宁夏银川一中2017-2018学年高二上学期第一次月考数学试卷
2017-2018学年宁夏银川一中高二上学期期末数学试题(文科)(解析版)
2017-2018学年宁夏银川一中高二(上)期末数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)在复平面内,复数z1对应的点为(2,3),复数z2=﹣1+2i,若复数z=z1﹣z2,则复数对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)有一段演绎推理是这样的:“指数函数都是增函数;已知y=()x是指数函数;则y=()x是增函数”的结论显然是错误的,这是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误3.(5分)已知直线l的参数方程为(t为参数),则直线l的普通方程为()A.x﹣y﹣2=0 B.x﹣y+2=0 C.x+y=0 D.x+y﹣2=04.(5分)观察下列各图,其中两个分类变量x,y之间关系最强的是()A.B.C.D.5.(5分)椭圆(φ是参数)的离心率是()A.B.C.D.6.(5分)用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设为()A.a,b,c中至少有两个偶数B.a,b,c中至少有两个偶数或都是奇数C.a,b,c都是奇数D.a,b,c都是偶数7.(5分)在极坐标系中,点F(1,0)到直线θ=(ρ∈R)的距离是()A.B.C.1 D.8.(5分)如图,根据图中的数构成的规律,a所表示的数是()A.12 B.48 C.60 D.1449.(5分)极坐标方程(ρ﹣1)(θ﹣π)=0(ρ≥0)表示的图形是()A.两个圆B.两条直线C.一个圆和一条射线D.一条直线和一条射线10.(5分)有下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适;②用相关指数R2来刻画回归的效果,R2值越大,说明模型的拟合效果越好;③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.④在研究气温和热茶销售杯数的关系时,若求得相关指数R2≈0.85,则表明气温解释了15%的热茶销售杯数变化.其中正确命题的个数是()A.1 B.2 C.3 D.411.(5分)分析法又称执果索因法,若用分析法证明:“设a>b>c,且a+b+c=0”,求证<a”索的因应是()A.a﹣b>0 B.a﹣c>0 C.(a﹣b)(a﹣c)>0 D.(a﹣b)(a﹣c)<0 12.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(2,+∞)B.(1,+∞)C.(﹣∞,﹣2)D.(﹣∞,﹣1)二、填空题:本大题共4小题,每小题5分.13.(5分)函数f(x)=x3+4x+5的图象在x=1处的切线在x轴上的截距为.14.(5分)曲线C的方程为x2+=1,其上一点P(x,y),则3x+y的最大值为.15.(5分)已知△ABC的三边长分别为a,b,c,其面积为S,则△ABC的内切圆的半径.这是一道平面几何题,请用类比推理方法,猜测对空间四面体ABCD存在什么类似结论?.16.(5分)设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,则不等式f(x)g(x)<0的解集是.三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知复数z=3+bi(b∈R),且(1+3i)•z为纯虚数.(1)求复数z及;(2)若ω=,求复数ω的模|ω|.18.(12分)在直角坐标系xoy中,直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,x轴正半轴为极轴)中,圆C的方程为(1)求圆C的直角坐标方程:(2)设圆C与直线l交于点A,B,若点P的坐标为,求|PA|+|PB|.19.(12分)已知直线l:(t为参数),曲线C1:(θ为参数).(Ⅰ)设l与C1相交于A,B两点,求|AB|;(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.20.(12分)某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.若选取的是用1月与6月的两组数据检验.(1)请根据2至5月份的数据,求出y 关于x 的线性回归方程y=bx +a ; (2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认线性回归方程是理想的,请判断(1)所求出的线性回归方程是否理想的?(参考公式:线性回归方程=x +其中==)21.(12分)电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.根据已知条件完成下面的2×2列联表,并据此资料判断是否有95%的把握认为“体育迷”与性别有关?附:K 2=,其中n=a +b +c +d .22.(12分)已知函数f(x)=x﹣﹣ln(1+x),其中a∈R.(1)若x=2是f(x)的极值点,求a的值;(2)求f(x)的单调区间;(3)若f(x)在[0,+∞)上的最大值是0,求a的取值范围.2017-2018学年宁夏银川一中高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)在复平面内,复数z1对应的点为(2,3),复数z2=﹣1+2i,若复数z=z1﹣z2,则复数对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据复数的基本运算以及复数的几何意义进行求解即可.【解答】解:复数z1对应的点为(2,3),则z1=2+3i,则z=z1﹣z2=2+3i﹣(﹣1+2i)=3+i,对应点的坐标为(3,1),位于第一象限,故选:A【点评】本题主要考查复数的几何意义,结合复数的基本运算进行计算是解决本题的关键.2.(5分)有一段演绎推理是这样的:“指数函数都是增函数;已知y=()x是指数函数;则y=()x是增函数”的结论显然是错误的,这是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误【分析】根据题意,由指数函数的性质分析可得该演绎推理的大前提指数函数都是增函数是错误的,分析选项即可得答案.