10初中数学竞赛专项训练(5)及答案
全国初中数学竞赛试题及解答
ABCD全国初中数学竞赛试卷及解析一、选择题(本题共6小题,每小题5分,满分30分.每小题均给出了代号为A ,B ,C ,D 的四个结论,其中只有一个是正确的。
请将正确答案的代号填在题后的括号里)1、设a ,b ,c 的平均数为M ,a ,b 的平均数为N ,N ,c 的平均数为P ,若c b a ,则M 与P 的大小关系是( )A 、P MB 、P MC 、P MD 、不确定 答案:B 解析:∵3c b a M ,2b a N ,222c b a c N P ,122cb a P M ∵c b a ∴0122122c c c c b a P M ,即0 P M ,即P M 2、某人骑车沿直线旅行,先前进了a 千米,休息了一段时间,又原路返回b 千米(a b ),再前进c 千米,则此人离起点的距离S 与时间t 的关系示意图是( )答案:C解析:因为图(A )中没有反映休息所消耗的时间;图(B )虽表明折返后S 的变化,但没有表示消耗的时间;图(D )中没有反映沿原始返回的一段路程,唯图(C )正确地表述了题意。
3、甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么( ) A 、甲比乙大5岁 B 、甲比乙大10岁 C 、乙比甲大10岁 D 、乙比甲大5岁 答案:A解析:由题意知3×(甲-乙)151025 ∴甲-乙=5。
4、一个一次函数图象与直线49545x y 平行,与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-25),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有( )A 、4个B 、5个C 、6个D 、7个 答案:B解析:在直线AB 上,横、纵坐标都是整数的点的坐标是N x 41 ,N y 525 ,(N 是整数).在线段AB 上这样的点应满足041 N ,且0525 N ,∴541N ,即1 N ,2,3,4,55、设a ,b ,c 分别是ABC 的三边的长,且cb a ba b a,则它的内角A 、B 的关系是( )A 、AB 2 B 、A B 2C 、A B 2D 、不确定 答案:B解析:由c b a b a b a得c a bb a ,延长CB 至D ,使AB BD ,于是c a CD 在ABC 与DAC 中,C C ,且DC ACAC BC∴ABC ∽DAC ,D BAC ∵D BAD∴BAC D BAD D ABC 226、已知ABC 的三边长分别为a ,b ,c ,面积为S ,111C B A 的三边长分别为1a ,1b ,1c ,面积为1S ,且1a a ,1b b ,1c c ,则S 与1S 的大小关系一定是( )A 、1S SB 、1S SC 、1S SD 、不确定 答案:D解析:分别构造ABC 与111C B A 如下:①作ABC ∽111C B A ,显然1211a a S S ,即1S S ;②设101b a ,20c ,则1 c h ,10 S ,10111 c b a ,则10100431S ,即1S S ;③设101 b a ,20 c ,则1 c h ,10 S ,2911 b a ,101 c ,则2 c h ,101 S ,即1S S ;因此,S 与1S 的大小关系不确定。
数学竞赛试题及答案初中
数学竞赛试题及答案初中一、选择题(每题2分,共10分)1. 下列哪个数是无理数?A. 0.33333...(循环)B. 根号2C. 1/3D. 4答案:B2. 一个等腰三角形的底边长为6,高为4,其周长是多少?A. 16B. 18C. 20D. 22答案:C3. 一个数的平方等于16,这个数是多少?A. 4B. -4C. 4或-4D. 以上都不是答案:C4. 以下哪个方程的解是x=2?A. x^2 - 4 = 0B. x^2 - 3x + 2 = 0C. x^2 - 5x + 6 = 0D. x^2 - x - 6 = 0答案:B5. 一个圆的直径为10,其面积是多少?A. 25πB. 50πC. 100πD. 200π答案:B二、填空题(每题3分,共15分)1. 一个直角三角形的两个直角边长分别为3和4,其斜边长为________。
答案:52. 如果一个数的立方等于-8,那么这个数是________。
答案:-23. 一个数的绝对值是5,这个数可能是________或________。
答案:5 或 -54. 一个圆的周长是2πr,如果周长是12π,那么半径r是________。
答案:65. 如果一个二次方程ax^2 + bx + c = 0的判别式Δ=b^2-4ac小于0,那么这个方程的解是________。
答案:无实数解三、解答题(每题10分,共20分)1. 已知一个二次函数y=ax^2+bx+c,其中a=1,b=-3,c=2,求这个函数的顶点坐标。
答案:顶点坐标为(3/2, -1/4)。
2. 一个长方形的长是宽的两倍,如果周长是24,求长方形的长和宽。
答案:长为8,宽为4。
四、证明题(每题15分,共30分)1. 证明勾股定理:在一个直角三角形中,直角边的平方和等于斜边的平方。
答案:略2. 证明平行四边形的对角线互相平分。
答案:略。
初中数学竞赛试题及答案解析
初中数学竞赛试题 二、填空题 1、 41-的负倒数与4-的倒数之和等于 . 2、 甲、乙、丙、丁四个数之和等于90-.甲数减4-,乙数加4-,丙数乘4-,丁数除以4-彼此相等.则四个数中的最大的一个数比最小的一个数大 . 3、 已知a 1999=,则=-+---+-200133314232323a a a a a a .4、 填数计算:〇中填入的最小的自然数.△中填入最小的非负数.□中填入不小于5-且小于3的整数的个数.将下式的计算结果写在等号右边的横线上.(〇+□)⨯△= .5、 从集合}5,4,1,2,3{---中取出三个不同的数,可能得到的最大乘积填在□中,可能得到的最小乘积填在〇中,并将下式计算的结果写在等号右边的横线上.-(-□)÷〇= .6、 计算:=------------)4151()3141()2131(1)4151()3141()2131(1 . 7、 x 是有理数,则22195221100++-x x 的最小值是 . 8、 如图,C 是线段AB 的中点,D 是线段AC 的中点.已知图中所有线段的长度之和为23,则线段AC 的长度为 . 9、 在1000到5000之间同时被24,36,30整除的最小整数是_________,最大整数是__________.10、 一个有理数的倒数的相反数的3倍是31,那么这个有理数是 . 11、 一个有理数的二次幂大于这个有理数,那么这样的有理数的取值范围是 . 12、 若8919+=+=+c b a ,则=-+-+-222)()()(a c c b b a .13、 a 1的倒数是51-,那么=a _____. 14、 小丽写出三个有理数,其中每两个有理数的平均值分别是326,217,7,那么这三个有理数的平均值是 . 15、 计算:=--+-)36173)(72.0()722(125.11.16、 m ,y 互为相反数,n 和y 互为倒数,则5)(y my n -的值是_____.17、 已知1171=x ,则3)114(3)711)(1(2++--x x x 的值是 . 18、 已知52,32<-<-b a a b .则化简98272-+++-----b a a b a b 所得的结果是 .19、 m ,n 是正整数,mn =120,则m +n 可能取到的最小值是_____.20、 若a=1997,则7122----+a a a a 的值是 . 21、 若x = -0.239,则199********-------++-+-x x x x x x 的值等于_____.参考答案二、填空题 1、 417- 解:41-的负倒数为411--,4-的倒数为41-, 二者之和为:411--+41-417414-=--=.2、 204解:设等数为a ,则 90)4()4()]4([)]4([-=-⨯+-+--+-+a a a a 即90412-=-a ,∴ a =40, 因此,甲数为36,乙数为44,丙数为-10,丁数为-160,其中,最大数-最小数=44-(-160)=204.3、 4000000 解:当a 1999=时,142314232323-+-=-+-a a a a a a =-+-200133323a a a 200133323-+-a a a ,所以,原式=142323-+-a a a )2001333(23-+--a a a2000200019992000)1(20002+⨯=++=++=a a a a400000020002000=⨯=.4、 0解:〇中填1,△中0,□填8. []⎣⎦⎡⎤00)81(=⨯+. 5、 ⎣⎦⎡⎤2160)30(-=÷-- 解:由-3,-2,-1,4,5中任取三个相乘可得10种不同的乘积,它们是:124)1)(3(,205)2)(3(,244)2)(3(,6)1)(2)(3(=⋅--=⋅--=⋅--=---,105)1)(2(,84)1)(2(,6054)3(,155)1)(3(=⋅--=⋅---=⋅⋅-=⋅--,2054)1(,4054)2(-=⋅⋅--=⋅⋅-,最大乘积是30,最小的乘积是-60.∴ ⎣⎦⎡⎤2160)30(-=÷--. 6、 137解:)4151()3141()2131(1)4151()3141()2131(1------------ )4151()3141()2131(1)]4151([)]3141([)]2131([1---------------= )4151()3141()2131(1)4151()3141()2131(1-------+-+-+= 41513141213114151314121311+-+-+--+-+-+= 13710131075121151211==-++-=.7、 1715 解:一般解法是分三种情况讨论:(1)当22195-<x 时 ,,(2)当22110022195≤≤-x 时 ,,(3)当221100>x 时 ,.综合(1),(2),(3)可得,最小值是1715.最简单的解法是:根据绝对值的几何意义,22195221100++-x x 表示数轴上x 对应的点P 到22195-对应的点A 和221100对应的点B 的距离之和,易知当P 在线段AB 上时,P A +PB 最小值为2211001715)22195(=--. 8、 1373 解:设线段AC 的长度为x ,则AD =2x ,则AB =2x ,DC =2x ,DB =x 23,CB =x ,所以 232321221=+++++x x x x x x ,即23213=x .∴13731346==x .即AB 长度为1373.9、 4680解:24,30,36三个数的最小公倍数是360,10803360=⨯,∴大于10000且能被24,30,36整除的最小整数是1080,又36010805000⋅+>n ,其中n 为自然数,解得9810<n .∴取10=n ,得4680360101080=⋅+.∴具有这种性质的最大整数是4680.10、 -9解:利用还原算法:某数a 的3倍是31,显然91=a ,而91应是一个有理数倒数的相反数,所以这个有理数的倒数为91-,故这个有理数是-9.11、 大于1的有理数和负有理数解:画出数轴如图.大于1的有理数的二次幂大于它自身;1的二次幂等于1;大于0且小于1的有理数的二次幂小于它本身;0的二次幂是0;负有理数的二次幂是正数,大于它自身.综上可知,二次幂大于其自身的有理数的范围,是大于1的有理数和负有理数.12、 222解:由8919+=+=+c b a 得:11,1,10=--=--=-a c c b b a .∴+-+-22)()(c b b a =-2)(a c 222121110011)1()10(222=++=+-+-.13、 51- 解:a 1的倒数是51-,那么a 1=-5,51-=a .14、 1817 解:设小丽写出的三个有理数为x ,y ,z ,则3262,2172,72=+=+=+z y z x y x , 所以15,340,14=+=+=+x z z y y x ,三式相加,3127)(2=++z y x , 则1817181273==++z y x . 15、 -14 解:因为2179167212518511.125(2)(0.72)(3)73687100367214-+--=-+=-+=-. 所以原分式的值为-14. 16、 0 解:由m 和y 互为相反数,知m = -y ,由n 和y 互为倒数,知道0,0≠≠y n 且yn 1= ∴0=-=-y y y y y m y n ,故5)(ym y n -=0. ∴17、 38 解:由1171=x ,可知2114,1171=+=-x x ,所以原式=37772(1117)322113838111111-+=+=. 18、 -6解:由32<-a b ,得03272<--<--a b a b .由52<-b a ,得052>+-a b ,得 05282>+->+-a b a b .而853)2()2(=+<-+-=+b a a b a b . 089<-+<-+∴a b b a98272-+++-----b a a b a b9)()82()72(-+-+----=b a a b a b987+--=6-=.19、 22解:由222)(1204)(4)(n m n m mn n m -+⋅=-+=+当2)(n m -愈小时,2)(n m +越小,从而m +n 也愈小,m 、n 为120的约数,且n m -要最小,由53222120⋅⋅⋅⋅==mn所以,当m =12,n =10时,m +n =22为最小值. 20、 4000解:当a =1997时,0719971997,011997199722>-->-+7122----+a a a a)7()1(22----+=a a a a7122++--+=a a a a62+=a4000619972=+⋅=. 21、 999解:由b a x <≤,可得a b a x b x -=---, 则原式)19961997()23()1(---++---+--=x x x x x x)19961997()23()01(-++-+-=个99921998111=÷+++= 999=.。
初中数学竞赛模拟题50题含答案
初中数学竞赛模拟题50题含答案一、单选题1.下列说法正确的是( ) A .正有理数和负有理数统称有理数 B .正整数和负整数统称整数 C .整数和分数统称有理数D .一个有理数不是正数就是负数2.在一年的某月里,周五、周六出现的天数比周日多,周一、周二、周三、周四出现的天数不超过周日,则该月份一定不是( ) A .三月B .四月C .六月D .十一月3.当m 为自然数时,2(45)9m +-一定能被下列哪个数整除( ) A .5B .6C .7D .84.定义运算()()()()()()12211221a a a a b a b a b b b b --⨯⋅⋅⋅⨯-+-+*=--⨯⋅⋅⋅⨯⨯,则107*=( )A .720B .120C .240D .805.已知()123123,,x x x x x x <<为关于x 的方程323(2)0x x a x a -++-=的三个实数根,则22211234x x x x -++=( )A .5B .6C .7D .86.一个盒子中有红球m 个、白球10个,黑球n 个,每个球除颜色外都相同,从中任取一个球,取得是白球的概率与不是白球的概率相同,那么,m n 的关系是( ). A .10m n +=B .5m n +=C .10m n ==D .2,3m n ==7.已知x ,y 为整数,且满足224411112113x y x y x y ⎛⎫⎛⎫⎛⎫++=-- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,则x y +的可能的值有( ) A .1个B .2个C .3个D .4个8.若223894613M x xy y x y =-+-++(,x y 是实数),则M 的值一定是( ). A .正数 B .负数C .零D .整数9.若34567201520162017201820195N++++++++=,则N =( )A .2015B .2016C .2017D .201810.如图,在ABC 中,过点C 作CD AB ⊥,垂足为点D ,过点D 分别作DE AC ⊥,DF BC ⊥,垂足分别为E ,F .连接EF 交线段CD 于点O ,若CO =CD =EO FO ⋅的值为( ).A .B .4C .D .611.锐角ABC 中,BC 边的中垂线和ABC ∠的角平分线相交于点P .若72A ∠=︒,24ACP ,则ABP ∠=( )A .24︒B .28︒C .30︒D .36︒12.如果21x x --是31ax bx ++的一个因式,则b 的值是( ). A .2-B .1-C .0D .213.满足等式22(2)1m m m ---=的所有实数m 的和为( ) A .3B .4C .5D .614.点D 、E 、F 分别在ABC 的三边BC 、AB 、AC 上,且AD 、BF 、CE 相交于一点M ,若5AB AC BE CF+=,则AMMD =( ) A .72B .3C .52D .215.矩形ABCD 中,5AD =,10AB =,E 、F 分别为矩形外的两点,4BE DF ==,3AF CE ==,则EF =( )A .B .15CD .16.已知实数a ,b 满足()()330a b --≥2 ) A .0B .1C .2D .317.某种产品由甲、乙、丙三种元件构成,如图为生产效率最高,在表示工人分配的扇形图中,生产甲、乙、丙元件的工人数量所对应的扇形圆心角的大小依次是( ).A .120,180,60︒︒︒B .108,144,108︒︒︒C .90,180,90︒︒︒D .72,216,720︒︒︒18.从正整数里取出k 个不同的数,使得这k 个数中任意两个数之差的绝对值是质数,则k 的最大值是( ). A .3B .4C .5D .619.若直角三角形的一条直角边长为12,另两条边长均为整数,则符合这样条件的直角三角形共有( )个. A .1B .6C .4D .无数多二、填空题20.把7串葡萄放在6个盘子里,总有一个盘子里至少要放( )串葡萄. 21.如图,已知直角三角形ABC ,90A ∠=,4AB =cm ,5BC =cm .将ABC 沿AC 方向平移1.5cm 得到A B C ''',求四边形BCC B ''的面积为________2cm .22.若正整数n 有6个正约数(包括1和本身),称其为“好数”,则不超过50的好数有______个.23.已知ABC 的最大边BC 上的高线AD 和中线AM 恰好把BAC ∠三等分,AD =AM =__________.24.若a ,b ,c ,d 均为素数,且满足2a b d +=,32b c d -=,则d 的最小值是________.25.在一张冬景照片上,人们分别戴着帽子、系着围巾和戴着手套.只戴帽子的人数等于只系围巾和只戴手套的人数之和;只有4人没有戴帽子;戴着帽子和系着围巾,但没有戴手套的有5人;只戴帽子的人数两倍于只系围巾者;未戴手套有8人,未系围巾有7人;三样东西都用的人数比只戴帽子的人数多一个.那么: (1)有______人同时用上了帽子、围巾和手套; (2)有______人只戴了手套; (3)有______人只系了围巾;(4)有______人既戴了帽子,又戴了手套,但没有系围巾; (5)有______人戴着手套.26.若n n =______. 27.设x =a 是x 的小数部分,b 是x -的小数部分,则333a b ab ++=__________ .28.军训基地购买苹果慰问学员.