面积为S 2,S 1S 2=3625,∴PN AN=65,∵NE∥OB,∴AN AB =AE OA,∴AN=54(4-m),∵抛物线解析式为y=-34x2+94x+3,∴PN=-34m2+94m+3--34m+3=-34m2+3m,∴-34m2+3m54(4-m)=65,解得m=2或4(舍弃),∴m=2,∴P2,92.(3)如图2中,在y轴上取一点M′使得OM′=43,连接AM′,在AM′上取一点E′使得OE′=OE.∵OE′=2,OM′•OB=43×3=4,∴OE′2=OM′•OB,∴OE' OM'=OB OE',∵∠BOE′=∠M′OE′,∴△M′OE′∽△E′OB,∴M'E'BE'=OE'OB=23,∴M′E′=23BE′,∴AE′+23BE′=AE′+E′M′=AM′,此时AE′+23BE′最小(两点间线段最短,A、M′、E′共线时),最小值=AM′=42+432=4103.总结提升:本题属于二次函数综合题,考查相似三角形的判定和性质、待定系数法、最小值问题等知识,解题的关键是构造相似三角形,找到线段AM′就是E′A+23E′B的最小值,属于中考压轴题针对训练4.(2021•九龙坡区校级模拟)在△ABC中,∠CAB=90°,AC=AB.若点D为AC上一点,连接BD,将BD绕点B顺时针旋转90°得到BE,连接CE,交AB于点F.(1)如图1,若∠ABE=75°,BD=4,求AC的长;(2)如图2,点G为BC的中点,连接FG交BD于点H.若∠ABD=30°,猜想线段DC与线段HG的数量关系,并写出证明过程;(3)如图3,若AB=4,D为AC的中点,将△ABD绕点B旋转得△A′BD′,连接A′C、A′D,当A′D+2A′C最小时,求S△A′BC.2思路引领:(1)通过作辅助线,构造直角三角形,借助解直角三角形求得线段的长度;(2)通过作辅助线,构造全等三角形,设AC=a,利用中位线定理,解直角三角形,用a的代数式表示CD和HG,即可得CD与HG的数量关系;(3)构造阿氏圆模型,利用两点之间线段最短,确定A'(4)的位置,继而求得相关三角形的面积.解:(1)过D作DG⊥BC,垂足是G,如图1:∵将BD绕点B顺时针旋转90°得到BE,∴∠EBD=90°,∵∠ABE=75°,∴∠ABD=15°,∵∠ABC=45°,∴∠DBC=30°,BD=2,BG=3DG=23,∴在直角△BDG中有DG=12∵∠ACB=45°,∴在直角△DCG中,CG=DG=2,∴BC=BG+CG=2+23,BC=2+6;∴AC=22(2)线段DC与线段HG的数量关系为:HG=3CD,4证明:延长CA,过E作EN垂直于CA的延长线,垂足是N,连接BN,ED,过G作GM⊥AB于M,如图:∴∠END=90°,由旋转可知∠EBD=90°,∴∠EDB=45°∴∠END =∠EBD =90°,∴E ,B ,D ,N 四点共圆,∴∠BNE =∠EDB =45°,∠NEB +∠BDN =180°∵∠BDC +∠BDN =180°,∠BCD =45°,∴∠BEN =∠BDC ,∴∠BNE =45°=∠BCD ,在△BEN 和△BDC 中,∠BNE =∠BCD∠BEN =∠BDC BE =BA,∴△BEN ≌△BDC (AAS ),∴BN =BC ,∵∠BAC =90°,在等腰△BNC 中,由三线合一可知BA 是CN 的中线,∵∠BAC =∠END =90°,∴EN ∥AB ,∵A 是CN 的中点,∴F 是EC 的中点,∵G 是BC 的中点,∴FG 是△BEC 的中位线,∴FG ∥BE ,FG =12BE ,∵BE ⊥BD ,∴FG ⊥BD ,∵∠ABD =30°,∴∠BFG =60°,∵∠ABC =45°,∴∠BGF =75°,设AC =a ,则AB =a ,在Rt △ABD 中,AD =33a ,BD =BE =233a ,∴FG =12BE ,∴FG =33a ,∵GM ⊥AB ,∴△BGM 是等腰三角形,∴MG =MB =22BG =22×12BC =22×12×2AC =12a ,在Rt △MFG 中,∠MFG =60°,∴3MF =MG ,∴MF =36a ,∴BF=BM+MF=3+36a,在Rt△BFH中,∠BFG=60°,∴FH=12BF=3+312a,∴HG=FG-FH=33a-3+312a=14(3-1)a,又∵CD=a-33a=33(3-1)a,∴CD HG =43,∴HG=34CD;(3)设AB=a,则BC=2a,取BC的中点N,连接A′D,A′C,A′N,连接DN,如图3,由旋转可知A′B=AB=a,∵A'BBN =a22a=2,BCA'B=2aa=2,∴A'BBN =BCA'B=2,又∠A'BN=∠CBA',∴△A′BN∽△CBA′,∴A'N A'C =A'BBC=22,∴A'N=22A'C,根据旋转和两点之间线段最短可知,A'D+22A'C最小,即是A'D+A'N最小,此时D、A'、N共线,即A'在线段DN上,设此时A'落在A''处,过A''作A''F⊥AB于F,连接AA'',如图4,∵D,N分别是AC,BC的中点,∴DN是△ABC的中位线,∴DN∥AB,∵AB⊥AC,∴DN⊥AC,∵∠A=∠A''FA=∠A''DA=90°,∴四边形A''FAD是矩形,∴AF=A''D,A''F=AD=2,∵又A''B=AB=4,设AF=x,在直角三角形A''FB中,A''B2=A''F2+BF2,∴42=22+(4-x)2,解得x=4-23.∴此时S△A''BC=S△ABC-S△AA''B-S△A''AC=12AB•AC-12AB•A''F-12AC•A''D=12×4×4-1 2×4×2-12×4×(4-23)=43-4.总结提升:此题主要考查全等三角形判定,等腰三角形的三线合一,解直角三角形,四点共圆,几何最值的阿氏圆模型等知识,综合性强,难度较大,属于压轴题,解得关键是作辅助线,构造全等三角形和相似三角形解决问题.5.(2022•高唐县二模)如图,抛物线y=-x2+bx+c经过点A(-4,-4),B(0,4),直线AC的解析式为y=-12x-6,且与y轴相交于点C,若点E是直线AB上的一个动点,过点E作EF⊥x轴交AC于点F.(1)求抛物线y=-x2+bx+c的解析式;(2)点H是y轴上一动点,连接EH,HF,当点E运动到什么位置时,四边形EAFH是矩形?求出此时点E,H的坐标;(3)在(2)的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上以动点,求12AM+ CM的最小值.思路引领:(1)直接利用待定系数法求解即可;(2)先利用待定系数法求出直线AB的解析式,可判断出AB⊥AC,当四边形EAFH是平行四边形时,四边形EAFH是矩形,分别点E、H、F的坐标,再利用中点坐标公式求解即可;(3)先取EG的中点P,进而判断出△PEM∽△MEA,即可得出PM=12AM,连接CP交⊙E于点M,再求出点P坐标,即可得出结论.解:(1)将点A(-4,-4),B(0,4)代入y=-x2+bx+c得:-16-4b+c=-4c=4,解得:b=-2 c=4,∴抛物线解析式为:y =-x 2-2x +4;(2)如图,当点E 运动到(-2,0)时,四边形EAFH 是矩形,设直线AB 的解析式为y =kx +b ,将点A (-4,-4),B (0,4)代入得:-4k +b =-4b =4 ,解得:k =2b =4 ,∴线AB 的解析式为y =2x +4,∵直线AC 的解析式为y =-12x -6,∴AB ⊥AC ,∴当四边形EAFH 是平行四边形时,四边形EAFH 是矩形,此时,EF 与AH 互相平分,设E (m ,2m +4),H (0,t )则F m ,-12m -6 ,∵A (-4,-4),∴12(m +m )=12(-4+0)122m +4-12m -6 =12(-4+t ),解得:m =-2t =-1∴E (-2,0),H (0,-1);(3)如图,由(2)可知E (-2,0),H (0,-1),A (-4,-4),∴EH =5,AE =25,设AE 交⊙E 于点G ,取GE 的中点P ,则PE =52,设P (k ,2k +4),∵E (-2,0),∴PE 2=(k +2)2+(2k +4)2=522,∴k =-52或k =-32(舍去),∴P -52,-1 ,∵C (0,-6),∴PC =-52 2+(-1+6)2=552,连接PC 交⊙E 于点M ,连接EM ,则EM =EH =5,∴PE ME =525=12,∵ME AE =525=12,∴PE ME =MEAE,∵∠PEM=∠MEA,∴△PEM∽△MEA,∴PM AM =MEAE=12,∴PM=12AM,∴12AM+CM=PM+CM,∴当P、M、C三点共线时,12AM+CM取得最小值即PC的长,∴1 2AM+CM最小值为552.总结提升:本题是二次函数的综合题,考查了待定系数法求函数关系式,平行四边形的性质,矩形的性质,相似三角形的判定与性质,中点坐标公式,极值的确定,熟练掌握待定系数法求函数解析式,利用中点坐标公式构建方程,以及构造相似三角形是解决问题的关键.模块二2023中考押题预测1.(2021秋•西峡县期末)如图,在△ABC中,∠A=90°,AB=AC=4,点E、F分别是边AB、AC的中点,点P是以A为圆心、以AE为半径的圆弧上的动点,则12PB+PC的最小值等于()A.4B.32C.17D.15思路引领:在AB上截取AQ=1,连接AP,PQ,CQ,证明△APQ∽△ABP,可得PQ=1 2PB,则12PB+PC=PC+PQ,当C、Q、P三点共线时,PC+PQ的值最小,求出CQ即为所求.解:在AB上截取AQ=1,连接AP,PQ,CQ,∵点E、F分别是边AB、AC的中点,点P是以A为圆心、以AE为半径的圆弧上的动点,∴AP AB =12,∵AP=2,AQ=1,∴AQAP=12,∵∠PAQ=∠BAP,∴△APQ∽△ABP,∴PQ=12PB,∴12PB+PC=PC+PQ≥CQ,在Rt△ACQ中,AC=4,AQ=1,∴QB=AC2+AQ2=17,∴12PB+PC的最小值17,故选:C.总结提升:本题考查了阿氏圆问题,相似三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造相似三角形是解题的关键.2.(2022秋•永嘉县校级期末)如图所示,∠ACB=60°,半径为2的圆O内切于∠ACB.P 为圆O上一动点,过点P作PM、PN分别垂直于∠ACB的两边,垂足为M、N,则PM+ 2PN的取值范围为6-23≤PM+2PN≤6+23 .思路引领:PM+2PN=212PM+PN,作MH⊥PN,HP=12PM,确定HN的最大值和最小值.解:作MH⊥NP于H,作MF⊥BC于F,∵PM⊥AC,PN⊥CB,∴∠PMC=∠PNC=90°,∴∠MPN=360°-∠PMC-∠PNC-∠C=120°,∴∠MPH=180°-∠MPN=60°,∴HP=PM•cos∠MPH=PM•cos60°=12PM,∴PN+12PM=PN+HP=NH,∵MF=NH,∴当MP与⊙O相切时,MF取得最大和最小,如图1,连接OP,OG,OC,可得:四边形OPMG是正方形,∴MG=OP=2,在Rt△COG中,CG=OG•tan60°=23,∴CM=CG+GM=2+23,在Rt△CMF中,MF=CM•sin C=(2+23)×32=3+3,∴HN=MF=3+3,PM+2PN=212PM+PN=2HN=6+23,如图2,由上知:CG=23,MG=2,∴CM=23-2,∴HM=(23-2)×32=3-3,∴PM+2PN=212PM+PN=2HN=6-23,∴6-23≤PM+2PN≤6+23.总结提升:本题考查的是解直角三角形等知识,解决问题的关键是构造12 PM.3.(2021秋•龙凤区期末)如图,在Rt△ABC中,∠C=90°,AC=9,BC=4,以点C为圆心,3为半径做⊙C,分别交AC,BC于D,E两点,点P是⊙C上一个动点,则13PA+PB的最小值为 17 .思路引领:在AC上截取CQ=1,连接CP,PQ,BQ,证明△ACP∽△PCQ,可得PQ=13AP,当B、Q、P三点共线时,13PA+PB的值最小,求出BQ即为所求.解:在AC上截取CQ=1,连接CP,PQ,BQ,∵AC=9,CP=3,∴CP AC =13,∵CP=3,CQ=1,∴CQCP=13,∴△ACP∽△PCQ,∴PQ=13AP,∴13PA+PB=PQ+PB≥BQ,∴当B、Q、P三点共线时,13PA+PB的值最小,在Rt△BCQ中,BC=4,CQ=1,∴QB=17,∴13PA+PB的最小值17,故答案为:17.总结提升:本题考查阿氏圆求最短距离,熟练掌握胡不归求最短距离的方法,利用三角形相似将13PA转化为PQ是解题的关键.4.(2022春•长顺县月考)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D、E分别是边BC、AC上的两个动点,且DE=4,P是DE的中点,连接PA,PB,则PA+14PB的最小值为 1452 .思路引领:如图,在CB上取一点F,使得CF=12,连接PF,AF.利用相似三角形的性质证明PF=14PB,根据PF+PA≥AF,利用勾股定理求出AF即可解决问题.解:如图,在CB上取一点F,使得CF=12,连接PF,AF.∵∠DCE=90°,DE=4,DP=PE,∴PC=12DE=2,∵CF CP =14,CPCB=14,∴CF CP =CP CB,∵∠PCF=∠BCP,∴△PCF∽△BCP,∴PF PB =CFCP=14,∴PF=14PB,∴PA+14PB=PA+PF,∵PA+PF≥AF,AF=CF2+AC2=12 2+62=1452,∴PA+14PB≥1452,∴PA+14PB的最小值为1452,故答案为145 2.总结提升:本题考查阿氏圆问题,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用转化的思想思考问题.5.(2021秋•梁溪区校级期中)如图,⊙O与y轴、x轴的正半轴分别相交于点M、点N,⊙O 半径为3,点A(0,1),点B(2,0),点P在弧MN上移动,连接PA,PB,则3PA+PB的最小值为 85 .思路引领:在y轴上取点H(0,9),连接BH,通过证明△AOP∽△POH,可证HP=3AP,则3PA+PB=PH+PB,当点P在BH上时,3PA+PB有最小值为HB的长,即可求解.解:如图,在y轴上取点H(0,9),连接BH,∵点A(0,1),点B(2,0),点H(0,9),∴AO=1,OB=2,OH=9,∵OA OP =13=39=OPOH,∠AOP=∠POH,∴△AOP∽△POH,∴AP HP =OPOH=13,∴HP=3AP,∴3PA+PB=PH+PB,∴当点P在BH上时,3PA+PB有最小值为HB的长,∴BH=OB2+OH2=4+81=85,故答案为:85.总结提升:本题考查了阿氏圆问题,相似三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造相似三角形是解题的关键.6.(2020•武汉模拟)【新知探究】新定义:平面内两定点A ,B ,所有满足PA PB=k (k 为定值)的P 点形成的图形是圆,我们把这种圆称之为“阿氏圆”【问题解决】如图,在△ABC 中,CB =4,AB =2AC ,则△ABC 面积的最大值为 163 .思路引领:以A 为顶点,AC 为边,在△ABC 外部作∠CAP =∠ABC ,AP 与BC 的延长线交于点P ,证明△APC ∽△BPA ,由相似三角形的性质可得BP =2AP ,CP =12AP ,从而求出AP 、BP 和CP ,即可求出点A 的运动轨迹,再找出距离BC 最远的A 点的位置即可求解.解:以A 为顶点,AC 为边,在△ABC 外部作∠CAP =∠ABC ,AP 与BC 的延长线交于点P ,∵∠CAP =∠ABC ,∠BPA =∠APC ,AB =2AC ,∴△APC ∽△BPA ,AP BP =CP AP =AC AB =12,∴BP =2AP ,CP =12AP ,∵BP -CP =BC =4,∴2AP -12AP =4,解得:AP =83,∴BP =163,CP =43,即点P 为定点,∴点A 的轨迹为以点P 为圆心,83为半径的圆上,如图,过点P 作BC 的垂线,交圆P 与点A 1,此时点A 1到BC 的距离最大,即△ABC 的面积最大,S △ABC =12BC •A 1P =12×4×83=163.故答案为:163.总结提升:本题考查相似三角形的判定和性质,三角形的面积,确定点的运动轨迹,熟练掌握三角形的判定和性质以及三角形的面积公式是解题的关键.7.(2020•溧阳市一模)如图,在⊙O 中,点A 、点B 在⊙O 上,∠AOB =90°,OA =6,点C 在OA 上,且OC =2AC ,点D 是OB 的中点,点M 是劣弧AB 上的动点,则CM +2DM 的最小值为 410 .思路引领:延长OB到T,使得BT=OB,连接MT,CT.利用相似三角形的性质证明MT= 2DM,求CM+2DM的最小值问题转化为求CM+MT的最小值.求出CT即可判断.解:延长OB到T,使得BT=OB,连接MT,CT.∵OM=6,OD=DB=3,OT=12,∴OM2=OD•OT,∴OMOD =OT OM,∵∠MOD=∠TOM,∴△MOD∽△TOM,∴DM MT =OMOT=12,∴MT=2DM,∵CM+2DM=CM+MT≥CT,又∵在Rt△OCT中,∠COT=90°,OC=4,OT=12,∴CT=OC2+OT2=42+122=410,∴CM+2DM≥410,∴CM+2DM的最小值为410,∴答案为410.总结提升:本题考查相似三角形的判定和性质,阿氏圆问题,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.8.如图,正方形ABCD的边长为4,E为BC的中点,以B为圆心,BE为半径作⊙B,点P是⊙B上一动点,连接PD、PC,则PD+12PC的最小值为5.思路引领:如图,在BC上取一点T,使得BT=1,连接PB,PT,DT.证明△PBT∽△CBP,推出PTPC=PBCB=12,推出PT=12PC,由PD+12PC=PD+PT≥DT=5,由此可得结论.解:如图,在BC上取一点T,使得BT=1,连接PB,PT,DT.∵四边形ABCD是正方形,∴∠DCT=90°,∵CD=4,CT=3,∴DT=CD2+CT2=42+32=5,∵PB=2,BT=1,BC=4,∴PB2=BT•BC,∴PB BT =BC PB,∵∠PBT=∠PBC,∴△PBT∽△CBP,∴PT PC =PBCB=12,∴PT=12PC,∵PD+12PC=PD+PT≥DT=5,∴PD+12PC的最小值为5,故答案为:5.总结提升:本题考查阿氏圆问题,正方形的性质,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.9.如图,扇形AOB中,∠AOB=90°,OA=6,C是OA的中点,D是OB上一点,OD=5,P是AB上一动点,则PC+12PD的最小值为 132 .思路引领:如图,延长OA使AE=OB,连接EC,EP,OP,证明△OPE∽△OCP推出PCPE =OPOE=12,推出EP=2PC,推出PC+12PD=12(2PC+PD)=12(PD+PE),推出当点E,点P,点D三点共线时,PC+12PD的值最小.解:如图,延长OA使AE=OB,连接EC,EP,OP,∵AO=OB=6,C分别是OA的中点,∴OE=12,OP=6,OC=AC=3,∴OP OE =OCOP=12,且∠COP=∠EOP∴△OPE ∽△OCP ∴PC PE =OP OE=12,∴EP =2PC ,∴PC +12PD =12(2PC +PD )=12(PD +PE ),∴当点E ,点P ,点D 三点共线时,PC +12PD 的值最小,∵DE =OD 2+OE 2=52+122=13,∴PD +PE ≥DE =13,∴PD +PE 的最小值为13,∴PC +12PD 的值最小值为132.故答案为:132.总结提升:本题考查阿氏圆问题,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用转化的思想思考问题.10.如图所示的平面直角坐标系中,A (0,4),B (4,0),P 是第一象限内一动点,OP =2,连接AP 、BP ,则BP +12AP 的最小值是 17 .思路引领:如图,取点T (0,1),连接PT ,BT .利用相似三角形的性质证明PT =12PB ,推出PB +12PA =PB +PT ≥BT ,求出BT ,可得结论.解:如图,取点T (0,1),连接PT ,BT .∵T (0,1),A (0,4),B (4,0),∴OT =1,OA =4,OB =4,∵OP =2,∴OP 2=OT •OA ,∴OP OT =OA OP,∵∠POT =∠AOP ,∴△POT ∽△AOP ,∴PT PA =OPOA=12,∴PT=12PA,∴PB+12PA=PB+PT,∵BT=12+42=17,∴PB+PT≥17,∴BP+12AP≥17∴BP+12PB的最小值为17.故答案为:17.总结提升:本题考查阿氏圆问题,相似三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.11.如图,边长为4的正方形,内切圆记为圆O,P为圆O上一动点,则2PA+PB的最小值为25 .思路引领:2PA+PB=2PA+22PB,利用相似三角形构造22PB.解:设⊙O半径为r,OP=r=12BC=2,OB=2r=22,取OB的中点I,连接PI,∴OI=IB=2,∵OPOI =22=2,OB OP =222=2,∴OPOI =OB OP,∠O是公共角,∴△BOP∽△POI,∴PI PB =OIOP=22,∴PI=22PB,∴AP +22PB =AP +PI ,∴当A 、P 、I 在一条直线上时,AP +22PB 最小,作IE ⊥AB 于E ,∵∠ABO =45°,∴IE =BE =22BI =1,∴AE =AB -BE =3,∴AI =32+12=10,∴AP +22PB 最小值=AI =10,∵2PA +PB =2PA +22PB ,∴2PA +PB 的最小值是2AI =2×10=25.