【解答】解:根据题意,指数函数y=a x(a>0且a≠1)是R上的增函数,这个说法是错误的,要根据所给的底数的取值不同分类说出函数的不同的单调性,大前提是错误的,∴得到的结论是错误的,故选:A.【点评】本题考查演绎推理的基本方法,解题的关键是理解演绎推理的三段论原理,在大前提和小前提中,若有一个说法是错误的,则得到的结论就是错误的.3.(5分)已知直线l的参数方程为(t为参数),则直线l的普通方程为()A.x﹣y﹣2=0 B.x﹣y+2=0 C.x+y=0 D.x+y﹣2=0【分析】将参数方程化为普通方程,就是将其中的参数消掉,利用代入法,即可得出结论.【解答】解:将直线l的参数方程为(t为参数),利用代入法,化成普通方程为x﹣y﹣2=0.故选:A.【点评】本题考查了化参数方程为普通方程,解答此类问题的关键是如何把题目中的参数消掉,常用的方法有代入法,加减消元法等,同时注意消参后变量的范围限制,是基础题.4.(5分)观察下列各图,其中两个分类变量x,y之间关系最强的是()A.B.C.D.【分析】通过二维条形图可以粗略的判断两个分类变量是否有关系,在二维条形图中,对角线上的两个条形高度的乘积与副对角线上的两个条形高度的乘积相差越大,两者有关系的可能性就越大.观察图形,得到结果.【解答】解:在二维条形图中,主对角线上的两个条形高度的乘积与副对角线上的两个条形高度的乘积相差越大,两者有关系的可能性就越大,由图中所给的四个量x1,x2,y1,y2高度的大小来判断,D选项的两个分类变量关系最强,故选D.【点评】本题考查独立性检验内容,使用二维条形图,可以粗略的判断两个分类变量是否有关系,但是这种判断无法精确的给出所的结论的可靠程度5.(5分)椭圆(φ是参数)的离心率是()A.B.C.D.【分析】把椭圆的参数化为普通方程为+=1,求出a、b、c 的值,再根据离心率等于e=求得结果.【解答】解:椭圆(φ是参数)消去参数化为普通方程为+=1,∴a=5,b=3,∴c=4,∴e==,故选B.【点评】本题主要考查把参数方程化为普通方程的方法,本题主要考查椭圆的标准方程,以及简单性质的应用,属于基础题.6.(5分)用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设为()A.a,b,c中至少有两个偶数B.a,b,c中至少有两个偶数或都是奇数C.a,b,c都是奇数D.a,b,c都是偶数【分析】找出题中的题设,然后根据反证法的定义对其进行否定.【解答】解:∵结论:“自然数a,b,c中恰有一个偶数”可得题设为:a,b,c中恰有一个偶数∴反设的内容是假设a,b,c中至少有两个偶数或都是奇数.故选B.【点评】此题考查了反证法的定义,反证法在数学中经常运用,当论题从正面不容易或不能得到证明时,就需要运用反证法,此即所谓“正难则反“.7.(5分)在极坐标系中,点F(1,0)到直线θ=(ρ∈R)的距离是()A.B.C.1 D.【分析】把极坐标方程化为直角坐标方程,里哦也难怪点到直线的距离公式求得点F到直线的距离.【解答】解:直线θ=(ρ∈R)的直角坐标方程为y=x,故点F(1,0)到直线的距离为=,故选:B.【点评】本题主要考查把极坐标方程化为直角坐标方程的方法,点到直线的距离公式的应用,属于基础题.8.(5分)如图,根据图中的数构成的规律,a所表示的数是()A.12 B.48 C.60 D.144【分析】根据题意,由题目中的数表分析可得第n行有n个数,且当n≥3时,每一行的第一个数与最后一个数都等于n,中间每个数等于其肩上两个数的积,据此分析可得答案.【解答】解:根据题意,分析图中的数表,第n行有n个数,且当n≥3时,每一行的第一个数与最后一个数都等于n,中间每个数等于其肩上两个数的积,则a所表示的数是12×12=144,故选:D.【点评】本题考查归纳推理的应用,关键是分析数表中数的规律.9.(5分)极坐标方程(ρ﹣1)(θ﹣π)=0(ρ≥0)表示的图形是()A.两个圆B.两条直线C.一个圆和一条射线D.一条直线和一条射线【分析】由题中条件:“(ρ﹣1)(θ﹣π)=0”得到两个因式分别等于零,结合极坐标的意义即可得到.【解答】解:方程(ρ﹣1)(θ﹣π)=0⇒ρ=1或θ=π,ρ=1是半径为1的圆,θ=π是一条射线.故选C.【点评】本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.10.(5分)有下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适;②用相关指数R2来刻画回归的效果,R2值越大,说明模型的拟合效果越好;③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.④在研究气温和热茶销售杯数的关系时,若求得相关指数R2≈0.85,则表明气温解释了15%的热茶销售杯数变化.其中正确命题的个数是()A.1 B.2 C.3 D.4【分析】利用“残差”的意义、相关指数的意义即可判断出【解答】解:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,正确.②相关指数R2来刻画回归的效果,R2值越大,说明模型的拟合效果越好,因此②正确.③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好,正确.④在研究气温和热茶销售杯数的关系时,若求得相关指数R2≈0.85,则表明气温解释了85%的热茶销售杯数变化.故错.故选:C.【点评】本题考查了“残差”的意义、相关指数的意义,考查了理解能力和推理能力,属于中档题11.(5分)分析法又称执果索因法,若用分析法证明:“设a>b>c,且a+b+c=0”,求证<a”索的因应是()A.a﹣b>0 B.a﹣c>0 C.(a﹣b)(a﹣c)>0 D.(a﹣b)(a﹣c)<0【分析】由题意可得,要证<a,经过分析,只要证(a﹣c)(a﹣b)>0,从而得出结论.【解答】解:由a>b>c,且a+b+c=0可得b=﹣a﹣c,a>0,c<0.要证<a,只要证(﹣a﹣c)2﹣ac<3a2,即证a2﹣ac+a2﹣c2>0,即证a(a﹣c)+(a+c)(a﹣c)>0,即证a(a﹣c)﹣b(a﹣c)>0,即证(a﹣c)(a﹣b)>0.故求证“<a”索的因应是(a﹣c)(a﹣b)>0,故选C.【点评】本题主要考查用分析法证明不等式,属于中档题.12.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(2,+∞)B.(1,+∞)C.