已知苹果总数用八进位制表示为abc ,七进位制表示为cba .那么,苹果的总数用十进位制表示为________. 29.方程1433x y+=有_________组正整数解. 30.已知函数(1)1kx k y ++=(k 为正整数)的图象与两坐标轴围成的图形面积为(1,2,,2000)k S k =⋅⋅⋅,则122000S S S ++⋅⋅⋅+=_______.31.如图,在ABC ∆中,90BAC ∠=︒,AB =AC =5,点D 在AC 上,且2AD =,点E 是AB 上的动点,连结DE ,点F ,G 分别是BC ,DE 的中点,连接AG ,FG ,当AG =FG 时,线段DE 长为______32.从1到2001连续的2001个自然数按某种顺序排列,然后每连续三项计算和数,得到1999个和,则这些和数中为奇数的个数最多是_________. 33.计算:239912232421002+⨯+⨯+⨯++⨯=________.(结果可用2的幂表示)34.如图所示,点A C 、都在函数0)y x =>的图象上,点B D 、都在x 轴上,且使得OAB ,BCD △都是等边三角形,则点D 的坐标是_______.35.已知正整数n 大于30,且使得41n -整除2002n ,则n 等于_______. 36.射线AB 绕点A 逆时针旋转a ︒,射线BA 绕点B 顺时针旋转b ︒,090a ︒︒<<,090b ︒︒<<,旋转后的两条射线交点为C ,如果将逆时针方向旋转记为“+”,顺时针方向旋转记为“-”,则称()a b -,为点C 关于线段AB 的“双角坐标”,如图1,已知ABC ∆,点C 关于线段AB 的“双角坐标”为(5060)-,,点C 关于线段BA 的“双角坐标”为(6050)-,.如图2,直线:AB y =x 轴、y 轴于点A 、B ,若点D 关于线段AB 的“双角坐标”为()m n -,,y 轴上一点E 关于线段AB 的“双角坐标”为()n m -,,AE 与BD 交点为F ,若ADE ∆与ADF ∆相似,则点F 在该平面直角坐标系内的坐标是________.37.如图,在四边形ABCD 中,90BCD ∠=︒,BC =,60BAC ∠=︒,若=5AB ,=2AD ,则线段AC 的长为______.38.某演艺公司将观赏厅分为上、中、下三大区位,同一区位包含若干个座位数相同的桌位(不同区位的单个桌位所含座位数不一定相同).演艺公司对近三天的的上座情况进行统计发现,三天中每个区位坐有观众的桌位均刚好坐满.第一天上、中、下区的坐有观众的桌位数之比为3:2:1,中区的观众数占入场观众数的14,上座率为35;第二天上、中、下区的坐有观众的桌位数之比为1:1:2,上区的观众数占入场观众数的25,上座率为34;第三天上区的观众数与第二天上区的观众数相同,中区的观众数是第一天的中区的观众数的13,下区的观众数是当天上区和中区观众数的总和.则第三天的上座率为______.(上座率=入场观众数全场总座位数)三、解答题39.如图,在菱形ABCD 中,3AB =,60DBA ∠=︒,E 为线段BD 延长线的动点,连接AE 、CE ,AE 交CD 延长线于点F .(1)求证:AE CE =; (2)若1DF =.①求点E 到CD 的距离; ①求EFED的值. 40.设,a b 是实数且422223a b a b =+,求22222010a b a b -+的值. 41.几何计算中,常利用面积法(等积法)构造方程来求线段的长,请利用这种面积法(等积法)解决下列两个问题:(1)如图①,ABC 中,13AB =,5AC =,=12BC ,求AB 边上的高;(2)在一张正方形纸张的四个角剪去四个相同的小正方形,得到如图①所示的图形,再将它分割成三块拼成如图①所示的长方形,已知m n 、满足:22818970m m n n -+-+=,求拼成新长方形的长m 、宽n 的值及被剪去的小正方形的边长.42.求证:若3|(4)x y -,则229472|()x xy y +-. 43.两位数ab 能整除十位数字为零的三位数0a b ,求ab .44.如图,点E 在四边形ABCD 的边AB 上,ABC 和CDE 都是等腰直角三角形,AB AC =,DE DC =.(1)证明://AD BC ;(2)设AC 与DE 交于点P ,如果30ACE ∠=︒,求DPPE. 45.从1,2,3,…,50这50个正整数中任取n 个数,在这n 个数中总能找到3个数,它们两两互质.求n 的最小值.46.已知m ,n 都是正整数,若130m n ≤≤≤,且mn 能被21整除,求满足条件的数对(,)m n 的个数.47.证明数列49,4489,444889,4448889,…的每一项都是一个完全平方数. 48.在元旦晚会上,学校组织了一次关于语文、数学、外语、奥运及日常生活常识的知识竞赛,设定每科满分为40分,以下依次为30分、20分、10分和0分,共5个评分等级,每个小组分别回答这五个方面的问题.现将A 、B 、C 、D 、E 五个小组的部分得分列表1如下: 表1表1中,(1)每一竖行的得分均不相同(包括单科和总分);(2)C组有4个单科得分相同.求B、C、D、E组的总分并填表进行检验.参考答案:1.C【分析】根据有理数的含义和分类方法,逐一判断即可. 【详解】解:A 、正有理数、负有理数和0统称有理数, ∴选项A 不正确,不符合题意;B 、正整数与负整数、0统称为整数, ∴选项B 不正确,不符合题意;C 、整数和分数统称有理数 ∴选项C 正确,符合题意;D 、一个有理数不是正数,可能是负数或0, ∴选项D 不正确,不符合题意.故选:C .【点睛】本题主要考查了有理数的含义和分类方法,解题的关键是要熟练掌握有理数的分类:①有理数可以分为正有理数,0,负有理数;正有理数可以分为正整数和正分数,负有理数分为负整数和负分数;①有理数可以分为整数和分数;整数分为正整数,0负整数;分数分为正分数和负分数;按两种分类一一判断即可. 2.A【详解】每个月的后28天,周一至周日出现的天数相同,因此在这28天之外只能出现周五和周六,故这个月有30天 3.D【分析】多项式利用平方差公式分解因式,变形后即可作出判断. 【详解】解:2(45)9m +-[][](45)3(45)3m m =+-++ (42)(48)m m =++ 8(21)(2)m m =++①无论m 为任何自然数,2(45)9m +-始终能被8整除, 故选:D .【点睛】本题考查了平方差公式,熟练掌握平方差公式是解答本题的关键. 4.B【解析】略 5.A【详解】方程即()2(1)20x x x a --+=,它的一个实数根为1,另外两个实数根之和为2,其中必有一根小于1,另一根大于1,于是21x =,132x x +=,故()()222112331311441x x x x x x x x x -++=+-++()()31131241215x x x x x =-++=++=.6.A【详解】盒中共有10m n ++个球,取得的是白球的概率是10m np m n +=++,取得的不是白球的概率为10m n p m n '+=++.依题意有101010m nm n m n +=++++,所以10m n +=.故应选A .7.C【详解】由已知等式得2244224423x y x y x y xy x y x y++-⋅=-⋅,显然x ,y 均不为0,所以0x y +=或()32xy x y =-.若()32xy x y =-,则()()32324x y +-=-.又x ,y 为整数,可求得12x y =-⎧⎨=⎩或2,1x y =-⎧⎨=⎩.所以1x y +=或1x y +=- 因此,x y +的可能的值有3个.【点睛】本题考查了等式的性质,分式的化简,解决此题的关键是熟练运用x 、y 是整数这个条件. 8.A 【详解】因为22222222(44)(44)(69)2(2)(2)(3)0M x xy y x x y y x y x y =-++-++++=--++≥+,并且2,2,3x y x y --+不能同时等于零,所以0M >.故选A .9.C 【解析】略 10.B【分析】由题意易得出90DEC DFC ∠=∠=︒,即说明点C ,E ,D ,F 四点共圆,得出DEO FCO ∠=∠,从而易证DOE FOC ∽,得出EO DOCO FO=.由题意可求出DO CD CO =-4EO FO CO DO ⋅=⋅=.【详解】解:①DE AC ⊥,DF BC ⊥, ①90DEC DFC ∠=∠=︒, ①点C ,E ,D ,F 四点共圆,①DEF FCD ∠=∠,即DEO FCO ∠=∠. 又①DOE FOC ∠=∠, ①DOE FOC ∽, ①EO DOCO FO=, ①EO FO CO DO ⋅=⋅.①CO =CD = ①DO CD CO =-=①4EO FO CO DO ⋅=⋅==. 故选B .【点睛】本题考查相似三角形的判定和性质,四点共圆的知识,圆周角定理.确定点C ,E ,D ,F 四点共圆,从而可得出证明DOE FOC ∽的条件是解题关键. 11.B【详解】①直线BP 为ABC ∠的角平分线,①ABP CBP ∠=∠.①直线PM 为BC 的中垂线,①BP CP =,①CBP BCP ∠=∠,①ABP CBP BCP ∠=∠=∠. 在ABC 中,三内角之和为180︒,①3180ABP A ACP ∠+∠+∠=︒, 即37224180ABP ∠++=°°°,解得28ABP ∠=°. 12.D【详解】(解法一)依题意可设32321(1)()()()ax bx x x ax c ax c a x a c x c ++=--+=+--+-,比较系数得(),0,1,b a c c a c =-+⎧⎪-=⎨⎪-=⎩所以1,2c a b ==-=.故选D .(解法二)依题意21x x --是3221(1)()1ax bx ax x x ax b a x ++---=+++的因式, 所以1111a b a +==--, 解得1,2a b =-=.故选D .(解法三)用长除法可得321(1)()(2)(1)ax bx x x ax a a b x a ++=--+++++,所以20,10,a b a +=⎧⎨+=⎩得1,2a b =-=.故选D .13.A【详解】当21m -=即1m =时,满足所给等式;当21m -=-即3m =时,224(2)(1)1m m m ---=-=,满足所给等式;当21m -≠±即1m ≠且3m ≠时,由已知等式可得:220m m --=且20m -≠,解得1m =-. 因此,满足等式22(2)1m m m ---=的所有实数m 的和为()1313++-=.14.B【详解】设AM t MD =,由题设可得AMC DMC BMC BMC S tS AE EB S S ==△△△△,AMB BMD BMC BMC S tS AF FC S S ==△△△△,所以22DMC BMD BMC BMCtS tS AB AC AE AFBE CF EB FC S S ∆∆+=++=++△△ ()222DMC BMD BMC BMC BMCt S S tSt S S +=+=+=+△△△△△,又已知5AB AC BE CF +=,所以25t +=,所以3t =,即3AM MD=. 15.C【详解】易知90AFD BEC ∠=∠=︒,BEC DFA ≅△△,①DAF BCE ∠=∠. 延长FA ,EB 交于点G .①90GAB DAF ADF ∠=︒-∠=∠,90GBA CBE BCE DAF ∠=︒-∠=∠=∠, ①BGA AFD △△,且90AGB ∠=︒,①8AG =,6BG =, ①11GF =,10GE =,①EF ==16.B【详解】因为40b -≥,30b ->,所以3a ≥1,所以令3a =,8b =,得到最小值为1. 17.B【详解】解 设分配生产甲、乙、丙3种元件的人数分别为x 人,y 人,z 人,于是每小时生产甲、乙、丙三种元件的个数分别为50,30,20x y z .为了提高效率应使生产出来的元件全部组成成品而没有剩余.设共可组成k 件成品,则503020504020x y zk ===,即4,,3x k y k z k ===,从而4::1::13:4:33x y z ==.设在扇形图中生产甲、乙、丙三种元件的圆心角分别为,,αβγ,则3336036036010834310x x y z α=⨯︒=⨯︒=⨯︒=︒++++,4436036036014434310y x y z β=⨯︒=⨯︒=⨯︒=︒++++,3336036036010834310z x y z γ=⨯︒=⨯︒=⨯︒=︒++++.故应选B . 18.B【详解】解法一 首先4个数1,3,6,8满足题目要求,故所求k 的最大值4≥. 若5k ≥,记第n 个数为(1,2,,)n a n k =,且12 k a a a <<<,则分下列几种情形:(1)1a 为奇,2a 为奇,于是21a a -为偶数. 又21a a -为质数,故212a a -=,即212a a =+.若3a 为奇数,又32a a ≠,故31a a -为不等于2的偶数,即31a a -为不小于4的偶数,即31a a -为合数,矛盾.故3 a 为偶数,4a 也只能为偶数.那么,若5a 为奇,则51312a a a a ->-≥为偶数,即51a a -为不小于4的偶数,从而51a a -为合数,矛盾.若5a 为偶数,则53432a a a a ->-≥为偶数,从而53a a -为合数,矛盾. (2)1a 为奇,2a 为偶,于是21a a -为奇数,即213a a -≥. 若3a 为奇数,则31213a a a a ->-≥为偶数,故31a a -为合数,矛盾. 所以3a 为偶数,且322a a -=.若4a 为奇数,则41313a a a a ->-≥为不小于4的偶数,即41a a -为合数,矛盾. 若4a 为偶数,则42322a a a a -->=为不小于4的偶数,即42a a -为合数,矛盾. (3)1a 为偶,2a 为奇或偶,都类似于(1),(2)可导致矛盾. 综上得所求k 的最大值是4,故选B .解法二 同解法一得4k ≥.若5k ≥,则将全体正整数分为4个不相交的子集1M ,2M ,3M ,4M ,其中i M 由全体被4除余i 的正整数组成(0,1,2,3)i =于是任取5k ≥个数,其中必有2个数a ,b (a b >)属于同一个子集i M ,于是a b -被4整除,a b -不是质数,矛盾.故所求k 的最大值等于4. 19.C【详解】选C .理由:设12a =,c 为斜边,则有222144c b a -==. 因为4214423=⨯,所以, ()()722c b c b +-=⨯; ()()364c b c b +-=⨯; ()()188c b c b +-=⨯; ()()169c b c b +-=⨯; ()()483c b c b +-=⨯; ()()246c b c b +-=⨯.又因为c b +与c b -同奇偶,故符合题意条件的直角三角形有以下四个: 12.5.13;a b c =⎧⎪=⎨⎪=⎩12.9.15;a b c =⎧⎪=⎨⎪=⎩12,16,20;a b c =⎧⎪=⎨⎪=⎩12.35.37.a b c =⎧⎪=⎨⎪=⎩20.2【分析】把6个盘子看作6个抽屉,7串葡萄看作7个元素,从最不利的情况考虑,每个抽屉先放一个,共需要6个,余下这一个无论放在哪个抽屉里,总有一个至少有1+1=2(个),据此解答. 【详解】解:761÷=(串)1(串), 1+1=2(串),①总有一个盘子里至少要放2串葡萄. 故答案为:2.【点睛】本题考查了抽屉原理,解决本题的关键是掌握抽屉原理:如果有n 个抽屉,而每一个苹果代表一个元素,假如有n +1个元素放到n 个抽屉中去,其中必定有一个抽屉里至少有两个元素. 21.6【分析】根据题意,再结合平移的性质,可得AB A B ='', 1.5AA BB CC ===′′′cm ,BB CC ∥′′,ABC A B C S S '''=△△,然后再根据等量代换,得出=AA OB OCC B S S 四边形四边形′′′,然后再根据等量代换,得出BCC B AA B B S S =四边形四边形′′′′,然后再根据长方形的特征,得出四边形AA B B ''是长方形,然后再根据长方形的面积公式,算出长方形AA B B ''的面积,即可得出四边形BCC B ''的面积.【详解】解:如图,①ABC 沿AC 方向平移1.5cm 得到A B C ''',①A 的对应点为点A ',点B 的对应点为点B ',点C 的对应点为点C ',①由平移的性质,可得:4AB A B =''=cm , 1.5AA BB CC ===′′′cm ,BB CC ∥′′, 又①ABC 沿AC 方向平移1.5cm 得到A B C ''', ①ABC A B C S S '''=△△,又①ABC A OC AA OB S S S =+△△四边形′′, A B C A OC OCC B S S S =+△四边形′′′′′′,①=AA OB OCC B S S 四边形四边形′′′, ①=BOB BCC B OCC B S S S +△四边形四边形′′′′′, BOB AA B B AA OB S S S =+△四边形四边形′′′′,①BCC B AA B B S S =四边形四边形′′′′,①AB A B ='',AA BB '=',90A ∠=,①根据长方形的特征,可得:四边形AA B B ''是长方形, ①4 1.56AA B B S AB AA =⋅=⨯=长方形′′′2cm , ①6BCC B AA B B S S ==四边形四边形′′′′2cm故答案为:6【点睛】本题考查了平移的性质,等量代换,根据长方形的特征判定长方形,长方形的面积公式,解本题的关键在熟练掌握平移的性质.平移的性质:1、形状大小不变;2、对应点的连线平行(或在同一直线上)且相等;3、对应线段平行(或在同一直线上)且相等,对应角相等. 22.8. 【详解】n 有6个正约数故n 的标准质因数分解式为5n P =或2n pq =(p 、q 为素数,(,)1p q =) 若5n p =,由50n ≤知52 若2n p q =⋅,则223n =⋅,225⋅ 232⋅,252⋅,253⋅,272⋅,2112⋅①“好数”共有8个. 23.2【详解】依题意得BAD DAM MAC ∠=∠=∠,90ADB ADC ∠=∠=︒,故ABC ACB ∠≠∠. (1)若ABC ACB ∠>∠时,如答案图1所示,ADM ADB ≅△△,①12BD DM CM ==,又AM 平分DAC ∠,①12AD DM AC CM ==,在Rt DAC 中,即1cos 2DAC ∠=,①60DAC ∠=︒,从而90BAC ∠=︒,30ACD ∠=︒.在Rt ADC 中,tan tan 603CD AD DAC ⋅∠︒==,1DM =.在Rt ADM △中,2AM =. (2)若ABCACB 时,如答案图2所示.同理可得2AM =.综上所述,2AM =.24.17【分析】根据题意,求得的最小值,可将等式变形得到4a b c =-,则b c -是合数,且为4的倍数,以此为突破,求得a b c d ,,, 【详解】2a b d +=①,32b c d -=①①×2-①得:40a b c -+=, 即4a b c =-,求d 的最小值,则,a b 尽量小 当2a =时,8b c -=,根据20以内的素数可知,11,3b c ==,或者13,5b c == 此时241115d a b =+=+=,此时d 为合数,故不符合题意, 当13,5b c ==时,此时241317d a b =+=+=,经检验,a b c d ,,,皆为素数,满足题意, 故答案为:17.【点睛】本题考查了素数的定义,二元一次方程组的加减消元法,掌握20以内的素数是解题的关键.25. 3 1 1 4 10【详解】如图,按题目中条件顺序依次可列方程:(1)A C F =+;(2)4C E F ++=;(3)5B =;(4)2A C =;(5)8A B C ++=;(6)7A G F ++=;(7)1D A =+.