故答案是25.总结提升:本题是“阿氏圆”问题,解决问题的关键是构造相似三角形.12.如图,在每个小正方形的边长为1的网格中,△OAB 的顶点O ,A ,B 均在格点上,点E 在OA 上,且点E 也在格点上.(I )OE OB的值为 23 ;(Ⅱ)DE 是以点O 为圆心,2为半径的一段圆弧.在如图所示的网格中,将线段OE 绕点O 逆时针旋转得到OE ′,旋转角为α(0°<α<90°)连接E 'A ,E 'B ,当E 'A +23E 'B 的值最小时,请用无刻度的直尺画出点E ′,并简要说明点E '的位置是如何找到的(不要求证明) 通过取格点K 、T ,使得OH :OD =2:3,构造相似三角形将23E ′B 转化为E ′H .思路引领:(1)求出OE ,OB 即可解决问题.(2)构造相似三角形把23E ′B 转化为E ′H ,利用两点之间线段最短即可解决问题.解:(1)由题意OE =2,OB =3,∴OE OB =23,故答案为:23.(2)如图,取格点K,T,连接KT交OB于H,连接AH交DE于E′,连接BE′,点E′即为所求.故答案为:通过取格点K、T,使得OH:OD=2:3,构造相似三角形将23E′B转化为E′H,利用两点之间线段最短即可解决问题.总结提升:本题是作图-旋转变换,主要考查了相似三角形的判定与性质,两点之间,线段最短等知识,找到点H是解题的关键.13.(2021秋•定海区期末)如图1,正方形OABC边长是2,以OA为半径作圆,P为弧AC上的一点,过点P作PM⊥AB交AB于点M,连结PO、PA,设PM=m,PA=n.(1)求证:∠POA=2∠PAM;(2)探求m、n的数量关系,并求n-m最大值;(3)如图2:连结PB,设PB=h,求2h+2m的最小值.思路引领:(1)根据正方形性质和三角形内角和定理即可证得结论;(2)如图1,过点O作OE⊥PA于E,先证明△APM∽△OAE,利用相似三角形性质可得出m=14n2,进而可得:n-m=n-14n2=-14(n-2)2+1,再运用二次函数性质即可得出答案;(3)如图2,连接AC、BD交于点D,连接PD,当D、P、M三点共线且DM⊥AB时,PD+ PM=DM最小,即2h+2m=2DM最小,根据正方形和等腰直角三角形的性质即可求得答案.解:(1)证明:∵四边形OABC是正方形,∴∠OAB=90°,∴∠OAP+∠PAM=90°,即2∠OAP+2∠PAM)=180°,∵OA=OP,∴∠OPA=∠OAP,∵∠OPA+∠OAP+∠POA=180°,∴2∠OAP+∠POA=180°,∴∠POA=2∠PAM;(2)解:如图1,过点O作OE⊥PA于E,∵OA=OP,OE⊥PA,∴AE=12PA,∠AOE=∠POE=12∠POA,∵∠POA=2∠PAM,∴∠PAM=12∠POA,∴∠PAM=∠AOE,∵PM⊥AB,∴∠AMP=90°=∠OEA,∴△APM∽△OAE,∴PMPA =AEOA,即mn=12n2,∴m=14n2,∴n-m=n-14n2=-14(n-2)2+1,∴当n=2时,n-m取得最大值,n-m最大值为1;(3)解:如图2,连接AC、OB交于点D,连接PD,∵四边形ABCO是正方形,∴AC⊥BD,OD=AD=BD,∴OD OA =OAOB=22,∵OP=OA,∴OD OP =OPOB=22,∵∠POD=∠BOP,∴△POD∽△BOP,∴PD PB =OPOB=22,∴PD=22PB,∵PB=h,PM=m,∴2h +2m =222h +m=222PB +PM =2(PD +PM ),∵当D 、P 、M 三点共线且DM ⊥AB 于M 时,PD +PM =DM 最小,∴当D 、P 、M 三点共线且DM ⊥AB 时,2h +2m =2(PD +PM )=2DM 最小,如图3,∵△ABD 是等腰直角三角形,DM ⊥AB ,∴DM =12AB =1,∴2DM =2,即2h +2m 的最小值为2.总结提升:本题是圆的综合题,考查了等腰直角三角形的性质,正方形的性质,三角形内角和定理,圆的性质,相似三角形的判定和性质,两点之间线段最短,点到直线的距离垂线段最短,二次函数最值的应用,利用相似三角形性质列出关于m 、n 的关系式恰当运用配方法是解题关键.14.(2022•从化区一模)已知,AB 是⊙O 的直径,AB =42,AC =BC .(1)求弦BC 的长;(2)若点D 是AB 下方⊙O 上的动点(不与点A ,B 重合),以CD 为边,作正方形CDEF ,如图1所示,若M 是DF 的中点,N 是BC 的中点,求证:线段MN 的长为定值;(3)如图2,点P 是动点,且AP =2,连接CP ,PB ,一动点Q 从点C 出发,以每秒2个单位的速度沿线段CP 匀速运动到点P ,再以每秒1个单位的速度沿线段PB 匀速运动到点B ,到达点B 后停止运动,求点Q 的运动时间t 的最小值.思路引领:(1)AB 是⊙O 的直径,AC =BC 可得到△ABC 是等腰直角三角形,从而得道答案;(2)连接AD 、CM 、DB 、FB ,首先利用△ACD ≌△BCF ,∠CBF =∠CAD ,证明D 、B 、F 共线,再证明△CMB 是直角三角形,根据直角三角形斜边上的中线等于斜边的一半,即可得证;(3)“阿氏圆”的应用问题,以A 为圆心,AP 为半径作圆,在AC 上取点M ,使AM =1,连接PM ,过M 作MH ⊥AB 于H ,连接BM 交⊙A 于P ',先证明PM =PC 2,PC 2+BP 最小,即是PM +BP 最小,此时P 、B 、M 共线,再计算BM 的长度即可.解:(1)∵AB 是⊙O 的直径,∴∠ABC =90°,∵AC=BC,∴△ABC是等腰直角三角形,∠CAB=45°,∵AB=42,∴BC=AB•sin45°=4;(2)连接AD、CM、DB、FB,如图:∵△ABC是等腰直角三角形,四边形CDEF是正方形,∴CD=CF,∠DCF=∠ACB=90°,∴∠ACD=90-∠DCB=∠BCF,又AC=BC,∴△ACD≌△BCF(SAS),∴∠CBF=∠CAD,∴∠CBF+∠ABC+∠ABD=∠CAD+∠ABC+∠ABD=∠DAB+∠CAB++∠ABC+∠ABD=∠DAB+45°+45°+∠ABD,而AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠ABD=90°,∴∠CBF+∠ABC+∠ABD=180°,∴D、B、F共线,∵四边形CDEF是正方形,∴△DCF是等腰直角三角形,∵M是DF的中点,∴CM⊥DF,即△CMB是直角三角形,∵N是BC的中点,∴MN=12BC=2,即MN为定值;(3)以A为圆心,AP为半径作圆,在AC上取点M,使AM=1,连接PM,过M作MH⊥AB 于H,连接BM交⊙A于P',如图:一动点Q从点C出发,以每秒2个单位的速度沿线段CP匀速运动到点P,再以每秒1个单位的速度沿线段PB匀速运动到点B,∴Q运动时间t=PC2+BP,∵AM=1,AP=2,AC=BC=4,∴AMAP =APAC=12,又∠MAP=∠PAC,∴△MAP∽△PAC,∴PMPC =AMAP=12,∴PM=PC2,。
中考数学最值—阿氏圆问题(解析+例题)
中考数学最值——阿氏圆问题(点在圆上运动)(PA+k·PB型最值)【问题背景】与两个定点距离之比为一个不为0的常数的点的轨迹是一个圆,这个圆为阿氏圆。
这个定理叫阿波罗尼斯定理。
【知识储备】①三角形三边关系:两边之和大于第三边;两边之差小于第三边。
②两点之间线段最短。
③连接直线外一点和直线上各点的所有线段中,垂线段最短。
【模型分析】①条件:已知A、B为定点,P为 O上一动点,OPOB=k(0<k<1)。
②问题:P在何处时,PA+k·PB的值最小。
③方法:连接OP,OB,在OB上取点C,使OCOP =k,可得△POC∽△BOP,所以CPPB=OPOB=k,所以得CP=k·PB。
所以PA+k·PB=PA+CP≥AC,当P为AC与 O的交点时,PA+k·PB的最小值为AC。
总结:构造母子三角形相似若能直接构造△相似计算的,直接计算,不能直接构造△相似计算的,先把k提到括号外边,将其中一条线段的系数化成,再构造△相似进行计算。
【经典例题】已知∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点.(1)求12AP BP+的最小值为。
(2)求13AP BP+的最小值为。
【巩固训练】练习1:如图,点A、B在⊙O 上,且OA=OB=6,且OA⊥OB,点C是OA的中点,点D在OB 上,且OD=4,动点P在⊙O 上,则2PC+PD的最小值为;练习2:如图,在Rt△ABC中,∠ACB=90°,D为AC的中点,M为BD的中点,将线段AD绕A点任意旋转(旋转过程中始终保持点M为BD的中点),若AC=4,BC=3,那么在旋转过程中,线段CM长度的取值范围是__________。
练习3:Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 为△ABC 内一动点,满足CD=2,则AD+32BD 的最小值为_______.练习4:如图,菱形ABCD 的边长为2,锐角大小为60°,⊙A 与BC 相切于点E ,在⊙A 上任取一点P ,则PB+23PD 的最小值为________.练习5:如图,已知菱形ABCD 的边长为4,∠B=60°,圆B 的半径为2,P 为圆B 上一动点,则PD+21PC 的最小值为_________.练习6:如图,等边△ABC 的边长为6,内切圆记为⊙O ,P 是圆上动点,求2PB+PC 的最小值.值。
中考专题 阿氏圆专题(解析版)
阿氏圆专题在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P 点轨迹是直线,而当P 点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.【模型来源】“阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A 、B 两点,点P 满足PA :PB=k (k≠1),则满足条件的所有的点P 的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”.【模型建立】如图 1 所示,⊙O 的半径为R ,点 A 、B 都在⊙O 外 ,P 为⊙O 上一动点,已知R=25OB ,连接 PA 、PB ,则当“PA+25PB ”的值最小时,P 点的位置如何确定?解决办法:如图2,在线段 OB 上截取OC 使 OC=25R ,则可说明△BPO 与△PCO 相似,则有25PB=PC 。
故本题求“PA+25PB ”的最小值可以转化为“PA+PC ”的最小值,其中与A 与C 为定点,P 为动点,故当 A 、P 、C 三点共线时,“PA+PC ”值最小。
【技巧总结】计算PA k PB +的最小值时,利用两边成比例且夹角相等构造母子型相似三角形问题:在圆上找一点P 使得PA k PB +的值最小,解决步骤具体如下: 1. 如图,将系数不为1的线段两端点与圆心相连即OP ,OB2. 计算出这两条线段的长度比OPk OB = 3. 在OB 上取一点C ,使得OC k OP =,即构造△POM△△BOP ,则PCk PB=,PC k PB =4. 则=PA k PB PA PC AC ++≥,当A 、P 、C 三点共线时可得最小值典题探究 启迪思维 探究重点例题1. 如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC于D 、E 两点,点P 是圆C 上一个动点,则12PA PB +的最小值为__________.【分析】这个问题最大的难点在于转化12PA ,此处P 点轨迹是圆,注意到圆C 半径为2,CA=4,连接CP ,构造包含线段AP 的△CPA ,在CA 边上取点M 使得CM=2,连接PM ,可得△CPA ∽△CMP ,故PA :PM=2:1,即PM=12PA .问题转化为PM+PB ≥BM 最小值,故当B ,P ,M 三点共线时得最小值,直接连BM变式练习>>>1.如图1,在RT △ABC 中,∠ACB=90°,CB=4,CA=6,圆C 的半径为2,点P 为圆上一动点,连接AP ,BP , 求①BP AP 21+,②BP AP +2,③BP AP +31,④BP AP 3+的最小值.[答案]:①=37,②=237,③=3372,④= EABC DP例题2. 如图,点C 坐标为(2,5),点A 的坐标为(7,0),△C 的半径为10,点B 在△C 上一动点,AB OB 55的最小值为________.[答案]:5. 变式练习>>>2.如图,在平面直角坐标系xoy 中,A(6,-1),M(4,4),以M 为圆心,22为半径画圆,O 为原点,P 是⊙M 上一动点,则PO+2PA 的最小值为________.[答案]:10.例题3. 如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,P为上一动点,求PC+PD的最小值.【解答】解:如图当A、P、D共线时,PC+PD最小.理由:连接PB、CO,AD与CO交于点M,△AB=BD=4,BD是切线,△△ABD=90°,△BAD=△D=45°,△AB是直径,△△APB=90°,△△P AB=△PBA=45°,△P A=PB,PO△AB,△AC=PO=2,AC△PO,△四边形AOPC是平行四边形,△OA=OP,△AOP=90°,△四边形AOPC是正方形,△PM=PC,△PC+PD=PM+PD=DM,△DM△CO,△此时PC+DP最小=AD﹣AM=2﹣=.变式练习>>>3.如图,四边形ABCD为边长为4的正方形,△B的半径为2,P是△B上一动点,则PD+PC的最小值为5;PD+4PC的最小值为10.【解答】解:△如图,连接PB、在BC上取一点E,使得BE=1.△PB2=4,BE•BC=4,△PB2=BE•BC,△=,△△PBE=△CBE,△△PBE△△CBE,△==,△PD+PC=PD+PE,△PE+PD≤DE,在Rt△DCE中,DE==5,△PD+PC的最小值为5.△连接DB ,PB ,在BD 上取一点E ,使得BE =,连接EC ,作EF △BC 于F .△PB 2=4,BE •BD =×4=4,△BP 2=BE •BD ,△=,△△PBE =△PBD ,△△PBE △△DBP , △==,△PE =PD ,△PD +4PC =4(PD +PC )=4(PE +PC ),△PE +PC ≥EC ,在Rt△EFC 中,EF =,FC =,△EC =,△PD +4PC 的最小值为10.故答案为5,10.例题4. 如图,已知正方ABCD 的边长为6,圆B 的半径为3,点P 是圆B 上的一个动点,则12PD PC 的最大值为_______.【分析】当P 点运动到BC 边上时,此时PC=3,根据题意要求构造12PC ,在BC 上取M 使得此时PM=32,则在点P 运动的任意时刻,均有PM=12PC ,从而将问题转化为求PD-PM 的最大值.连接PD ,对于△PDM ,PD-PM <DM ,故当D 、M 、P 共线时,PD-PM=DM 为最大值152.AB CDPABCDP MMPDCBAABCDPMMPDCBA变式练习>>>4.(1)如图1,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.(2)如图2,已知菱形ABCD的边长为4,△B=60°,圆B的半径为2,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.图1 图2【解答】解:(1)如图3中,在BC上取一点G,使得BG=4.△==,==,△=,△△PBG=△PBC,△△PBG△△CBP,△==,△PG=PC,△PD+PC=DP+PG,△DP+PG≥DG,△当D、G、P共线时,PD+PC的值最小,最小值为DG==.△PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大,最大值为DG=.故答案为,(2)如图4中,在BC上取一点G,使得BG=1,作DF△BC于F.△==2,==2,△=,△△PBG=△PBC,△△PBG△△CBP,△==,△PG=PC,△PD+PC=DP+PG,△DP+PG≥DG,△当D、G、P共线时,PD+PC的值最小,最小值为DG,在Rt△CDF中,△DCF=60°,CD=4,△DF=CD•sin60°=2,CF=2,在Rt△GDF中,DG==△PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=.故答案为,.例题5. 如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣12x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求AM+CM它的最小值.【解答】解:(1)∵点A(﹣4,﹣4),B(0,4)在抛物线y=﹣x2+bx+c上,∴,∴,∴抛物线的解析式为y=﹣x2﹣2x+4;(2)设直线AB的解析式为y=kx+n过点A,B,∴,∴,∴直线AB的解析式为y=2x+4,设E(m,2m+4),∴G(m,﹣m2﹣2m+4),∵四边形GEOB是平行四边形,∴EG=OB=4,∴﹣m2﹣2m+4﹣2m﹣4=4,∴m=﹣2,∴G(﹣2,4);(3)①如图1,由(2)知,直线AB的解析式为y=2x+4,∴设E(a,2a+4),∵直线AC:y=﹣x﹣6,∴F(a,﹣a﹣6),设H(0,p),∵以点A,E,F,H为顶点的四边形是矩形,∵直线AB的解析式为y=2x+4,直线AC:y=﹣x﹣6,∴AB⊥AC,∴EF为对角线,∴(﹣4+0)=(a+a),(﹣4+p)=(2a+4﹣a﹣6),∴a=﹣2,P=﹣1,∴E(﹣2,0).H(0,﹣1);②如图2,由①知,E(﹣2,0),H(0,﹣1),A(﹣4,﹣4),∴EH=,AE=2,设AE交⊙E于G,取EG的中点P,∴PE=,连接PC交⊙E于M,连接EM,∴EM=EH=,∴=,∵=,∴=,∵∠PEM=∠MEA,∴△PEM∽△MEA,∴=,∴PM=AM,∴AM+CM的最小值=PC,设点P(p,2p+4),∵E(﹣2,0),∴PE2=(p+2)2+(2p+4)2=5(p+2)2,∵PE=,∴5(p+2)2=,∴p=或p=﹣(由于E(﹣2,0),所以舍去),∴P(,﹣1),∵C(0,﹣6),∴PC==,即:AM+CM=.变式练习>>>5.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM△AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.【解答】解:(1)令y =0,则ax 2+(a +3)x +3=0, △(x +1)(ax +3)=0,△x =﹣1或﹣,△抛物线y =ax 2+(a +3)x +3(a ≠0)与x 轴交于点A (4,0), △﹣=4,△a =﹣.△A (4,0),B (0,3), 设直线AB 解析式为y =kx +b ,则,解得,△直线AB 解析式为y =﹣x +3.(2)如图1中,△PM △AB ,PE △OA ,△△PMN =△AEN ,△△PNM =△ANE ,△△PNM △△ANE ,△=,△NE △OB ,△=,△AN =(4﹣m ),△抛物线解析式为y =﹣x 2+x +3,△PN =﹣m 2+m +3﹣(﹣m +3)=﹣m 2+3m ,△=,解得m =2.(3)如图2中,在y 轴上 取一点M ′使得OM ′=,连接AM ′,在AM ′上取一点E ′使得OE ′=OE . △OE ′=2,OM ′•OB =×3=4, △OE ′2=OM ′•OB , △=,△△BOE ′=△M ′OE ′,△△M ′OE ′△△E ′OB , △==,△M ′E ′=BE ′,△AE ′+BE ′=AE ′+E ′M ′=AM ′,此时AE ′+BE ′最小 (两点间线段最短,A 、M ′、E ′共线时), 最小值=AM ′==.1. 如图,在RT △ABC 中,∠B=90°,AB=CB=2,以点B 为圆心作圆与AC 相切,圆C 的半径为2,点P 为圆B 上的一动点,求PC AP 22的最小值.[答案]:5.2. 如图,边长为4的正方形,内切圆记为⊙O,P是⊙O上一动点,则2PA+PB的最小值为________.[答案]:3. 如图,等边⊙ABC的边长为6,内切圆记为⊙O,P是⊙O上一动点,则2PB+PC的最小值为________.[答案]:2.4. 如图,在Rt△ABC中,∠C=90°,CA=3,CB=4,C的半径为2,点P是C上的一动点,则12 AP PB的最小值为?5. 如图,在平面直角坐标系中,()2,0A,()0,2B,()4,0C,()3,2D,P是△AOB外部第一象限内的一动点,且∠BPA=135°,则2PD PC+的最小值是多少?[答案]6. 如图,Rt△ABC,△ACB=90°,AC=BC=2,以C为顶点的正方形CDEF(C、D、E、F四个顶点按逆时针方向排列)可以绕点C自由转动,且CD=,连接AF,BD(1)求证:△BDC△△AFC;(2)当正方形CDEF有顶点在线段AB上时,直接写出BD+AD的值;(3)直接写出正方形CDEF旋转过程中,BD+AD的最小值.【解答】(1)证明:如图1中,△四边形CDEF是正方形,△CF=CD,△DCF=△ACB=90°,△△ACF=△DCB,△AC=CB,△△FCA△△DCB(SAS).(2)解:△如图2中,当点D,E在AB边上时,△AC=BC=2,△ACB=90°,△AB=2,△CD△AB,△AD=BD=,△BD+AD=+1.△如图3中,当点E,F在边AB上时.BD=CF=,AD==,△BD+AD=+.(3)如图4中.取AC的中点M.连接DM,BM.△CD=,CM=1,CA=2,△CD2=CM•CA,△=,△△DCM=△ACD,△△DCM△△ACD,△==,△DM=AD,△BD+AD=BD+DM,△当B,D,M共线时,BD+AD的值最小,最小值==.7. (1)如图1,在△ABC中,AB=AC,BD是AC边上的中线,请用尺规作图做出AB边上的中线CE,并证明BD=CE:(2)如图2,已知点P是边长为6的正方形ABCD内部一动点,P A=3,求PC+PD的最小值;(3)如图3,在矩形ABCD中,AB=18,BC=25,点M是矩形内部一动点,MA=15,当MC+MD 最小时,画出点M的位置,并求出MC+MD的最小值.【解答】解:(1)如图1中,作线段AB的垂直平分线MN交AB于点E,连接EC.线段EC即为所求;△AB=AC,AE=EC,AD=CD,△AE=AD,△AB=AC,△A=△A,AD=AE,△△BAD△△CAE(SAS),△BD=CE.(2)如图2中,在AD上截取AE,使得AE=.△P A2=9,AE•AD=×6=9,△P A2=AE•AD,△=,△△P AE=△DAP,△△P AE△△DAP,△==,△PE=PD,△PC+PD=PC+PE,△PC+PE≥EC,△PC+PD的最小值为EC的长,在Rt△CDE中,△△CDE=90°,CD=6,DE=,△EC==,△PC+PD的最小值为.(3)如图3中,如图2中,在AD上截取AE,使得AE=9.△MA2=225,AE•AD=9×25=225,△MA2=AE•AE,△=,△△MAE=△DAM,△△MAE△△DAM,△===,△ME=MD,△MC+MD=MC+ME,△MC+ME≥EC,△MC+MD的最小值为EC的长,在Rt△CDE中,△△CDE=90°,CD=18,DE=16,△EC==2,△MC+MD的最小值为2.。