(﹣∞,﹣2)D.(﹣∞,﹣1)【分析】(i)当a=0时,f(x)=﹣3x2+1,令f(x)=0,解得x=±,两个解,舍去.(ii)当a≠0时,f′(x)=3ax2﹣6x=3ax(x﹣),令f′(x)=0,解得x=0或.对a分类讨论:①当a<0时,由题意可得;②当a>0时,推出极值点不满足题意,推出结果即可.【解答】解:(i)当a=0时,f(x)=﹣3x2+1,令f(x)=0,解得x=±,函数f(x)有两个零点,舍去.(ii)当a≠0时,f′(x)=3ax2﹣6x=3ax(x﹣),令f′(x)=0,解得x=0或.①当a<0时,<0,当x<或x>0时,f′(x)<0,此时函数f(x)单调递减;当<x<0时,f′(x)>0,此时函数f(x)单调递增.∴是函数f(x)的极小值点,0是函数f(x)的极大值点.∵函数f(x)=ax3﹣3x2+1存在唯一的零点x0,且x0>0,则:;②,即:,可得a<﹣2.②当a>0时,>0,当x>或x<0时,f′(x)>0,此时函数f(x)单调递增;当0<x<时,f′(x)<0,此时函数f(x)单调递减.∴是函数f(x)的极小值点,0是函数f(x)的极大值点.不满足函数f(x)=ax3﹣3x2+1存在唯一的零点x0,且x0>0,综上可得:实数a的取值范围是(﹣∞,﹣2).故选:C.【点评】本题考查了利用导数研究函数的单调性极值与最值、函数的零点,考查了分类讨论方法、推理能力与计算能力,属于中档题.二、填空题:本大题共4小题,每小题5分.13.(5分)函数f(x)=x3+4x+5的图象在x=1处的切线在x轴上的截距为.【分析】欲求在点x=1处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率得到直线方程,最后令即可求得在x轴上的截距.从而问题解决.【解答】解:∵f(x)=x3+4x+5,∴f'(x)=3x2+4,当x=1时,y'=7得切线的斜率为7,所以k=7;所以曲线在点(1,10)处的切线方程为:y﹣10=7×(x﹣1),令y=0得x=.故答案为:.【点评】本小题主要考查直线的斜率、直线的方程、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.14.(5分)曲线C的方程为x2+=1,其上一点P(x,y),则3x+y的最大值为2.【分析】利用椭圆方程设出参数方程,代入目标函数,利用三角函数的有界性求解表达式的最大值即可.【解答】解:曲线C的方程为x2+=1,可设:x=cosα,y=sinα,α∈R,则3x+y=3cosα+sinα=2()=2sin(),∵α∈R,∴2sin(),3x+y的最大值为:2.故答案为:.【点评】本题考查椭圆的性质,参数方程,同角三角函数基本关系式以及三角函数的最值的求法,考查转化思想以及计算能力.15.(5分)已知△ABC的三边长分别为a,b,c,其面积为S,则△ABC的内切圆的半径.这是一道平面几何题,请用类比推理方法,猜测对空间四面体ABCD存在什么类似结论?.【分析】根据平面与空间之间的类比推理,由点类比点或直线,由直线类比直线或平面,由内切圆类比内切球,由平面图形面积类比立体图形的体积,结合求三角形的面积的方法类比求四面体的体积即可.【解答】解:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为猜想:四面体ABCD的各表面面积分别为S1,S2,S3,S4,其体积为V,则四面体ABCD的内切球半径故答案为:【点评】本题主要考查类比推理.类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).16.(5分)设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,则不等式f(x)g(x)<0的解集是(﹣∞,﹣3)∪(0,3).【分析】构造函数h(x)=f(x)g(x),利用已知可判断出其奇偶性和单调性,进而即可得出不等式的解集.【解答】解:令h(x)=f(x)g(x),则h(﹣x)=f(﹣x)g(﹣x)=﹣f(x)g (x)=﹣h(x),因此函数h(x)在R上是奇函数.①∵当x<0时,h′(x)=f′(x)g(x)+f(x)g′(x)>0,∴h(x)在x<0时单调递增,故函数h(x)在R上单调递增.∵h(﹣3)=f(﹣3)g(﹣3)=0,∴h(x)=f(x)g(x)<0=h(﹣3),∴x<﹣3.②当x>0时,函数h(x)在R上是奇函数,可知:h(x)在(0,+∞)上单调递增,且h(3)=﹣h(﹣3)=0,∴h(x)<0,的解集为(0,3).∴不等式f(x)g(x)<0的解集是(﹣∞,﹣3)∪(0,3).故答案为(﹣∞,﹣3)∪(0,3).【点评】恰当构造函数,熟练掌握函数的奇偶性单调性是解题的关键.三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知复数z=3+bi(b∈R),且(1+3i)•z为纯虚数.(1)求复数z及;(2)若ω=,求复数ω的模|ω|.【分析】(1)把z=3+bi(b∈R)代入(1+3i)•z,利用复数代数形式的乘除运算化简结合已知条件即可求出复数z及;(2)利用复数代数形式的乘除运算化简ω=,再由复数求模公式计算得答案.【解答】解:(1)∵z=3+bi(b∈R),∴(1+3i)•z=(1+3i)•(3+bi)=(3﹣3b)+(9+b)i又∵(1+3i)•z是纯虚数,∴3﹣3b=0,且9+b≠0,∴b=1,∴z=3+i,;(2)ω====﹣i∴|ω|==.【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念以及复数模的求法,是中档题.18.(12分)在直角坐标系xoy中,直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,x轴正半轴为极轴)中,圆C的方程为(1)求圆C的直角坐标方程:(2)设圆C与直线l交于点A,B,若点P的坐标为,求|PA|+|PB|.【分析】(1)直接把圆的极坐标方程转化为直角坐标方程.(2)利用直线和圆的位置关系,进一步建立方程组,利用一元二次方程根和系数的关系求出结果.【解答】解:(1)圆的极坐标方程:,转化为:.即:.(2)将直线的参数方程(t为参数)代入圆的直角坐标方程得:,所以:,(t1和t2为A、B的参数).故:.【点评】本题考查的知识要点:极坐标方程和直角坐标方程的转化,直线和圆的位置关系的应用.一元二次方程根与系数的关系的应用.19.