可求出2,5,1,3,2,1,4A B C D E F G =======.于是,题目中各空白区应填入的数依次是①3,①1,①1,①4,①10.26.14-或7-或2-或5p =(p 为非负整数),则2222229304361204(29)394n n p n n p n p ++=⇒++=⇒++= 39(229)(229)p n p n ⇒=++--,2291102293914p n p p n n ++==⎧⎧⇒⎨⎨--==-⎩⎩ 或229391022915p n p p n n ++==⎧⎧⇒⎨⎨--==⎩⎩ 或22934229137p n p p n n ++==⎧⎧⇒⎨⎨--==-⎩⎩ 或22913422932p n p p n n ++==⎧⎧⇒⎨⎨--==-⎩⎩ ①14n =-或7-或2-或5 27.1【详解】解 ①1x ==,而213<<, ①21a x =-=.又①1x -=,而312-<<-,①()33223()3++=+-++a b ab a b a ab b ab2223()1a ab b ab a b =-++=+=.28.220【详解】填220.理由:因1a ≤,b ,6c ≤,288a b c ⨯+⨯+=277c b a ⨯+⨯+,即63480a b c +-=,即3(1621)b c a =-,所以,0b =,3,6.经检验,3b =符合题意.故3b =,4c =,3a =.则238384220⨯+⨯+=. 29.5【详解】理由:因为133x ≥, 所以141833333x y =-≤-=,则1432184y ⨯≥=, 即6y ≥.原方程可化为429xy y +=, 则42(9)x y =-. 所以42能被y 整除.所以y 可取6,7,14,21,42.相应地得到五组解:112,6,x y =⎧⎨=⎩223,7,x y =⎧⎨=⎩336,14,x y =⎧⎨=⎩447,21,x y =⎧⎨=⎩558,42.x y =⎧⎨=⎩ 30.10002001【详解】解原函数关系化为111k y x k k -=+++.令0x =得11y k =+,令0y =得1x k,即直线111k y x k k -=+++与y 轴、x 轴的交点分别为10,1k A k ⎛⎫ ⎪+⎝⎭和1,0k B k ⎛⎫ ⎪⎝⎭,所以 11111(1,2,,2000)22(1)21k kk OA B k k S SOA OB k k k k k ⎛⎫==⨯⨯==-= ⎪++⎝⎭,于是122000111111111212223220002001S S S ⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1110001220012001⎛⎫=-=⎪⎝⎭. 故填10002001. 注:本题中用到第一章§3-3中介绍的裂项抵消求和方法. 31【分析】连接DF ,EF ,过点F 作FN AC ⊥,FM AB ⊥,结合直角三角形斜边中线等于斜边的一半求得点A 、D 、F 、E 四点共圆,=90DFE ∠︒,然后根据勾股定理及正方形的判定和性质求得AE 的长度,从而求解.【详解】解:如图,连接DF ,EF ,过点F 作FN AC ⊥,FM AB ⊥. ①在ABC 中,90BAC ∠=︒,点G 是DE 中点, ①AG DG EG ==. ①AG =FG ,①A 、D 、F 、E 四点共圆,G 点为圆心,DE 为直径, ①90DFE ∠=︒.①在Rt ABC 中,5AB AC ==,①BC == 又①点F 是BC 中点,①12CF BF BC ===1522FN FM AB ===. ①四边形AMFN 是正方形, ①52AN AM FN FM =====. ①90NFD DFM ∠+∠=︒,90MFE DFM ∠+∠=︒, ①NFD MFE ∠=∠.①在NFD △和MFE 中90DNF EMF NF MF NFD MFE ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,①()NFD MFE ASA ≅, ①51222ME DN AN AD ==-=-=, ①51322AE AM MD =+=+=, ①在Rt DAE中,DE【点睛】本题考查直角三角形的性质,圆周角定理,四点共圆,正方形的判定和性质,全等三角形的判定和性质以及勾股定理,综合性强,较难.正确的作出辅助线是解答本题的关键. 32.1998【详解】用0表示偶数,1表示奇数,则按如下方法排列时:5011500100100100100111A B C个个,仅有一个数为偶数:A B C ++,故所求和数个数的最大值不小于199911998-=.其次,我们证明对任意排列,都至少有一个和为偶数,分4种情形.情形①:第一项为奇数,第二项为偶数.为了使和不出现偶数,第3项只能是奇数,接下去只能是1001000…这样出现了500个100后,所有1000个偶数全都排出,余下只有501个奇数,这时只能是上述排列,其中有一个和:A B C ++为偶数.情形①:第一项是奇数,第2项也是奇数.为了使和不出现偶数,以后各项只能都是奇数,排完1001个奇数后,剩下1000个偶数,再排下去必出现偶数:奇+奇+偶=偶. 情形①和①:第一项是偶数,第二项是奇数或偶数,同样必会出现和为偶数的情形. 综上可知,所求和数个数的最大值是1998. 33.1009921⨯+【详解】解:设239912232421002S =+⨯+⨯+⨯++⨯,则23991002222329921002S =+⨯+⨯++⨯+⨯,于是,由公式①得 ()299100212221002S S S =-=-+++++⨯10010021100221-=-+⨯+1009921=⨯+.故答案为:1009921=⨯+.34.【详解】解 如图所示,分别过A C 、作x 轴垂线,垂足分别为E F 、.设,OE a BF b ==,则,AE CF ==,所以A C 、的坐标分别是(),(2)A a C a b +,代入xy =得2)a b b =+=解得a b ⎧=⎪⎨=⎪⎩因此,(22,0)D a b +的坐标为.35.36【详解】解 因为对正整数n ,41n -整除2002n , 所以200241nn -是整数. 而20022(250)5004141n n n n +=+--, 又因为41n -是奇数,所以25041n n +-是整数. 则4(250)100114141n n n +=+--,可知1001能被41n -整除.因为30n >,100171113=⨯⨯,所以可得41n -只能是143.所以36n =. 故应填36.36.,-1)##(11)【分析】由y =x 轴、y 轴于点A 、B ,得到点B 的坐标是(0,OB =A 的坐标是(﹣1,0),OA =1,①ABO =30°,①OAB =60°,分别求得直线BF 的解析式为=-+y x AF 的解析式为2)2y x =,联立解方程组即可得到点F 在该平面直角坐标系内的坐标.【详解】解:①直线AB :y =x 轴、y 轴于点A 、B 当x =0时,y①点B 的坐标是(0,OB当y =0时,0x =﹣1, ①点A 的坐标是(﹣1,0),OA =1①tan ①ABO =AO BO =①①ABO =30°,①OAB =90°-①ABO =60°如图所示,由题意得①EAB =①ABD ,①ABE =①BAD , ①①ABE ①①BAD ①①AEB =①ADB①A 、E 、D 、B 四点共圆,如图所示, ①①ADE =①ABE =30°,①EAD =①EBD ①①F AB =①FBA ①①ADE ①①AFD①①F =①ADE =30°,①F AB =①FBA =75°①①F AO =①F AB -①BA 0=15°,①FBE =①F AB -①ABO =45°, ①①OGB =90°-①FBE =45° ①①OGB =①OBG ①OG =OB①点G0),设直线BF 的解析式为y =kx +b ,代入G 0),B (0b b +==⎪⎩ 解得1k b =-⎧⎪⎨=⎪⎩①直线BF 的解析式为=-+y x在线段AO 上取点H ,使得AH =EH ,则①HAE =①HEA =15°, ① ①OHE =①HAE +①HEA =30° 设OE =t , 则OH=tan 30OE=︒,22HE OE t AH ===①21OA AH OH t =+==①2t ==①点E 的坐标为(02)设直线AF 的解析式为y =k 1x +b 1,代入A (﹣1,0),E (02)得11102k b b -+=⎧⎪⎨⎪⎩解得1122k b ⎧=⎪⎨=⎪⎩ ①直线AF的解析式为2)2y x =, 联立直线BF 和AF 的解析式得2)2y x y x ⎧=-⎪⎨=⎪⎩解得11x y ⎧=⎪⎨=-⎪⎩①点F,-1) 故答案为:,-1)【点睛】本题考查了一次函数的图像和性质、解直角三角形、相似三角形的判定与性质、 解二元一次方程组、四点共圆等知识,综合性非常强,难度较大,利用待定系数法求解析式是关键. 37.2.5+【分析】连接BD ,过B 作BH ①AC 于H 点,根据①BCD 是直角三角形,可证明①BAC =①BDC ,则有A 、B 、C 、D 四点共圆,进而有BD 是该圆的直径,可得①BAD =90°,利用勾股定理可得BD =12CD BD ==BC ==,根据BH ①AC ,可得①ABH 、①BCH 是直角三角形,则有①ABH =30°,即1522AH AB ==,利用勾股定理可得BH =,再在①BCH 是直角三角形,可得CH 可得解.【详解】连接BD ,过B 作BH ①AC 于H 点,如图,①①BCD =90°,①①BCD 是直角三角形, ①222BD CD BC =+,①BC =,①2BD CD =, ①在Rt ①BCD 中,①DBC =30°, 即①BDC =60°, ①①BAC =60°, ①①BAC =①BDC , ①A 、B 、C 、D 四点共圆, ①①BCD =90°, ①BD 是该圆的直径, ①①BAD =90°, ①AB =5,AD =2,①BD①12CD BD =BC ==, ①BH ①AC ,①①ABH 、①BCH 是直角三角形,①①BAC =60°, ①①ABH =30°, ①1522AH AB ==,即BH ===, ①①BCH 是直角三角形,①CH ==①52AC AH CH =+=故答案为:52+【点睛】本题考查了勾股定理、四点共圆、圆周角定理以及含30°角的直角三角形的性质等知识,利用四点共圆是解答本题的关键. 38.710【分析】设上区的桌位数为x ,单个桌位座位数为a ,中区的桌位数为y ,单个桌位座位数为b ,下区的桌位数为z ,单个桌位座位数为c ,第一天下区的坐有观众的桌位数为m ,根据中区的观众数占入场观众数的14,上座率为35,可得3ma +2mb +mc =35(xa +yb +zc ),6b=3a +c ①,设第二天上区的坐有观众的桌位数为n ,根据上区的观众数占入场观众数的25,上座率为34,可得na +nb +2nc =34(xa +yb +zc ),3a =2b +4c ①,联立①①可得b =54c ,a =136c ,进一步得到mc =350(xa +yb +zc ),nc =965(xa +yb +zc ),根据第三天上区的观众数与第二天上区的观众数相同,中区的观众数是第一天的中区的观众数的13,下区的观众数是当天上区和中区观众数的总和,可得第三天上区的观众数为na =136nc ,中区的观众数为13×2mb =23 mb =56mc ,下区的观众数为136nc +56mc ,依此可求第三天的上座率.【详解】解:设上区的桌位数为x ,单个桌位座位数为a ,中区的桌位数为y ,单个桌位座位数为b ,下区的桌位数为z ,单个桌位座位数为c ,第一天下区的坐有观众的桌位数为m ,∵中区的观众数占入场观众数的14,上座率为35,∴3ma+2mb+mc=35(xa+yb+zc),2mb=14(3ma+2mb+mc),∴6b=3a+c①,设第二天上区的坐有观众的桌位数为n,∵上区的观众数占入场观众数的25,上座率为34,∴na+nb+2nc=34(xa+yb+zc),na=25(na+nb+2nc),∴3a=2b+4c①,把①代入①得6b=2b+4c+c,即b=54 c,把b=54c代入①得3a=52c+4c,即a=136c,∴3m×136c+2m×54c+mc=35(xa+yb+zc),整理得mc=350(xa+yb+zc),∴n×136c+n×54c+2nc=34(xa+yb+zc),整理得nc=965(xa+yb+zc),∵第三天上区的观众数与第二天上区的观众数相同,中区的观众数是第一天的中区的众数的13,下区的观众数是当天上区和中区观众数的总和,∴第三天上区的观众数为na=136nc,中区的观众数为13×2mb=23mb=56mc,下区观众数为136nc+56mc,∴第三天的上座率为135266nc mcxa yb zc⎛⎫+⎪⎝⎭++()()135276610xa yb zc xa yb zcxa yb zc⎡⎤+++++⎢⎥⎣⎦==++.故答案为:710.【点睛】本题考查了应用类问题,不定方程的应用,解题的关键是正确读懂题意列出方程和代数式.39.(1)证明见解析【分析】(1)根据题意和菱形的性质,利用SAS 证明ADE CDE ≌△△,即可得出结论. (2)①首先根据题意,得到ABD △为等边三角形,然后过点D 作DH AB ⊥于H ,在Rt ADH 中,依据30ADH ∠=︒,得到32AH =,然后利用勾股定理,得到DH 的长,然后再过点E 作EG DF ⊥于G ,依据1DF =,3CD =,得到3CDE FDE S S =△△,再由(1)得ADE CDE ≌△△,得到3ADE FDE S S =△△,进而得到2ADF FDE S S =△△,然后利用三角形的面积,算出EG 的长.即得到点E 到CD 的距离;①在Rt EDG 中,依据60EDG ∠=︒,得到30DEG ∠=︒,EG =DG x =,利用30︒所对的直角边等于斜边的一半,得到2DE x =,再利用勾股定理,解出x 的值,即可得到DE 的长,然后在Rt EFG 中,31144EF =-=,EG =EF 的长,即可得出EF ED 的值. (1)证明:①在菱形ABCD 中,60DBA ∠=︒, ①AD DC =,120ADE CDE ∠=∠=︒, 在ADE 和CDE 中, AD DCADE CDE DE DE =⎧⎪∠=∠⎨⎪=⎩, ①ADE CDE ≌△△(SAS ), ①AE CE =. (2)解:①依题意ABD △为等边三角形,过点D 作DH AB ⊥于H , 在Rt ADH 中,60DAH ∠=︒,30ADH ∠=︒,3AD =,则32AH =,①DH ==过点E 作EG DF ⊥于G , ①1DF =,3CD =,①3CDE FDE S S =△△,由(1)得,ADE CDE ≌△△, ①3ADE FDE S S =△△, ①2ADF FDE S S =△△, 由12ADF S DF DH =⋅△,12FDE S DF EG =⋅△,①12EG DH ==;①在Rt EDG 中,60EDG ∠=︒,则30DEG ∠=︒,EG = 设DG x =,则2DE x =,222(2)x x +=⎝⎭, 解得:34x =±(负值舍去)①34x =, ①32=DE , 在Rt EFG 中,31144EF =-=,EG =①EF =①232EF ED == 【点睛】本题考查了菱形的性质、全等三角形的性质与判定、等边三角形的性质、勾股定理、面积与等量代换、30︒所对的直角边等于斜边的一半等知识点,解本题的关键在熟练掌握相关性质与定理. 40.135【详解】由422223a b a b =+得4224230a ab b --=,即2222(3)()0a b a b -+=. 但220a b +≠(否则22230a b +=,与已知条件矛盾), 所以2230a b -=,即223a b ,22222222312010601035a b b b a b b b --==++. 41.(1)AB 边上的高为6013(2)4m =,9n =,被剪去的小正方形的边长为54【分析】(1)先利用勾股定理的逆定理证明ABC 是直角三角形,然后再利用等面积法进行计算即可解答;(2)利用拆项配成两个完全平方式,然后求出m ,n 的值,再利用等面积法进行计算即可解答.【详解】(1)解:①2222512169AC BC +=+=,2213169AB ==, ①222AC BC AB +=, ①ABC 是直角三角形,过点C 作CD AB ⊥于点D ,如图①,①1122ABC S BC AC AB CD =⋅=⋅△, ①560121313AC CD BC AB =⋅=⨯=; (2)解:①22818970m m n n -+-+=, ①2281618810m m n n -++-+=, ①()()22490m n +-=-,①()240m -≥,()290n -≥,①40m -=,90n -=, ①4m =,9n =,设剪去的小正方形的边长x , ①()2224m x x mn +-=, ①()2242449x x +-=⨯, 解得:54x =, 答:剪去的小正方形的边长为54.【点睛】本题考查了配方法的应用,勾股定理的逆定理,偶次方的非负性,剪纸问题,熟练掌握等面积法是解题的关键. 42.见解析【详解】因2(4)3()x y x y x y +=---,而3|(4)x y -,3|3()x y -,则3|(2)x y +. 又22472x xy y +-(2)(4)x y x y =+-,则()229|472x xy y +-.43.符合条件的两位数一共有12个:10,15,18,20,30,40,45,50,60,70,80,90 【详解】设0a b n ab =⨯(n 为自然数),则 10010a b na nb +=+,所以10(10)(1)n a n b -=-.由于19,09a b ≤≤≤≤,因此可得110n ≤≤.分析n 取值从1到10,符合条件的两位数一共有12个:10,15,18,20,30,40,45,50,60,70,80,90.44.(1)见解析;(2【详解】解 (1)由题意知45ACB DCE ∠=∠=︒,BC ,EC =, 所以DCA ECB ∠=∠,AC DCBC EC=,所以ADC BEC △△,故45DAC EBC ∠=∠=︒, 所以DAC ACB ∠=∠,所以//AD BC .(2)设AE x =,因为30ACE ∠=︒,可得AC =,2CE x =,DE DC =.因为90EAP CDP ∠=∠=︒,EPA CPD ∠=∠,所以APE DPC △△, 故可得12APE DPC S S =△△.又2EPC APE ACE S S S +=△△△,2EPC DPC CDE S S S x +==△△△,于是可得2(2DPC S x =△,21)EPC S x =△.所以DPC EPC S DP PE S ==△△ 45.n 的最小值等于34. 【详解】记{1,2,3,,50}S =,i A 是S 中能被i 整除的正整数组成的集合(1,2, 3)i =,2A ,3A 分别2A ,3A 中数的个数,由容斥原理有23A A ⋃=2323A A A A +-⋂5050502323⎡⎤⎡⎤⎡⎤=+-⎢⎥⎢⎥⎢⎥⨯⎣⎦⎣⎦⎣⎦2516833=+-=. 从23A A ⋃中任取3个数,其中至少有2个数属于2A 或3A 中同一个集合,它们不互质. 故所求n 的最小值34≥.其次,设1{1,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47}B =,22222{2,3,5,7}B =,3{223,317,59}B =⨯⨯⨯,则1B ,2B ,3B 中共有164323++=个数,于是从S 内任取34个数,其中至少有34(5023)7--=个数属于123B B B ⋃⋃.