与圆有关的定点问题以及阿波罗尼斯圆(解析版)
专题08与圆有关的定点问题以及阿波罗尼斯圆题型一与圆有关的定点问题1.已知直角坐标系xOy 中,圆22:16O x y +=.①过点(4,2)P 作圆O 的切线m ,求m 的方程;②直线:l y kx b =+与圆O 交于点M ,N 两点,已知(8,0)T ,若x 轴平分MTN ∠,证明:不论k 取何值,直线l 与x 轴的交点为定点,并求出此定点坐标.【解答】解:①当切线的斜率不存在时,则切线方程为4x =,显然与圆O 相切,当切线的斜率存在时,设方程为:(4)2y k x =-+,即420kx y k --+=,2|42|41k =+,解得34k =-,所以可得这时切线的方程为:34200x y ++=,所以切线m 的方程为:4x =或34200x y ++=;②设1(M x ,1)y ,2(N x ,2)y 联立2216y kx b x y =+⎧⎨+=⎩,整理可得:222(1)2160k x kbx b +++-=,则△222244(1)(16)0k b k b =-+->,可得221616b k <+,且12221kb x x k -+=+,2122161b x x k -=+,因为x 轴平分MTN ∠,所以可得0MT NT k k +=,即1212088y y x x +=--,即1221()(8)()(8)0kx b x kx b x +-++-=,所以12122(8)()160kx x b k x x b +-+-=,222(16)(8)(2)16(1)0k b b k kb b k -+---+=,解得2b k =-,所以直线的方程为:(2)y k x =-,所以直线恒过(2,0)【点睛】本题考查直线与圆相切的性质及角平分线的性质,属于中档题.2.已知圆22:120C x y Dx Ey +++-=过点(7)P -,圆心C 在直线:220l x y --=上.(1)求圆C 的一般方程.(2)若不过原点O 的直线l 与圆C 交于A ,B 两点,且12OA OB ⋅=- ,试问直线l 是否过定点?若过定点,求出定点坐标;若不过定点,说明理由.【解答】解:(1)由题意可得圆心C 的坐标为(,)22D E --,则2(2022D E --⨯--=,①因为圆C 经过点(7)P -,所以177120D +-+-=,②,联立①②,解得4D =-,0E =.故圆C 的一般方程是224120x y x +--=.(2)当直线l 的斜率存在时,设直线l 的方程为(0)y kx m m =+≠,1(A x ,1)y ,2(B x ,2)y .联立224120x y x y kx m⎧+--=⎨=+⎩,整理得222(1)2(2)120k x km x m ++-+-=,则1222(2)1km x x k -+=-+,2122121m x x k -=+.因为12OA OB ⋅=- ,所以121212x x y y +=-,由1212()()y y kx m kx m =++得,222(2)212121km km m k ---=-+,整理得(2)0m m k +=.因为0m ≠,所以2m k =-,所以直线l 的方程为2(2)y kx k k x =-=-.故直线l 过定点(2,0).当直线l 的斜率不存在时,设直线l 的方程为x m =,则(,)A m y ,(,)B m y -,从而2241212OA OB m m ⋅=--=- ,解得2m =,0m =(舍去).故直线l 过点(2,0).综上,直线l 过定点(2,0).【点睛】本题考查直线与圆的位置关系的应用,考查转化思想以及计算能力,是中档题.3.已知直线360l x y -+=,半径为3的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右下方.(1)求圆C 的方程;(2)过点(2,0)M 的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分ANB ∠?若存在,请求出点N 的坐标;若不存在,请说明理由.【解答】解:(1)设圆心(,0)a ,直线360l x y -+=,半径为3的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右下方所以36|32a d +==,解得0a =,或3a =-(舍),圆的方程为229x y +=;(2)当直线AB ⊥轴时,x 轴平分NAB ∠,此时N 为x 轴上任一点,当直线AB 与x 轴不垂直,设直线AB 的方程为(2)y k x =-,(0)k ≠,(,0)N t ,1(A x ,1)y ,2(B x ,2)y ,联立229(2)x y y k x ⎧+=⎨=-⎩得2222(1)4490k x k x k +-+-=,则212241k x x k +=+,2122491k x x k -=+,由题意得,0AN BN k k +=,即1212(2)(2)0k x k x x t x t--+=--,整理得12122(2)()40x x t x x t -+++=,即22222(49)4(2)4011k k t t k k -+-+=++,解得92t =,即9(,0)2N .【点睛】本题主要考查了圆的切线性质,点到直线的距离公式,直线与椭圆的位置关系,还考查了运算能力,属于中档题.4.已知P 为直线:40l x y +-=上一动点,过点P 向圆22:(1)5C x y ++=作两切线,切点分别为A 、B .(1)求四边形ACBP 面积的最小值及此时点P 的坐标;(2)直线AB 是否过定点?若是,请求出该点坐标;若不是,请说明理由.【解答】解:(1)CA PA ⊥ ,PAC PBC ∆≅∆,2ACPB ACP S S AC AP ∆∴==⋅,∴5AC r ==∴2555ACPB S AP PC ==-,要使四边形ACBP 面积最小,则PC 最小,当PC l ⊥时,PC 的长最小,过点(1,0)C -且与l 垂直的直线为01y x -=+,即1y x =+,将其与4y x =-联立,解得此时点P 的坐标为35(,)22,∴223552||(1)()222min PC =++=,∴2556()5522ACBP min S =-=;(2)设0(P x ,04)x -,则以PC 为直径的圆为00(1)()(4)0x x x y y x +-+⋅-+=,化简可得22000(1)(4)0x y x x x y x ++++--=, 2PAC PAB π∠=∠=,∴这个圆也是四边形ACBP 的外接圆,它与圆C 方程相减,得公共弦AB 方程为0000(1)(4)40(1)440x x x y x x x y x y ++-+-=⇒-+++-=,令1004401x y x x y y -+==⎧⎧⇒⎨⎨+-==⎩⎩,AB ∴恒过定点(0,1).【点睛】本题考查了直线与圆位置关系的应用,考查了圆的切线方程的应用以及两圆公共弦方程的求解,直线恒过定点问题,考查了逻辑推理能力与转化化归能力,属于中档题.5.已知圆221:4C x y +=和直线:1()l y kx k R =-∈.(1)若直线l 与圆C 相交,求k 的取值范围;(2)若1k =,点P 是直线l 上一个动点,过点P 作圆C 的两条切线PM 、PN ,切点分别是M 、N ,证明:直线MN 恒过一个定点.【解答】解:(1)圆221:4C x y +=的圆心坐标为(0,0)C ,半径为12, 直线:1l y kx =-与圆C 相交,∴2|1|121k <+,解得3k <3k >即k 的取值范围是(-∞,3)(3⋃,)+∞;证明:(2)当1k =时,直线l 为1y x =-,设0(P x ,0)y ,则以PC 为直径的圆的方程为222200001()(()224x y x y x y -+-=+,即22000x y x x y y +--=,与2214x y +=联立,消去二次项,可得MN 所在直线方程为:00104x x y y +-=,又001y x =-,∴001(1)04x x x y +--=,即01()04x x y y +--=,可得直线过定点11(,44-.【点睛】本题考查直线与圆位置关系的应用,训练了过圆的两个切点的直线方程的求法,考查运算求解能力,是中档题.6.已知圆22:(2)1M x y +-=,点P 是直线:20l x y +=上的一动点,过点P 作圆M 的切线PA ,PB ,切点为A ,B .(1)当切线PA 3P 的坐标;(2)若PAM ∆的外接圆为圆N ,试问:当P 运动时,圆N 是否过定点?若存在,求出所有的定点的坐标;若不存在,请说明理由.【解答】解:(1)由题可知,圆M 的半径1r =,设(2,)P b b -,因为PA 是圆M 的一条切线,所以90MAP ∠=︒,所以2222||(02)(2)||||2MP b b AM AP =++-+,解得0b =或45b =,所以点P 的坐标为(0,0)P 或84(,)55P -.(2)设(2,)P b b -,因为90MAP ∠=︒,所以经过A 、P 、M 三点的圆N 以MP 为直径,其方程为222224(2)()(24b b b x b y ++-++-=,即22(22)(2)0x y b x y y -+++-=,由2222020x y x y y -+=⎧⎨+-=⎩,解得02x y =⎧⎨=⎩或4525x y ⎧=-⎪⎪⎨⎪=⎪⎩,所以圆N 过定点(0,2),42(,)55-.【点睛】本题考查直线与圆的位置关系的应用,考查转化思想以及计算能力,是中档题.7.已知圆M 经过两点3)A ,(2,2)B 且圆心M 在直线2y x =-上.(Ⅰ)求圆M 的方程;(Ⅱ)设E ,F 是圆M 上异于原点O 的两点,直线OE ,OF 的斜率分别为1k ,2k ,且122k k ⋅=,求证:直线EF 经过一定点,并求出该定点的坐标.【解答】解:(Ⅰ)设圆M 的方程为:222()()(0)x a y b r r -+-=>,由题意得,222222(3)3)(2)(2)2a b r a b r b a ⎧-+=⎪-+-=⎨⎪=-⎩,解得202a b r =⎧⎪=⎨⎪=⎩,∴圆M 的方程:22(2)4x y -+=;证明:(Ⅱ)由题意,EF 所在直线的斜率存在,设直线:EF y kx b =+,由22(2)4x y y kx b⎧-+=⎨=+⎩,得222(1)(24)0k x kb x b ++-+=.△22222(24)4(1)4(44)044kb k b kb b kb b =--+=-->⇒+<,设1(E x ,1)y ,2(F x ,2)y ,则122(24)1kb x x k --+=+,21221b x x k =+,∴221212121212121212()()()y y kx b kx b k x x kb x x b k k x x x x x x +++++=⋅==22222222222242(24)(1)41121b kb k kb b k b kb kb b k k b k k b b bk -⋅+⋅+-⋅-+⋅++++====+,4k b ∴=,代入y kx b =+得(4)y k x =+,∴直线EF 必过定点(4,0)-.【点睛】本题考查圆的方程的求法,考查直线与圆位置关系的应用,考查运算求解能力,是中档题.8.在平面直角坐标系xOy 中,点A 在直线:74l y x =+上,(7,3)B ,以线段AB 为直径的圆(C C 为圆心)与直线l 相交于另一个点D ,AB CD ⊥.(1)求圆C 的标准方程;(2)若点A 不在第一象限内,圆C 与x 轴的正半轴的交点为P ,过点P 作两条直线分别交圆于M ,N 两点,且两直线的斜率之积为5-,试判断直线MN 是否恒过定点,若是,请求出定点的坐标;若不是,请说明理由.【解答】解:(1)BD AD ⊥ ,∴17BD k =-,设(,74)D a a +,得743177a a +-=--,得0a =.(0,4)D ∴,在ABD ∆中,AB CD ⊥,C 为AB 的中点,||||AD BD ∴=,设(,74)A b b +2222(0)(744)(70)(34)b b -++--+-解得1b =或1b =-.①当1b =时,(1,11)A ,22|10R AD =,圆心为(4,7),此时圆的标准方程为22(4)(7)25x y -+-=;②当1b =时,(1,3)A --,22||10R AD =,圆心为(3,0),此时圆的标准方程为22(3)25x y -+=.∴圆的标准方程为22(4)(7)25x y -+-=或22(3)25x y -+=;(2)由题意知,圆的标准方程为22(3)25x y -+=.设直线MP 的方程为(8)y k x =-,联立22(8)(3)25y k x x y =-⎧⎨-+=⎩,得2222(1)(116)64160k x k x k +-++-=.∴2264161M P k x x k -=+ ,得22821M k x k -=+,则2282(1k M k -+,2101k k -+, 两直线的斜率之积为5-,∴用5k -代替k ,可得222002(25k N k -+,250)25k k +.当直线MN 的斜率存在,即25k ≠时,3222242225010603006251200282102505251MN k k k k k k k k k k k k k k ++++===---+-+-++.∴直线MN 的方程为222210682()151k k k y x k k k ---=-+-+,整理得:2619(53k y x k =--,可得直线MN 过定点19(,0)3;当直线MN 的斜率不存在时,即25k =时,直线MN 的方程为193x =,过定点19(,0)3.综上可得,直线MN 恒过定点19(,0)3.【点睛】本题考查圆的标准方程的求法,考查直线与圆位置关系的应用,考查运算求解能力,属中档题.9.已知三点(2,0)A -、(2,0)B 、3)C 在圆M 上.P 为直线6x =上的动点,PA 与圆M 的另一个交点为E ,PB 与圆M 的另一个交点为F .(1)求圆M 的标准方程;(2)若直线PC 与圆M 相交所得弦长为23,求点P 的坐标;(3)证明:直线EF 过定点.【解答】解:(1)由于3),(3)AC BC ==- ,得330AC BC =-+= ,∴点C 在以线段AB 为直径的圆上,即圆M 的标准方程为224x y +=;(2)圆M 的半径为2,直线PC 截圆M 所得弦长为3,则圆心(0,0)到直线PC 的距离为1.设直线PC 的方程为(1)3y k x =-+30kx y k -+=.∴2|3|11k k -=+,解得33k =则直线PC 的方程为31)33y x =-+,当6x =时,得点P 的坐标为83;(3)①当直线EF 斜率不存在时,设其方程为x m =.取22(4(,4)E m m F m m --,由直线AE 与BF 交点的横坐标为6,可得23m =,即此时直线EF 的方程为23x =;②当直线EF 斜率存在时,设EF 的方程为y kx m =+.由224y kx m x y =+⎧⎨+=⎩,得222(1)240k x kmx m +++-=.由△222244(1)(4)0k m k m =-+->,得2244k m >-.设1(E x ,1)y ,2(F x ,2)y ,则212122224,11km m x x x x k k -+=-=++.且222212121224()1m k y y k x x km x x m k -=+++=+.直线AE 的方程为11(2)2y y x x =++,直线BF 的方程为22(2)2y y x x =--,代入点P 的横坐标6x =,得1212222y y x x =+-.由于22224x y +=,故222222y x x y +=--.从而1212222y x x y +=-+,即1212122()240x x x x y y ++++=.即222222444240111m km m k k k k ---++=+++ ,整理得224430k km m +-=,解得223k m korm ==-.当2m k =时,直线EF 为(2)y k x =+,过点(2,0)A -,不符合题意;当23k m =-时,直线EF 为2()3y k x =-,过定点2(,0)3.综上,直线EF 过定点2(,0)3.另解:设(6,)P m ,,84AE BF m m k k ==,由224(2)8x y m y x ⎧+=⎪⎨=+⎪⎩,得222128232(,)6464m m E m m -++,由224(2)4x y m y x ⎧+=⎪⎨=-⎪⎩,得22223216(,)1616m m F m m --++,∴222222223216126416(32)1282232326416EF m m m m m k m m m m m m +++==≠----++,故直线EF 的方程为222232121282()643264m m m y x m m m --=-+-+,整理得24(32)32m y x m =--,过定点2(,0)3.当232m =时,代入点E 、F 的横坐标,得23E F x x ==,直线EF 的方程为23x =,过定点2(,0)3.综上,直线EF 过定点2(,0)3.【点睛】本题考查圆的方程和性质,主要考查圆的方程和直线方程的运用,直线恒过定点的求法,属于中档题.10.已知22:120C x y Dx Ey +++-= 关于直线240x y +-=对称,且圆心在y 轴上.(1)求C 的标准方程;(2)已知动点M 在直线10y =上,过点M 引C 的两条切线MA 、MB ,切点分别为A ,B .①记四边形MACB 的面积为S ,求S 的最小值;②证明直线AB 恒过定点.【解答】解:(1)由题意已知22:120C x y Dx Ey +++-= 关于直线240x y +-=对称,且圆心在y 轴上,所以有圆心(2D C -,)2E -在直线240x y +-=上,即:402D E ---=,又因为圆心C 在y 轴上,所以:02D -=,由以上两式得:0D =,4E =-,所以:224120x y y +--=.故C 的标准方程为:22(2)16x y +-=.(2)①如图,C 的圆心为(0,2),半径4r =,因为MA 、MB 是C 的两条切线,所以CA MA ⊥,CB MB ⊥,故222||||||||16MA MB MC r MC ==-=-;又因为:224||4||16ACM S S MA MC ∆===-根据平面几何知识,要使S 最小,只要||MC 最小即可.易知,当点M 坐标为(0,10)时,||8min MC =,此时46416163min S =-=.②设点M 的坐标为(,10)a ,因为90MAC MBC ∠=∠=︒,所以M 、A 、C 、B 四点共圆.其圆心为线段MC 的中点(2a C ',6),2||64MC a =+设MACB 所在的圆为C ' ,所以C ' 的方程为:222()(6)1624a a x y -+-=+,化简得:2212200x y ax y +--+=,因为AB 是C 和C ' 的公共弦,所以:2222412012200x y y x y ax y ⎧+--=⎨+--+=⎩,两式相减得8320ax y +-=,故AB 方程为:8320ax y +-=,当0x =时,4y =,所以直线AB 恒过定点(0,4).【点睛】本题考查了圆的一般方程与标准方程的应用,圆中三角形面积问题的应用,直线过定点问题,综合性强,属于难题.11.已知圆22:()4(0)M x y a a +-=<与直线40x y ++=相离,Q 是直线40x y ++=上任意一点,过Q 作圆M 的两条切线,切点为A ,B .(1)若||23AB =,求||MQ ;(2)当点Q 到圆M 的距离最小值为222时,证明:直线AB 过定点.【解答】(1)解:连接MQ 交AB 于点P ,则MQ AB ⊥,所以点P 为AB 的中点,又||23AB =||3AP =,又||2MA =,所以||431PM =-=,因为QA 相切圆M 于点A ,故QA AM ⊥,所以2||||||AM PM MQ =⋅,即41||MQ =⋅,所以||4MQ =.