(12分)已知直线l:(t为参数),曲线C1:(θ为参数).(Ⅰ)设l与C1相交于A,B两点,求|AB|;(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.【分析】(I)将直线l中的x与y代入到直线C1中,即可得到交点坐标,然后利用两点间的距离公式即可求出|AB|.(II)将直线的参数方程化为普通方程,曲线C2任意点P的坐标,利用点到直线的距离公式P到直线的距离d,分子合并后利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,与分母约分化简后,根据正弦函数的值域可得正弦函数的最小值,进而得到距离d的最小值即可.【解答】解:(I)l的普通方程为y=(x﹣1),C1的普通方程为x2+y2=1,联立方程组,解得交点坐标为A(1,0),B (,﹣)所以|AB|==1;(II)曲线C2:(θ为参数).设所求的点为P (cosθ,sinθ),则P到直线l的距离d==[sin ()+2]当sin ()=﹣1时,d 取得最小值.【点评】此题考查了直线与圆的位置关系,涉及的知识有直线与圆的参数方程与普通方程的互化,点到直线的距离公式,两角和与差的正弦函数公式,正弦函数的定义域与值域,以及特殊角的三角函数值,根据曲线C2的参数方程设出所求P 的坐标,根据点到直线的距离公式表示出d,进而利用三角函数来解决问题是解本题的思路.20.(12分)某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.若选取的是用1月与6月的两组数据检验.(1)请根据2至5月份的数据,求出y关于x的线性回归方程y=bx+a;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认线性回归方程是理想的,请判断(1)所求出的线性回归方程是否理想的?(参考公式:线性回归方程=x+其中==)【分析】(1)根据所给的数据,求出x,y的平均数,根据求线性回归方程系数的方法,求出系数b,把b和x,y的平均数,代入求a的公式,求出a的值,即可得线性回归方程.(2)根据所求的线性回归方程,预报当自变量为10和6时的y的值,把预报的值同原来表中所给的10和6对应的值做差,差的绝对值不超过2,得到线性回归方程理想.【解答】解:(1)由数据求得由公式求得再由求得所以y关于x的线性回归方程为(2)当=10,得y=,|﹣22|=<2令x=6,得y=,|﹣12|=<2,所以,该小组所得线性回归方程是理想的.【点评】本题考查线性回归方程的求法,考查了线性分析的应用,考查解决实际问题的能力,是一个综合题目.21.(12分)电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.根据已知条件完成下面的2×2列联表,并据此资料判断是否有95%的把握认为“体育迷”与性别有关?附:K2=,其中n=a+b+c+d.【分析】首先由题意结合结合频率分布直方图即可绘制出列联表,然后结合独立性检验的思想整理计算即可求得最终结果.【解答】解:由频率分布直方图可知,在抽取的100名观众中,“体育迷”共25名,从而完成2×2列联表如下:将2×2列联表中的数据代入公式计算,得K2==≈3.030.因为3.030<3.841,所以我们没有95%的把握认为“体育迷”与性别有关.【点评】本题考查了独立性检验的思想,频率分布直方图的应用,列联表的绘制方法等,重点考查学生对基础概念的理解和计算能力,属于基础题.22.(12分)已知函数f(x)=x﹣﹣ln(1+x),其中a∈R.(1)若x=2是f(x)的极值点,求a的值;(2)求f(x)的单调区间;(3)若f(x)在[0,+∞)上的最大值是0,求a的取值范围.【分析】(2)令f'(2)=0,解得a,再验证是否符合函数取得极值的充分条件即可;(2)对a分类讨论,利用导数与函数单调性的关系即可得出;(3)通过讨论a的范围,求出函数的单调区间,结合题意求出a的范围即可.【解答】解:(1)f′(x)=,x∈(﹣1,+∞)依题意,令f'(2)=0,解得a=,经检验,当a=时,x=2是f(x)的极值点.∴a=(2)①当a=0时,f′(x)=,故f(x)的单调增区间是(0,+∞);单调减区间是(﹣1,0).②当a>0时,令f'(x)=0,得x1=0,或x2=当0<a<1时,f(x)与f'(x)的情况如下:∴f(x)的单调增区间是(0,);单调减区间是(﹣1,0)和(,+∞).当a=1时,f(x)的单调减区间是(﹣1,+∞)当a>1时,﹣1<x2<0,f(x)与f'(x)的情况如下:③当a<0时,f(x)的单调增区间是(0,+∞);单调减区间是(﹣1,0).综上,当a≤0时,f(x)的增区间是(0,+∞),减区间是(﹣1,0);当0<a<1时,f(x)的增区间是(0,),减区间是(﹣1,0)和(,+∞);当a=1时,f(x)的减区间是(﹣1,+∞);当a>1时,f(x)的增区间是(,0);减区间是(﹣1,)和(0,+∞)(3)由(2)知a≤0时,f(x)在(0,+∞)上单调递增,由f(0)=0,知不合题意.当0<a<1时,f(x)在(0,+∞)的最大值是f(﹣1),由f(﹣1)>f(0)=0,知不合题意,当a≥1时,f(x)在(0,+∞)单调递减,可得f(x)在[0,+∞)上的最大值是f(0)=0,符合题意,∴f(x)在[0,+∞)上的最大值是0时,a的取值范围是[1,+∞).【点评】本题考查了利用导数研究函数的单调性、最值、分类讨论的思想方法等是解题的关键.属于难题.。
《解析》宁夏银川一中2017届高三上学期第一次月考数学理试卷Word版含解析