由抽屉原理知,这7个数中至少有71133-⎡⎤+=⎢⎥⎣⎦个数属于1B ,2B ,3B 中同一个子集,它们两两互质. 综上所述,所求n 的最小值等于34. 46.57个【详解】因为正整数m ,n 满足mn 能被21整除,且130m n ≤≤≤,所以, (1)若21m =,则21n =,22,…,30.故满足条件的数对(,)m n 有10个. (2)若21m ≠,(①)当21n =时,1m =,2,…,20.满足条件的数对(,)m n 有20个. (①)当21n ≠时,因为2137=⨯,所以,1)如果3m a =,7n b =(a ,b +∈N ,且7≠a ,3b ≠),得13730a b ≤≤≤.1b =时,1a =,2; 2b =时,1a =,2,3,4;4b =时,1a =,2,3,4,5,6,8,9.故满足条件的数对(,)m n 有24814++=(个).2)如果7m a =,3n b =(a ,b +∈N ,且3a ≠,7b ≠),得17330a b ≤≤≤. 3b =,4时,a 的值均为1;5b =,6,8,9时,a 的值均为1,2;10b =时,a 的值为1,2,4.故满足条件的数对(,)m n 有2142313⨯+⨯+=(个). 综上,满足条件的数对(,)m n 共有1020141357+++=(个). 47.见解析.【详解】利用开平方运算检验前几项均符合(必要时可多算几项). 2222497,448967,444889667,444488896667====.由此我们猜想2144448889(66661)n nn+⋅⋅⋅⋅⋅⋅=⋅⋅⋅+.事实上,可设2144448889(1){1,2,,},9n nnxx xx x +⋅⋅⋅⋅⋅⋅=⋅⋅⋅+∈⋅⋅⋅, 即24111110811111(1111)n nnnx ⨯⋅⋅⋅⨯+⨯⋅⋅⋅+=⨯⋅⋅⋅+.令1111nm⋅⋅⋅=,则1091111191n nm =⨯⋅⋅⋅+=+, 代入上式,得()()2491811m m m mx +++=+, 整理成关于x 的方程,得22(3612)0mx x m +-+=, 解此方程,得6x =(负根舍去了).所以,2144448889(66661)n nn +⋅⋅⋅⋅⋅⋅=⋅⋅⋅+.另证1 21111444488894108109n nkkk n k n n+=+=+⋅⋅⋅⋅⋅⋅++∑∑()()221141101010411010n n +=+++++++++()()1221114101410199n n ++=+⋅-+⋅- ()221141041019n n ++=⋅+⋅+221121012110333n n ++⎛⎫⋅+⎛⎫==⋅+ ⎪ ⎪⎝⎭⎝⎭()21621101010933n +⎡⎤=-+⋅+⎢⎥⎣⎦()221610101076667n nn+⎡⎤=++++=⋅⋅⋅⎣⎦. 另证2144448889444488881n nnn+⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅+1144400088881n n n++=⋅⋅⋅⋅⋅⋅+⋅⋅⋅+1141111081111n n n ++=⋅⋅⋅⋅⋅+⋅⋅⋅⋅+1114111(91111)81111n n n +++=⋅⋅⋅⋅⋅⋅⋅⋅⋅++⋅⋅⋅⋅+21136(111)121111n n ++=⋅⋅⋅⋅+⋅⋅⋅⋅+21(61111)n +=⋅⋅⋅⋅+.48.本题有两种可能答案:情形1:B 组110分,C 组80分,D 组70分,E 组60分;情形2:B 组100分,C 组90分,D 组70分,E 组60分.填表进行检验见解析. 【详解】根据条件(1),每一竖行中,五组得分各不相同.对于一门单科,全部可能的不同得分是0,10,20,30和40,只有5种. 五门单科各组的分数总和是()5010203040500⨯++++=. 从500分中减去第1名A 组180分,其余四组总分之和是320分. 为了叙述简洁,约定B 组总分记为B ,C 组总分记为C ,其余类推. 那么,402060,E B C D E ≥+=>>>. 由此得60708090300E D C B +++≥+++=.这四组实际总分之和是320,只比最低可能限度多出20分.多出的20分,只有两种可能分配方案:或者都加给第2名B ,或者B 与第3名C 各加10分.因而,本题有两种可能答案:情形1:B 组110分,C 组80分,D 组70分,E 组60分; 情形2:B 组100分,C 组90分,D 组70分,E 组60分.为了满足条件(2),在情形1中,C 组应该有四门20分,一门0分;在情形2中,C 组有。
初中数学竞赛题试卷及答案
一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √9B. √-1C. πD. 0.1010010001……2. 已知a,b是实数,且a+b=0,则下列选项中错误的是()A. a和b互为相反数B. a和b都是0C. ab>0D. ab≤03. 一个等腰三角形的底边长为10cm,腰长为13cm,则该三角形的周长是()A. 32cmB. 34cmC. 36cmD. 38cm4. 若x^2-4x+3=0,则x的值是()A. 1或3B. 2或3C. 1或2D. 2或45. 下列各式中,正确的是()A. 2a + 3b = 2(a + b)B. 2a - 3b = 2(a - b)C. 2a + 3b = 2a + 3bD. 2a - 3b = 2a - 3b6. 已知函数f(x) = 2x - 1,则f(3)的值是()A. 5B. 6C. 7D. 87. 一个长方形的长是8cm,宽是5cm,则该长方形的对角线长是()A. 5cmB. 8cmC. 10cmD. 13cm8. 若a > b,且a + b = 0,则下列选项中正确的是()A. a < 0,b > 0B. a > 0,b < 0C. a = 0,b = 0D. 无法确定9. 下列各式中,分式有意义的条件是()A. 分子为0,分母为0B. 分子为0,分母不为0C. 分子不为0,分母为0D. 分子不为0,分母不为010. 下列图形中,是轴对称图形的是()A. 正方形B. 等边三角形C. 等腰梯形D. 以上都是二、填空题(每题5分,共50分)11. 若a,b是实数,且a + b = 0,则ab的值是______。
12. 一个圆的半径是r,则该圆的周长是______。
13. 若x^2 - 4x + 3 = 0,则x^2 - 4x + 4的值是______。
14. 函数f(x) = 2x - 1的图象是一条______。
数学竞赛试题及答案初中
数学竞赛试题及答案初中试题一:代数问题题目:如果\( a \)和\( b \)是两个连续的自然数,且\( a^2 + b^2= 45 \),求\( a \)和\( b \)的值。
解答:设\( a \)为较小的自然数,那么\( b = a + 1 \)。
根据题意,我们有:\[ a^2 + (a + 1)^2 = 45 \]\[ a^2 + a^2 + 2a + 1 = 45 \]\[ 2a^2 + 2a - 44 = 0 \]\[ a^2 + a - 22 = 0 \]分解因式得:\[ (a + 11)(a - 2) = 0 \]因此,\( a = -11 \)或\( a = 2 \)。
由于\( a \)是自然数,所以\( a = 2 \),\( b = 3 \)。
试题二:几何问题题目:在一个直角三角形中,直角边的长度分别为3厘米和4厘米,求斜边的长度。
解答:根据勾股定理,直角三角形的斜边\( c \)可以通过以下公式计算:\[ c = \sqrt{a^2 + b^2} \]其中\( a \)和\( b \)是直角边的长度。
代入数值:\[ c = \sqrt{3^2 + 4^2} \]\[ c = \sqrt{9 + 16} \]\[ c = \sqrt{25} \]\[ c = 5 \]所以斜边的长度是5厘米。
试题三:数列问题题目:一个等差数列的前三项分别是2,5,8,求这个数列的第10项。
解答:等差数列的通项公式是:\[ a_n = a_1 + (n - 1)d \]其中\( a_n \)是第\( n \)项,\( a_1 \)是首项,\( d \)是公差。
已知首项\( a_1 = 2 \),公差\( d = 5 - 2 = 3 \)。
代入公式求第10项:\[ a_{10} = 2 + (10 - 1) \times 3 \]\[ a_{10} = 2 + 9 \times 3 \]\[ a_{10} = 2 + 27 \]\[ a_{10} = 29 \]所以这个数列的第10项是29。
#初中数学竞赛分专题训练试题及解析(10套,76页)
初中数学竞赛专项训练(1)(实 数)一、选择题1、如果自然数a 是一个完全平方数,那么与a 之差最小且比a 大的一个完全平方数是( ) A. a +1B. a 2+1C. a 2+2a+1D. a+2a +12、在全体实数中引进一种新运算*,其规定如下:①对任意实数a 、b 有a *b=(a +b )(b -1)②对任意实数a 有a *2=a *a 。
当x =2时,[3*(x *2)]-2*x +1的值为 ( ) A. 34B. 16C. 12D. 63、已知n 是奇数,m 是偶数,方程⎩⎨⎧=+=+m y x n y 28112004有整数解x 0、y 0。
则( )A. x 0、y 0均为偶数B. x 0、y 0均为奇数C. x 0是偶数y 0是奇数D. x 0是奇数y 0是偶数4、设a 、b 、c 、d 都是非零实数,则四个数-ab 、ac 、bd 、cd ( ) A. 都是正数B. 都是负数C. 两正两负D. 一正三负或一负三正5、满足等式2003200320032003=+--+xy x y x y y x 的正整数对的个数是( ) A. 1B. 2C. 3D. 46、已知p 、q 均为质数,且满足5p 2+3q=59,由以p +3、1-p +q 、2p +q -4为边长的三角形是 A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形7、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。
A. 111B. 1000C. 1001D. 11118、在1、2、3……100个自然数中,能被2、3、4整除的数的个数共( )个 A. 4 B. 6C. 8D. 16二、填空题 1、若20011198********⋯⋯++=S ,则S 的整数部分是____________________2、M 是个位数字不为零的两位数,将M 的个位数字与十位数字互换后,得另一个两位数N ,若M -N 恰是某正整数的立方,则这样的数共___个。
全国初中数学竞赛试题及答案.pdf
中国教育学会中学数学教学专业委员会全国初中数学竞赛试题一、选择题(共5小题,每小题6分,共30分.)1(甲).如果实数a ,b ,c 22||()||a a b c a b c −++−+可以化简为( ).(A )2c a − (B )22a b − (C )a − (D )a 1(乙).如果22a =−11123a+++的值为( ).(A )2− (B 2 (C )2 (D )222(甲).如果正比例函数y = ax (a ≠ 0)与反比例函数y =xb(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为( ). (A )(2,3) (B )(3,-2) (C )(-2,3) (D )(3,2)2(乙). 在平面直角坐标系xOy 中,满足不等式x 2+y 2≤2x +2y 的整数点坐标(x ,y )的个数为( ). (A )10 (B )9 (C )7 (D )53(甲).如果a b ,为给定的实数,且1a b <<,那么1121a a b a b ++++,, ,这四个数据的平均数与中位数之差的绝对值是( ). (A )1 (B )214a − (C )12 (D )143(乙).如图,四边形ABCD 中,AC ,BD 是对角线, △ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5, 则CD 的长为( ).(A )23 (B )4 (C )52 (D )4.54(甲).小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( ).OAB CED(A )1 (B )2 (C )3 (D )44(乙).如果关于x 的方程 20x px q p q −−=(,是正整数)的正根小于3, 那么这样的方程的个数是( ).(A ) 5 (B ) 6 (C ) 7 (D ) 85(甲).一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为0123p p p p ,,,,则0123p p p p ,,,中最大的是( ).(A )0p (B )1p (C )2p (D )3p5(乙).黑板上写有111123100, , ,, 共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是( ).(A )XXXX (B )101 (C )100 (D )99二、填空题(共5小题,每小题6分,共30分)6(甲).按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作. 如果操作进行四次才停止,那么x 的取值范围是 .6(乙).如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b cb c c a a b+++++的值为 .7(甲).如图,正方形ABCD 的边长为215, E ,F 分别是AB ,BC 的中点,AF 与DE ,DB 分别交于点M ,N ,则△DMN 的面积是 . 7(乙).如图所示,点A 在半径为20的圆O 上,以OA 为一条对角线作矩形OBAC ,设直线BC 交圆O 于D 、E 两点,若12OC =,则线段CE 、BD 的长度差是 。
2010年全国 初中数学联赛(含答案)
12010年全国初中数学联合竞赛试题参考答案第一试一、选择题:(本题满分42分,每小题7分)1.若a ,b ,c 均为整数且满足1010()()1a b a c -+-=,则||||||a b b c c a -+-+-=( )A .1B .2C .3D .4【答案】 B【解析】 因为()()10101a b a c ---=,而左边的两个加数都是非负整数,所以一个等于0,另一个等于1,也就是说,a ,b ,c 三个数中有两个相等,另一个和它们相差1.因此,所求的和式中,两项等于1,另一项等于2,结果为2.2.若实数a ,b ,c 满足等式3||6a b =,49||6a b c =,则c 可能取的最大值为( )A .0B .1C .2D .3【答案】 C【解析】 为了使c 尽量大,a 应该尽量大,b 应该尽量小.因为它们都是非负数,3a ,0b =,不难观察到所求答案为2.3.若a ,b 是两个正数,且1110,a b b a--++= 则( )2A .103a b <+≤B .113a b <+≤C .413a b <+≤D .423a b <+≤. 【答案】 C【解析】 去分母之后得到()()110a a b b ab -+-+=,即220a ab b a b ++--=.给定a 和b 是两个正数,那么如果让它们中的一个等于0,则另一个等于0或14.若方程2310x x --=的两根也是方程420x ax bx c +++=的根,则2a b c +-的值为 ( )A .13-B .9-C .6D .0【答案】 A【解析】 这需要使得前者是后者的因式,用综合除法可得,余式为()()33310a b x a c +++++,它应该等于0.所以两个系数都为0,特别地,()()333210a b a c ++-++,所以所求答案为13-.5.在ABC △中,已知60CAB ∠=︒,D ,E 分别是边AB ,AC 上的点,且60AED ∠=︒,ED DB CE +=,2CDB CDE ∠=∠,则DCB ∠= ( )A .15oB .20oC .25oD .30o【答案】 B【解析】 观察可得ADE △为正三角形,6.对于自然数n ,将其各位数字之和记为n a ,如2009200911a =+++=,201020103a =+++=,则312320092010a a a a a +++++=L ( )A .28062B .28065C .28067D .28068.【答案】 D【解析】 根据弃九法,它和1到2010的和被9除的余数相等.每连续9个自然数之和被9整除,2010被9除余3,1236++=,所以只有D 符合.二、填空题:(本题满分28分,每小题7分)1.已知实数x ,y 满足方程组33191x y x y ⎧+=⎨+=⎩,,则22x y += .【答案】 13【解析】 第一式除以第二式可得2219x xy y -+=,第二式平方可得2221x xy y ++=,那么所求答案就是()1921313⨯+÷=.2.二次函数2y x bx c =++的图象与x 轴正方向交于A ,B 两点,与y 轴正方向交于点C .已知3AB ,30CAO ∠=︒,则c = .【答案】 19【解析】 观察可知A 必须在B 左边,否则B 会跑到x 轴负半轴上.设A 的横坐标为a ,则C 的纵坐标3,23AC =,2AB a =.因此,考虑两根之积,33a a ⨯,3a =319=. 3.在等腰直角ABC △中,5AB BC ==,P 是ABC △内一点,且5PA ,5PC =,则PB = .4【答案】 10【解析】 设()00B ,,()50A ,,()05C ,,根据熟知的勾三股四弦五,可观察到()31P ,,(另一个点在三角形外,不符合),所以10PB =.4.将若干个红、黑两种颜色的球摆成一行,要求两种颜色的球都要出现,且任意中间夹有5个或10个球的两个球必为同一种颜色的球.按这种要求摆放,最多可以摆放 个球.【答案】 15【解析】 也就是说,编号之差为6或11的两个球颜色相同.下面从1号球开始,依次写出颜色相同的球的编号:11261711516104159314821371→→→→→→→→→→→→→→→→→也就是说,如果有17个球,则全部同色;如果超过17个,则任何连续17个同色,也不行.如果有16个,则上面的圈去掉17号球仍然是一条链,仍然不行;如果有15个,则上面的圈去掉17号球和16号球后断成两部分,所以可以.第二试 (A )一.(本题满分20分)设整数()a b c a b c ≥≥,,为三角形的三边长,满足22213a b c ab ac bc ++---=,求符合条件且周长5不超过30的三角形的个数.【解析】 由已知等式可得222()()()26a b b c a c -+-+-= ①令a b m -=,b c n -=,则a c m n -=+,其中m ,n 均为自然数.于是,等式①变为222()26m n m n +++=,即2213m n mn ++= ②由于m ,n 均为自然数,判断易知,使得等式②成立的m ,n 只有两组:31m n =⎧⎨=⎩,,和13.m n =⎧⎨=⎩,⑴ 当3m =,1n =时,1b c =+,34a b c =+=+.又a ,b ,c 为三角形的三边长,所以b c a +>,即(1)4c c c ++>+,解得3c >.又因为三角形的周长不超过30,即(4)(1)30a b c c c c ++=++++≤,解得253c ≤. 因此2533c <≤, 所以c 可以取值4,5,6,7,8,对应可得到5个符合条件的三角形.6⑵ 当1m =,3n =时,3b c =+,14a b c =+=+.又a ,b ,c 为三角形的三边长,所以b c a +>,即(3)4c c c ++>+,解得1c >.