(2)证明:当点Q 到圆M 的距离最小值为222时,圆心(0,)M a 到直线40x y ++=的距离为22由点到直线的距离公式可得222a +=,解得0a =或8a =-,由于0a <,故8a =-,由于MA AQ ⊥,MB BQ ⊥,故A ,B 在以MQ 为直径的圆上,又(0,8)M -,设(,4)Q m m --,则以MQ 为直径的圆的圆心为(2m ,122m +-,故圆的方程为222212(4)((224m m m m x y ++--++=,即22(12)3280x y mx m y m +-++++=,因为A ,B 在以MQ 为直径的圆上,故AB 是圆M 与圆22(12)3280x y mx m y m +-++++=的公共弦,两式相减可得AB 的方程为(4)(288)0mx m y m +-+-=,即(7)(8)0y m x y +--=,由7080y x y +=⎧⎨--=⎩,可得17x y =⎧⎨=-⎩,所以直线AB 恒过定点(1,7)-.【点睛】本题主要考查直线与圆的位置关系,圆的切线的性质,两圆公共弦的求法,考查运算求解能力,属于中档题.12.已知圆221:16C x y +=,圆222:12320C x y x +-+=.(1)求过点(4,4)M 且与圆2C 相切的直线的方程;(2)若与x 轴不垂直的直线l 交1C 于P ,Q 两点,交2C 于R ,S 两点,且||2||PQ RS =,求证:直线l 过定点.【解答】解:(1)当切线的斜率不存在时,直线方程为4x =,符合题意;当切线的斜率存在时,设直线方程为4(4)y k x -=-,即(44)0kx y k -+-=, 直线与圆2C 相切,∴221k =+,解得34k =-,切线方程为374y x =-+.故所求切线方程为4x =或374y x =-+;证明:(2)设直线l 的方程为y kx m =+,则圆心1C ,2C 到直线l 的距离分别为12||1h k=+22|6|1h k=+,由垂径定理可得22||2161m PQ k =-+22(6)||241k m RS k +=-+由||2||PQ RS =,得22222216||14(6)||41m PQ k k m RS k -+==+-+,整理得224(6)m k m =+,故2(6)m k m =±+,即120k m +=或40k m +=,∴直线l 的方程为12y kx k =-或4y kx k =-.则直线l 过定点(12,0)或(4,0).【点睛】本题考查直线与圆位置关系的应用,考查运算求解能力,考查直线系方程的应用,是中档题.13.已知圆C 经过点(6,0)A ,(1,5)B ,且圆心在直线:2780l x y -+=上.(1)求圆C 的方程;(2)过点(1,2)M 的直线与圆C 交于A ,B 两点,问在直线2y =上是否存在定点N ,使得0AN BN K K +=恒成立?若存在,请求出点N 的坐标;若不存在,请说明理由.【解答】解:(1) 直线AB 的斜率为1-,AB ∴的垂直平分线m 的斜率为1,AB 的中点坐标为75(,22,因此直线m 的方程为10x y --=,又圆心在直线l 上,∴圆心是直线m 与直线l 的交点.联立方程租278010x y x y -+=⎧⎨--=⎩,得圆心坐标为(3,2)C ,又半径13r =∴圆的方程为22(3)(2)13x y -+-=;(2)假设存在点(,2)N t 符合题意,设交点坐标为1(A x ,1)y ,2(B x ,2)y ,①当直线AB 斜率存在时,设直线AB 方程为2(1)y k x -=-,联立方程组22(1)2(3)(2)13y k x x y =-+⎧⎨-+-=⎩,消去y ,得到方程2222(1)(26)40k x k x k +-++-=.则由根与系数的关系得2122261k x x k ++=+,212241k x x k -=+.0AN BN K K += ,∴1212220y y x t x t --+=--,即1212(1)(1)0k x k x x t x t--+=--.12122(1)()20x x t x x t ∴-+++=,∴22222826(1)2011k k t t k k -+-++=++.解得72t =-,即N 点坐标为7(2-,2);②当直线AB 斜率不存在时,点N 显然满足题意.综上,在直线2y =上存在定点7(2N -,2),使得0AN BN K K +=恒成立.【点睛】本题考查圆的方程的求法,考查直线与圆位置关系的应用,体现了“设而不求”的解题思想方法,是中档题.14.已知圆C 的圆心在x 轴正半轴上,半径为5,且与直线43170x y ++=相切.(1)求圆C 的方程;(2)设点3(1,)2M -,过点M 作直线l 与圆C 交于A ,B 两点,若8AB =,求直线l 的方程;(3)设P 是直线60x y ++=上的点,过P 点作圆C 的切线PA ,PB ,切点为A ,B .求证:经过A ,P ,C 三点的圆必过定点,并求出所有定点的坐标.【解答】(1)解:设圆心(,0)C a ,(0)a >,则由直线和圆相切的条件:d r =,5169=+,解得2a =(负值舍去),即有圆C 的方程为22(2)25x y -+=;(2)解:若直线l 的斜率不存在,即:1l x =-,代入圆的方程可得,4y =±,即有||8AB =,成立;若直线l 的斜率存在,可设直线3:(1)2l y k x -=+,即为22320kx y k -++=,圆C 到直线l 的距离为224444d k k ==++,由8AB =,即有22258d -=,即有3d =2|63|344k k =+,解得34k =,则直线l 的方程为3490x y -+=;(3)证明:由于P 是直线60x y ++=上的点,设(,6)P m m --,由切线的性质可得AC PA ⊥,经过A ,P ,C ,的三点的圆,即为以PC 为直径的圆,则方程为(2)()(6)0x x m y y m --+++=,整理可得22(26)(2)0x y x y m y x +-++-+=,可令22260x y x y +-+=,且20y x -+=,解得2x =,0y =,或2x =-,4y =-.则有经过A ,P ,C 三点的圆必过定点,所有定点的坐标为(2,0),(2,4)--.【点睛】本题考查直线和圆的位置关系,主要考查相交和相切的关系,同时考查点到直线的距离公式和弦长公式、切线的性质和圆恒过定点的问题,属于中档题.题型二阿波罗尼斯圆15.古希腊几何学家阿波罗尼斯证明过这样一个命题:平面内到两定点距离之比为常数(0,1)k k k >≠的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.若平面内两定点A 、B 间的距离为2,动点P 满足||3||PA PB =22||||2PA PB +的最大值为()A .33+B .743+C .843+D .1683+【解答】解:以经过A ,B 两点的直线为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系,则(1,0)A -,(1,0)B ,设(,)P x y ,则2222(1)3(1)x y x y ++=-+22410x y x +-+=,即22(2)3x y -+=,∴点P 在以(2,0)32222||||2()2PA PB x y +=++,而22x y +表示圆上的点与原点距离的平方,易知2273x y ++ ,故222()21683x y +++ 故22||||8432PA PB ++ .故选:C .【点睛】本题考查圆轨迹方程的求法,考查两点间的距离,考查逻辑推理能力,属于中档题.16.阿波罗尼斯是亚历山大时期的著名数学家,“阿波罗尼斯圆”是他的主要研究成果之一:若动点P 与两定点M ,N 的距离之比为(0,1)x λλ>≠,则点P 的轨迹就是圆.事实上,互换该定理中的部分题设和结论,命题依然成立.已知点(2,0)M ,点P 为圆22:16O x y +=上的点,若存在x 轴上的定点(N t ,0)(4)t >和常数λ,对满足已知条件的点P 均有||||PM PN λ=,则(λ=)A .1B .12C .13D .14【解答】解:根据题意,如图,A 、B 两点为圆与x 轴的两个交点,圆2216x y +=上任意一点P 都满足||||PM PN λ=,则A 、B 两点也满足该关系式,又由(4,0)A -,(4,0)B ,(2,0)M ,(,0)N t ,则有||||62||||44AM BM AN BN t t λ====+-,解可得8t =,12λ=;故选:B .【点睛】本题考查直线与圆的方程的应用,关键是理解题意中关于圆的轨迹的叙述,属于基础题.17.阿波罗尼斯与阿基米德、欧几里得被称为亚历山大时期数学三巨匠.“阿波罗尼斯圆”是他的代表成果之一:平面上一点P 到两定点A ,B 的距离之满足||(0||PA t t PB =>且1)t ≠为常数,则P 点的轨迹为圆.已知圆22:1O x y +=和1(,0)2A -,若定点(B b ,10)()2b ≠-和常数λ满足:对圆O 上任意一点M ,都有||||MB MA λ=,则λ=2,b =.【解答】解:设(,)M x y ,则||||MB MA λ= ,2222221()()2x b y x y λλ∴-+=++,由题意,取(1,0)、(1,0)-分别代入可得2221(1)(12b λ-=+,2221(1)(1)2b λ--=-+,由0λ>即12b ≠-,解得2b =-,2λ=.故答案为2,2-.【点睛】本题考查圆的方程,考查赋值法的运用,考查学生的计算能力,属于基础题.18.阿波罗尼斯与阿基米德、欧几里得被称为亚历山大时期数学三巨匠.“阿波罗尼斯圆”是他的代表成果之一:平面上一点P 到两定点A ,B 的距离之满足||(0||PA t t PB =>且1)t ≠为常数,则P 点的轨迹为圆.已知圆22:1O x y +=和1(,0)2A -,若定点(B b ,10)()2b ≠-和常数λ满足:对圆O 上任意一点M ,都有||||MB MA λ=,则λ=2,MAB ∆面积的最大值为.【解答】解:设点(,)M x y ,由||||MB MA λ=,得222221()[()]2x b y x y λ-+=++,整理得2222222124011b b x y x λλλλ-++-+=--,所以222222011411b b λλλλ⎧+=⎪-⎪⎨-⎪=-⎪-⎩解得2λ=,2b =-如右图,当(0,1)M 或(0,1)M -时,3()4MAB max S ∆=.故答案为:2;34.【点睛】本题考查轨迹方程的求法,考查圆的方程的应用,转化思想以及计算能力,是中档题.19.已知圆C 的圆心在直线30x y -=上,与x 轴正半轴相切,且被直线:0l x y -=截得的弦长为27(1)求圆C 的方程;(2)设点A 在圆C 上运动,点(7,6)B ,且点M 满足2AM MB =,记点M 的轨迹为Γ.①求Γ的方程,并说明Γ是什么图形;②试探究:在直线l 上是否存在定点T (异于原点)O ,使得对于Γ上任意一点P ,都有||||PO PT 为一常数,若存在,求出所有满足条件的点T 的坐标,若不存在,说明理由.【解答】解:(1)设圆心(,3)t t ,则由圆与x 轴正半轴相切,可得半径3||r t =. 圆心到直线的距离|3|22t t d t ==,由2272t r +=,解得1t =±.故圆心为(1,3)或(1,3)--,半径等于3. 圆与x 轴正半轴相切∴圆心只能为(1,3)故圆C 的方程为22(1)(3)9x y -+-=.(2)①设(,)M x y ,则:(A AM x x =- ,)A y y -,(7,6)MB x y =--,∴142122A A x x xy y y -=-⎧⎨-=-⎩,∴143123AA x xy y =-+⎧⎨=-+⎩, 点A 在圆C 上运动,22(3141)(3123)9x y ∴--+--=,即:22(315)(315)9x y ∴-+-=,22(5)(5)1x y ∴-+-=,所以点M 的轨迹方程为22(5)(5)1x y -+-=,它是一个以(5,5)为圆心,以1为半径的圆.②假设存在一点(,)D t t 满足条件,设(,)P x y 2222()()x y x t y t λ+=-+-,整理化简得:2222222(22)x y x tx t y ty t λ+=-++-+,P 在轨迹Γ上,22(5)(5)1x y ∴-+-=,化简得:22101049x y x y +=+-,2222222(10102)(10102)494920x t y t t λλλλλλ∴-++-+-+-=,∴2222210102049249t t λλλλ⎧-+=⎪⎨-⋅=⎪⎩,解得:4910t =,∴存在49(10D ,4910满足题目条件.【点睛】本题考查圆的方程,轨迹方程,解题中需要一定的计算能力,属于中档题.20.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果击中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两定点A 、B 的距离之比为(0,1)λλλ>≠,那么点M 的轨迹就是阿波罗尼斯圆.下面,我们来研究与此相关的一个问题.已知圆:221x y +=和点1(,0)2A -,点(1,1)B ,M 为圆O 上动点,则2||||MA MB +的最小值为10.【解答】解:如图,取点(2,0)K -,连接OM 、MK .1OM = ,12OA =,2OK =,∴2OM OKOA OM==,MOK AOM ∠=∠ ,MOK AOM ∴∆∆∽,∴2MK OMMA OA==,2MK MA ∴=,||2||||||MB MA MB MK ∴+=+,在MBK ∆中,||||||MB MK BK + ,||2||||||MB MA MB MK ∴+=+的最小值为||BK 的长,(1,1)B ,(2,0)K -,22||(21)(01)10BK ∴=--+-10【点睛】本题考查直线与圆的方程的应用,坐标与图形的性质、相似三角形的判定和性质、三角形的三边关系、两点之间的距离公式等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中档题.21.已知圆22:1C x y +=,直线:(1)(1)10()l m x m y m R ++--=∈.(1)求直线l 所过定点A 的坐标;(2)若直线l 被圆C 3,求实数m 的值;(3)若点B 的坐标为(2,0)-,在x 轴上存在点D (不同于点)B 满足,对于圆C 上任意一点P ,都有PBPD为一常数,求所有满足条件的点D 的坐标.【解答】解:(1)由直线:(1)(1)10l m x m y ++--=,得()(1)0m x y x y -++-=,联立010x y x y -=⎧⎨+-=⎩,解得12x y ==,∴直线l 所过定点A 的坐标为11(,22;(2) 直线l 被圆C 所截得的弦长为3∴圆心到直线l 的距离2311()22d =-=.22|1|12(1)(1)m m =++-,解得1m =±;(3)假设存在(D a ,0)(2)a ≠-满足题意,当取(1,0)P -时,||1|||1|PB PD a =+;当取(1,0)P 时,||3|||1|PB PD a =-.∴13|1||1|a a =+-,解得1(2)2a a =-≠-.可得||2||PB PD =,1(2D -,0).设(,)P x y ,则22||(2)PB x y =++,22221||()()2PD x a y x y =-+=++,由||2||PB PD =2222(2)21()2x y x y ++=++,化为221x y +=.因此点P 在圆C 上,满足题意.因此在x 轴上存在点1(2D -,0),使得对圆C 上的任意一点P ,||||PB PD 为同一常数.【点睛】本题考查直线系方程的应用,考查直线与圆的位置关系,训练了取特殊点探究一般性规律的方法,考查了推理能力与计算能力,是中档题.22.已知圆22:80C x x y ++=,直线:20l mx y m ++=.(Ⅰ)当直线l 与圆C 相交于A ,B 两点,且||14AB =,求直线l 的方程.(Ⅱ)已知点P 是圆C 上任意一点,在x 轴上是否存在两个定点M ,N ,使得||1||2PM PN =?若存在,求出点M ,N 的坐标;若不存在,说明理由.【解答】解:(Ⅰ)由已知可得圆心(4,0)C -,4r =,圆心C 到直线l 的距离22|42||2|11d m m ==++,因此22222244||2216214.211m m AB r d m m =-=-==++,解得1m =±,直线l 的方程为2y x =+或2y x =--,(Ⅱ)设(,)P x y ,1(M x ,0),2(N x ,0),由已知可得228x y x +=-,221222()12()x x y x x y -+=-+,化简得211222821824x x x x x x x x -+-=-+-.即2212212(412)(4)0x x x x x -++-=恒成立,所以122221412040x x x x -+=⎧⎨-=⎩,解得12612x x =-⎧⎨=-⎩,或1224x x =-⎧⎨=⎩,所以满足题意的定点M ,N 存在,其坐标为(6,0)M -,(12,0)N -或(2,0)M -,(4,0)N .(此处只写出一组解扣2分)如从阿氏圆的结论出发,可做为本题的另一种解法,按步骤酌情给分.【点睛】本题考查直线与圆的位置关系的综合应用,考查转化思想以及计算能力,是中档题.23.已知点(4,0)A 和(4,4)B ,圆C 与圆22(1)(2)4x y -++=关于直线2450x y --=对称.(Ⅰ)求圆C 的方程;(Ⅱ)点P 是圆C 上任意一点,在x 轴上求出一点M (异于点)A 使得点P 到点A 与M 的距离之比||||PA PM 为定值,并求1||||2PB PA +的最小值.【解答】解:(Ⅰ)设圆C 的圆心为(,)C a b ,由题意可得,2111212245022b a a b +⎧⨯=-⎪⎪-⎨+-⎪⨯-⨯-=⎪⎩,解得0a b ==.∴圆C 的方程为224x y +=;(Ⅱ)设点(M m ,0)(4)m ≠,0(P x ,0)y ,则22004x y +=.∴22000222000(4)820||||()24x y x PA PM x m y mx m -+-+==-+-++,||||PA PM 为定值,0820x ∴-+是2024mx m -++的倍数关系,且对任意的0[2x ∈-,2]成立,∴282024m m-=-+,解得1m =或4m =(舍去),(1,0)M ∴,此时||2||PA PM =为定值,1||||||||||2PB PA PB PM MB +=+ ,当且仅当B 、M 、P 三点共线时,1||||2PB PA +的最小值为22||(41)(40)5MB =-+-=.【点睛】本题考查圆关于直线的对称圆的求法,考查两点间距离公式的应用,考查数学转化思想,是中档题.。
2020年中考数学线段最值问题之阿波罗尼斯圆问题(含答案)
2020中考数学线段最值问题之阿波罗尼斯圆(阿氏圆)【知识背景】阿波罗尼斯与阿基米德、欧几里德齐名,被称为亚历山大时期数学三巨匠。
阿波罗尼斯对圆锥曲线有深刻而系统的研究,其主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是其研究成果之一,本文主要讲述阿波罗尼斯圆在线段最值中的应用,下文中阿波罗尼斯圆简称为“阿氏圆”。
【定 义】阿氏圆是指:平面上的一个动点P 到两个定点A ,B 的距离的比值等于k ,且k≠1的点P 的轨迹称之为阿氏圆。
即:)1(≠=k k PBPA,如下图所示:上图为用几何画板画出的动点P 的轨迹,分别是由图中红色和蓝色两部分组成的的圆,由于是静态文档的形式,无法展示动图,有兴趣的可以用几何画板试一试。
【几何证明】证明方法一:初中纯几何知识证明:阿氏圆在高中数学阶段可以建立直角坐标系,用解析几何的方式来确定其方程。
但在初中阶段,限于知识的局限性,我们可以采用纯几何的证明方式,在证明前需要先明白角平分线定理及其逆定理,请看下文: 知识点1:内角平分线定理及逆定理若AD 是∠BAC 的角平分线,则有:CDBDAC AB =。
即“两腰之比”等于“两底边之比”。
其逆定理也成立:即CDBDAC AB =,则有:AD 是∠BAC 的角平分线。
知识点2:外角平分线定理及其逆定理若AD 是△ABC 外角∠EAC 的角平分线,则有CDBDAC AB =。
即“两腰之比”等于“两底边之比”。
其逆定理也成立:即CDBDAC AB =,则有:AD 是外角∠EAC 的角平分线。
【阿氏圆的证明】有了上述两个知识储备后,我们开始着手证明阿氏圆。
①如上图,根据阿氏圆的定义: 当P 点位于图中P 点位置时有:k PB PA =,当P 点位于图中N 点位置时有:k NBNA=, 所以有:NBNAPB PA =,所以PN 是∠APB 的角平分线,∴∠1=∠2. 当P 点位于图中M 点位置时有:PBPAk MB MA ==, 所以有:MBMNPB PA =,所以PM 是∠EPA 的角平分线,∴∠3=∠4. 又∵∠1+∠2+∠3+∠4=180° ∴2∠1+2∠3=180° ∴∠1+∠3=90°故∠MPN=90°,所以动点P 是在以MN 为直线的圆上。
高考数学专题《阿波罗尼斯圆》填选压轴题及答案