2016-2017学年宁夏银川一中高三(上)第一次月考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设U=R,A={x|x2﹣3x﹣4>0},B={x|x2﹣4<0},则(∁U A)∩B=()A.{x|x≤﹣1,或x≥2}B.{x|﹣1≤x<2}C.{x|﹣1≤x≤4}D.{x|x≤4} 2.设i为虚数单位,复数(2﹣i)z=1+i,则z的共轭复数在复平面中对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.若“x>a”是“x>1或x<﹣3”的充分不必要条件,则a的取值范围是()A.a≥1 B.a≤1 C.a≥﹣3 D.a≤﹣34.下列函数中,既是偶函数又在(﹣∞,0)上单调递增的是()A.y=x2 B.y=2|x|C.y=log2D.y=sinx5.当0<x<1时,则下列大小关系正确的是()A.x3<3x<log3x B.3x<x3<log3x C.log3x<x3<3x D.log3x<3x<x36.f(x)=﹣+log2x的一个零点落在下列哪个区间()A.(0,1)B.(1,2)C.(2,3)D.(3,4)7.已知f(x)=,则不等式x+2xf(x+1)>5的解集为()A.(1,+∞)B.(﹣∞,﹣5)∪(1,+∞)C.(﹣∞,﹣5)∪(0,+∞)D.(﹣5,1)8.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x﹣1C.e﹣x+1 D.e﹣x﹣19.已知函数f(x)=e|x|+x2,(e为自然对数的底数),且f(3a﹣2)>f(a﹣1),则实数a 的取值范围是()A. B. C. D.10.函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A. B. C. D.11.已知定义在R上的函数y=f(x)满足:函数y=f(x﹣1)的图象关于直线x=1对称,且当x∈(﹣∞,0),f(x)+xf′(x)<0(f′(x)是函数f(x)的导函数)成立.若,b=(ln2)•,则a,b,c的大小关系是()A.a>b>c B.b>a>c C.c>a>b D.a>c>b12.已知函数f(x)=,若方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则x3(x1+x2)+的取值范围是()A.(﹣1,+∞)B.(﹣1,1] C.(﹣∞,1)D.[﹣1,1)二、填空题:本大题共4小题,每小题5分.13.f(x)=的定义域为.14.已知函数y=f(x﹣1)是奇函数,且f (2)=1,则f (﹣4)=.15.已知f(x)为偶函数,当x<0时,f(x)=ln(﹣x)+3x,则曲线y=f(x)在点(1,﹣3)处的切线方程是.16.已知函数f(x)=,若关于x的方程f2(x)﹣af(x)=0恰有5个不同的实数解,则a 的取值范围是.三、解答题:本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(12分)有两个命题,p:关于x的不等式a x>1(a>0,且a≠1)的解集是{x|x<0};q:函数y=lg(ax2﹣x+a)的定义域为R.如果p∨q为真命题,p∧q为假命题,求实数a的取值范围.18.(12分)某厂生产某种产品的年固定成本为250万元,每生产x万件,需另投入的成本为C(x)(单位:万元),当年产量小于80万件时,C(x)=x2+10x;当年产量不小于80万件时,C(x)=51x+﹣1450.假设每万件该产品的售价为50万元,且该厂当年生产的该产品能全部销售完.(1)写出年利润L(x)(万元)关于年产量x(万件)的函数关系式;(2)年产量为多少万件时,该厂在该产品的生产中所获利润最大?最大利润是多少?19.(12分)已知函数f(x)的图象与函数h(x)=x++2的图象关于点A(0,1)对称.(Ⅰ)求f(x)的解析式;(Ⅱ)若g(x)=x2•[f(x)﹣a],且g(x)在区间[1,2]上为增函数,求实数a的取值范围.20.(12分)已知f(x)═ax﹣﹣51nx,g(x)=x2﹣mx+4(1)若x=2是函数f(x)的极值点,求a的值;(2)当a=2时,若∃x1∈(0,1),∀x2∈[1,2]都有f(x1)≥g(x2)成立,求实数m的取值范围.21.(12分)已知函数f(x)=﹣x2+alnx(a∈R).(Ⅰ)当a=2时,求函数f(x)在点(1,f(1))处的切线方程;(Ⅱ)若函数g(x)=f(x)﹣2x+2x2,讨论函数g(x)的单调性;(Ⅲ)若(Ⅱ)中函数g(x)有两个极值点x1,x2(x1<x2),且不等式g(x1)≥mx2恒成立,求实数m的取值范围.[选修4-1:几何证明选讲]22.(10分)如图所示,已知PA与⊙O相切,A为切点,PBC为割线,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且DE2=EF•EC.(Ⅰ)求证:∠P=∠EDF;(Ⅱ)求证:CE•EB=EF•EP.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,已知曲线C1:(θ为参数),以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(2cosθ﹣sinθ)=6.(1)将曲线C1上的所有点的横坐标伸长为原来的倍,纵坐标伸长为原来的2倍后得到曲线C2,试写出直线l的直角坐标方程和曲线C2的参数方程;(2)在曲线C2上求一点P,使点P到直线l的距离最大,并求出此最大值.[选修4-5:不等式选讲]24.已知函数f(x)=|x+a|+|2x﹣1|(a∈R).(l)当a=1,求不等式f(x)≥2的解集;(2)若f(x)≤2x的解集包含[,1],求a的取值范围.2016-2017学年宁夏银川一中高三(上)第一次月考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2016秋•临猗县校级月考)设U=R,A={x|x2﹣3x﹣4>0},B={x|x2﹣4<0},则(∁U A)∩B=()A.{x|x≤﹣1,或x≥2}B.{x|﹣1≤x<2}C.{x|﹣1≤x≤4}D.{x|x≤4}【考点】交、并、补集的混合运算.【专题】集合思想;综合法;集合.【分析】分别求出集合A、B,从而求出A的补集,再求出其和B的交集即可.【解答】解:A={x|x2﹣3x﹣4>0}={x|x>4或x<﹣1},B={x|x2﹣4<0}={x|﹣2<x<2},则(∁U A)∩B=[﹣1,4]∩(﹣2,2)=[﹣1,2),故选:B.【点评】本题考查了集合的运算,考查解不等式问题,是一道基础题.2.(2016•海南校级三模)设i为虚数单位,复数(2﹣i)z=1+i,则z的共轭复数在复平面中对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数代数形式的乘除运算.【专题】转化思想;综合法;数系的扩充和复数.【分析】利用复数的运算法则、共轭复数的定义、几何意义即可得出.【解答】解:复数(2﹣i)z=1+i,∴(2+i)(2﹣i)z=(2+i)(1+i),∴z=则z的共轭复数=﹣i在复平面中对应的点在第四象限.故选:D.【点评】本题考查了复数的运算法则、共轭复数的定义、几何意义,考查了推理能力与计算能力,属于基础题.3.