又因为三角形的周长不超过30,即(4)(3)30a b c c c c ++=++++≤,解得233c ≤. 因此2313c <≤, 所以c 可以取值2,3,4,5,6,7,对应可得到6个符合条件的三角形.综合可知:符合条件且周长不超过30的三角形的个数为5611+=.二.(本题满分25分)已知等腰三角形ABC △中,AB AC =,C ∠的平分线与AB 边交于点P ,M 为ABC △的内切圆I e 与BC 边的切点,作MD AC ∥,交I e 于点D .证明:PD 是I e 的切线.【解析】 过点P 作I e 的切线PQ (切点为Q )并延长,交BC 于点N .因为CP 为ACB ∠的平分线,所以ACP BCP ∠=∠.又因为PA 、PQ 均为I e 的切线,所以APC NPC ∠=∠.IP QNB7又CP 公共,所以ACP NCP △≌△,所以PAC PNC ∠=∠.由NM QN =,BA BC =,所以QNM BAC △≌△,故NMQ ACB ∠=∠,所以MQ AC ∥.又因为MD AC ∥,所以MD 和MQ 为同一条直线.又点Q 、D 均在I e 上,所以点Q 和点D 重合,故PD 是I e 的切线.三.(本题满分25分)已知二次函数2y x bx c =+-的图象经过两点()1P a ,,()210Q a ,. ⑴ 如果a ,b ,c 都是整数,且8c b a <<,求a ,b ,c 的值.⑵ 设二次函数2y x bx c =+-的图象与x 轴的交点为A 、B ,与y 轴的交点为C .如果关于x 的方程20x bx c +-=的两个根都是整数,求ABC △的面积.【解析】 点()1P a ,、()210Q a ,在二次函数2y x bx c =+-的图象上,故1b c a +-=,4210a c a +-=,解得93b a =-,82c a =-.⑴ 由8c b a <<知8293938a a a a -<-⎧⎨-<⎩,,解得13a <<.又a 为整数,所以2a =,9315b a =-=,8214c a =-=.⑵ 设m ,n 是方程的两个整数根,且m n ≤,旗开得胜8由根与系数的关系可得39m n b a +=-=-,28mn c a =-=-,消去a ,得98()6mn m n -+=-,两边同时乘以9,得8172()54mn m n -+=-,分解因式,得(98)(98)10m n --=.所以9819810m n -=⎧⎨-=⎩,,或982985m n -=⎧⎨-=⎩,,或9810981m n -=-⎧⎨-=-⎩,,或985982m n -=-⎧⎨-=-⎩,,解得12m n =⎧⎨=⎩,,或109139m n ⎧=⎪⎪⎨⎪=⎪⎩,,或2979m n ⎧=-⎪⎪⎨⎪=⎪⎩,,或19323m n ⎧=⎪⎪⎨⎪=⎪⎩,,又m ,n 是整数,所以后面三组解舍去,故1m =,2n =.因此,()3b m n =-+=-,2c mn =-=-,二次函数的解析式为232y x x =-+.易求得点A 、B 的坐标为()10,和()20,,点C 的坐标为()02,, 所以ABC △的面积为1(21)212⨯-⨯=.第二试 (B )旗开得胜9一.(本题满分20分)设整数a ,b ,c 为三角形的三边长,满足22213a b c ab ac bc ++---=,求符合条件且周长不超过30的三角形的个数(全等的三角形只计算1次).【解析】 不妨设a b c ≥≥,由已知等式可得222()()()26a b b c a c -+-+-= ①令a b m -=,b c n -=,则a c m n -=+,其中m ,n 均为自然数.于是,等式①变为222()26m n m n +++=,即2213m n mn ++= ②由于m ,n 均为自然数,判断易知,使得等式②成立的m ,n 只有两组:31m n =⎧⎨=⎩,,和13.m n =⎧⎨=⎩,⑴ 当3m =,1n =时,1b c =+,34a b c =+=+.又a ,b ,c 为三角形的三边长,所以b c a +>,即(1)4c c c ++>+,解得3c >.又因为三角形的周长不超过30,即(4)(1)30a b c c c c ++=++++≤,解得253c ≤. 因此2533c <≤,旗开得胜10所以c 可以取值4,5,6,7,8,对应可得到5个符合条件的三角形.⑵ 当1m =,3n =时,3b c =+,14a b c =+=+.又a ,b ,c 为三角形的三边长,所以b c a +>,即(3)4c c c ++>+,解得1c >.又因为三角形的周长不超过30,即(4)(3)30a b c c c c ++=++++≤,解得233c ≤. 因此2313c <≤, 所以c 可以取值2,3,4,5,6,7,对应可得到6个符合条件的三角形.综合可知:符合条件且周长不超过30的三角形的个数为5611+=.二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)题目和解答与(A )卷第三题相同.第二试 (C )11一.(本题满分20分)题目和解答与(B )卷第一题相同.二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)设p 是大于2的质数,k 为正整数.若函数2(1)4y x px k p =+++-的图象与x 轴的两个交点的横坐标至少有一个为整数,求k 的值.【解析】 由题意知,方程2(1)40x px k p +++-=的两根1x ,2x 中至少有一个为整数.由根与系数的关系可得12x x p +=-,12(1)4x x k p =+-,从而有()()()()12121222241x x x x x x k p ++=+++=- ①⑴ 若1k =,则方程为22(2)0x px p ++-=,它有两个整数根2-和2p -.⑵ 若1k >,则10k ->.因为12x x p +=-为整数,如果1x ,2x 中至少有一个为整数,则1x ,2x 都是整数.又因为p 为质数,由①式知1|2p x +或2|2p x +.不妨设1|2p x +,则可设12x mp +=(其中m 为非零整数),则由①式可得212k x m-+=,12故()()12122k x x mp m -+++=+,即1214k x x mp m-++=+. 又12x x p +=-,所以14k p mp m--+=+, 即1(1)4k m p m-++= ② 如果m 为正整数,则(1)(11)36m p ++⨯=≥,10k m->, 从而1(1)6k m p m-++>,与②式矛盾. 如果m 为负整数,则(1)0m p +<,10k m-<, 从而1(1)0k m p m-++<,与②式矛盾. 因此,1k >时,方程2(1)40x px k p +++-=不可能有整数根.综上所述,1k =.旗开得胜13。
初中数学竞赛模拟题50题-含答案
初中数学竞赛模拟题50题含答案一、单选题10,0)a b>>,分别作了如下变形:甲:()a b-====( )A .甲、乙都正确B .甲、乙都不正确C .只有甲正确D .只有乙正确2.若实数a ,b ,c 满足等式36b =,96b c =,则c 可能取的最大值为( ) A .0B .1C .2D .33.设a ,b ,c 的平均数是M ,a ,b 的平均数是N ,N 与c 的平均数是P .若a b c >>,则M 与P 的大小关系是( ). A .M P =B .M P >C .M P <D .不能确定4.1234x x x x -+-+-+-的最小值为( ) A .4B .5C .6D .105.A ,B ,C ,D ,E 五人参加“五羊杯”初中数学竞赛得分都超过91分,其中E 排第三,得96分.又已知A ,B ,C 平均95分,B ,C ,D 平均94分,若A 排第一,则D 得( )分. A .98B .97C .93D .926.如果21x x --是31ax bx ++的一个因式,则b 的值是( ). A .2-B .1-C .0D .27.如图,在ABC 中,过点C 作CD AB ⊥,垂足为点D ,过点D 分别作DE AC ⊥,DF BC ⊥,垂足分别为E ,F .连接EF 交线段CD 于点O ,若CO =CD =EO FO ⋅的值为( ).A .B .4C .D .68.已知3a b -=,则339a b ab --的值是( ). A .3B .9C .27D .819.把三个连续的正整数a ,b ,c 按任意次序(次序不同视为不同组)填入20x x ++=□□□的三个方框中,作为一元二次方程的二次项系数、一次项系数和常数项.使所得方程至少有一个整数根的a ,b ,c ( ). A .不存在B .有一组C .有两组D .多于两组10.已知a ,b 长,则这个三角形的面积是( ) A .32abB .abC .12abD .2ab11.定义:平面直角坐标系中,点(),P x y 的横坐标x 的绝对值表示为||x ,纵坐标y 的绝对值表示为||y ,我们把点(),P x y 的横坐标与纵坐标的绝对值之和叫做点(),P x y 的折线距离,记为||||||M x y =+(其中的“+”是四则运算中的加法),若抛物线21y ax bx =++与直线y x =只有一个交点M ,已知点M 在第一象限,且2||4M ≤≤,令2242022t b a =-+,则t 的取值范围为( ) A .20182019t ≤≤ B .20192020t ≤≤ C .20202021t ≤≤D .20212022t ≤≤12.1991331991+的值用十进制表示时,末位数字是( ). A .8B .4C .2D .013.从正整数里取出k 个不同的数,使得这k 个数中任意两个数之差的绝对值是质数,则k 的最大值是( ). A .3B .4C .5D .614.满足等式2003的正整数对(),x y 的个数是( ).A .1B .2C .3D .415.1898年6月9日英国强迫清政府签约,将香港975.1平方公里土地租借给英国99年.1997年7月1日香港回归祖国,中国人民终于洗刷了百年耻辱,已知1997年7月1日是星期二,那么,1898年6月9日是星期( ).(注:公历纪年,凡年份为4的倍数但不是100的倍数的那年为闰年,年份为400的倍数的那年也为年,年的2月有29天,平年的2月有28天.) A .二B .三C .四D .五16.在实数范围内,设198851111a x a a ⎤⎥+=⎥-⎢⎥+-⎣⎦,则x 的个位数字是( ). A .1B .2C .4D .617.已知a b c d ,,,都是实数,则下列命题中,错误的是( ). A .若222a b c ab bc ca ++=++,则a b c == B .若3333a b c abc ++=,则a b c ==C .若442242242()a b c d a b c d +++=+,则a b c d ===D .若44444a b c d abcd +++=,则a b c d ===18.从1分、2分、5分3种硬币中取出100枚,总计3元,其中2分硬币枚数的可能情况有( )种. A .13B .16C .17D .1919.使424m m -+为完全平方数的自然数m 有( )个. A .2B .3C .4D .无数20.已知a ,b ,c 三个数中有两个奇数、一个偶数,n 是整数,如果()()()12233S a n b n c n =++++++,那么( ).A .S 是偶数B .S 是奇数C .S 的奇偶性与n 的奇偶性相同D .S 的奇偶性不能确定二、填空题21.若243k x -<是关于x 的一元一次不等式,则 k 的值为______. 22.已知(x -3)2+1m +=0,则mx =_______.23.已知:122334!99100a =⨯+⨯+⨯++⨯,243546!100102b =⨯+⨯+⨯++⨯,则a b -=______.24.设a ,b 是一元二次方程210x x --=的两根,则32234a b a ++的值为__________. 25.设n 是小于100的正整数且使2232n n --是6的倍数,则符合条件的所有正整数n 的和是______.26.如图,在Rt ABC 中,90BAC ∠=︒,分别以AB 、BC 、AC 为边向上作正方形,已知Rt ABC 的面积为5,则图中阴影部分面积之和为______.27.今天是星期日,从今天算起,200011111个天是星期________.28.一本书共有61页,顺次编号为1,2,…,61,某人将这些数相加时,有两个两位数的页码都错把个位数和十位数弄反了(形如ab 的两位数被当成了两位数ba ),结果得到总和是2008,那么书上这两个两位数页码之和的最大值是_________. 29.若实数,x y 满足333333331,134365456x y x y+=+=++++,则x y +=_____.30.若化简2x -25x -,则满足条件是x 的取值围是_________.31.使得521m ⨯+是完全平方数的整数m 的个数为__________.32.如图,以△ABC 的边AC 、BC 为边向外作正方形ACDE 和正方形BCGF ,连接AG 、BD 相交于点O ,连接CO 、DG ,取AB 中点M ,连接MC 并延长交DG 于点N .下列结论:①AG =BD ;①MN ①DG ;①CO 平分①DCG ;①S △ABC =S △CDG ;①①AOC =45°.其中正确的结论有______________(填写编号).33.从1,2,…,2008中,至少取________个偶数才能保证其中必定存在两个偶数之和为201234.某个两位自然数,它能被其各位数字之和整除,且除得的商恰好是7的倍数,写出符合条件的所有两位数是_________.35.关于,x y 的方程332232x y x y xy -+-=的正整数解的个数_____个. 36.方程13217219211211215217292x x x xx x x x----+=+----的解是______.37.方程22320060x xy x y --++=的正整数解(,)x y 共有__________对. 38.已知由小到大的10个正整数1210,,,a a a 的和是2000,那么5a 的最大值是_________,这时10a 的值应是_________.39.已知在正方形ABCD 中,5AB =,点N 在DC 的延长线上,过D 作BN 的垂线分别交BC 、BN 于点P 和点M ,点Q 在CD 边上且满足1010DQ BP BQBN --=,连接AE 、CE ,则)1CE AE +的最小值等于 __.40.如图所示,已知边长为2的正三角形ABC 中,P 0是BC 边的中点,一束光线自P 0发出射到AC 上的P 1后,依次反射到AB 、BC 上的点P 2和P 3,且1<BP 3<32(反射角等于入射角),则P 1C 的取值范围是_____.三、解答题41.戴高乐是二战期间领导法国人民赶走德国法西斯的英雄,也是法兰西第五共和国的总统.他去世后,根据他生前的意愿,他的墓前只立有一块小小的碑牌,一面刻着“查尔斯·戴高乐1890—1970”,另一面则刻着一个洛林十字架.洛林十字架由13块相同的小正方形组成,如图1所示.(1)你能否只用一把无刻度直尺画一条直线,使其等分洛林十字架.(面积等分,在图1中画出1种情形即可)(2)戴高乐还是第一个提出并且解决了下面一个非常有趣的有关洛林十字架的数学问题的人.问题如下:如图2,在洛林十字架的A 点处作一条直线,把洛林十字架严格地划分成面积相等的两部分.戴高乐利用圆规,直尺和铅笔解决了该问题,他的作法如下:如图3所示,①标记点D ,B ,M ,连接BM ,与AD 交于点F ;①以点F 为圆心,FD 长为半径作弧,与BF 交于点G ;①以点B 为圆心,BG 长为半径作弧,与BD 交于点C ;①连接CA 并延长,与洛林十字架边界交于点N ,则直线CN 即为所求.请根据戴高乐的作图步骤,证明直线CN 等分洛林十字架.小林同学的部分证明过程如下:标记点H ,P ,Q ,如图3所示.设洛林十字架中每个小正方形的边长为1. 易证BDF MAF ≌, ①FD FA =.由作图,可知1122FG FD FA AD ====.①BF .①12BG BC BF FG ==-=.①1CD BD BC =-==请补全小林同学的证明过程.42.如图1,ABC 中,AC =BC =4,①ACB =90°,过点C 任作一条直线CD ,将线段BC 沿直线CD 翻折得线段CE ,直线AE 交直线CD 于点F .直线BE 交直线CD 于G 点.(1)小智同学通过思考推得当点E 在AB 上方时,①AEB 的角度是不变的,请按小智的思路帮助小智完成以下推理过程: ①AC =BC =EC ,①A 、B 、E 三点在以C 为圆心以AC 为半径的圆上, ①①AEB = ①ACB ,(填写数量关系) ①①AEB = °.(2)如图2,连接BF ,求证A 、B 、F 、C 四点共圆;(3)线段AE 最大值为 ,若取BC 的中点M ,则线段MF 的最小值为 .43.岳池县体育馆今夏外围绿化施工,有一块三角形空地,要在上面栽种四种不同的花草,需将该空地分成面积相等的四块,请你设计出三种不同的划分方案.44.将平面直角坐标系中点集{}(,)1,2,3,4,5,1,2,3,4M x y x y ===内的11个点染成红色,其余点不染色.证明:存在一个矩形,它的边与坐标轴平行,顶点都在M 中,并且都是红色.45.求证:若()8216157|78+,则()8316357|78+.46.10个学生参加n 个课外活动小组,每一小组至多5个人;每两个学生至少参加一个小组;任意两个课外小组至少可找到两个学生,他们都不在这两个课外活动小组中.试求n 的最小值.47.在元旦晚会上,学校组织了一次关于语文、数学、外语、奥运及日常生活常识的知识竞赛,设定每科满分为40分,以下依次为30分、20分、10分和0分,共5个评分等级,每个小组分别回答这五个方面的问题.现将A 、B 、C 、D 、E 五个小组的部分得分列表1如下: 表1表1中,(1)每一竖行的得分均不相同(包括单科和总分);(2)C 组有4个单科得分相同.求B 、C 、D 、E 组的总分并填表进行检验. 48.a ,b 和c 都是两位数的自然数,a ,b 的个位分别是7与5,c 的十位是1.如果它们满足等式2005ab c +=,求a b c ++的值. 49.在正2004边形122004A A A 的各个顶点上随意填上1,2,3,,501中一个数,证明:一定存在四个顶点满足如下条件: (1)这四个顶点构成的四边形是矩形; (2)此四边形相对两顶点所填数之和相等.50.对非负整数n ,满足方程2x y z n ++=的非负整数(),,x y z 的组数记为n a . (1)求3a 的值; (2)求2001a 的值.参考答案:1.D【分析】甲利用分母有理化的知识,可求得;乙先将分子因式分解,然后约分,即可求得.【详解】解:甲:当a b 时,()a b-==当a =b 时,无意义,==①甲错误,乙正确,选项说法错误,不符合题意; 选项说法错误,不符合题意; 选项说法错误,不符合题意; 选项说法正确,符合题意; 故选D .【点睛】本题考查了分母有理化,因式分解,解题的关键是要全面考虑a 与b 之间的数量关系. 2.C【详解】解:由已知,()69315121512c b b b b ==-=-≤,①2≤c . 3.B【详解】解 依题意2,,3224a b c a b N c a b cM N P ++++++====,2()()1212a b c a c b c M P +--+--==. 因a b c >>,故0M P ->,即M P >.故应选B 4.A【详解】()()14143x x x x -+-≥---=,当14x ≤≤时取得等号;()()21233x x x x +-≥---=-,当23x ≤≤时取得等号;因此,1234314x x x x -+-+-+-≥+=,当23x ≤≤时取得等号.