专题42 阿波罗尼斯圆【方法点拨】一般地,平面内到两个定点距离之比为常数的点的轨迹是圆,此圆被叫做“啊波罗尼斯圆” (又称之为圆的第二定义).说明:(1) 不妨设(),0A a - ,(),0B a ,()0,0,1AP BP a λλλ=>>≠,再设 (),P x y ,则有()()2222y a x y a x +-=++λ,化简得:2222221211⎪⎭⎫ ⎝⎛-=+⎪⎪⎭⎫ ⎝⎛-+-a y a x λλλλ,轨迹为圆心a a 12011222-⎪⎪⎭⎫ ⎝⎛-+λλλλ,半径为,的圆.(2) 满足上面条件的啊波罗尼斯圆的直径的两端是按照定比λ内分AB 和外分AB 所得的两个分点(如图,有=AM ANBM BNλ=). (3)设P 是圆上的一点(不与M N 、重合),则PM PN 、是三角形PAB 的内、外角平分线,PM PN ⊥.(4)逆向运用:给定圆O 和定点A (A 不在圆O 上且不与O 重合),则一定存在唯一一个定值λ和一个定点B ,使得对于圆O 上的任意一点P 都有PA PBλ=.【典型题示例】例1 满足条件AB =2,AC =2BC 的△ABC 的面积的最大值为 . 【答案】22【分析】已知三角形的一边长及另两边的关系欲求面积的最大值,一种思路是利用面积公式、余弦定理建立关于某一边的目标函数,最后利用基本不等式求解;二是紧紧抓住条件“AC =2BC ”,符合 “啊园”,建系求出第三个顶点C 的轨迹,挖出“隐圆”,当点C 到直线AB 距离最大,即为半径时,△ABC 的面积最大为2 2.(1)λλ≠【解析一】设BC =x ,则AC 2x , 根据面积公式得ABC S ∆=21sin 1cos 2AB BC B x B ⨯=-, 根据余弦定理得2222242cos 24AB BC AC x x B AB BC x +-+-==⨯244x x-=,代入上式得ABC S ∆=()22221281241416x x x x --⎛⎫--=⎪⎝⎭由三角形三边关系有2222x x x x+>+>⎪⎩解得222222x <<,故当212,23x x ==时ABC S ∆128216=【解析二】以AB 所在的直线为x 轴,它的中垂线为y 轴建立直角坐标系, 则A (-1,0),B (1,0),设C (x ,y ) 由AC =2BC ,即AC 2=2BC 2所以(x +1)2+y 2=2[(x -1)2+y 2],化简得(x -3)2+y 2=8 故点C 的轨迹方程为(x -3)2+y 2=8(y ≠0),当点C 到直线AB 距离最大,即为半径时,△ABC 的面积最大为2 2.例2 已知等腰三角形腰上的中线为3,则该三角形面积的最大值为________. 【答案】2【分析】本题解法较多,但各种解法中,以利用“啊圆”为最简,注意到中线上三角形两边之比为2∶1,符合啊波罗尼斯圆定理,挖出“隐圆”,易求得最大值为2. 【解析一】如图1,ABC ∆中,AB AC =,AD DC =,3BD =设AD CD m ==,则2AB m =, 22cos 23ADB m∠=在ABD ∆中,在BDC ∆中,22cos 23CDB m∠由cos cos 0ADB CDB ∠+∠=可得,2262BC m =-,所以2253cos 4m A m-=,则429309sin m m A -+-= 故2242591639309ABCm m m S ∆⎛⎫--+ ⎪-+-⎝⎭==易知当253m =时,面积的最大值是2. 点评:避免求边BC ,优化此解法,考虑ABD ∆中,有2253cos 4m A m -=,而2ABC ABD S S ∆∆=,同样可解.【解析二】以BD 中点O 为原点,BD 所在直线为x 轴建立如图2所示的平面直角坐标系,设(),A x y ,则2AB AD =,即2222334x y x y ⎡⎤⎛⎛⎢⎥+=+ ⎢⎥⎝⎭⎝⎭⎣⎦, 整理得,225343x y ⎛+= ⎝⎭,即有3y ≤32ABC S BD y y ∆=⨯=≤.【解析三】以BC 中点O 为原点,BC 所在直线为x 轴建立如图3所示的平面直角坐标系,设(),0C m ,(),0B m -,()0,A n ,则,22m n D ⎛⎫ ⎪⎝⎭,所以2223322m n BD ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,而223422232m n ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭≤⋅=, 当且仅当3n m =时,取等.【解析四】如图4,作AO BC ⊥于点O ,交BD 于点G ,则G 为ABC ∆的重心,43322ABCm n S mn ∆==⋅⋅则有2233BG CG BD ===所以133sin 2sin 22ABC BGC S S BG CG BGC BGC ∆∆==⨯⋅∠=∠≤,当2BGC π∠=时,取等.例3 已知圆22:1O x y +=和点()2,0A -,若定点(),0B b (2)b ≠-和常数λ满足:对圆O 上任意一点M ,都有MB MA λ=,则 (1)b = ; (2)λ= . 【答案】(1)12b =-;(2)12λ=.【分析】其实质是啊圆的逆用,设出点的坐标,恒成立问题转化为与点的坐标无关,即分子为零.【解答】设(),M x y ,则22221,1x y y x +==-,2222222222222251||()21122||(2)44154254b b MB x b y x bx b x b bx b MA x y x x x x xλ++-+-++-+-=====-++++++-++, 所以λ为常数,所以25102b b ++=,解得12b =-或2b =-(舍去),所以2124b λ=-=.例4 已知圆C :x 2+y 2=9,点A (-5,0),在直线OA 上(O 为坐标原点),存在定点B (不同于点A )满足:对于圆C 上任一点P ,都有PBP A 为一常数,则点B 的坐标为___________.【答案】⎝⎛⎭⎫-95,0 【分析】本题的实质是“逆用啊圆”. 【解析一】假设存在这样的点B (t,0).当点P 为圆C 与x 轴的左交点(-3,0)时,PB P A =|t +3|2;当点P 为圆C 与x 轴的右交点(3,0)时,PB P A =|t -3|8.依题意,|t +3|2=|t -3|8,解得t =-95或t =-5(舍去).下面证明点B ⎝⎛⎭⎫-95,0对于圆C 上任一点P ,都有PBP A 为一常数. 设P (x ,y ),则y 2=9-x 2, 所以PB 2P A2=⎝⎛⎭⎫x +952+y 2x +52+y 2=x 2+185x +9-x 2+8125x 2+10x +25+9-x 2=1825·5x +172·5x +17=925.从而PB P A =35为常数.【解析二】假设存在这样的点B (t,0),使得PBP A 为常数λ,则PB 2=λ2P A 2,所以(x -t )2+y 2=λ2[(x +5)2+y 2],将y 2=9-x 2代入,得x 2-2xt +t 2+9-x 2=λ2(x 2+10x +25+9-x 2), 即2(5λ2+t )x +34λ2-t 2-9=0对x ∈[-3,3]恒成立,所以⎩⎪⎨⎪⎧5λ2+t =0,34λ2-t 2-9=0.解得⎩⎨⎧λ=35,t =-95或⎩⎪⎨⎪⎧λ=1,t =-5(舍去). 故存在点B ⎝⎛⎭⎫-95,0对于圆C 上任一点P ,都有PB P A 为常数35. 例5 啊波罗尼斯是古希腊著名数学家,与欧几里得、啊基米德并称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,啊波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两定点A ,B 的距离之比为(0,1)λλλ>≠,那么点M 的轨迹就是啊波罗尼斯圆,简称啊氏圆.已知在平面直角坐标系中,圆22:4O x y +=、点()1,0A -和点()0,1B ,M 为圆O 上的动点,则2||+||MA MB 的最小值为_________. 17【分析】逆用“啊圆”,将2||MA 中系数2去掉化为“一条线段”, 从而将2||+||MA MB 化为两条线段的和,再利用“三点共线”求解.【解析】因为啊圆的圆心、两定点共线,且在该直线上的直径的端点分别是两定点构成线段分成定比的内外分点所以另一定点必在x 轴上,且()2,0-内分该点与()1,0A -连结的线段的比为2 故该点的坐标为()4,0-设()4,0C -,则圆22:4O x y +=上任意一动点M 都满足||=2||MC MA 所以2||+||=||+||MA MB MC MB又因为||+||||17MC MB BC ≥M B C 、、共线时,等号成立所以2||+||MA MB. 点评:1. 已知两定点、啊圆的圆心三点共线;2. 啊圆的在已知两定点所在直线上的直径的两端点,分别是两定点构成线段分成定比的内、外分点.例6 古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点,A B 的距离之比为定值()1λλ≠的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆在平面直角坐标系xOy 中,()()2,0,4,0,A B -点12PA P PB=满足.设点P 的轨迹为C ,下列结论正确的是( ) A .C 的方程为()2249x y ++=B .在x 轴上存在异于,A B 的两定点,D E ,使得12PD PE=C .当,,A B P 三点不共线时,射线PO 是APB ∠的平分线D .在C 上存在点M ,使得2||MO MA = 【答案】BC【分析】通过设出点P 坐标,利用12PA PB=即可得到轨迹方程,找出两点,D E 即可判断B 的正误,设出M 点坐标,利用2||MO MA =与圆的方程表达式解出就存在,解不出就不存在.【解析】设点(),P x y ,则12PA PB=,化简整理得2280x y x ++=,即()22416x y ++=,故A 错误;根据对称性可知,当()()6,0,12,0,D E --时,12PD PE=,故B 正确; 对于C 选项,222cos =2AP PO AO APO AP PO +-∠⋅,222cos =2BP PO BO BPO BP PO+-∠⋅,要证PO 为角平分线,只需证明cos =cos APO BPO ∠∠,即证22222222AP PO AO BP PO BO AP PO BP PO+-+-=⋅⋅,化简整理即证2228PO AP =-,设(),P x y ,则222PO x y =+,()()222222222282828AP x x y x x y x y x y -=++=++++=+,则证cos =cos APO BPO ∠∠,故C 正确;对于D 选项,设()00,M x y ,由2||MO MA =220003316+160x y x ++=,而点M 在圆上,故满足2280x y x ++=,联立解得0=2x ,0y 无实数解,于是D 错误.故答案为BC.【巩固训练】1.(多选题)在平面直角坐标系中,三点()1,0A -,()1,0B ,()0,7C ,动点P 满足PA =,则A.点P 的轨迹方程为()2238x y -+= B.PAB △面积最大时PA =C.PAB ∠最大时,PA =D.P 到直线AC 2. 在平面直角坐标系xOy 中,点)0,4(),0,1(B A .若直线0=+-m y x 上存在点P ,使得PB PA 21=,则实数m 的取值范围是 3. 已知圆O :x 2+y 2=1和点A (-2,0),若定点B (b,0)(b ≠-2)和常数λ满足:对圆O 上任意一点M ,都有MB =λMA ,则(1)b =________; (2)λ=________.4.在△ABC 中,|AB|=2,|AC|=k|BC|(k >1),则当△ABC 面积的最大值为2√2时, k = .5.点P 是圆C :x 2+y 2=1上动点,已知A (-1,2),B (2,0),则P A +12PB 的最小值为________.6.啊波罗尼斯是古希腊著名数学家,与欧几里得、啊基米德并称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,啊波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两定点Q 、P 的距离之比|MQ||MP|=λ(λ>0,λ≠1),那么点M 的轨迹就是啊波罗尼斯圆.已知动点M 的轨迹是啊波罗尼斯圆,其方程为x 2+y 2=1,定点Q 为x 轴上一点,P(−12,0)且λ=2,若点B(1,1),则2|MP|+|MB|的最小值为( )A.√6 B. √7 C. √10 D. √117.已知)1,0(A,)0,1(B,)0,(tC,点D是直线AC上的动点,若BDAD2≤恒成立,则最小正整数t的值为.8.在平面四边形ABCD中,,,.若,则的最小值为.9.已知22(1)4x y-+=,__________.【答案或提示】1. 【答案】ABD【解析】由题意可设(),P x y,由PA=,可得222PA PB=,即()()2222121x y x y⎡⎤++=++⎣⎦,化简可得()2238x y-+=,故选项A正确;对于选项B,2AB=,且点P到直线AB的距离的最大值为圆()2238x y-+=的半径r,即为,所有PAB△面积最大为122⨯⨯=,此时(3,P,所以PA==B正确;对于选项C,PAB∠最大时,为过点A作圆()2238x y-+=的切点,求得切点不为(3,±,则PA≠C错误;对于选项D,直线AC的方程为770x y-+=,则圆心()3,0到直线AC的距离为5=,所以点P到直线AC距离最小值为55-=,故选项D 正确;故选ABD.2. 【答案】⎡-⎣.【解法一】设满足条件PB=2P A的P点坐标为(x,y),则(x-4)2+y2=4(x-1)2+4y2,化简得x2+y2=4.要使直线x-y+m=0有交点,则|m|2≤2.即-22≤m≤22.【解法二】设直线x-y+m=0有一点(x,x +m)满足P A=2PB,90BAD∠=︒2AB=1AD=43AB AC BA BC CA CB⋅+⋅=⋅12CB CD+则(x -4)2+(x +m )2=4(x -1)2+4(x +m )2. 整理得2x 2+2mx +m 2-4=0 (*) 方程(*)有解,则△=4m 2-8(m 2-4)≥0, 解之得:-2 2≤m ≤22. 3. 【答案】 (1)-12 (2)12【解析】 (1)因为点M 为圆O 上任意一点,所以不妨取圆O 与x 轴的两个交点(-1,0)和(1,0). 当M 点取(-1,0)时,由MB =λMA ,得|b +1|=λ; 当M 点取(1,0)时,由MB =λMA ,得|b -1|=3λ. 消去λ,得|b -1|=3|b +1|.两边平方,化简得2b 2+5b +2=0, 解得b =-12或b =-2(舍去).(2)由|b +1|=λ,得λ=12.4.【答案】√2【分析】本题考查轨迹方程的求解,以及新定义,直线与圆的位置关系的应用,属于较难题.根据条件得到点C 的轨迹方程(k 2−1)x 2+(k 2−1)y 2+2(k 2+1)x +k 2−1=0,作图,可得当点C 到AB 的距离d 等于其所在圆半径r 时,面积最大,通过面积求得r ,进而得到k .【解析】如图,不妨设A(1,0),B(−1,0),C (x,y), 则|AC|=k|BC|,可化为(x −1)2+y 2=k 2[(x +1)2+y 2], 整理可得(k 2−1)x 2+(k 2−1)y 2+2(k 2+1)x +k 2−1=0, 即(x +k 2+1k 2−1)2+y 2=(k 2+1k 2−1)2−1,圆心(−k 2+1k 2−1,0),r 2=(k 2+1k 2−1)2−1,由图可知当点C 到AB(x 轴)距离最大时,△ABC 的面积最大, 即当点C 到AB 的距离d 等于半径r 时,面积最大, ∴△ABC 面积的最大值是12×2r =2√2,解得r =2√2, 故有(k 2+1k 2−1)2−1=(2√2)2,解得k =±√2,k =±√22, 因为k >1,所以k =√2. 故答案为:√2.5.【答案】52【提示】已知动点轨迹为圆,将12PB 转化为P 到一个定点的距离,即求动点到两个定点距离之和. 6.【答案】C【分析】令2|MP|=|MQ|,则2|MP|+|MB|=|MQ|+|MB|,由啊波罗尼斯圆的定义及已知可求得点Q 的坐标,进而利用图象得解.本题以啊波罗尼斯圆为背景,考查学生在陌生环境下灵活运用知识的能力,考查创新意识,逻辑推理能力及运算求解能力,考查数形结合思想,属于拔高题.【解析】由题意可得圆x 2+y 2=1是关于P ,Q 的啊波罗尼斯圆,且λ=2,则|MQ||MP|=2, 设点Q 的坐标为(m,n),则√(x−m)2+(y−n)2√(x+12)2+y 2=2, 整理得,x 2+y 2+4+2m 3x +2n 3y +1−m 2−n 23=0,由已知该圆的方程为x 2+y 2=1,则{4+2m =02n =01−m 2−n 23=−1,解得{m =−2n =0, ∴点Q 的坐标为(−2,0),∴2|MP|+|MB|=|MQ|+|MB|,由图象可知,当点M 位于M 1或M 2时取得最小值,且最小值为|QB|=√(−2−1)2+1=√10. 故选:C . 7. 【答案】4【解析】直线AC 的方程为1=+y tx即0=-+t ty x ,设),(y x D BD AD 2≤ 即224BD AD ≤∴])1[(4)1(2222y x y x ++-≤-+98)31()34(22≥++-y x 表示圆外区域及圆周上的点 直线0=-+t ty x 与圆98)31()34(22=++-y x 相离或相切 所以3221|3134|2≥+--t t t ,化简得0142≥+-t t 解得32+≥t 或32-≤t∴正整数t 的值的值为4.8.【提示】已知可化为: ,故,点的轨迹是圆;所求 中含系数不同,需化一,由于,故应构造出 或,这里所求圆的圆心在直线AB 上,故需在直线AB 上寻求一点E ,使CE =2CB ,将化为一条线段,逆用“啊波罗尼斯圆”即可.9. 【提示】为使所求具有几何意义,利用已知22(1)4x y -+=进行常数代换,12. 43AB AC BA BC CA CB ⋅+⋅=⋅2=AB AC BA BC AB AC AB CB AB ⋅+⋅=⋅+⋅=3CA CB ⋅C 12CB CD +11=(2)22CB CD CB CD ++12CD 2CB 2CB。
完整版阿氏圆
中考数学压轴之阿氏圆模型专题训练阿氏圆(阿波罗尼斯圆):已知平面上两定点一 B ,则所有满足PC k ( k 不等于1)的点P 的轨迹是一个圆,这个轨迹PB最先由古希腊数学家阿波罗尼斯发现, 故称阿氏圆。
在初中的题目中往往利用逆向思维构造" 斜A"型相似(也叫"母子型相似")+两点间线段最短解决带系数两线段之和的最值问题。
在几何画板上观察下面的图形,当 P 在在圆A 上运动时,PC PB 的长在不断的发生变化,但 PC 的比值却始终保持不变。
PB解决阿氏圆问题,首先要熟练掌握母子型相似三角形的性质和构造方法。
如图,在△ APB 的边AB 上找一点C,使得AP AC ,贝吐匕时厶APS A ABPAB AP母子型相似(共角共边)A -C⑤计算AC 的长度即为最小值.②计算0P 的值,则k 0P 丄 OB OB 2的线段BP 的两端点, 半径 "圆心到定点的距离 OC ③计算OC 的长度,由一一k 得:OCOP④ 连接AC ,当A 、P 、C 三点共线时, 1OP (相似比X 半径)AP 1 -BP AP PC AC 2 那么如何应用"阿氏圆"的性质解答带系数的两条线段和的最小值呢 ?我们来看一道基本题目:①分别连接圆心0与系数不为1 即 OP 0B;实战练习:- 已知O O半径为1, AC BD为切线,AC=1, BD=2试求上2 PC PD的最小值25、(1)如图1,已知正方形ABC的边长为4,圆B的半径为2,点P是圆B上的一个动点,求PD -PC 的2、已知点3、已知点(1)-AP4 A(-3,0) , B( 0,3 ), C (1,0 ),若点P为。
C上一动点,且。
C与y轴相切, BP的最小值;(2)S VPAB的最小值.4、如图1,在平面直角坐标系xoy中,半O O交x轴与点A B(2,0)两点,AD BC均为半O O 的切线,AD=2 BC=7.(1)求OD的长;(2)如图2,若点P是半O O上的动点,Q为OD的中点.连接PO PQ.①求证:△OP GA ODP;②是否存在点P,使PD 2PC有最小值,若存在,试求出点P的坐标;若不存在,请说明理由•A(4, 0),B(4最小值和PD - PC的最大值.2 2⑵如图2,已知正方形ABCD勺边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD - PC的最小值为;PD -PC的最大值为3 ----------- 3 --------------(3)如图3,已知菱形ABCD勺边长为4,/ B=60°,圆B的半径为2.点P是圆B上的一个1 1动点.那么PD 1 PC的最小值为;PD 1 PC的最大值为2 26、(2016年*济南28题)如图1,抛物线y = ax2+ (a+ 3)x+ 3 (0)与x轴交于点A (4, 0),与y轴交于点B,在x轴上有一动点E ( m, 0) (0v m v 4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM丄AB于点M.(1)求a的值和直线AB的函数表达式;(2)设厶PMN的周长为AEN的周长为C2,若§ =-,求m的値;C25(3)如图2,在(2)的条件下,将线段OE绕点O逆时针旋转得到OE',旋转角为皿0 ° av 90°),连2接E'A、E'B,求E'A+ ;E B的最小值.x7、(2017年*遵义27题)如图,抛物线y=ax2+bx-a - b (a v 0, a、b为常数)与x轴交于A、C两点,与y轴交于B 点,直线AB的函数关系式为y= 8x + 16.9 3(1)求该抛物线的函数关系式与C点坐标;(2)已知点M( m, 0)是线段OA上的一个动点,过点M作x轴的垂线I分别与直线AB和抛物线交于D、E两点,当m为何值时,△ BDE恰好是以DE为底边的等腰三角形?(3)在(2)问条件下,当厶BDE恰好是以DE为底边的等腰三角形时,动点M相应位置记为点M,将OM绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);NPi :探究:线段OB上是否存在定点P( P不与OB重合),无论ON如何旋转,竺始终保持不变,若存在,NB试求出P点坐标;若不存在,请说明理由;ii :试求出此旋转过程中,(NA+?NB的最小值.4。