(2016•杭州校级模拟)若“x>a”是“x>1或x<﹣3”的充分不必要条件,则a的取值范围是()A.a≥1 B.a≤1 C.a≥﹣3 D.a≤﹣3【考点】必要条件、充分条件与充要条件的判断.【专题】数形结合;转化思想;不等式的解法及应用;简易逻辑.【分析】根据“x>a”是“x>1或x<﹣3”的充分不必要条件即可得出.【解答】解:∵“x>a”是“x>1或x<﹣3”的充分不必要条件,如图所示,∴a≥1,故选:A.【点评】本题考查了简易逻辑的判定方法、不等式的性质,考查了推理能力与计算能力,属于基础题.4.(2013秋•洛阳期末)下列函数中,既是偶函数又在(﹣∞,0)上单调递增的是()A.y=x2 B.y=2|x|C.y=log2D.y=sinx【考点】函数单调性的判断与证明;函数奇偶性的判断.【专题】函数的性质及应用.【分析】利用基本初等函数的性质逐一判断得出结论.【解答】解:对于A,由二次函数性质可知,函数又在(﹣∞,0)上单调递减,故排除A;对于B,由在(﹣∞,0)上y=得函数又在(﹣∞,0)上单调递减,故排除B;对于C,当x∈(﹣∞,0)时,y=,由复合函数的单调性可知,函数在(﹣∞,0)上单调递增,且由偶函数的定义可知函数为偶函数,故正确;对于D,由正弦函数的性质可知为奇函数,故排除D.故选C.【点评】考查学生对基本初等函数的性质单调性、奇偶性的掌握运用能力,可用排除法.5.(2014•钟祥市校级模拟)当0<x<1时,则下列大小关系正确的是()A.x3<3x<log3x B.3x<x3<log3x C.log3x<x3<3x D.log3x<3x<x3【考点】不等关系与不等式;对数值大小的比较.【专题】函数的性质及应用.【分析】因为0<x<1,所以可选取中间数0,1,利用对数函数、幂函数、指数函数的单调性即可比较出其大小.【解答】解:∵0<x<1,∴log3x<log31=0,0<x3<1,1=30<3x,∴,故选C.【点评】掌握对数函数、指数函数、幂函数的单调性是解题的前提.6.(2012•市中区校级一模)f(x)=﹣+log2x的一个零点落在下列哪个区间()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【考点】函数零点的判定定理.【专题】计算题.【分析】根据函数的实根存在定理,要验证函数的零点的位置,只要求出函数在区间的两个端点上的函数值,得到结果.【解答】解:根据函数的实根存在定理得到f(1)•f(2)<0.故选B.【点评】本题考查函数零点的判定定理,本题解题的关键是做出区间的两个端点的函数值,本题是一个基础题.7.(2016秋•荆州校级月考)已知f(x)=,则不等式x+2xf(x+1)>5的解集为()A.(1,+∞)B.(﹣∞,﹣5)∪(1,+∞)C.(﹣∞,﹣5)∪(0,+∞)D.(﹣5,1)【考点】一元二次不等式的解法.【专题】分类讨论;转化法;不等式的解法及应用.【分析】根据分段函数f(x)的解析式,讨论x的取值,解对应的不等式即可.【解答】解:由f(x)=知,当x+1>1,即x>0时,不等式x+2xf(x+1)>5可化为x+2•2x>5,解得x>1;当x+1≤1,即x≤0时,不等式x+2xf(x+1)>5可化为x﹣2x>5,解得x<﹣5;综上,不等式的解集为(﹣∞,﹣5)∪(1,+∞).故选:B.【点评】本题考查了分段函数与不等式的解法和应用问题,也考查了分类讨论思想的应用问题,是基础题目.8.(2013•北京)函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x﹣1C.e﹣x+1 D.e﹣x﹣1【考点】函数解析式的求解及常用方法;函数的图象与图象变化.【专题】函数的性质及应用.【分析】首先求出与函数y=e x的图象关于y轴对称的图象的函数解析式,然后换x为x+1即可得到要求的答案.【解答】解:函数y=e x的图象关于y轴对称的图象的函数解析式为y=e﹣x,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y轴对称,所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e﹣x﹣1.故选D.【点评】本题考查了函数解析式的求解与常用方法,考查了函数图象的对称变换和平移变换,函数图象的平移遵循“左加右减,上加下减”的原则,是基础题.9.(2014•江岸区校级模拟)已知函数f(x)=e|x|+x2,(e为自然对数的底数),且f(3a﹣2)>f(a﹣1),则实数a的取值范围是()A. B. C. D.【考点】函数单调性的性质.【专题】计算题.【分析】先判定函数的奇偶性和单调性,然后将f(3a﹣2)>f(a﹣1)转化成f(|3a﹣2|)>f(|a﹣1|),根据单调性建立不等关系,解之即可.【解答】解:∵f(x)=e|x|+x2,∴f(﹣x)=e|﹣x|+(﹣x)2=e|x|+x2=f(x)则函数f(x)为偶函数且在[0,+∞)上单调递增∴f(﹣x)=f(x)=f(|﹣x|)∴f(3a﹣2)=f(|3a﹣2|)>f(a﹣1)=f(|a﹣1|),即|3a﹣2|>|a﹣1|两边平方得:8a2﹣10a+3>0解得a<或a>故选A.【点评】本题主要考查了函数的单调性和奇偶性的综合应用,绝对值不等式的解法,同时考查了转化的思想和计算能力,属于属于基础题.10.(2016春•厦门校级期末)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A. B. C. D.【考点】函数的图象.【专题】图表型;分析法;函数的性质及应用.【分析】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D【点评】本题考查的知识点是函数的图象,对于超越函数的图象,一般采用排除法解答.11.(2015秋•韶关期末)已知定义在R上的函数y=f(x)满足:函数y=f(x﹣1)的图象关于直线x=1对称,且当x∈(﹣∞,0),f(x)+xf′(x)<0(f′(x)是函数f(x)的导函数)成立.若,b=(ln2)•,则a,b,c的大小关系是()A.a>b>c B.b>a>c C.c>a>b D.a>c>b【考点】对数值大小的比较.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】由导数性质推导出当x∈(﹣∞,0)或x∈(0,+∞)时,函数y=xf(x)单调递减.由此能求出结果.【解答】解:∵函数y=f(x﹣1)的图象关于直线x=1对称,∴y=f(x)关于y轴对称,∴函数y=xf(x)为奇函数.