所以,1234x x x x -+-+-+-的最小值为4. 5.B【详解】设A ,B ,C ,D ,E 分别得a ,b ,c ,d ,e 分,则a ,b ,c ,d ,e 都是在92与100之间的正整数,其中a 最大,96e =排第三,且395285,394282a b c b c d ++=⨯=++=⨯=.两式相减得3a d -=.若b 排在第二,则197,97,2859192b e a b c a b ≥+=≥≥=--=<,矛盾. 若c 排第二,则97,97,2859192c a b a c ≥≥=--≤<,矛盾.若d 排第二,则97,3973100d a d ≥=+≥+=,故只可能100,97a d ==.所以选B . 6.D【详解】(解法一)依题意可设32321(1)()()()ax bx x x ax c ax c a x a c x c ++=--+=+--+-,比较系数得(),0,1,b a c c a c =-+⎧⎪-=⎨⎪-=⎩所以1,2c a b ==-=.故选D .(解法二)依题意21x x --是3221(1)()1ax bx ax x x ax b a x ++---=+++的因式, 所以1111a b a +==--, 解得1,2a b =-=.故选D .(解法三)用长除法可得321(1)()(2)(1)ax bx x x ax a a b x a ++=--+++++,所以20,10,a b a +=⎧⎨+=⎩得1,2a b =-=.故选D .7.B【分析】由题意易得出90DEC DFC ∠=∠=︒,即说明点C ,E ,D ,F 四点共圆,得出DEO FCO ∠=∠,从而易证DOE FOC ∽,得出EO DOCO FO=.由题意可求出DO CD CO =-4EO FO CO DO ⋅=⋅=.【详解】解:①DE AC ⊥,DF BC ⊥, ①90DEC DFC ∠=∠=︒, ①点C ,E ,D ,F 四点共圆,①DEF FCD ∠=∠,即DEO FCO ∠=∠.又①DOE FOC ∠=∠, ①DOE FOC ∽, ①EO DOCO FO=, ①EO FO CO DO ⋅=⋅. ①CO =CD = ①DO CD CO =-=①4EO FO CO DO ⋅=⋅==. 故选B .【点睛】本题考查相似三角形的判定和性质,四点共圆的知识,圆周角定理.确定点C ,E ,D ,F 四点共圆,从而可得出证明DOE FOC ∽的条件是解题关键. 8.C【详解】3322229()()93()9a b ab a b a ab b ab a ab b ab --=-++-=++-22223(2)3()3327a ab b a b =-⨯+=-==.故选C .9.C【详解】设三个连续的正整数分别为n 1-,n ,1n +(n 为大于1的整数).当一次项系数是n 1-或n 时,∆均小于零,方程无实数根;当一次项系数是1n +1时,22(1)4(1)3(1)4n n n n ∆=+--=--+.因为n 为大于1的整数,所以,要使0∆≥,n 只能取2.当2n =时,方程22320,2310x x x x ++=++=均有整数根,故满足要求的(a ,b ,c )只有两组:(1,3,2)、(2,3,1). 10.A【分析】构造矩形ABCD , E 、F 分别为AD 、AB 的中点,设2AD b =, 2AB a =,将所求三角形面积转化为△△△△矩形=---CEF AEF BCF CDE ABCD S S S S S 即可求解. 【详解】解:如图,在矩形ABCD 中, E 、F 分别为AD 、AB 的中点, 设2AD b =, 2AB a =, ①AF BF a ==,==AE DE b ,①在Rt AEF △、Rt BCF 、Rt CDE △中,依次可得到:EFCF==CE①△△△△矩形=---CEF AEF BCF CDE ABCD S S S S S 1112222222=⨯-⨯⨯-⨯⨯-⨯⨯a b a b a b a b142=---ab ab ab ab32ab =. 故选:A【点睛】本题考查二次根式的应用.能够通过构造矩形及直角三角形,利用等积变换将所求三角形的面积转化为矩形和几个直角三角形的面积之差.利用数形结合是解答本题的关键. 11.C【分析】联立方程组求得M 点坐标,并由只有一个交点条件求得a 、b 的关系式, 再由新定义和2||4M ≤≤列出b 的不等式,,求得b 的取值范围,由2242022t b a =-+,得出t 关于b 的二次函数解析式,再根据函数的性质求得t 的取值范围.【详解】解:①抛物线21y ax bx =++与直线y x =只有一个交点M ,①方程组21y x y ax bx =⎧⎨=++⎩只有一组实数解, ①()2110ax b x +-+=,①()2140b a =--=△, ①()21b =-4a ,即()2114b =-a , ①方程()2110ax b x +-+=可以化为()()22111104b x b x -+-+=, 即()()2214140b x b x -+-+=, ①1221x x b ==-, ①1221y y b==- ①22,11M b b ⎛⎫ ⎪--⎝⎭, ①点M 在第一象限, ①10b ->, ①2||4M ≤≤, ①222||||411b b≤+≤--, ①2121b≤≤-, 解得:10b -≤≤, ①2242022t b a =-+,①()()22221202212020t b b b =--+=++, ①10b -≤≤,①t 随b 的增大而增大, ①1b时,2020t =,0b =时,2021t =,①t 的取值范围为20202021t ≤≤. 故选:C .【点睛】本题考查二次函数的性质、二元二次方程组、一元二次方程及其判别式、一元一次不等式组等知识.把问题转化为方程或方程组,构建二次函数并且利用二次函数的性质解决问题是解题的关键. 12.A【详解】123453,3,3,3,3,……的末位数字分别为3,9,7,1,3,……,它们是以3,9,7,1四个数为一个周期循环出现的.而199144973=⨯+,所以19913的末位数字与33的末位数字相同,都为7.因此,1991331991+的末位数字与71+的末位数字相同,都为8. 13.B【详解】解法一 首先4个数1,3,6,8满足题目要求,故所求k 的最大值4≥. 若5k ≥,记第n 个数为(1,2,,)n a n k =,且12 k a a a <<<,则分下列几种情形:(1)1a 为奇,2a 为奇,于是21a a -为偶数. 又21a a -为质数,故212a a -=,即212a a =+.若3a 为奇数,又32a a ≠,故31a a -为不等于2的偶数,即31a a -为不小于4的偶数,即31a a -为合数,矛盾.故3 a 为偶数,4a 也只能为偶数.那么,若5a 为奇,则51312a a a a ->-≥为偶数,即51a a -为不小于4的偶数,从而51a a -为合数,矛盾.若5a 为偶数,则53432a a a a ->-≥为偶数,从而53a a -为合数,矛盾. (2)1a 为奇,2a 为偶,于是21a a -为奇数,即213a a -≥. 若3a 为奇数,则31213a a a a ->-≥为偶数,故31a a -为合数,矛盾. 所以3a 为偶数,且322a a -=.若4a 为奇数,则41313a a a a ->-≥为不小于4的偶数,即41a a -为合数,矛盾. 若4a 为偶数,则42322a a a a -->=为不小于4的偶数,即42a a -为合数,矛盾. (3)1a 为偶,2a 为奇或偶,都类似于(1),(2)可导致矛盾. 综上得所求k 的最大值是4,故选B .解法二 同解法一得4k ≥.若5k ≥,则将全体正整数分为4个不相交的子集1M ,2M ,3M ,4M ,其中i M 由全体被4除余i 的正整数组成(0,1,2,3)i =于是任取5k ≥个数,其中必有2个数a ,b (a b >)属于同一个子集i M ,于是a b -被4整除,a b -不是质数,矛盾.故所求k 的最大值等于4. 14.B 【详解】原式0⇔==,0>0=,即2003 xy =.又2003是质数,所以1,2003x y =⎧⎨=⎩或2003,1.x y =⎧⎨=⎩故选B15.C【详解】选C .理由:已知1997年7月1日是星期二,则易推知1997年6月9日是星期一.而1898年6月9日至1997年6月9日共99年,其中闰年24次,所以 993652499244(mod7)⨯+≡+≡, 1434(mod7)-≡-≡.16.D【详解】解:要使x 有意义,必须且只需(2)(1)0,(2)(1)0,(2)(1)0,1,110,21101a a a a a a a a a a a ⎧--≥⎪⎧--=--≥⎪⎪⎪⇒≠⇒=-⎨⎨-≠⎪⎪≠⎩⎪+≠⎪-⎩. 所以1988198********05(1)1()(2)(2)1611(1)12x ⨯⨯-+=+=-=-=--+, 故x 的个位数字为6, 故选:D . 17.C【详解】对A ,因2222()2()0a b c ab bc ca +-++=+,即222()()()0a b b c c a -+-+-=,所以0a b b c c a -=-=-=,即a b c ==,故A 成立. 对B ,因3332223()()a b c abc a b c a b c ab bc ca ++-=+++++++ 2221()[]()()()02a b c a b b c c a =++-+-+-=, 所以0a b c ++=,或a b c ==,不一定有a b c ==,故B 不成立. 对C ,因44442222220a b c d a b c d +++--=,即222222()()0a b c d -+-=,所以2222,a b c d ==,即,a b c d =±=±,不一定有a b c d ===,故C 不成立. 对D ,因422442242222(2)(2)2240a a b b c c d d a b c d abcd -++-+++-=, 即2222222()()2()0a b c d ab cd -+-+-=,故2222,,a b c d ab cd ===,由此可推出a b c d ===或a b c d =-==-,不一定有a b c d ===成立,故D 不成立,所以本题应选B 、C 、D .(注:若限定a b c d ,,,都为正数,则B 和D 成立,答案应选C .) 18.C【详解】设1分、2分和5分的硬币分别取了x 枚、y 枚和z 枚,依题意得10025300x y z x y z ++=⎧⎨++=⎩①②,②-①得4200y z +=,可见y 是4的倍数,设4y k =,则100453008x z k x z k +=-⎧⎨+=-⎩,解得503450x k y k z k=-⎧⎪=⎨⎪=-⎩. 因为x 为非负整数,故5030k -≥,即016,k k ≤≤可取0,1,2,,16中任何一个,有17种取法,从而y 可取0,4,8,,64中任何一个,也有17种取法,故选C .19.B【详解】理由:当0,1,2m =时,424m m -+都是完全平方数.当3m ≥时,()()22242214m m m m -<-+<,故424m m -+都不是完全平方数.所以,符合条件的自然数m 只有3个. 故选:B 20.A【详解】选A .理由:考察S 的三个因数和的奇偶性. 21.1或3##3或1【分析】一元一次不等式即为含有一个未知数,且未知数的次数是1的不等式,据此即可确定k 的值.【详解】①|2| 43k x -<是关于x 的一元一次方程, ①21k -=,即21k -=±, 解得:k =1或3,故答案为:1或3.【点睛】本题考查了一元一次不等式的定义,准确理解定义中“一元”与“一次”的含义是解题的关键. 22.-1【分析】根据偶数次幂和绝对值的非负性,求出x ,m 的值,进而即可求解. 【详解】解:①(x ﹣3)2+|m +1|=0,且(x ﹣3)2≥0,|m +1|≥0, ①(x ﹣3)2=0,|m +1|=0, ①x =3,m =-1, ①()311x m =-=-. 故答案是:-1.【点睛】本题主要考查非负数和的性质,代数式求值,掌握偶数次幂和绝对值的非负性,是解题的关键. 23.-15147【详解】323334!3100a b -=-⨯-⨯-⨯--⨯ 3(23!100)3995115147=-⨯+++-⨯⨯=-24.11【详解】①a ,b 是一元二次方程210x x --=的两根,①1ab =-,1a b +=,21a a =+,21bb =+.①332222343423(1)42(1)3362a b a b b a a b b a a b a++=++=++++=+++ 3(1)3626()511a a b a b =++++=++=.25.1634【详解】①2232n n --是6的倍数,①()22232n n --,①23n ,①2n ,设2n m =(m 是正整数),则()22228626612232m m m m m n n =--=-+---.①2232n n --是6的倍数,①21m -是3的倍数,①31m k =+或32m k =+,其中k 是非负整数.①()23162n k k =+=+或()23264n k k =+=+,其中k 是非负整数. ①符合条件的所有正整数n 的和是()()2814869298410168288941634+++⋅⋅⋅+++++++⋅⋅⋅+++=.26.10【分析】利用勾股定理和正方形的面积公式可得+=四边形四边形四边形ABHL ACMN BCEG S S S ,利用正方形的性质证明()Rt ABC Rt HBG HL ≌和()DBC FCE ASA ≌,根据全等三角形的面积相等,从而得出5=△HBG S ,5=四边形ADEF S ,再根据三个正方形面积的关系可得出5+=△四边形FGL DCMN S S ,从而可得阴影面积之和.【详解】解:如图,设AC a =,AB b =,BC c =, ①在Rt ABC 中,90BAC ∠=︒,5ABCS =①222+=a b c ,①四边形BCEG ,四边形ABHL 和四边形ACMN 都是正方形,①2=四边形BCEG S c ,2=四边形ABHL S b ,2=四边形ACMN S a ,①+=四边形四边形四边形ABHL ACMN BCEG S S S , ①四边形BCEG 和四边形ABHL 是正方形, ①BC BG =,BA BH =,90H ∠=︒, ①HBG 是直角三角形, 在Rt ABC 和Rt HBG △中,BC BGBA BH=⎧⎨=⎩, ①()Rt ABC Rt HBG HL ≌ ①5==△△HBG ABC S S ,①四边形BCEG 和四边形ABHL 是正方形, ①BC CE =,90∠=∠=︒BCD CEF ,①90∠+∠=︒DBC BCA ,90∠+∠=︒FCE BCA , ①∠=∠DBC FCE , 在在DBC △和FCE △中,DBC FCE BC CEBCD CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩,①()DBC FCE ASA ≌, ①=△△DBC FCE S S ,①+=+△△△四边形ABC ACD ACD ADEF S S S S , ①5==△四边形ABC ADEF S S ,①+=四边形四边形四边形ABHL ACMN BCEG S S S ,又①5=++=++△△△四边形四边形四边形HBG FGL FGL ABHL ABGF ABGF S S S S S S , =+△四边形四边形ACD ACMN DCMN S S S ,=+++△△四边形四边形四边形ABC ACD BCEG ADEF ABGF S S S S S 55=+++△四边形ACD ABGF S S10=++△四边形ACD ABGF S S ,①5+=△四边形FGL DCMN S S ,①5510++=+=△△四边形HBG FGL DCMN S S S , ①图中阴影部分面积之和为10. 故答案为:10.【点睛】本题考查正方形的性质,勾股定理,全等三角形的判定和性质,等角的余角相等等知识,运用了等积变换的思想方法.运用等积变换是解题的关键. 27.三【详解】111111158737,200033362=⨯=⨯+,所以200011111个被7除的余数与11被7除的余数相同.因为11714=⨯+,所以从今天算起的第200011111个天是星期三.28.68【详解】解:注意到12361++++616218912⨯==,20081891117-=.因为形如ab 的页码被当成ba 后,加得的和将相差|(10)(10)|9||b a a b b a +-+=-,并且a ,b 只能在1,2,…,9中取值,||8b a -≤,9||72b a -≤.设弄错的两数是ab 和cd ,则9||9||117b a d c -+-=,而将117写成两个正整数之和,其中每个数既要不大于72,又要是9的倍数,只有下列两种可能:11772456354=+=+.当9||72b a -=,9||45d c -=时,||8b a -=,||5d c -=,则只有19ab =,而cd 可取16,27,38,49,此时ab cd +的最大值是194968+=.当9||63b a -=,9||54d c -=,即||7b a -=,||6d c -=,此时ab 可取18,29,cd 可取17,28,39,则ab cd +的最大值是293968+=. 综上所述,ab cd +的最大值是68,故应填68. 29.432【详解】解 因题目中条件去分母整理后可写为:()()()223323333346364460x y x y -+--⋅-+-⋅=,(()()()223323333546564460x y x y -+--⋅-+-⋅=,故依题目条件知33t =或35t =是关于t 的方程()()23333334664460t x y t x y -+---+-⋅=的两根.由韦达定理,得33333546x y +=+--, 所以33333456432x y +=+++=. 30.23x ≤≤【详解】由22232(3)25x x x x x x x -=----=---=-,得2030x x -≥⎧⎨-≤⎩即23x ≤≤.故填23x ≤≤.31.1【详解】解:设2521m n ⨯+=(其中n 为正整数), 则2521(1)(1)m n n n ⨯=-=+-,①52m ⨯是偶数,①n 为奇数,设21n k =-(其中k 是正整数),则524(1)m k k ⨯=-,即()2521m k k -⨯=-,显然1k >,①k 和1k -互质,①25211m k k -⎧=⨯⎨-=⎩或2512m k k -=⎧⎨-=⎩或2215m k k -⎧=⎨-=⎩, 解得:5k =,4m =.因此,满足要求的整数m 只有1个.故答案为:1.32.①①①①【分析】利用正方形的性质,通过证明三角形全等以及利用四点共圆的判定和圆周角定理逐一判断即可得出正确答案.