2025中考数学二次函数压轴题专题练习21 阿氏圆模型(学生版+解析版)
专题21阿氏圆模型一、知识导航所谓“阿氏圆",是指由古希腊数学家阿波罗尼奥斯提出的圆的概念,在平面内,到两个定点距离之比等于定值(不力l)的点的栠合叫做圆.如下图,已知A、B两点,点P满足PA:PB=k (k* I),则满足条件的所有的点P构成的图形为圆.pA下给出证明法一:首先了解两个定理(I)角平分线定理:如图,在6-ABC中,AD是乙BAC的角平分线则AB DBAC DCAB DcS BD S ABxDE AB AB DB 证明:一竺丛=---坐上==--,即一一=--s AC/) CD S ACD ACxDF AC. AC DC(2)外角平分线定理;如图,在6.ABC中,外角CAE的角平分线AD交BC的延长线于点D,则AB DB AC DC ^EA,,``B C\\\\IID证明:在B A 延长线上取点E 使得AE=AC ,连接BO,则6.ACD 兰6.AED (SAS), CD=ED 且AD DB ABAB DB 平分乙BDE ,则一一=一一,即一一=一一.DE AE AC DC接下来开始证明步骤:仁',,夕夕2A、、、、、、、、、、、、、MB'N如图,PA:PB=k,作LAPB 的角平分线交AB 于M 点,根据角平分线定理,MA PA —=—=k '故M 点为定MB PB点,即乙APB 的角平分线交AB 于定点;作乙APB 外角平分线交直线AB于N 点,根据外角平分线定理,NA PA—=—=k,故N 点为定点,即乙APB NB PB外角十分线交直线AB 于定点;又乙MPN=90°,定边对定角,故P 点轨迹是以MN 为直径的圆AN法二:达系不妨将点A 、B 两点置于x轴上且关于原点对称,设A (-m, 0),则B (m, 0),设P (x, y), PA=kPB, 即:J (x+m)2+y 2 =k J(x -m)2+ y 2 (x+m)2+y 2 =k 2(x -m )2+k 2y 2 (炉-1)(x2+ y 2)-(2m +2k 2m)x+(k 2-1)矿=02 2m +2k'n /, X-+y-k 2-lx+ni 2 =0解析式满足圆的一般方程,故P点所构成的图形是固,且圆心与AB 共线.除了证明之外,我们还需了解“阿氏圆”的一些性质:(1)PA MA NA —=—=—=k.PB MB NB应用:祁据点A 、B的位置及k的值可确定M 、N及圆心0.OB OP(2) 6.0BPV>/:::,.QPA,即一一=一一,变形为OP 2=OA-OB.OP OA 应用:粮据圆心及半径和A 、B其中一点,可求A 、B另外一点位置.(3)OP OB PA —=—=—=k .OA OP PB应用:已知半径及A 、B中的其中一点,即可知道PA:PB的值.pAN匡I1如图,在L.ABC中,AB=4,AC=2,点D为AB边上一点,当AD=时,L.ACDv>L.ABCC8二二AAC AD觯:若6.ACDV)6.A B C 则有—-=——即AC 2=AB·ADAB AC·: A B =4,AC =2AC2:. AD =—= 1AD故答案为I.2如图,点P 是半径为2的O O 上一动,点,点A 、B为o o 外的定点,连接PA 、P B,点B 与固心0的I距离为4要使PA+�PB 的值最小,如何确定点P,并说明理由.2ABI 思路分析)构造相似三角形,将所求两条线段的和转化为一条线段,此线段与圆的交点即为所求A(详解J连接OB,OP ,在OB 上截取o c 亏1,连接AC 交('0于点P',连接PC.OP OC l ·—=—=-,乙POC =乙BOPOB OP 2 :.�POC BOPPC ll :.—= -,即-PB =PC PB 2· 21:. PA+.:..PB= PA+PC�AC2当点A 、P 、C三点共线时,PA+PC的值最小,最小值为AC的长,即当点P与P'重合时,PA+�PB的2 根据阿氏圆可得OP 2=0B -OC即O P 2 22OC =—=—=1OB 4值最小.23如图,平面直角坐标系中,A(4,0),B(0,3),点E在以原点0为圆心,2力半径的圆上运动,求AE+�BE3 的最小值.y j.... _3一3-,(思路分析)在坐标轴上找一点,构造相似三角形,利用对应边成比例将两条线段的和转化为求一条线段的长,即为最小值.(详解】如图,在y轴上取一点M(O,-:-)4 3 . OE OM 2 4,连接OE,EM, AM,则OE =2,0B =3, OM=-:-3==-OB OE 3又?乙EOM=乙BOE :. EOM =、BOE EM OM 2 2 :.—=—=-,即EM =::::_BEBE OE3. 3 2:. AE+::::_B E=AE+EM切AM3当A 、E 、M三点共线时,AE+BM的值最小,最小值为AM的长在Rt ,.AOM 中,A M =拓夼言夼=幸2:.当E 为线段A.11与o o 的交点时,AE +78E 有最小值为一—-.4而3 3y ·--3-3-'3 2.9 4.如图,已知抛物线y =--x +-x+3与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,44点E的坐标为(2,0),将线段OE绕点0逆时针旋转得到OE',旋转角力a(0°<a<90°),连接BE'、2CE',求BE'+�CE'的敢小值.3(思路分析】由旋转可知E'点的运动轨迹为以原点0为圆心,2为半径的圆在笫一象限内的一段固弧,在y轴上找一点,构造相似三角形,再结合各点坐标求解即可3 9(详解】解.?抛物线的解析式为y=--x 2+-x+34 4 :. B (4,0),C(0,3) ·..点E的坐标为(2,0):.,占、E'的运动轨迹为以原点0为圆心,2为半径的圆在第一象限内的一段圆弧4 如图在y轴上取一点M (O,-::),连接OE',E'M,B M,则OE'=2, OC = 3, OM =-:: 43......3 . E'M OM 2..-=-=-OCOE' 3 又?L.E'OM=乙COE':. E'OM(/) COE'. EM 2 2:.-—=-即E 'M=::..CE 'C E '33 2:. BE'+::..CE'=BE'+E'M�BM当B 、E',M三点共线时,BE'+E'M的值最小,最小值为BM的长·:BM=豆二尸三3)32 4而:.当E'为BM与圆弧的交点时,BE'+7CE'有最小值为3 3I三、中考真题演练I.(2022广东惠州一模)如图1,抛物线y=,矿+bx~4与X轴交于A、B两点,与Y轴交千点C,其中点A的坐标为(-1,0),抛物线的对称轴是迎线x=-.3 2yy图1图2(1)求抛物线的解析式:(2)若点P是直线BC下方的抛物线上一个动点,是否存在点P使四边形ABPC的面积为16,若存在,求出点P的坐标若不存在,请说明理由;(3)如图2,过点B 作BF 上BC 交抛物线的对称轴千点F,以点C 为圆心,2为半径作(,C'点Q 为C上的五一个动点,求--B Q+FQ的最小值.42如图),抛物线)1=成+(a+3)..I,+3(a'1'0)与x轴交于点A(4,0),与y轴交于点B,;{:丘轴上有一动点E(m,O )(0<m<4),过点E作x轴的垂线交直线AB千点N,交抛物线于点P,过点P作PM上AB千点M.y yxX图l(I)求a的值和且线AB的函数表达式:图2C. 6(2)设t:.PMN的周长为C,,t:.A EN的周长为C“若-=-求m的值C 5(3)如图2,在(2)的条件下,将线段OE绕点0逆时针旋转得到OE',旋转角为a (0°<a<90勺,连按E'A 、EB,求E'A+二E'B的最小值.33.(20l9山东中考真题)如图I,在平面直角坐标系中,直线y=-5x+5与x轴,y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴的另一交点为B图1图2(l)求抛物线解析式及B点坐标;(2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC 面积最大,求此时点M的坐标及四边形AMBC的面积;(3)如图2,若P点是半径为2的0B上一动点,连接PC、PA,当点P运动到某一位置时,PC+�PA的2值最小,请求出这个最小值,并说明理由.4.(2018广西柳州中考真题)如图,抛物线y= a.x2 +bx+c圭卢轴交千A(.J3,0), 8两点(点8在点A的左侧),与Y轴交于点C,且08=30A=./3oc'LO A C的平分线AD交Y轴于点D,过点A且垂直于AD的均线[交Y轴于点E,点P是X轴下方抛物线上的一个动点,过点P作PF..l.x轴,垂足为F,交直线AD千点H.(l)求抛物线的解析式:(2)设点P的横坐标为111,当FH=HP时,求1/1.的值:I(3)当归线P F为抛物线的对称轴时,以点H为圆心,-H C为半径作1)H,点Q为o H上的一个动点,求2l�AQ+EQ的最小值4x专题21阿氏圆模型一、知识导航所谓“阿氏圆",是指由古希腊数学家阿波罗尼奥斯提出的圆的概念,在平面内,到两个定点距离之比等于定值(不力l)的点的栠合叫做圆.如下图,已知A、B两点,点P满足PA:PB=k (k* I),则满足条件的所有的点P构成的图形为圆.pA下给出证明法一:首先了解两个定理(I)角平分线定理:如图,在6-ABC中,AD是乙BAC的角平分线则AB DBAC DCAB DcS BD S ABxDE AB AB DB 证明:一竺丛=---坐上==--,即一一=--s AC/) CD S ACD ACxDF AC. AC DC(2)外角平分线定理;如图,在6.ABC中,外角CAE的角平分线AD交BC的延长线于点D,则AB DB AC DC ^EA,,``B C\\\\IID证明:在B A 延长线上取点E 使得AE=AC ,连接BO,则6.ACD 兰6.AED (SAS), CD=ED 且AD DB ABAB DB 平分乙BDE ,则一一=一一,即一一=一一.DE AE AC DC接下来开始证明步骤:仁',,夕夕2A、、、、、、、、、、、、、MB'N如图,PA:PB=k,作LAPB 的角平分线交AB 于M 点,根据角平分线定理,MA PA —=—=k '故M 点为定MB PB点,即乙APB 的角平分线交AB 于定点;作乙APB 外角平分线交直线AB于N 点,根据外角平分线定理,NA PA—=—=k,故N 点为定点,即乙APB NB PB外角十分线交直线AB 于定点;又乙MPN=90°,定边对定角,故P 点轨迹是以MN 为直径的圆AN法二:达系不妨将点A 、B 两点置于x轴上且关于原点对称,设A (-m, 0),则B (m, 0),设P (x, y), PA=kPB, 即:J (x+m)2+y 2 =k J(x -m)2+ y 2 (x+m)2+y 2 =k 2(x -m )2+k 2y 2 (炉-1)(x2+ y 2)-(2m +2k 2m)x+(k 2-1)矿=02 2m +2k'n /, X-+y-k 2-lx+ni 2 =0解析式满足圆的一般方程,故P点所构成的图形是固,且圆心与AB 共线.除了证明之外,我们还需了解“阿氏圆”的一些性质:(1) PA MA NA —=—=—=k .PB MB NB应用:祁据点A 、B的位置及k的值可确定M 、N及圆心0.OB OP(2) 6.0BPV>/:::,.QPA,即一一=一一,变形为OP 2=OA-OB.OP OA 应用:粮据圆心及半径和A 、B其中一点,可求A 、B另外一点位置.(3)OP OB PA —=—=—=k .OA OP PB应用:已知半径及A 、B中的其中一点,即可知道PA:PB的值.pAN匡I1如图,在L.ABC中,AB=4,AC=2,点D为AB边上一点,当AD=时,L.ACDv>L.ABCC8二二AAC AD觯:若6.ACDV)6.A B C 则有—-=——即AC 2=AB·ADAB AC·: AB =4,AC =2AC2:. AD =—= 1AD故答案为I.2如图,点P 是半径为2的O O 上一动点,点A 、B为o o 外的定点,连接PA 、P B,点B 与固心0的I距离为4要使PA+�PB的值最小,如何确定点P,并说明理由.2ABI 思路分析)构造相似三角形,将所求两条线段的和转化为一条线段,此线段与圆的交点即为所求.A(详解J连接OB,OP ,在OB 上截取o c 亏1,连接AC 交('0于点P',连接PC.OP OC l ·—=—=-,乙POC =乙BOPOB OP 2 :.�POC BOPPC ll :.—= -,即-PB =PC PB 2· 21:. PA+.:..PB= PA+PC�AC2当点A 、P 、C三点共线时,PA+PC的值最小,最小值为AC的长,即当点P与P'重合时,PA+�PB的2 根据阿氏圆可得O P 2=0B -O C 即O P 2 22OC =—=—=1OB 4值最小.23如图,平面直角坐标系中,A(4,0),B(0,3),点E在以原点0为圆心,2力半径的圆上运动,求AE+�BE3 的最小值.y j一3-,(思路分析)在坐标轴上找一点,构造相似三角形,利用对应边成比例将两条线段的和转化为求一条线段的长,即为最小值.(详解】如图,在y轴上取一点M(O,-:-)4 3 . OE OM 2 4,连接OE,EM, AM,则OE =2,0B=3, O M=-:-3==-OB OE 3又?乙EOM=乙BOE :. EOM =、BOE EM OM 2 2 :.—=—=-,即EM =::::_BEBE OE3. 3 2:. AE+::::_B E=AE+EM切AM3当A 、E 、M三点共线时,AE+BM的值最小,最小值为AM的长在Rt ,.AOM 中,AM =拓千言夼=孛2:.当E 为线段A.11与o o 的交点时,AE +78E 有最小值为一—-.4而3 3y ·--3-3-'3 2. 94.如图,已知抛物线y =--x +-x+3与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,4 4点E的坐标为(2,0),将线段OE绕点0逆时针旋转得到OE',旋转角力a(0°<a<90°),连接BE'、2CE',求BE'+�CE'的敢小值.3(思路分析】由旋转可知E'点的运动轨迹为以原点0为圆心,2为半径的圆在笫一象限内的一段圆弧,在y轴上找一点,构造相似三角形,再结合各点坐标求解即可3 9(详解】解.?抛物线的解析式为y=--x 2+-x+34 4 :. B (4,0),C(0,3) ·.点E的坐标为(2,0):.,占、E'的运动轨迹为以原点0为圆心,2为半径的圆在第一象限内的一段圆弧4 如图在y轴上取一点M (O,-::),连接OE',E'M,BM,则OE'=2,OC=3, OM=-::43......3 . E'M OM 2..-=-=-OCOE' 3 又?L.E'OM =乙COE':. E'OM(/) COE'. EM 2 2:.-—=-即E 'M=::..CE 'C E '33 2:. B E'+::..CE'=BE'+E'M�BM当B 、E',M三点共线时,BE'+E'M的值最小,最小值为BM的长·:BM =芦言尸=玉3 J3 2 4而:当E'为BM与圆弧的交点时,BE'+7CE'有最小值为3 3I三、中考真题演练I.(2022广东惠州一模)如图1,抛物线y=,矿+bx~4与X轴交于A、B两点,与Y轴交千点C,其中点A的坐标为(-1,0),抛物线的对称轴是迎线x=-.3 2yy图1图2(1)求抛物线的解析式:(2)若点P是直线BC下方的抛物线上一个动点,是否存在点P使四边形ABPC的面积为16,若存在,求出点P的坐标若不存在,请说明理由;(3)如图2,过点B作BF上BC交抛物线的对称轴千点F,以点C为圆心,2为半径作(,C'点Q为C上的五一个动点,求--B Q+F Q的最小值.4【答案】(I)y=入.2-3x-4(2)P{l,6)或(3,4)(3)扫3【分析】(I)根据点A的坐标为(-1,0),抛物线的对称轴是直线x=-.待定系数法求二次函数解析式即可,2(2)先求得直线BC解析式,设P(m,m2-3m-4),则Q(m m-4),过点P作PQ轴交直线BC千点Q,根据S四边彤A BPC= s AOC +S如,等干16建立方程,解一元二次方程即可求得Ill的值,然后求得P的坐标,五(3)在CB上取CE=--,过点E作EG J_OC,构造CQE V>.C BQ,则当F,Q E三点共线时,取得最小值,最小值为FE,勾股定理解直角三形即可.【详解】(I)解:?抛物线y=矿+bx-4与X轴交于A、B两点,与Y轴交于点C,点A的坐标为-l,O),抛物线的对称轴是宜线x=-,3:. C(O,--4),, 4 , 。
中考数学专题复习39几何最值之阿氏圆问题(解析版)
问题分析:“阿氏圆”又称为“阿波罗尼斯圆”.如下图.已知A 、B 两点.点P 满足PA:PB=k (k ≠1).则满足条件的所有的点P 的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现.故称“阿氏圆”。
模型展示:如下图.已知A 、B 两点.点P 满足PA :PB=k (k≠1).则满足条件的所有的点P 构成的图形为圆.(1)角平分线定理:如图.在△ABC 中.AD 是△BAC 的角平分线.则AB DBAC DC=.证明:ABD ACDS BD SCD =.ABD ACDSAB DE AB SAC DF AC ⨯==⨯.即AB DBAC DC=(2)外角平分线定理:如图.在△ABC 中.外角CAE 的角平分线AD 交BC 的延长线于点D.则AB DBAC DC=.证明:在BA 延长线上取点E 使得AE=AC.连接BD.则△ACD△△AEDA B POA B POFEDCBAABCDE几何最值之阿氏圆问题方法技巧(SAS ).CD=ED 且AD 平分△BDE.则DB AB DE AE =.即AB DBAC DC=. 接下来开始证明步骤:如图.PA :PB=k .作△APB 的角平分线交AB 于M 点.根据角平分线定理.MA PAk MB PB==.故M 点为定点.即△APB 的角平分线交AB 于定点;作△APB 外角平分线交直线AB 于N 点.根据外角平分线定理.NA PAk NB PB==.故N 点为定点.即△APB 外角平分线交直线AB 于定点;又△MPN=90°.定边对定角.故P 点轨迹是以MN 为直径的圆.模型最值技巧:计算PA k PB +的最小值时.利用两边成比例且夹角相等构造母子型相似三角形问题:在圆上找一点P 使得PA k PB +的值最小.解决步骤具体如下: △ 如图.将系数不为1的线段两端点与圆心相连即OP.OB △ 计算出这两条线段的长度比OPk OB= △ 在OB 上取一点C.使得OC k OP =.即构造△POM△△BOP.则PCk PB=.PC k PB = NM APOPB M△ 则=PA k PB PA PC AC ++≥.当A 、P 、C 三点共线时可得最小值【例1】如图.已知正方ABCD 的边长为4.圆B 的半径为2.点P 是圆B 上的一个动点.则12PD PC -的最大值为_______.【分析】当P 点运动到BC 边上时.此时PC=2.根据题意要求构造12PC .在BC 上取M 使得此时PM=1.则在点P 运动的任意时刻.均有PM=12PC .从而将问题转化为求PD -PM 的最大值.连接PD.对于△PDM.PD -PM <DM.故当D 、M 、P 共线时.PD -PM=DM 为最大值.【详解】解:(1)如图1中.在BC 上取一点G.使得BG=1.AB CDPABCDP MMPDCBAABCDPMMPDC BA题型精讲△212,212====PB BC BG PB △21==PB BC BG PB △△PBG=△PBC. △△PBG△△CBP.△PC PG 21= △PG DP PC DP +=+21△DP+PG≥DG.△当D 、G 、P 共线时.PC DP 21+的值最小.最小值为DG=2234+=5. △PC PD 21-=PD -PG≤DG. 当点P 在DG 的延长线上时.PC PD 21-的值最大(如图2中).最大值为DG=5.【例2】如图.菱形ABCD 的边长为2.锐角大小为60︒.A 与BC 相切于点E .在A 上任取一点P .则3PB 的最小值为___________.37【详解】解:在AD 上截取AH =1.5.连接PH 、AE .过点B 作BF △DA 延长线.垂足为F . △AB =2.△ABC =60°.△BE =AF =1.AE =BF 323AP AD AH AP ==△△P AD =△P AH .△△ADP △△APH .△23DP AD PH AP ==PH 3. 当B 、P 、H 共线时.3PB 的最小.最小值为BH 长. BH 222237(3) 2.5BF FH ++=37【例3】如图.在Rt ABC 中.△C =90°.CA =3.CB =4.C 的半径为2.点P 是C 上一动点.则12AP BP +的最小值______________23+PB PA 的最小值_______10410【详解】△在BC 上取点D .使CD =14BC =1.连接AD .PD .PC .由题意知:PC=2.△12DC PC PC BC ==.△PCD =△BCP .△PDC BPC ∆∆∽.△12PD PB =. 