∵[xf(x)]'=f(x)+xf'(x),∴当x∈(﹣∞,0)时,[xf(x)]'=f(x)+xf'(x)<0,函数y=xf(x)单调递减,当x∈(0,+∞)时,函数y=xf(x)单调递减.∵,,,,∴a>b>c.故选:A.【点评】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意导数性质、函数性质的合理运用.12.(2015•郴州模拟)已知函数f(x)=,若方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则x3(x1+x2)+的取值范围是()A.(﹣1,+∞)B.(﹣1,1] C.(﹣∞,1)D.[﹣1,1)【考点】函数的零点与方程根的关系.【专题】计算题;作图题;函数的性质及应用.【分析】作函数f(x)=的图象如下,由图象可得x1+x2=﹣2,x3x4=1;1<x4≤2;从而化简x3(x1+x2)+,利用函数的单调性求取值范围.【解答】解:作函数f(x)=,的图象如下,由图可知,x1+x2=﹣2,x3x4=1;1<x4≤2;故x3(x1+x2)+=﹣+x4,其在1<x4≤2上是增函数,故﹣2+1<﹣+x4≤﹣1+2;即﹣1<﹣+x4≤1;故选B.【点评】本题考查了分段函数的应用,属于中档题.二、填空题:本大题共4小题,每小题5分.13.(2016秋•襄城区校级月考)f(x)=的定义域为(0,2).【考点】函数的定义域及其求法.【专题】计算题;函数思想;数学模型法;函数的性质及应用.【分析】由分母中根式内部的代数式大于0,然后求解对数不等式得答案.【解答】解:由1﹣log2x>0,得log2x<1,解得0<x<2.∴f(x)=的定义域为(0,2).故答案为:(0,2).【点评】本题考查函数的定义域及其求法,考查了对数不等式的解法,是基础题.14.已知函数y=f(x﹣1)是奇函数,且f (2)=1,则f (﹣4)=﹣1.【考点】函数奇偶性的性质.【专题】综合题;转化思想;演绎法;函数的性质及应用.【分析】先推得函数y=f(x)的图象关于点(﹣1,0)中心对称,由此得出恒等式:f(x)+f(﹣2﹣x)=0,再令x=2代入即可解出f(﹣4).【解答】解:因为函数y=f(x﹣1)是奇函数,所以y=f(x﹣1)的图象点(0,0)中心对称,而f(x﹣1)的图象向左平移一个单位,即得f(x)的图象,所以,y=f(x)的图象关于点(﹣1,0)中心对称,因此,对任意的实数x都有,f(x)+f(﹣2﹣x)=0,令x=2代入上式得,f(2)+f(﹣4)=0,由于f(2)=1,所以,f(﹣4)=﹣1,故答案为:﹣1.【点评】本题主要考查了抽象函数的图象和性质,涉及奇偶性的应用,函数图象对称中心的性质,属于中档题.15.(2016春•德宏州校级期末)已知f(x)为偶函数,当x<0时,f(x)=ln(﹣x)+3x,则曲线y=f(x)在点(1,﹣3)处的切线方程是2x+y+1=0.【考点】利用导数研究曲线上某点切线方程.【专题】方程思想;函数的性质及应用;导数的概念及应用.【分析】由偶函数的定义,可得f(﹣x)=f(x),即有x>0时,f(x)=lnx﹣3x,求出导数,求得切线的斜率,由点斜式方程可得切线的方程.【解答】解:f(x)为偶函数,可得f(﹣x)=f(x),当x<0时,f(x)=ln(﹣x)+3x,即有x>0时,f(x)=lnx﹣3x,f′(x)=﹣3,可得f(1)=ln1﹣3=﹣3,f′(1)=1﹣3=﹣2,则曲线y=f(x)在点(1,﹣3)处的切线方程为y﹣(﹣3)=﹣2(x﹣1),即为2x+y+1=0.故答案为:2x+y+1=0.【点评】本题考查导数的运用:求切线的方程,同时考查函数的奇偶性的定义和运用,考查运算能力,属于中档题.16.(2016•绍兴二模)已知函数f(x)=,若关于x的方程f2(x)﹣af(x)=0恰有5个不同的实数解,则a的取值范围是(0,1).【考点】根的存在性及根的个数判断.【专题】作图题;函数的性质及应用.【分析】作f(x)的图象,从而由f2(x)﹣af(x)=f(x)(f(x)﹣a)=0可得f(x)=a 有三个不同的解,从而结合图象解得.【解答】解:作f(x)的图象如下,,f2(x)﹣af(x)=f(x)(f(x)﹣a)=0,∴f(x)=0或f(x)=a;∵f(x)=0有两个不同的解,故f(x)=a有三个不同的解,故a∈(0,1);故答案为:(0,1).【点评】本题考查了函数的零点与方程的根的关系应用.三、解答题:本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(12分)(2016秋•庄浪县校级月考)有两个命题,p:关于x的不等式a x>1(a>0,且a≠1)的解集是{x|x<0};q:函数y=lg(ax2﹣x+a)的定义域为R.如果p∨q为真命题,p∧q为假命题,求实数a的取值范围.【考点】复合命题的真假.【专题】函数的性质及应用;不等式的解法及应用;简易逻辑.【分析】对于命题p:利用指数函数的单调性可得:0<a<1.对于命题q:函数y=lg(ax2﹣x+a)的定义域为R.等价于∀x∈R,ax2﹣x+a>0.对a分类讨论,利用函数的图象与性质即可得出.如果p∨q为真命题,p∧q为假命题,则p真q假,或p假q真,即可得出.【解答】解:p:关于x的不等式a x>1(a>0,且a≠1)的解集是{x|x<0},∴0<a<1.q:函数y=lg(ax2﹣x+a)的定义域为R.等价于∀x∈R,ax2﹣x+a>0.如果p∨q为真命题,p∧q为假命题,求实数a的取值范围.(i)a=0 不成立.(ii)a≠0 时,,解得,即q:a.如果p∨q为真命题,p∧q为假命题,则p真q假,或p假q真,∴或,解得,或a≥1.∴实数a的取值范围是,或a≥1.【点评】本题考查了不等式的解法、简易逻辑的判定方法、函数的性质,考查了推理能力与计算能力,属于中档题.18.(12分)(2016春•德州期末)某厂生产某种产品的年固定成本为250万元,每生产x万件,需另投入的成本为C(x)(单位:万元),当年产量小于80万件时,C(x)=x2+10x;当年产量不小于80万件时,C(x)=51x+﹣1450.假设每万件该产品的售价为50万元,且该厂当年生产的该产品能全部销售完.(1)写出年利润L(x)(万元)关于年产量x(万件)的函数关系式;(2)年产量为多少万件时,该厂在该产品的生产中所获利润最大?最大利润是多少?【考点】函数模型的选择与应用;函数解析式的求解及常用方法.【专题】应用题;函数的性质及应用.