【详解】解:①正方形ACDE 和正方形BCGF ,①CB CG =,AC CD =,ACD BCG ∠=∠;①ACD DCG BCG DCG +=+∠∠∠∠,即ACG BCD =∠∠,①()ACG DCB SAS △≌△,①AG BD =,CAG CDB =∠∠①①正确;①CAG CDB =∠∠,①点A 、D 、O 、C 四点共圆,如图,连接AD ,①°=45AOC ADC =∠∠,故①正确;同理可证°=45BOC ∠,①°=45AGC OCG BDC OCD +=+∠∠∠∠,由()ACG DCB SAS △≌△知=AGC DBC ∠∠,而DBC ∠与BDC ∠不一定相等,①OCG ∠与OCD ∠不一定相等,因此①不一定成立;如图,延长CM 至H ,使MH =CM ,连接AH ,①M 点是AB 的中点,①AM =BM ,又①=AMH BMC ∠∠,①()AMH BMC SAS △≌△,①AMH BMC S S =△△,①AHC ABC S S =△△①AH =BC ,=MAH MBC ∠∠①AH =CG ,=CAH CAM MAH CAM MBC +=+∠∠∠∠∠,①°=180CAM MBC ACB ++∠∠∠,°°°°=3609090=180DCG ACB +--∠∠,①=CAM MBC DCG +∠∠∠,即CAH DCG =∠∠,①()AHC CGD SAS △≌△,①AHC CGD S S =△△,①ABC CGD S S =△△,故①正确;由()AHC CGD SAS △≌△,①ACH CDN =∠∠,①°°==180=90CDN DCN ACM DCN ACD ++-∠∠∠∠∠,①°=90CND ∠,故①正确;因此①①①正确;故答案为:①①①①.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、四点共圆的判定、圆周角定理、倍长中线法构造全等三角形等内容,本题综合性较强、需要学生熟练掌握相关知识并进行灵活运用,本题蕴含了数形结合的思想方法等.33.504【详解】解 填504,理由:从1,2,…,2008中选出两个偶数,和为2012的共有501组,即42008+,62006+,…,10041008+.由于2或1006与其中的任意一个偶数之和均不等于2012,因此,至少取出50121504++=个偶数,才能保证其中一定有两个偶数之和为2012.34.21,42,63,84 【详解】设所有两位数是xy ,则10()x y k x y +=+.其中k 是正整数,且为7的倍数.当7k =时,107()x y x y +=+,即2x y =.当1y =时,2x =;2y =时,4x =;3y =时,6x =;4y =时,8x =.当14k =时,1014()x y x y +=+,即4130x y +=.此方程无正整数解.当21,28,k =⋅⋅⋅⋅⋅⋅,方程均无正整数解.所以满足条件的两位数是:21,42,63,84.35.1【分析】先将原方程等号左边部分因式分解,可得2()()32x y x y +-=,根据题意列举出两个正整数乘积为32的情况,考虑到因式分解后含有2()x y +,在保证正整数集的条件下,可列出三个二元一次方程组,分别解方程组即可获得答案.【详解】解:3322x y x y xy -+-22()()x x y y x y =+-+22()()x y x y =+-()()()x y x y x y =++-2()()x y x y =+-,由题意可知2()()32x y x y +-=,列举出两个正整数乘积为32的情况,可以有以下三种(只是因数位置不同的算一种), 13232⨯=,21632⨯=,4832⨯=,①因式分解后含有2()x y +,在保证正整数集的条件下,则有0x y +>,又①211=,224=,2416=,①根据题意可列出方程组为132x y x y +=⎧⎨-=⎩或28x y x y +=⎧⎨-=⎩或42x y x y +=⎧⎨-=⎩, 解第一个方程组,可得16.515.5x y =⎧⎨=-⎩, 解第二个方程组,可得53x y =⎧⎨=-⎩, 解第三个方程组,可得31x y =⎧⎨=⎩, 只有第三个方程组的解均为正整数,因此原方程的正整数解得个数为1个.故答案为:1.【点睛】本题主要考查了因式分解的应用以及解二元一次方程组,灵活运用相关知识,正确进行因式分解是解题关键.36.132x = 【详解】解 原方程化为2222111111215217292x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+++=+++ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭, 即111111215217292x x x x+=+----, 即111111292172152x x x x-=-----, 通分得22(112)(92)(172)(152)x x x x --=----, 去分母(172)(152)(112)(92)x x x x --=--,即2225564499404x x x x -+=-+. 解之得132x =.经检验132x =是原方程的根. 故填132x =. 37.4【详解】理由:22(1)320060x x y x ---+=,即2(1)232006x y x x -=-+.显然1x =不满足方程,故1x ≠. 因此22320061x x y x -+=- (1)(21)20051x x x --+=- 2005211x x =-+-. 从而12005x -.由于20054015=⨯,故取2,6,402,2006x =,分别可得相应的正整数y ,故共有4对正整数解.38. 329 335或334【详解】要使10a 最大,必须1a ,2a ,3a ,4a 及6a ,7a ,8a ,9a ,10a 尽量小.又因为1210a a a <<<,且1a ,2a ,3a ,4a 的最小可能值依次为1,2,3,4,于是有2000123≥+++56104a a a ++++,即56101990a a a +++≤.又651a a ≥+,752a a ≥+,853a a ≥+,954a a ≥+,1055a a ≥+,故51990615a ≥+,51975132966a ≤=.又5a 为正整数,所以5329a ≤,于是6710a a a +++=199********-=.又761a a ≥+,862a a ≥+,963a a ≥+,1064a a ≥+,故65101661a +≤,616515a ≤=13305,且6a 为正整数,所以6330a ≤,而651330a a ≥+=,所以6330a =,要7a ,8a ,9a 最小得7331a =,8332a =,9333a =,这时101661a =-()6789335a a a a +++=.但如果取1a ,2a ,3a ,4a 依次为1,2,3,5,那么同样可得569,,,a a a 取上述值,这时10334a =.故应填5a 的最大值是329,这时10a 的值应是335或334.39 【分析】先根据条件证明()ASA BCN DCP ≌△△,再由1010DQ BP BQ BN --=得出120BED ∠=︒,进而有E 在以O 为圆心,BO 为半径的圆上,再延长CA 至F 使得,)1OF OE =,构造AOE EOF ∽△△,从而有)1CE AE CE EF CF +=+≥,再由勾股定理求出CF 即可.【详解】解:四边形ABCD 是正方形,BC CD ∴=,BCN DCP ∠=∠,DM BN ⊥,NBC PDC ∴∠=∠,(ASA)BCN DCP ∴△≌△,CP CN ∴=,5AB =, ∴1010DQ BP BQ BN --=可以变形为552DQ BP BQ BN AB -+-=, ∴2CQ CP BQ BN AB +=, ∴2CQ CN BQ BN AB +=, ∴2QN BQ BN AB=, 在BQN △中,由正弦定理得到sin sin QN BN QBN BQN=∠∠,∴sin 1sin 22QBN QN BQ BQ BQN BN AB BC∠===⋅∠, 在Rt BQC △中,sin BC BQC BQ ∠=, ∴sin 111sin 22sin QBN BQ BQN BC BQC∠=⋅=⋅∠∠, BQC BQN ∠=∠,1sin 2QBN ∴∠=, 30QBN ∴∠=︒,120QBC BCD PCQ BED ∴∠+∠+∠=∠=︒,连接BD ,AC 交于G 点,在BD 上取一点O ,连接BO 、CO ,使得120BQD ∠=︒,则在以O 为圆心,BO 为半径的圆上,延长CA 至F 使得,)1OF OE =,如图所示:5AB =,BD AC ∴==BO OE ∴==,12AG GC AC ===, 30OBG ∠=︒,12OG OB ∴==,OA ∴=∴1OEOA=,∴OE OFOA OE=,AOE EOF∠=∠,AOE EOF∴△∽△,)1EF AE∴=,)1CE AE CE EF CF∴+=+≥,CF OF OC=+,)1CF OE OC∴=+=)1CE AE∴+,.【点睛】本题主要考查了全等三角形的判定与性质、正弦定理、圆周角定理、相似三角形的判定与性质、勾股定理,解决此题的关键是根据正弦定理将1010DQ BP BQBN--=转化为120BED∠=︒,判断出E在以O为圆心,BO为半径的圆上,构造AOE EOF△∽△将)1CE AE+最小值转化为CF.40.1716PC<<【分析】首先利用光的反射定律及等边三角形的性质证明①P0P1C①①P2P1A①①P2P3B,再根据相似三角形对应边成比例得到用含P3B的代数式表示P1C的式子,然后由1<BP3<32,即可求出P1C长的取值范围.【详解】解:①反射角等于入射角,①①P0P1C=①P2P1A=①P2P3B,又①①C=①A=①B=60°,①①P0P1C①①P2P1A①①P2P3B,①01P CPC=21P AP A=23P BP B,设P1C=x,P2A=y,则P1A=2﹣x,P2B=2﹣y.①1x =2y x-=32y P B -, ①322xy x x xy P B =-⎧⎨-=⎩, ①x =13(2+P 3B ). 又①1<BP 3<32, ①1<x <76, 即P 1C 长的取值范围是:1<P 1C <76. 故答案为:1<P 1C 76<. 【点睛】此题考查了等边三角形的性质,解题的关键是根据等边三角形的性质找出对应点是解此题的关键,难度较大.41.(1)见解析(2)见解析【分析】(1)应用作矩形的对角线的方法;(2)因为ACD APH ≅,求出PH 的值,然后求出PQ 的值,根据相似三角形的性质2NPQ APH SPQ S PH ⎛⎫= ⎪⎝⎭,求出NPQ ∆的面积,计算右部分面积之和. (1)解:答案不唯一,合理即可,以下画法仅供参考.(2),,CDA PHA AD AH CAD PAH ∠=∠=∠=∠,∴ACD APH ≅,ACD APH S S ∴=,PH CD ==,1PQ HQ PH ∴=-==, ,APH NPQ AHP NQP ∠=∠∠=∠,∴APH NPQ ~,2NPQ APH SPQ S PH ⎛⎫∴= ⎪⎝⎭, 221•••12NPQ APH PQ PQ S S CD PH CD ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, 22PQ CD=, 22⎛=÷ ⎝⎭⎝⎭,12=, ①在直线CN 右侧部分的面积=6个小正方形的面积+NPQ △的面积113622=+=, ①直线CN 等分洛林十字架. 【点睛】本题考查图形面积的等积变化,涉及知识点:全等三角形的判定及性质、相似三角形的判定及性质(相似三角形面积的比等于相似比的平方),解题关键应用相似三角形面积的比等于相似比的平方.42.(1)12,45;(2)见解析;(3)8,2【分析】(1)根据同弧所对的圆周角等于圆心角的一半解答;(2)由题意知,CD 垂直平分BE ,连接BF ,则BF=EF ,求得①EBF =①AEB =45°,利用外角的性质得到①AFB =①EBF +①AEB =90°,即可得到结论;(3)当点A 、C 、E 在一条直线上时,线段AE 最大,最大值为4+4=8,当MF ①BC 时线段MF 最小,根据BC 的中点M ,得到CF=BF ,设BG=FG=x ,则x ,CG+1)x ,由勾股定理得222CG BG BC +=,求出28x =-222BM MF BF +=,即可求出2MF =.【详解】(1)解:①AC =BC =EC ,①A 、B 、E 三点在以C 为圆心以AC 为半径的圆上, ①①AEB =12①ACB , ①①AEB =45°. 故答案为:12,45;(2)解:由题意知,CD 垂直平分BE , 连接BF ,则BF=EF , ①①EBF =①AEB =45°. ①①AFB =①EBF +①AEB =90°. ①①ACB =90°,①A 、B 、F 、C 在以AB 为直径的圆上,即A 、B 、F 、C 四点共圆;(3)解:当点A 、C 、E 在一条直线上时,线段AE 最大,最大值为4+4=8, 当MF ①BC 时线段MF 最小, ①BC 的中点M , ①CF=BF ,设BG=FG=x ,则,CG x , ①222CG BG BC +=,①2221)4x x ⎡⎤+=⎣⎦,得28x =- ①222BM MF BF +=,①2222)MF +=,得2MF =,故答案为:8,2 ..【点睛】此题考查了圆周角定理,四点共圆的判定及性质,线段垂直平分线的性质,勾股定理,等腰直角三角形的性质,熟记各知识点并熟练应用解决问题是解题的关键. 43.见解析【分析】利用三角形的中线将三角形分为面积相等的两个三角形,将三角形空地分成面积相等的四块.【详解】解:划分方案如图所示【点睛】本题考查了与三角形中线有关的等面积问题,解决本题的关键是构造三角形的中线. 44.见解析【详解】证明 将M 分为下列4个点集: {}(,)1,2,3,4,5,(1,2,3,4)i M x y x y i i ====.则由第二抽屉原理知1234,,,M M M M 必有一个集合内至多有1124⎡⎤=⎢⎥⎣⎦个红色点,不妨设4M ,内至多有2个红色点,从而123M M M 内至少有1129-=个红色点.再将123M M M 分成下列5个点集:{}(,),1,2,3(1,2,3,4,5)i N x y x i y i ====.由第二抽屉原理,12345,,,,N N N N N 必有一个集合内至多有915⎡⎤=⎢⎥⎣⎦个红色点,不妨设5N 内至多有1个红色点,从而1234N N N N 内至少有918-=个红色点,又将1234N N N N 分成下列3个点集:{}(,)1,2,3,4,(1,2,3)j M x y x y j j '====.由第二抽屉原理知123,,M M M '''中必有一个集合内至多有823⎡⎤=⎢⎥⎣⎦个红点,不妨设3M '内至多有2个红色点,从而{}12(,)1,2,3,4,1,2M M x y x y ''⋃===内至少有826-=个红色点,又将12M M '',分为4个集合:{}(,),1,2(1,2,3,4)i N x y x i y i '====.因为这4个集合内一共至少有6个红色点,且每个集合内只有2点,故必有2个集合内有2个红色点(否则这4个集合内一共至多只有11125+++=个红色点,矛盾).不妨设13,N N ''内4个点都为红色点,这4点即为一个矩形的4个顶点,且矩形的边与坐标轴平行,从而完成了题目的证明. 45.见解析【详解】由8316378+=()82161161778578++⨯及()8216157|78+,得()8316357|78+.46.6【详解】设10个学生为1210,,,a a a ,n 个课外活动小组为12,,,n B B B .首先,每个学生至少参加了两个课外活动小组,否则,若有某个学生只参加一个课外活动小组,不妨设这个学生为1a ,他参加的小组为1B ,则由于每两个学生都至少参加一个小组,所以1B 内就有10个人了,于是对1B ,2B 不存在两人,他们都不在1B 、2B 内.矛盾. 若有一个学生恰参加两个课外活动小组,不妨设1a 恰参加1B 和2B ,由题设,至少有两个学生,他们没有参加这两组,于是,他们与1a 没有参加同一个小组,矛盾. 所以,每个学生至少参加三个课外活动小组. 于是参加n 个课外活动小组1120,,,B B B 的人数之和不小于31030⨯=.另一方面,每个课外活动小组至多有5人参加,所以n 个小组12,,,n B B B 至多有5n 人参加,故530n ≥,6n ≥. 下面例子说明6n =可以达到.。
竞赛初中数学试题及答案
竞赛初中数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的平方等于9,那么这个数是多少?A. 3B. -3C. ±3D. ±93. 一个直角三角形的两条直角边分别为3和4,斜边的长度是多少?A. 5B. 6C. 7D. 84. 以下哪个分数是最接近1的?A. 1/2B. 3/4C. 4/3D. 5/45. 一个圆的半径是5,它的面积是多少?A. 25πB. 50πC. 100πD. 125π6. 一个数的立方是-8,这个数是多少?A. -2B. 2C. -4D. 47. 一个数的绝对值是5,这个数可以是?A. 5B. -5C. 5或-5D. 都不是8. 以下哪个是二次方程?A. x + 3 = 0B. x^2 + 3x + 2 = 0C. x^3 - 6x^2 + 11x - 6 = 0D. x^4 - 1 = 09. 一个数的相反数是-7,这个数是多少?A. 7B. -7C. 0D. 1410. 一个数的倒数是1/4,这个数是多少?A. 4B. 1/4C. 1/2D. 4/1二、填空题(每题2分,共20分)11. 一个数的平方根是4,这个数是______。
12. 一个数的立方根是2,这个数是______。
13. 一个数的倒数是2,这个数是______。
14. 一个数的绝对值是8,这个数可以是______。
15. 如果一个数的平方是16,那么这个数是______。
16. 一个圆的直径是10,它的半径是______。
17. 一个直角三角形的斜边长度是13,一条直角边是5,另一条直角边是______。
18. 一个数的平方是25,这个数是______。
19. 一个数的立方是-125,这个数是______。
20. 如果一个数的绝对值是-5的相反数,这个数是______。
三、解答题(每题10分,共50分)21. 解方程:2x + 5 = 13。
初中竞赛数学试卷及答案
一、选择题(每题5分,共20分)1. 若实数x满足方程x^2 - 4x + 3 = 0,则x的值为:A. 1B. 3C. 1或3D. 22. 在等腰三角形ABC中,AB=AC,AD是BC边上的高,且AD=4cm,AB=8cm,则BC 的长度为:A. 8cmB. 10cmC. 6cmD. 12cm3. 下列函数中,是反比例函数的是:A. y = x^2B. y = 2x + 1C. y = 1/xD. y = 3x^34. 若一个数的平方根是±2,则这个数是:A. 4B. -4C. 16D. -165. 下列等式中,正确的是:A. (a+b)^2 = a^2 + 2ab + b^2 + 2abB. (a-b)^2 = a^2 - 2ab + b^2C. (a+b)^2 = a^2 + 2ab - b^2D. (a-b)^2 = a^2 - 2ab - b^2二、填空题(每题5分,共20分)6. 若一个数的倒数是1/5,则这个数是______。
7. 若x=2,则2x-3的值为______。
8. 下列数中,是偶数的是______。
9. 在直角坐标系中,点A(3,4)关于x轴的对称点是______。
10. 若一个等腰三角形的底边长为6cm,腰长为8cm,则该三角形的周长是______cm。
三、解答题(每题10分,共30分)11. 解方程:3x - 5 = 2x + 1。
12. 已知等腰三角形ABC中,AB=AC,AD是BC边上的高,且AD=6cm,AB=10cm,求BC的长度。
13. 已知函数y = 2x - 3,求x的值,使得y=5。
四、应用题(15分)14. 小明从家出发去图书馆,先向东走了1000米,然后向北走了800米,最后向西走了500米到达图书馆。
请计算小明从家到图书馆的总路程。
答案:一、选择题1. C2. B3. C4. A5. B二、填空题6. 57. 18. 29. (-3,4)10. 24三、解答题11. 解:3x - 5 = 2x + 13x - 2x = 1 + 5x = 612. 解:由等腰三角形的性质知,AD=BD,因此BD=6cm。
初中生数学知识竞赛复习题库及标准答案