且12PA PB PA PD AD +=+≥.△229110AD AC CD =+=+=.△2PA PB 1+的最小值为10.故答案为:10;△在AC 上取点E .使CE =43.连接PE .BE .PC .△42323CE PC ==.23PC AC =.△23CE PC PC AC ==.且△PCE =△ACP . △PEC APC ∆∆∽.△23PE PC PA AC ==.△23PE PA =.△23PB PA PB PE BE +=+≥. △222244104()33BE BC CE =+=+=.△23+PB PA 的最小值为4103.故答案为:4103.1.如图.矩形ABCD 中.4,2AB AD ==.以B 为圆心.以BC 为半径画圆交边AB 于点E.点P 是弧CE 上的一个动点.连结,PD PA .则12AP DP +的最小值为( )提分作业A 10B 11C 13D 14【答案】C【详解】解:如图.连接BP.取BE 的中点G.连接PG. △2AD BC BP ===.4AB =.△2142BP BA ==.△G 是BE 的中点.△12BG BP =.△BP BGBA BP=. △PBG ABP ∠=∠.△BPGBAP .△12PG BP AP BA ==.△12PG AP =. 则12AP DP PG DP +=+.当P 、D 、G 三点共线时.取最小值.即DG 长. 224913DG AD AG ++C .2.如图.已知菱形ABCD 的边长为4.60B ∠=︒.B 的半径为2.P 为B 上一动点.则12PD PC +的最小值_______.3PC 的最小值_______37111【详解】△如图.在BC 上取一点G .使得BG =1.连接PB 、PG 、GD .作DF △BC 交BC 延长线于F .△221PB BG ==.422BC PB ==.△PB BCBG PB=.△PBG PBC ∠=∠.△PBG CBP ∆∆.△12PG BG PC PB ==.△12PG PC =.△12PD PC DP PG +=+.△DP PG DG +≥.△当D 、P 、G 共线时.PD +12PC 的值最小.最小值为DG . 在Rt △CDF 中.△DCF =60°.CD =4.△DF =CD •sin 3CF =2. 在Rt △GDF 中.DG 22(23)(5)37+=37 △如图.连接BD .在BD 上取一点M .使得BM 3连接PB 、PM 、MC .过M 作MN △BC 于N .△四边形ABCD 是菱形.且60ABC ∠=︒. △AC △BD .△AOB =90︒.△ABO =△CBO =12△ABC =30︒.△AO =12AB =2.BO 22224223AB AO -=-BD =2 BO =433332BM PB ==343PB BD = △3BM PB PB BD ==且△MBP =△PBD .△△MBP ~△PBD .△3PM PB PD BD ==3PM =.△3PC PC PM MC =+≥.△当M 、P 、C 共线时.3PC 的值最小.最小值为CM .在Rt △BMN 中.△CBO =30︒.BM 3MN =12BM 3BN 2212BM MN -=.△CN =4-1722=. △MC 2222111CN MN CN MN ++.△3PC 111. 3.如图.在中.△ACB=90°.BC=12.AC=9.以点C 为圆心.6为半径的圆上有一个动点D .连接AD 、BD 、CD.则2AD+3BD 的最小值是 .ABC ∆【分析】首先对问题作变式2AD+3BD=233AD BD ⎛⎫+ ⎪⎝⎭.故求23AD BD +最小值即可.考虑到D 点轨迹是圆.A 是定点.且要求构造23AD .条件已经足够明显.当D 点运动到AC 边时.DA=3.此时在线段CD 上取点M 使得DM=2.则在点D 运动过程中.始终存在23DM DA =.问题转化为DM+DB 的最小值.直接连接BM.BM 长度的3倍即为本题答案.【详解】如图.在AC 上取一点M.使CM=4 ∵CDAC CM CD= ABCDMACDD CBAM DCBAM∴∠MCD=∠ACD ∴△DCM ∽△ACD ∴96==AC DC AD MD ∴AD MD 32=在△MDE 中.MD+DB ≥MD ∴MD+DB 最小值为MB 。
阿波罗尼斯圆及其应用 阿波罗尼斯圆与向量 (解析版)
阿波罗尼斯圆及其应用阿波罗尼斯圆与向量阿波罗尼斯圆及其应用阿波罗尼斯圆与向量【微点综述】涉及线段定比的有些平面向量题,或是涉及数量积的等式,可以转化成三点共线问题,构造阿波罗尼斯圆,建立平面直角坐标系,利用阿波罗尼斯圆解决问题.【典例刨析】1.已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足|c -a |=12,则|a +b -c |+2|c -b |最小值为__________.2.已知BC =6,AC =2AB ,点D 满足AD=2x x +y AB+y 2x +yAC ,设f x ,y =AD ,若f x ,y ≥f x0,y 0 恒成立,则f x 0,y 0 的最大值为______________.3.(2022浙江省宁波市鄞州中学高三其他)已知向量a ,b ,c 满足|a |=12|b|=|c |=1,a ⋅b =1,则c +12a +12|c -b|的取值范围是_______.4.已知等边ΔABC 的边长为2,点P 在线段AC 上,若满足PA ⋅PB-2λ+1=0的点P 恰有两个,则实数λ的取值范围是__________.5.已知A ,B 是平面上两个定点,平面上的动点C ,D 满足|CA |CB=|DA|DB =m ,若对于任意的m ≥3,不等式CD≤k AB 恒成立,则实数k 的最小值为______.6.已知点A (0,1),B (1,0),C (t ,0),点D 是直线AC 上的动点,若|AD |≤2|BD|恒成立,则最小正整数t =__________.【针对训练】7.(2022·广东广州·高二期末)古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点A 、B 的距离之比为定值λ(λ>0且λ≠1)的点的轨迹是圆”.后来人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆,在平面直角坐标系xOy 中,A -2,0 ,B 2,0 ,点P 满足PAPB=3,则点P 的轨迹方程为__________.(答案写成标准方程),PA ⋅PB的最小值为__________.8.(2022·江苏·高邮一中高二期末)阿波罗尼斯与阿基米德、欧几里得被称为亚历山大时期的数学三巨匠.“阿波罗尼斯圆”是他的代表成果之一:平面上动点P 到两定点A ,B 的距离之比满足PAPB=t (t >0且t≠1,t 为常数),则P 点的轨迹为圆.已知在平面直角坐标系xOy 中,A (-3,0),B (3,0),动点P 满足PAPB =2,则P 点的轨迹Γ为圆,该圆方程为_________;过点A 的直线交圆Γ于两点C ,D ,且AC =CD ,则CD =_________.9.阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数k k >0,k ≠1 的点的轨迹是圆,后人将此圆称为阿氏圆.若平面内两定点A 、B 间的距离为4,动点P 满足PAPB=3,则动点P 的轨迹所围成的图形的面积为___________;PA ⋅PB 最大值是___________.10.在平面四边形ABCD 中,∠BAD =90°,AB =2,AD =1.若AB ⋅AC +BA ⋅BC =43CA ⋅CB,则CB+12CD 的最小值为____.11.在ΔABC 中,A =120°,AB =2AC =6,点D 满足AD=x3x +3y AB +2y x +yAC ,则AD 的最小值为______.12.已知圆C 的圆心在直线3x -y =0上,与x 轴正半轴相切,且被直线l :x -y =0截得的弦长为27.(1)求圆C 的方程;(2)设点A 在圆C 上运动,点B 7,6 ,且点M 满足AM =2MB ,记点M 的轨迹为Γ.①求Γ的方程,并说明Γ是什么图形;②试探究:在直线l 上是否存在定点T (异于原点O ),使得对于Γ上任意一点P ,都有PO PT为一常数,若存在,求出所有满足条件的点T 的坐标,若不存在,说明理由.参考答案1.【答案】52【分析】建立坐标系,设A (1,0),B (0,1),D (1,1),设OA =a ,OB =b ,则|a +b -c |+2|c -b|=CD +2BC ,构造相似三角形,设E 1,14,可得ΔAEC ∽ΔACD ,所以|a +b -c |+2|c -b |=CD +2BC =2(BC +CE )≥2BE =52.【详解】如图,A 1,0 ,B 0,1 ,D 1,1 ,设OA =a ,OB =b ,则向量c 满足|c -a |=12,设OC =c ,所以点C为以A 为圆心,以12为半径的圆上的一点,所以|a +b -c |=|OD -OC |=|CD |,同理2|c -b|=2|BC |,取点E 1,14 ,则AE AC =ACAD,又因∠CAE =∠DAC ,所以ΔAEC ∽ΔACD ,所以CE CD=12,即CD =2CE ,所以|a +b -c |+2|c -b|=CD +2BC =2CE +2BC =2BC +CE ,由三角形的三边关系知2BC +CE ≥2BE =212+34 2=2×54=52.故填:52.【点睛】本题考查向量的坐标运算,向量的模,向量模的几何意义,考查函数与方程思想、转化与化归思想、数形结合思想,考查逻辑推理能力和运算求解能力,求解时注意构造相似三角形等知识,属于难题.2.【答案】4【分析】将已知AD =2x x +y AB +y 2x +yAC 变形为x x +y 2AB +y x +y 12AC ,设延长AB 至点F ,使得AF =2AB ,取AC 的中点E ,并通过xx +y +y x +y=1得出点D 在EF 上,再通过△AEF ≅△ABC 与已知条件得出f x 0,y 0 =ADmin =AG ,设AB =m ,再通过面积法与正、余弦定理得出AG 即可利用一元二次方程最值与根式性质得出答案.【详解】延长AB 至点F ,使得AF =2AB ,取AC 的中点E ,连接EF ,则AD =2x x +y AB +y 2x +y AC ,=x x +y 2AB+y x +y 12AC,=x x +y AF+y x +yAE ,∵xx +y +y x +y =1,∴点D 在EF 上,过点A 作AG ⊥EF 于点G ,由“边角边”公理可得:△AEF ≅△ABC ,∴EF =BC =6,∵f x ,y =AD,且f x ,y ≥f x 0,y 0 恒成立,∴f x 0,y 0 =ADmin =AG ,设AB =m ,根据面积法知:AG =AE AF sin AEF,=m ⋅2m ⋅sin A6,=m 23sin A ,=m 231-m 2+4m 2-362⋅m ⋅2m 2,=13-916m 2-20 +144≤13×12=4,当且仅当m =25时等号成立,∴f x 0,y 0 max =4,故答案为:4.3.【答案】[3,7]【解析】根据几何关系,设点A ,B ,D 的坐标,点C 在单位圆上,故M =c +12a +12c -b =12EC+BC ,当B ,E ,C 三点共线时,即点C 在C 1处时,取最小值,以及数形结合分析出最大值,计算得到答案.【详解】因为|a |=1,|b |=2,a ⋅b =1,所以‹a ,b ›=π3,设OA =a ,OB =b ,OC =c ,OD =-12a,即A (1,0),B (1,3),D -12,0 ,点C 在单位圆x 2+y 2=1上,因为c +12a +12c -b =OC -OD +12OC -OB =DC +12BC,设|DC |=12|EC|,C (x ,y ),E (m ,n ),即x +12 2+y 2=12(x -m )2+(y -n )2,故E (-2,0),所以M =c +12a +12c -b =12EC+BC ,如图,(1)当B ,E ,C 三点共线,即点C 在C 1处时,取最小值.因为M =c +12a +12c -b =12EC +BC ≥12BE=3,所以M min =3,(2)当C 位于C 2处时,取最大值,M =12(|EC 2|+|C 2B |)=7,因为2(|EC |2+|BC |2)=(2CC 1)2+(EB )2≤(4)2+(23)2=28,即EC 2+BC 2≤14,所以|EC |+|BC |2≤|EC |2+|BC|22≤7,当且仅当|EC |=|BC |取等号,综上,c +12a +12|c-b |∈3,7 .故答案为:3,7 .【点睛】关键点点睛:本题考查向量模的最值问题,主要考查转化分析,数形结合分析,属于中档题型,本题的关键是根据根据条件设出定点和动点的坐标,根据数形结合分析,转化为点C 位置讨论的问题.4.【答案】38<λ≤12.【分析】设PA =x 0≤x ≤2 ,根据PA ⋅PB-2λ+1=0得到关于x 的函数,由题意可得该函数在区间0,2 上有两个不同的零点,然后根据二次函数的相关知识可得实数λ的取值范围.【详解】如图,设PA =x 0≤x ≤2 ,则PC =2-x ,则PB =PA +AB =-x 2AC+AB ,又AC ⋅AB=2×2×cos60°=2,∴PA ⋅PB =-x 2AC ⋅-x 2AC +AB =x 24AC 2-x 2AC⋅AB =x 2-x .∵满足PA ⋅PB-2λ+1=0的点P 恰有两个,∴关于x 的方程x 2-x -2λ+1=0在区间0,2 上有两个不同的实数根.设f x =x 2-x -2λ+1,则函数f x 在区间0,2 上有两个不同的零点,∴Δ=1-4-2λ+1 >0f 0 =-2λ+1≥0f 2 =3-2λ≥00<12<2,解得38<λ≤12.∴实数λ的取值范围是38,12.【点睛】(1)用定义进行向量的数量积运算时,有时要注意选择合适的基底,将所有向量用同一基底表示,然后再根据数量积的运算律求解.(2)对于一元二次方程根的分布问题,可根据“三个二次”间的关系,结合二次函数的图象转化为不等式(组),通过解不等式(组)可得所求.5.【答案】34【分析】建立坐标系,得点C ,D 的轨迹方程,分离参量求范围即可求解【详解】不妨设AB =1,以A 为原点,AB 所在直线为x 轴建立直角坐标系,则A 0,0 ,B 1,0 ,设C x ,y ,∴x 2+y 2x -1 2+y2=m ⇒x -m 2m 2-1 2+y 2=m 2m 2-1 2故动点C ,D 的轨迹为圆,由CD≤k AB 恒成立,则k ≥CD max =2m m 2-1=2m -1m≥34故答案为34【点睛】本题考查圆的轨迹方程,平面问题坐标化的思想,是难题6.【答案】4【解析】设点D x ,y ,根据|AD |≤2|BD|列出关于D x ,y 的关系式,再数形结合分析即可.【详解】设点D x ,y ,因为点D 是直线AC 上的动点,故y -1x =-1t⇒x +ty -t =0.由|AD |≤2|BD |得x 2+y -1 2≤4x -1 2+y 2 ,化简得x -43 2+y +13 2≥89.依题意可知,直线AC 与圆x -43 2+y +13 2=89至多有一个公共点,所以43-43t 1+t 2≥89,解得t ≥2+3或t ≤2- 3.所以最小正整数t =4.故答案为:4【点睛】本题主要考查了直线与圆和向量的综合运用,需要设点的坐标表达所给的信息,再数形结合利用圆心到直线的距离列式求解.属于中档题.7.【答案】 x -522+y 2=94-3【分析】设点P 坐标,然后用直接法可求;根据轨迹方程和数量积的坐标表示对PA ⋅PB 化简,结合轨迹方程可得x 的范围,然后可解.【详解】设P 点坐标为(x ,y ),则由PA PB=3,得(x +2)2+y 2(x -2)2+y2=3,化简得x 2+y 2-5x +4=0,即x -52 2+y 2=94.因为PA =(-2-x ,-y ),PB=(2-x ,-y ),x 2+y 2=5x -4所以PA ⋅PB=(-2-x )(2-x )+y 2=x 2+y 2-4=5x -8因为点P 在圆x -52 2+y 2=94上,故1≤x ≤4所以-3≤PA ⋅PB ≤12,故PA ⋅PB的最小值为-3.故答案为:x -52 2+y 2=94,-38. 【答案】 (x -5)2+y 2=16 26【分析】设P x ,y ,根据PAPB=2可得圆的方程,利用垂径定理可求CD =2 6.【详解】设P x ,y ,则x +3 2+y 2x -32+y2=2,整理得到x 2+y 2-10x +9=0,即(x -5)2+y 2=16.因为AC =CD ,故C 为AD 的中点,过圆心5,0 作AD 的垂线,垂足为M ,则M 为CD 的中点,则AM =32CD ,故64-94CD 2=16-14CD 2,解得CD =26,故答案为:(x -5)2+y 2=16,2 6.9.【答案】12π 24+163【分析】以经过A ,B 的直线为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系,求出阿氏圆方程,可得半径,从而得面积.由P (x ,y ),利用向量数量积的坐标表示求出PA ⋅PB,结合P 在圆上可得最大值.【详解】以经过A ,B 的直线为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系,如图,则A -2,0 ,B 2,0 ,设P x ,y ,PAPB=3,∴x +22+y 2x -2 2+y2=3,得:x 2+y 2-8x +4=0⇒x -4 2+y 2=12,点P 的轨迹为圆(如图),其面积为12π.PA ⋅PB =x 2-4+y 2=OP 2-4,如图当P 位于点D 时,OP 2最大,OP 2最大值为4+23 2=28+163,故PA ⋅PB最大值是24+16 3.故答案为:12π;24+16 3.10.【答案】262【分析】以AB 的中点O 为坐标原点,以AB 方向为x 轴正向,建立如下平面直角坐标系. 设C (x ,y ),根据已知条件可求得C 点在以O 为圆心,2为半径的圆上,取B 1(4,0),可得ΔOBC ~ΔOCB 1,从而有CB 1=2CB ,因此CB +12CD =12(2CB +CD )=12(CB 1+CD ),因此只要CB 1+CD 最小即可.【详解】如图,以AB 的中点O 为坐标原点,以AB 方向为x 轴正向,建立如下平面直角坐标系.则A (-1,0),B (1,0),设C (x ,y ),则AB =(2,0),AC =(x +1,y ),BC=(x -1,y )因为AB ⋅AC +BA ⋅BC =AB ⋅AC +AB ⋅CB =AB ⋅AB =43CA ⋅CB所以AB ⋅AB =43AC ⋅BC ,即:4=43×(x -1)(x +1)+y 2整理得:x 2+y 2=4,所以点C 在以原点为圆心,半径为2的圆上.在x 轴上取B 1(4,0),连接B 1C可得ΔOBC ~ΔOCB 1,所以BC B 1C =OBOC=2,所以B 1C =2BCCB +12CD =12(2CB +CD )=12B 1C +CD由图可得:当B 1,C ,D 三点共线时,即点C 在图中的M 位置时,B 1C +CD 最小.此时CB +12CD 最小为DB 1=12(4+1)2+12=262.故答案为262.【点睛】本题考查平面向量的数量积,考查平面向量的几何应用.解题关键点有二,一是建立坐标系,求出C 点在一个圆上,二是取点B 1,构造出ΔOBC ~ΔOCB 1,于是B 1C =2BC ,问题转化为求CD +CB 1的最小值.11.【答案】33913【分析】令AE =13AB ,AF =2AC ,可得AD =x x +y AE+y x +yAF ,即D 在直线EF 上,从而当AD ⊥EF 时AD最小,结合三角形知识得到结果.【详解】AD =x 3x +3y AB +2y x +y AC =x x +y 13AB+y x +y 2AC,令AE =13AB ,AF =2AC ,则AD =x x +y AE +y x +yAF ,因为xx +y +y x +y=1,所以D 在直线EF 上,从而当AD ⊥EF 时AD最小,在ΔAEF 中,AE =13AB =2,AF =2AC =6,A =120°,由余弦定理得EF =213,又S ΔAEF =12AE ⋅AF ⋅sin A =12EF ⋅AD min ,得AD min =AE ⋅AF sin A EF =2×6×32213=33913.故答案为:33913【点睛】本题综合考查了平面向量与解三角形知识,考查三点共线、余弦定理,三角形面积公式等知识,考查转化能力与计算能力,属于中档题.12.【答案】(1)x -1 2+y -3 2=9;(2)①x -5 2+y -5 2=1,Γ是圆;②存在,D 4910,4910.【分析】(1)设圆心t ,3t ,根据题意,得到半径r =3t ,根据弦长的几何表示,由题中条件,列出方程求解,得出t =±1,从而可得圆心和半径,进而可得出结果;(2)①设M (x ,y ),根据向量的坐标表示,由题中条件,得到x A =-14+3xy A =-12+3y ,代入圆C 的方程,即可得出结果;②假设存在一点D t ,t 满足PO PT=λ(其中λ为常数),设P x ,y ,根据题意,得到x 2+y 2x -t 2+y -t2=λ,再由①,得到x -5 2+y -5 2=1,两式联立化简整理,得到x 10-10λ2+2tλ2 +y 10-10λ2+2tλ2-49+49λ2-2λ2t 2=0,推出10-10λ2+2tλ2=049λ2-2λ2⋅t 2=49 ,求解得出t ,即可得出结果.【详解】(1)设圆心t ,3t ,则由圆与x 轴正半轴相切,可得半径r =3t .∵圆心到直线的距离d =t -3t2=2t ,由7+2t 2=r 2,解得t =±1.故圆心为1,3 或-1,-3 ,半径等于3.∵圆与x 轴正半轴相切∴圆心只能为1,3故圆C 的方程为x -1 2+y -3 2=9;(2)①设M (x ,y ),则:AM =x -x A ,y -y A ,MB=7-x ,6-y ,∴x -x A =14-2x y -y A =12-2y∴x A=-14+3xy A =-12+3y∵点A 在圆C 上运动∴3x -14-1 2+3y -12-3 2=9即:∴3x -15 2+3y -15 2=9∴x -5 2+y -5 2=1所以点M 的轨迹方程为x -5 2+y -5 2=1,它是一个以5,5 为圆心,以1为半径的圆;②假设存在一点D t ,t 满足POPT =λ(其中λ为常数)设P x ,y ,则:x 2+y 2x -t 2+y -t2=λ整理化简得:x 2+y 2=λ2x 2-2tx +t 2+y 2-2ty +t 2 ,∵P 在轨迹Γ上,∴x -5 2+y -5 2=1化简得:x 2+y 2=10x +10y -49,所以10x +10y -49=λ210x +10y -49-2tx -2ty +2t 2整理得x 10-10λ2+2tλ2 +y 10-10λ2+2tλ2 -49+49λ2-2λ2t 2=0∴10-10λ2+2tλ2=0 49λ2-2λ2⋅t2=49 ,解得:t=49 10;∴存在D4910,4910满足题目条件.【点睛】本题主要考查求圆的方程,考查圆中的定点问题,涉及圆的弦长公式等,属于常考题型.。
最新阿氏圆(中考数学压轴热点)
C阿氏圆模型专题训练阿氏圆(阿波罗尼斯圆):已知平面上两定点A 、B ,则所有满足PA/PB=k(k 不等于1)的点P 的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称阿氏圆。
在初中的题目中往往利用逆向思维构造"斜A"型相似(也叫"母子型相似"或"美人鱼相似")+两点间线段最短解决带系数两线段之和的最值问题。
观察下面的图形,当P 在在圆上运动时,PA 、PB 的长在不断的发生变化,但它们的比值却始终保持不变。
解决阿氏圆问题,首先要熟练掌握母子型相似三角形的性质和构造方法。
如图,在△ABC 的边AC 上找一点D ,使得AD/AB=AB/AC ,则此时△ABD ∽△ACB 。
那么如何应用"阿氏圆"的性质解答带系数的两条线段和的最小值呢?我们来看一道基本题目:已知∠ACB=90°,CB=4,CA=6,⊙C 半径为2,P 为圆上一动点. (1)求12AP BP +的最小值为 (2)求13AP BP +的最小值为实战练习: 1、已知⊙O 半径为1,AC 、BD 为切线,AC=1,BD=2,P 为弧试求2PC PD +的最小值2、已知点A (4,0),B (4,4),点P 在半径为2的⊙O 上运动,试求12AP BP +的最小值3、已知点A(-3,0),B (0,3),C (1,0),若点P 为⊙C 上一动点,且⊙C 与y 轴相切,(1)14AP BP +(2)PAB S 的最小值.4、如图1,在平面直角坐标系xoy 中,半⊙O 交x 轴与点A 、B(2,0)两点,AD 、BC 均为半⊙O的切线,AD=2,BC=7.(1)求OD 的长;(2)如图2,若点P 是半⊙O 上的动点,Q 为OD 的中点.连接PO 、PQ.①求证:△OPQ ∽△ODP;②是否存在点P ,使PD 有最小值,若存在,试求出点P 的坐标;若不存在,请说明理由.5、(1)如图1,已知正方形ABC 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC +的最小值和12PD PC -的最大值. (2)如图2,已知正方形ABCD 的边长为9,圆B 的半径为6,点P 是圆B 上的一个动点,那么23PD PC +的最小值为 ;23PD PC -的最大值为 (3)如图3,已知菱形ABCD 的边长为4,∠B=60°,圆B 的半径为2.点P 是圆B 上的一个动点.那么12PD PC +的最小值为 ;12PD PC -的最大值为。
压轴题型07 阿波罗尼斯圆问题(解析版)-2023年高考数学压轴题专项训练
压轴题07阿波罗尼斯圆问题在近几年的高考中,以阿波罗尼斯圆为背景的考题不断出现,备受命题者的青睐,下面我们通过一例高考题,讲解如何运用阿波罗尼斯圆进一步加强对与此圆与关试题的认识。
背景展示阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一.求证:到两定点的距离的比值是不等于1的常数的点的轨迹是圆.如图,点B A ,为两定点,动点P 满足PB P A λ=,则1=λ时,动点P 的轨迹为直线;当1≠λ时,动点P 的轨迹为圆,后世称之为阿波罗尼斯圆.证明:设PB P A m m AB λ=>=,02)(.以AB 中点为原点,直线AB 为x 轴建立平面直角坐标系,则),,(0m A -),(0m B .又设),(y x C ,则由PB P A λ=得:2222)()(y m x ym x +-=++λ,两边平方并化简整理得:)()()()(222222211121λλλλ-=-++--m y x m x ,当1=λ时,0=x ,轨迹为线段AB 的垂直平分线;当1>λ时,22222222)1(4)11(-=+-+-λλλλm y m x ,轨迹为以点)0,11(22m -+λλ为圆心,以122-λλm 长为半径的圆.○热○点○题○型隐形的阿波罗尼斯圆典型例题例1、如图,圆C与x轴相切于点(1,0)T,与y轴正半轴交于两点,A B(B在A的上方),且2AB=.(Ⅰ)圆C的标准..方程为;(Ⅱ)过点A任作一条直线与圆22:1O x y+=相交于,M N两点,下列三个结论:①NA MANB MB=;②2NB MANA MB-=;③NB MANAMB+=其中正确结论的序号是.(写出所有正确结论的序号)解析:(Ⅰ)易知半径r=()(2212x y-+-=;(Ⅱ)方法一:因为圆心)2,1(C,)2,0(E∴又因为2AB=,且E为AB中点,所以()()1,1A B因为,M N在圆22:1O x y+=上,可设)sin,(cosααM,)sin,(cosββN所以:22)]12([sin)0(cos--+-=ββNA所以:12)sin2)(12(2)sin2)(12(2-=-+--=ββNBNA,同理:12-=MBMA,所以:NA MANB MB=1-2=,①正确;2)12(121-=---=MBMANANB,②正确22)12(121=-+-=+MBMANANB,③正确所以:①、②、③正确方法一可以改进为:设(),P x y为圆C上任意一点,则有:12)12(2224)12(2224)12()12(2222-=+-+---=--++-+=yy y x y x PBP A ,①正确;同理2)12()12(-=--+=MBMA NA NB,②正确;22)12()12(=-++=+MBMA NANB ,③正确.这里的第(Ⅰ)问并不很难,只要考生有一定平面几何基础既能轻易解出.但第(Ⅱ)问有难度.这是因为当圆O 的弦MN 绕定点A 旋转时,各有关线段的长度都在变化,从而相应线段的比值也就难于确定,方法一运算量较大。
专题05 阿氏圆求最小值(解析版)
中考数学压轴题--二次函数第5节阿氏圆求最小值内容导航方法点拨点P 在直线上运动的类型称之为“胡不归”问题;点 P 在圆周上运动的类型称之为“阿氏圆”问题,“阿氏圆”又称“阿波罗尼斯圆”,已知平面上两点 A、B,则所有满足 PA=k·PB(k≠1)的点 P 的轨迹是一个圆,这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”。
如图 1 所示,⊙O 的半径为 r,点 A、B 都在⊙O 外,P 为⊙O 上一动点,已知 r=k·OB,连接 PA、PB,则当“PA+k·PB”的值最小时,P 点的位置如何确定?如图2,在线段 OB 上截取 OC 使 OC=k·r,则可说明△BPO 与△PCO 相似,即 k·PB=PC。
故本题求“PA+k·PB”的最小值可以转化为“PA+PC”的最小值,其中与 A 与 C 为定点,P 为动点,故当 A、P、C 三点共线时,“PA+PC”值最小。
如图3所示:【破解策略详细步骤解析】例题演练例1.如图,在平面直角坐标系中,抛物线y=x2+4x的顶点为点A(1)求点A的坐标;(2)点B为抛物线上横坐标等于﹣6的点,点M为线段OB的中点,点P为直线OB下方抛物线上的一动点.当△POM的面积最大时,过点P作PC⊥y轴于点C,若在坐标平面内有一动点Q满足PQ=,求OQ+QC的最小值;【解答】解:(1)∵y=x2+4x=(x+2)2﹣4,∴A(﹣2,﹣4);(2)如图1,过P作PH⊥x轴交OB于H,作PG⊥BC于G,过M作MD⊥y轴交y轴于D,∵点B为抛物线上横坐标等于﹣6的点,∴B(﹣6,12),∴直线AB解析式为y=﹣2x设P(m,m2+4m),则H(m,﹣2m),PH=﹣2m﹣(m2+4m)=﹣m2﹣6m∵点M为线段OB的中点,∴M(﹣3,6),∴MD=3∵PH∥y轴∴∠PHG=∠MOD∵PG⊥BC MD⊥y轴∴∠PGH=∠MDO∴△PGH∽△MDO∴=,即PG•MO=PH•MD=3(﹣m2﹣6m)=﹣3m2﹣18m,∴S△POM=PG•MO=﹣9m=﹣(m+3)2+∵﹣<0,∴当m=﹣3时,S△POM的值最大,此时P(﹣3,﹣3),在PC上取点T,使得PT=,连接QT,OT,∵PC=3,PQ=∴==∵∠QPT=∠CPQ∴△QPT∽△CPQ∴==,即TQ=QC,∴OQ+QC=OQ+TQ≥OT∵OT===∴OQ+QC的最小值为;练1.1如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.【解答】解:(1)令y=0,则ax2+(a+3)x+3=0,∴(x+1)(ax+3)=0,∴x=﹣1或﹣,∵抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),∴﹣=4,∴a=﹣.∵A(4,0),B(0,3),设直线AB解析式为y=kx+b,则,解得,∴直线AB解析式为y=﹣x+3.(2)如图1中,∵PM⊥AB,PE⊥OA,∴∠PMN=∠AEN,∵∠PNM=∠ANE,∴△PNM∽△ANE,∴=,∵NE∥OB,∴=,∴AN=(4﹣m),∵抛物线解析式为y=﹣x2+x+3,∴PN=﹣m2+m+3﹣(﹣m+3)=﹣m2+3m,∴=,解得m=2或4,经检验x=4是分式方程的增根,∴m=2.(3)如图2中,在y轴上取一点M′使得OM′=,连接AM′,在AM′上取一点E′使得OE′=OE.∵OE′=2,OM′•OB=×3=4,∴OE′2=OM′•OB,∴=,∵∠BOE′=∠M′OE′,∴△M′OE′∽△E′OB,∴==,∴M′E′=BE′,∴AE′+BE′=AE′+E′M′=AM′,此时AE′+BE′最小(两点间线段最短,A、M′、E′共线时),最小值=AM′==.练1.2如图1,抛物线y=ax2﹣6ax+6(a≠0)与x轴交于点A(8,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<8),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)分别求出直线AB和抛物线的函数表达式.(2)设△PMN的面积为S1,△AEN的面积为S2,若S1:S2=36:25,求m的值.(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B.①在x轴上找一点Q,使△OQE′∽△OE′A,并求出Q点的坐标.②求BE′+AE′的最小值.【解答】解:(1)把点A(8,0)代入抛物线y=ax2﹣6ax+6,得64a﹣48a+6=0,∴16a=﹣6,a=﹣,∴y=﹣x2+x+6与y轴交点,令x=0,得y=6,∴B(0,6).设AB为y=kx+b过A(8,0),B(0,6),∴,解得:,∴直线AB的解析式为y=﹣x+6.(2)∵E(m,0),∴N(m,﹣m+6),P(m,﹣m2+m+6).∵PE∥OB,∴△ANE∽△ABO,∴=,∴=,解得:AN=.∵PM⊥AB,∴∠PMN=∠NEA=90°.又∵∠PNM=∠ANE,∴△NMP∽△NEA.∵=,∴,∴PM=AN=×=12﹣m.又∵PM=﹣m2+m+6﹣6+m=﹣m2+3m,∴12﹣m=﹣m2+3m,整理得:m2﹣12m+32=0,解得:m=4或m=8.∵0<m<8,∴m=4.(3)①在(2)的条件下,m=4,∴E(4,0),设Q(d,0).由旋转的性质可知OE′=OE=4,若△OQE′∽△OE′A.∴=.∵0°<α<90°,∴d>0,∴=,解得:d=2,∴Q(2,0).②由①可知,当Q为(2,0)时,△OQE′∽△OE′A,且相似比为===,∴AE′=QE′,∴BE′+AE′=BE′+QE′,∴当E′旋转到BQ所在直线上时,BE′+QE′最小,即为BQ长度,∵B(0,6),Q(2,0),∴BQ==2,∴BE′+AE′的最小值为2.练1.3如图1,在平面直角坐标系中,抛物线y=x2+x+3与x轴交于A、B两点(点A在点B 的右侧),与y轴交于点C,过点C作x轴的平行线交抛物线于点P.连接AC.(1)求点P的坐标及直线AC的解析式;(2)如图2,过点P作x轴的垂线,垂足为E,将线段OE绕点O逆时针旋转得到OF,旋转角为α(0°<α<90°),连接F A、FC.求AF+CF的最小值;【解答】解:(1)在抛物线y=x2+x+3中,当x=0时,y=3,∴C(0,3),当y=3时,x1=0,x2=2,∴P(2,3),当y=0时,x1=﹣4,x2=6,B(﹣4,0),A(6,0),设直线AC的解析式为y=kx+3,将A(6,0)代入,得,k=﹣,∴y AC=﹣x+3,∴点P坐标为P(2,3),直线AC的解析式为y AC=﹣x+3;(2)在OC上取点H(0,),连接HF,AH,则OH=,AH===,∵==,=,且∠HOF=∠FOC,∴△HOF∽△FOC,∴=,∴HF=CF,∴AF+CF=AF+HF≥AH=,∴AF+CF的最小值为;练1.4如图1,在平面直角坐标系中,直线y=﹣5x+5与x轴,y轴分别交于A,C两点,抛物线y =x2+bx+c经过A,C两点,与x轴的另一交点为B.(1)求抛物线解析式及B点坐标;(2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC面积最大,求此时点M的坐标及四边形AMBC的面积;(3)如图2,若P点是半径为2的⊙B上一动点,连接PC、P A,当点P运动到某一位置时,PC+P A 的值最小,请求出这个最小值,并说明理由.【解答】解:(1)直线y=﹣5x+5,x=0时,y=5∴C(0,5)y=﹣5x+5=0时,解得:x=1∴A(1,0)∵抛物线y=x2+bx+c经过A,C两点∴解得:∴抛物线解析式为y=x2﹣6x+5当y=x2﹣6x+5=0时,解得:x1=1,x2=5∴B(5,0)(2)如图1,过点M作MH⊥x轴于点H∵A(1,0),B(5,0),C(0,5)∴AB=5﹣1=4,OC=5∴S△ABC=AB•OC=×4×5=10∵点M为x轴下方抛物线上的点∴设M(m,m2﹣6m+5)(1<m<5)∴MH=|m2﹣6m+5|=﹣m2+6m﹣5∴S△ABM=AB•MH=×4(﹣m2+6m﹣5)=﹣2m2+12m﹣10=﹣2(m﹣3)2+8∴S四边形AMBC=S△ABC+S△ABM=10+[﹣2(m﹣3)2+8]=﹣2(m﹣3)2+18∴当m=3,即M(3,﹣4)时,四边形AMBC面积最大,最大面积等于18(可以直接利用点M是抛物线的顶点时,面积最大求解)(3)如图2,在x轴上取点D(4,0),连接PD、CD∴BD=5﹣4=1∵AB=4,BP=2∴∵∠PBD=∠ABP∴△PBD∽△ABP∴==,∴PD=AP∴PC+P A=PC+PD∴当点C、P、D在同一直线上时,PC+P A=PC+PD=CD最小∵CD=∴PC+P A的最小值为练1.5如图,抛物线y=ax2+bx+c与x轴交于A(,0),B两点(点B在点A的左侧),与y 轴交于点C,且OB=3OA=OC,∠OAC的平分线AD交y轴于点D,过点A且垂直于AD的直线l交y轴于点E,点P是x轴下方抛物线上的一个动点,过点P作PF⊥x轴,垂足为F,交直线AD于点H.(1)求抛物线的解析式;(2)设点P的横坐标为m,当FH=HP时,求m的值;(3)当直线PF为抛物线的对称轴时,以点H为圆心,HC为半径作⊙H,点Q为⊙H上的一个动点,求AQ+EQ的最小值.【解答】解:(1)由题意A(,0),B(﹣3,0),C(0,﹣3),设抛物线的解析式为y=a(x+3)(x﹣),把C(0,﹣3)代入得到a=.故抛物线的解析式为y=x2+x﹣3.(2)在Rt△AOC中,tan∠OAC==,∴∠OAC=60°,∵AD平分∠OAC,∴∠OAD=30°,∴OD=OA•tan30°=1,∴D(0,﹣1),∴直线AD的解析式为y=x﹣1,由题意P(m,m2+m﹣3),H(m,m﹣1),F(m,0),∵FH=PH,∴1﹣m=m﹣1﹣(m2+m﹣3)解得m=﹣或(舍弃),∴当FH=HP时,m的值为﹣.(3)如图,∵PF是对称轴,∴F(﹣,0),H(﹣,﹣2),∵AH⊥AE,∴∠EAO=60°,∴EO=OA=3,∴E(0,3),∵C(0,﹣3),∴HC==2,AH=2FH=4,∴QH=CH=1,在HA上取一点K,使得HK=,此时K(﹣,﹣),∵HQ2=1,HK•HA=1,∴HQ2=HK•HA,∴=,∵∠QHK=∠AHQ,∴△QHK∽△AHQ,∴==,∴KQ=AQ,∴AQ+QE=KQ+EQ,∴当E、Q、K共线时,AQ+QE的值最小,最小值==.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三压轴大题系列—阿波罗尼斯圆(解析版)
在平面上,到线段两端距离相等的点,在线段的垂直平分线上,即对于平面内的定点A、B,若平面内有一动点P 满足PA:PB=1,则P点轨迹为一条直线(即线段AB的垂直平分线),如果这个比例不为1,P点的轨迹又会是什么呢?两千多年前的阿波罗尼斯在其著作《平面轨迹》一书中,便已经回答了这个问题。
接下来,让我们站在巨人的肩膀上,一起探究PA:PB=k(k≠1)时P点的轨迹。
对于平面内的定点A、B,若在平面内有一动点P且P满足PA:PB=k(k≠1),则动点P的轨迹就是一个圆,这个圆被称为阿波罗尼斯圆,简称“阿氏圆”,如图所示:
借助画板工具我们发现,动点P在运动过程中,PA、PB的长度都在变化,但是PA:PB的比值始终保持不变,接
,设,如图所示:
由图可以发现在AB上存在点C,在AB延长线上存在点D使得,也就是说,当点P与点C、
D重合时,符合条件;
当点P不与点C、D重合时,对于任意一点P,连接PA、PB、PC,可得,所以PC为△PAB一条
内角平分线,再连接PD,可得,所以PD为△PAB一条外角平分线,所以PC⊥PD,即∠CPD=90º,
所以点P的轨迹是以CD为直径的一个圆.
当我们遇到平面内一动点到两定点之比为定值且不为1的情况时,可以在过两定点的直线上按定比确定内分点和外分点,并以之为直径做圆从而确定动点的轨迹.
如何具体证明P点的轨迹就是一个完整的圆呢?
分别取线段AB的内外分点C、D,再取CD中点O,可得,则
,由线段位置关系可得AC+BC+BD=AD,则,解得,
.
又,即,
整理得,即,当点P在一个以O为圆心,r为半径的圆上运动时,
如图所示:
易证:△BOP∽△POA,P.
对于任意一个圆,任意一个k的值,我们可以在任意一条直径所在直线上,在同侧适当的位置选取A、B点,则需,就可以构造出上述的A字型相似(详见本专辑的相似模型).
例1、如图,正方形ABCD的边长为4,圆B的半径为2,点P是圆B上一动点,则
为,的最大值为.
【解答】最小值为5,最大值为5【解析】在BC上取一点G,使得BG=1,连接PG、DG,如图所示:
PBG=∠PBC,∴△PBG∽△CBP,,
△PDG中,DP+PG≥DG,∴当D、G、P共线时,
;当点P在DG的延长线时,
此时最大值也是DG,最大值为5.
例2、如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,点P为弧AB上一动点,求
的最小值.
当A、P、D的值最小.连接PB、CO,AD与CO相交于点M,如图所示:
∵AB=BD=2,BD是⊙O的切线,∴∠ABD=90º,∠BAD=∠D=45º,
∵AB是⊙O直径,∴∠APB=90º,∴∠PAB=∠PBA=45º,∴PA=PB,PO⊥AB,∵AC是⊙O的切线,∴AC⊥AB,
∴AC∥PO,∠CAO=90º∵AC=PO=1,∴四边形AOPC是平行四边形,而OA=OP,∠CAO=90º,
∴四边形AOPC是正方形,PC+PD=PM+PD=DM,
∵DM⊥OC,∴由"垂线段最短"可知此时PC+PD的值最小,
最小值为.
1.如图,在Rt△ABC中,∠ACB=90º,CB=4,CA=6,圆C的半径为2,P为圆C上一动点,连接AP、BP,
则的最小值是.
【解答】【解析】连接CP,在CB上取一点D,使得CD=1,连接AD,如图所示:
易得PCD=∠BCP,∴△PCD ∽△BCP,
,
当点A、P、D在同一条直线上时,
在Rt△ACD中,∵CD=1,CA=6,,.
2.,,MO=2,∠POM=90º,Q
小值为.
OM的中点G,连接PG与圆O的交点就是点Q,连接OQ、QM,如图所示:
∵MO=2,,
∵圆O的半径,,
∵∠MOQ=∠QOG,∴△MOQ ∽△QOG,
最小,
.
3.如图,在平面直角坐标系中,点A(4,0),B(4,4),点P在半径为2的圆O的最
小值是.
【解答】5
【解析】取点K(1,0),连接OP、PK、BK,如图所示:
∵OP=2,OA=4,OK=1,,
∵∠POK=∠AOP,∴△POK ∽△AOP,。