初中生数学知识竞赛复习题库及标准答案
为了帮助初中生更好地备战数学知识竞赛,我们精心整理了一份复习题库及标准答案,涵盖初中阶段的主要数学知识点。
通过这份题库的练习,希望能帮助同学们巩固所学知识,提高解题能力。
一、选择题
1. 下列选项中,既是偶数又是素数的是:
A. 2
B. 3
C. 4
D. 9
*答案:A*
2. 已知一组数据的平均数为50,其中最大的数是60,那么这组数据中最小的数是:
A. 40
B. 42
C. 45
D. 48
*答案:A*
3. 一个正方体的体积是64立方厘米,它的棱长是:
A. 2厘米
B. 3厘米
C. 4厘米
D. 6厘米
*答案:C*
二、填空题
1. 求下列等差数列的第10项:3, 6, 9, ..., 21
*答案:18*
2. 若平行四边形ABCD的对角线交于点E,已知BE=4,CE=6,那么BD的长度是:
*答案:10*
3. 已知函数f(x)=2x+1,求f(3)的值。
*答案:7*
三、解答题
1. 解方程:2x-5=3x+1
*答案:x=-6*
2. 已知函数f(x)=3x^2-4x+1,求f(-1)的值。
*答案:8*
3. 如图,在直角坐标系中,点A(2,3),点B(-3,1),求线段AB 的长度。
*答案:5*
参考答案
1. A
2. A
3. C
4. 18
5. 10
6. 7
7. x=-6
8. 8
9. 5
希望这份题库能帮助同学们在数学知识竞赛中取得好成绩!。
数学竞赛初中试题及答案
数学竞赛初中试题及答案一、选择题(每题3分,共30分)1. 已知等腰三角形的两边长分别为5和8,那么这个等腰三角形的周长是:A. 18B. 21C. 26D. 282. 一个数的平方等于它的4倍,这个数是:A. 0B. 2C. -2D. 0或23. 一个长方形的长是宽的2倍,如果宽增加2厘米,长减少2厘米,那么面积不变。
设长方形的宽为x厘米,根据题意可得方程:A. 2x(x+2) = x(x-2)B. 2x(x-2) = x(x+2)C. 2x^2 = x^2 - 4x + 4D. 2x^2 = x^2 + 4x - 44. 一个数列的前四项依次为1, 2, 4, 8,那么第五项是:A. 16B. 32C. 64D. 1285. 一个圆的直径是10厘米,那么它的面积是:A. 78.5平方厘米B. 157平方厘米C. 314平方厘米D. 785平方厘米6. 一个数的相反数是-4,那么这个数是:A. 4B. -4C. 0D. 87. 一个分数的分子比分母小3,且这个分数等于1/2,那么这个分数是:A. 1/3B. 2/5C. 3/6D. 4/78. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 09. 一个数的立方等于它本身,这个数是:A. 0B. 1C. -1D. 0, 1或-110. 一个等差数列的前三项依次为2, 5, 8,那么第四项是:A. 11B. 12C. 13D. 14二、填空题(每题4分,共20分)1. 一个数的立方根是它本身的数是______。
2. 如果一个三角形的两个内角分别是45度和45度,那么第三个内角是______度。
3. 一个数的绝对值是它本身,这个数是______。
4. 一个数的平方等于16,这个数是______。
5. 一个数的相反数是它本身,这个数是______。
三、解答题(每题10分,共50分)1. 已知一个等腰三角形的两边长分别为3和4,求这个等腰三角形的周长。
初中数学竞赛专题训练答案(10套)
数学竞赛专项训练(1)实数参考答案 一、选择题1、解:设与a 之差最小且比a 大的一个完全平方数是x ,则1+=a x ,所以12)1(2++=+=a a a x应选D613813)13)(13(133*312*2)]2*2(*3[12*2)]2(*3[22*=+-=+--+=+-=+-=+-= 、解:原式 应选D 3、2004=n -0y ,n 是奇数,0y 必是奇数,又110x =m -280y ,m 和280y 均为偶数,所以110x 是偶数,0x 应为偶数。
故选C4、解:-ab ·ac ·bd ·cd =-a 2b 2c 2d 2<0,所以这四个数中应一正三负或一负三正。
应选D 5、解:由02003200320032003=-+--+xy y x x y y x 可得 020030)2003)(2003(>++=++-y x y x xy 而所以是质数,因此必有 又因为 故2003200302003==-xy xy⎩⎨⎧== 20031y x ⎩⎨⎧==12003y x 应选B6、解:因q p 352+为奇数,故p 、q 必一奇一偶,而p 、q 均为质数,故p 、q 中有一个为2,若55322==p q 不合题意舍去。
若p =2,则q =3,此时p +3=5,1-p+q=12,2p+q-4=13,因为52+122=132,所以5、12、13为边长的三角形为直角三角形。
故选B7、解:依题意设六位数为abcabc ,则ab c a b c =a ×105+b ×104+c ×103+a ×102+b ×10+c =a ×102(103+1)+b ×10(103+1)+c (103+1)=(a ×103+b ×10+c )(103+1)=1001(a ×103+b ×10+c ),而a ×103+b ×10+c 是整数,所以能被1001整除。
初中数学竞赛试卷及答案解析
初中数学竞赛试卷及答案解析一、选择题1.已知函数f(x) = 2x - 3,求f(4)的值。
A. 2B. 5C. 6D. 7答案:C. 6解析:将x = 4代入函数f(x) = 2x - 3,得到f(4) = 2(4) - 3 = 8 - 3 = 5。
因此,答案为C. 6。
2.下列哪个不是三角形的内角?A. 90度B. 120度C. 180度D. 270度答案:C. 180度解析:三角形的内角之和总是等于180度。
因此,180度不是三角形的内角,而是一条直线的内角。
答案为C. 180度。
3.已知a = 3,b = 4,c = 5,求三角形的周长。
A. 6B. 12C. 15D. 20答案:C. 15解析:三角形的周长等于三条边的长度之和。
因此,周长 = a + b +c = 3 + 4 + 5 = 12。
答案为C. 15。
4.若x + 3 = 7,则x的值是多少?A. 2B. 3C. 4D. 5答案:A. 2解析:将x + 3 = 7转化为x = 7 - 3,得到x的值为2。
因此,答案为A. 2。
5.已知正方形的周长为20cm,求正方形的边长。
A. 4cmB. 5cmC. 10cmD. 20cm答案:B. 5cm解析:正方形的周长等于4倍的边长。
因此,边长 = 周长 / 4 = 20 /4 = 5。
答案为B. 5cm。
二、填空题1.已知等差数列的首项a₁ = 2,公差d = 3,求该数列的第10项。
答案:28解析:根据等差数列的通项公式an = a₁ + (n - 1) * d,代入a₁ = 2,d = 3,n = 10,得到a10 = 2 + (10 - 1) * 3 = 2 + 9 * 3 = 2 + 27 = 28。
2.若x² + 3x + k是一个完全平方数,则k的值为多少?答案:9/4解析:对于一个完全平方数,它的因式分解必然是两个相同的因式相乘。
根据已知的二次项系数求平方根的方法,可以得到k = (b/2a)² = (3/2)² = 9/4。
初中数学竞赛试题及答案
初中数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数不是质数?A. 2B. 3C. 4D. 52. 如果一个数的平方等于其本身,那么这个数可能是:A. 0B. 1C. -1D. 23. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 84. 一个数的绝对值是其本身,这个数可能是:A. 正数B. 0C. 负数D. 正数或05. 以下哪个表达式的结果不是整数?A. 3 + 2C. 4 × 2D. 6 ÷ 26. 如果一个数的立方等于其本身,那么这个数可能是:A. 0B. 1C. -1D. 27. 一个圆的半径是5,它的面积是:A. 25πB. 50πC. 100πD. 125π8. 如果一个数的倒数是其本身,那么这个数可能是:A. 1B. -1C. 2D. 09. 一个数的平方根是其本身,这个数可能是:A. 0B. 1C. -1D. 210. 一个数的立方根是其本身,这个数可能是:A. 0B. 1D. 8答案:1. C2. A, B3. A4. D5. C6. A, B, C7. C8. A, B9. A, B10. A, B, C二、填空题(每题4分,共20分)11. 一个数的平方是16,这个数可能是________。
12. 如果一个数的绝对值是5,那么这个数可能是________。
13. 一个三角形的内角和是________度。
14. 一个数的立方是-27,这个数可能是________。
15. 一个数的平方根是2,那么这个数是________。
答案:11. ±412. ±513. 18014. -315. 4三、解答题(每题10分,共50分)16. 证明勾股定理。
17. 解方程:2x + 5 = 15。
18. 一个长方体的长、宽、高分别是3厘米、4厘米和5厘米,求其体积。
19. 一个圆的周长是12π,求其半径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学竞赛专项训练(5)(方程应用)一、选择题:1、甲乙两人同时从同一地点出发,相背而行1小时后他们分别到达各自的终点A 与B ,若仍从原地出发,互换彼此的目的地,则甲在乙到达A 之后35分钟到达B ,甲乙的速度之比为 ( ) A. 3∶5 B. 4∶3 C. 4∶5 D. 3∶42、某种产品按质量分为10个档次,生产最低档次产品,每件获利润8元,每提高一个档次,每件产品利润增加2元,用同样工时,最低档次产品每天可生产60件,提高一个档次将减少3件,如果获利润最大的产品是第R 档次(最低档次为第一档次,档次依次随质量增加),那么R 等于 ( ) A. 5 B. 7 C. 9 D. 103、某商店出售某种商品每件可获利m 元,利润为20%(利润=-售价进价进价),若这种商品的进价提高25%,而商店将这种商品的售价提高到每件仍可获利m 元,则提价后的利润率为 ( ) A. 25% B. 20% C. 16% D. 12.5%4、某项工程,甲单独需a 天完成,在甲做了c (c<a )天后,剩下工作由乙单独完成还需b 天,若开始就由甲乙两人共同合作,则完成任务需( )天 A.c a b+ B.ab a b c+- C. 2c b a -+D.cb a bc ++ 5、A 、B 、则:A 、B 两队比赛时,A 队与B 队进球数之比为 ( ) A. 2∶0 B. 3∶1 C. 2∶1 D. 0∶26、甲乙两辆汽车进行千米比赛,当甲车到达终点时,乙车距终点还有a 千米(0<a <50)现将甲车起跑处从原点后移a 千米,重新开始比赛,那么比赛的结果是 ( ) A. 甲先到达终点 B. 乙先到达终点 C. 甲乙同时到达终点 D. 确定谁先到与a 值无关7、一只小船顺流航行在甲、乙两个码头之间需a 小时,逆流航行这段路程需b 小时,那么一木块顺水漂流这段路需( )小时 A. b a ab -2 B. a b ab -2 C. ba ab - D. a b ab -8、A 的年龄比B 与C 的年龄和大16,A 的年龄的平方比B 与C 的年龄和的平方大1632,那么A 、B 、C 的年龄之和是 ( ) A. 210 B. 201 C. 102 D. 120 二、填空题1、甲乙两厂生产同一种产品,都计划把全年的产品销往济南,这样两厂的产品就能占有济南市场同类产品的43,然而实际情况并不理想,甲厂仅有21的产品,乙厂仅有31的产品销到了济南,两厂的产品仅占了济南市场同类产品的31,则甲厂该产品的年产量与乙厂该产品的年产量的比为_______2、假期学校组织360名师生外出旅游,某客车出租公司有两种大客车可供选择,甲种客车每辆有40个座位,租金400元;乙种客车每辆有50个座位,租金480元,则租用该公司客车最少需用租金_____元。
3、时钟在四点与五点之间,在_______时刻(时针与分针)在同一条直线上?4、为民房产公司把一套房子以标价的九五折出售给钱先生,钱先生在三年后再以超出房子原来标价60%的价格把房子转让给金先生,考虑到三年来物价的总涨幅为40%,则钱先生实际上按_____%的利率获得了利润(精确到一位小数)5、甲乙两名运动员在长100米的游泳池两边同时开始相向游泳,甲游100米要72秒,乙游100米要60秒,略去转身时间不计,在12分钟内二人相遇____次。
6、已知甲、乙、丙三人的年龄都是正整数,甲的年龄是乙的两倍,乙比丙小7岁,三人的年龄之和是小于70的质数,且质数的各位数字之和为13,则甲、乙、丙三人的年龄分别是_________三、解答题1、某项工程,如果由甲乙两队承包,522天完成,需付180000元;由乙、丙两队承包,433天完成,需付150000元;由甲、丙两队承包,762天完成,需付160000元,现在工程由一个队单独承包,在保证一周完成的前提下,哪个队承包费用最少?2、甲、乙两汽车零售商(以下分别简称甲、乙)向某品牌汽车生产厂订购一批汽车,甲开始定购的汽车数量是乙所订购数量的3倍,后来由于某种原因,甲从其所订的汽车中转让给乙6辆,在提车时,生产厂所提供的汽车比甲、乙所订购的总数少了6辆,最后甲所购汽车的数量是乙所购的2倍,试问甲、乙最后所购得的汽车总数最多是多少量?最少是多少辆?3、8个人乘速度相同的两辆小汽车同时赶往火车站,每辆车乘4人(不包括司机),其中一辆小汽车在距离火车站15km的地方出现故障,此时距停止检票的时间还有42分钟。
这时惟一可利用的交通工具是另一辆小汽车,已知包括司机在内这辆车限乘5人,且这辆车的平均速度是60km/h,人步行的平均速度是5km/h。
试设计两种方案,通过计算说明这8个人能够在停止检票前赶到火车站。
4、某乡镇小学到县城参观,规定汽车从县城出发于上午7时到达学校,接参观的师生立即出发到县城,由于汽车在赴校途中发生了故障,不得不停车修理,学校师生等到7时10分仍未见汽车来接,就步行走向县城,在行进途中遇到了已修理好的汽车,立即上车赶赴县城,结果比原来到达县城的时间晚了半小时,如果汽车的速度是步行速度的6倍,问汽车在途中排除故障花了多少时间?参考答案一、选择题1、D 。
解:设甲的速度为1v 千米/时,乙的速度为2v 千米/时,根据题意知,从出发地点到A 的路程为1v 千米,到B 的路程为2v 千米,从而有方程:60352112=-v v v v ,化简得012)(7)(1221221=-+v v v v ,解得34(432121-==v v v v 不合题意舍去)。
应选D 。
2、C 。
解:第k 档次产品比最低档次产品提高了(k -1)个档次,所以每天利润为864)9(6)]1(28)][1(360[2+--=-+--=k k k y 所以,生产第9档次产品获利润最大,每天获利864元。
3、C 。
解:若这商品原来进价为每件a 元,提价后的利润率为%x ,则⎩⎨⎧⋅+=⋅=%%)251(%20x a m a m 解这个方程组,得16=x ,即提价后的利润率为16%。
4、B 。
解:设甲乙合作用x 天完成。
由题意:1)11(=-+x ba ca ,解得cb a abx -+=。
故选B 。
5、A 。
解:A 与B 比赛时,A 胜2场,B 胜0场,A 与B 的比为2∶0。
就选A 。
6、A 。
解:设从起点到终点S 千米,甲走(s+a)千米时,乙走x 千米。
千米。
甲先到。
故选乙走(千米时, 即甲走 A )a)(s 000))((:)()(:22222sa s s sa s a s s a sa s s a s a s x x a s a s s -+<-∴>∴>>-=+-=∴+=- 7、B 。
解:设小船自身在静水中的速度为v 千米/时,水流速度为x 千米/时,甲乙之间的距离为S 千米,于是有b S x v a S x v =-=+,求得ab S a b x 2)(-=所以ab ab x S -=2。
8、C 。
解:设A 、B 、C 各人的年龄为A 、B 、C ,则A =B+C+16 ①A 2=(B +C )2+1632 ② 由②可得(A +B +C )(A -B -C )=1632 ③,由①得A -B -C =16 ④,①代入③可求得A +B +C =102 二、填空题1、2∶1。
解甲厂该产品的年产量为x ,乙厂该产品的年产量为y 。
则:31433121=++y x yx ,解得1:2:2=∴=y x y x 2、3520。
解:因为9辆甲种客车可以乘坐360人,故最多需要9辆客车;又因为7辆乙种客车只能乘坐350人,故最多需要8辆客车。
①当用9辆客车时,显然用9辆甲种客车需用租金最少,为400×9=3600元;②当用8辆客车时,因为7辆甲种客车,1辆乙种客车只能乘坐40×7+50=330人,而6辆甲种客车,2辆乙种客车只能乘坐40×6+50×2=340人,5辆甲种客车,3辆乙种客车只能乘坐40×5+50×3=350人,4辆甲种客车,4辆乙种客车只能乘坐40×4+50×4=360人,所以用8辆客车时最少要用4辆乙种客车,显然用4辆甲种客车,4辆乙种客车时需用租金最少为400×4+480×4=3520元。
3、4点11921分或4点11654分时,两针在同一直线上。
解:设四点过x 分后,两针在同一直线上,若两针重合,则x x 211206+=,求得11921=x 分, 若两针成180度角,则180211206++=x x ,求得11654=x 分。
所以在4点11921分或4点11654分时,两针在同一直线上。
4、20.3。
解:钱先生购房开支为标价的95%,考虑到物价上涨因素,钱先生转让房子的利率为%3.20203.014.195.06.11%)401%(95%601=≈-⨯=-++5、共11次。
6、30岁、15岁、22岁。
解:设甲、乙、丙的年龄分别为x 岁、y 岁、z 岁,则⎪⎩⎪⎨⎧++<++-==为质数 ③且 ② ① z y x z y x z y y x 7072 显然z y x ++是两位数,而13=4+9=5+8=6+7∴z y x ++只能等于67 ④。
由①②④三式构成的方程组,得30=x ,15=y ,22=z 。
三、解答题1、设甲、乙、丙单独承包各需x 、y 、z 天完成,则⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+207111541112511x z z y y x 解得⎪⎩⎪⎨⎧===1064z y x再设甲、乙、丙单独工作一天,各需u 、v 、w 元,则⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+160000)(720150000)(415180000)(512u w w v v u ,解得⎪⎩⎪⎨⎧===105002950045500w v u于是,甲队单独承包费用是45500×4=182000(元),由乙队单独承包费用是29500×6=177000(元),而丙不能在一周内完成,所以,乙队承包费最少。
2、解:设甲、乙最后所购得的汽车总数为x 辆,在生产厂最后少供的6辆车中,甲少要了y辆(60≤≤y ),乙少要了(y -6)辆,则有)]6(6)6(41[26)6(43y x y x --++=--+,整理后得y x 1218+=。
当6=y 时,x 最大,为90;当0=y 时,x 最小为18。
所以甲、乙购得的汽车总数至多为90辆,至少为18辆。
3、解:[方案一]:当小汽车出现故障时,乘这辆车的4个人下车步行,另一辆车将车内的4个人送到火车站,立即返回接步行的4个人到火车站。