【分析】(1)分两种情况进行研究,当0<x<80时,投入成本为(万元),根据年利润=销售收入﹣成本,列出函数关系式,当x≥80时,投入成本为,根据年利润=销售收入﹣成本,列出函数关系式,最后写成分段函数的形式,从而得到答案;(2)根据年利润的解析式,分段研究函数的最值,当0<x<80时,利用二次函数求最值,当x≥80时,利用基本不等式求最值,最后比较两个最值,即可得到答案.【解答】解:(1)∵每件商品售价为0.005万元,∴x千件商品销售额为0.005×1000x万元,①当0<x<80时,根据年利润=销售收入﹣成本,∴=;②当x≥80时,根据年利润=销售收入﹣成本,∴=.综合①②可得,.(2)由(1)可知,,①当0<x<80时,=,∴当x=60时,L(x)取得最大值L(60)=950万元;②当x≥80时,=1200﹣200=1000,当且仅当,即x=100时,L(x)取得最大值L(100)=1000万元.综合①②,由于950<1000,∴当产量为10万件时,该厂在这一商品中所获利润最大,最大利润为1000万元.【点评】本题主要考查函数模型的选择与应用.解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型.本题建立的数学模型为分段函数,对于分段函数的问题,一般选用分类讨论和数形结合的思想方法进行求解.属于中档题.19.(12分)(2013•合肥二模)已知函数f(x)的图象与函数h(x)=x++2的图象关于点A (0,1)对称.(Ⅰ)求f(x)的解析式;(Ⅱ)若g(x)=x2•[f(x)﹣a],且g(x)在区间[1,2]上为增函数,求实数a的取值范围.【考点】函数单调性的性质;函数解析式的求解及常用方法;奇偶函数图象的对称性.【专题】函数的性质及应用.【分析】(I)先设f(x)的图象上任一点P(x,y),再由点点对称求出对称的坐标,由题意把对称点的坐标代入h(x)的解析式,进行整理即可;(II)由(I)求出g(x)的解析式,再求出导数,将条件转化为:3x2﹣2ax+1≥0在区间[1,2]上恒成立,再分离出常数a,利用函数y=在区间[1,2]上的单调性求出函数的最小值,再求出a的范围.【解答】解:(I)设f(x)的图象上任一点P(x,y),则点P关于点A(0,1)对称P′(﹣x,2﹣y)在h(x)的图象上,∴2﹣y=﹣x﹣+2,得y=,即f(x)=,(II)由(I)得,g(x)=x2•[f(x)﹣a]=x2•[﹣a]=x3﹣ax2+x,则g′(x)=3x2﹣2ax+1,∵g(x)在区间[1,2]上为增函数,∴3x2﹣2ax+1≥0在区间[1,2]上恒成立,即a≤()在区间[1,2]上恒成立,∵y=在区间[1,2]上递增,故此函数的最小值为y=4,则a≤4=2.【点评】本题考查了利用轨迹法求函数解析式,导数与函数单调性、最值问题,以及恒成立问题,考查了转化思想.20.(12分)已知f(x)═ax﹣﹣51nx,g(x)=x2﹣mx+4(1)若x=2是函数f(x)的极值点,求a的值;(2)当a=2时,若∃x1∈(0,1),∀x2∈[1,2]都有f(x1)≥g(x2)成立,求实数m的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的极值.【专题】综合题;转化思想;演绎法;导数的概念及应用.【分析】(1)利用x=2是函数f(x)的极值点,求出f′(2)=0,即可求出a的值;(2)对g(x)进行配方,讨论其最值问题,根据题意∃x1∈(0,1),∀x2∈[1,2],总有f(x1)≥g(x2)成立,只要要求f(x)max≥g(x)max,即可,从而求出m的范围.【解答】解:(1)∵f(x)═ax﹣﹣51nx,∴f′(x)═a+﹣,∵x=2是函数f(x)的极值点,∴f′(2)═a+﹣=0,∴a=2,经检验a=2,x=2是函数f(x)的极值点;(2)当a=2时,f(x)=2x﹣﹣5lnx,g(x)=x2﹣mx+4=+4﹣,∃x1∈(0,1),∀x2∈[1,2],总有f(x1)≥g(x2)成立,∴要求f(x)的最大值大于g(x)的最大值即可,f′(x)=,令f′(x)=0,解得x1=,x2=2,当0<x<,x>2时,f′(x)>0,f(x)为增函数;当<x<2时,f′(x)<0,f(x)为减函数.∵x1∈(0,1),∴f(x)在x=出取得极大值,也是最大值,∴f(x)max=f()=1﹣4+5ln2=5ln2﹣3,∵g(x)=x2﹣mx+4=+4﹣,若m≤3,g max(x)=g(2)=4﹣2m+4=8﹣2m,∴5ln2﹣3≥8﹣2m,∴m≥,∵>3,故m不存在;若m>3时,g max(x)=g(1)=5﹣m,∴5ln2﹣3≥5﹣m,∴m≥8﹣5ln2.【点评】本题考查了利用导数研究函数的单调性极值与最值、通过构造函数研究函数的单调性解决问题的方法,考查了转化能力、推理能力与计算能力,属于难题.21.(12分)(2016•抚顺一模)已知函数f(x)=﹣x2+alnx(a∈R).(Ⅰ)当a=2时,求函数f(x)在点(1,f(1))处的切线方程;(Ⅱ)若函数g(x)=f(x)﹣2x+2x2,讨论函数g(x)的单调性;(Ⅲ)若(Ⅱ)中函数g(x)有两个极值点x1,x2(x1<x2),且不等式g(x1)≥mx2恒成立,求实数m的取值范围.【考点】利用导数研究函数的极值;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【专题】综合题;转化思想;综合法;导数的概念及应用.【分析】(Ⅰ)求当a=2时,函数的导数,求得切线的斜率和切点,由点斜式方程即可得到切线方程;(Ⅱ)求出g(x)的导数,分类讨论,令导数大于0,得增区间,令导数小于0,得减区间;(Ⅲ)不等式g(x1)≥mx2恒成立即为≥m,求得=1﹣x1++2x1lnx1,令h(x)=1﹣x++2xlnx (0<x<),求出导数,判断单调性,即可得到h(x)的范围,即可求得m的范围.【解答】解:(Ⅰ)因为当a=2时,f(x)=﹣x2+2lnx,所以f′(x)=﹣2x+.因为f(1)=﹣1,f'(1)=0,所以切线方程为y=﹣1;(Ⅱ)g(x)=x2﹣2x+alnx的导数为g′(x)=2x﹣2+=,a≤0,单调递增区间是(,+∞);单调递减区间是(0,);0<a<,单调递增区间是(0,),(,+∞);单调递减区间是(,);a≥,g(x)的单调递增区间是(0,+∞),无单调递减区间;(Ⅲ)由(II)函数g(x)有两个极值点x1,x2(x1<x2),0<a<,x1+x2=1,0<x1<,<x2<1=1﹣x1++2x1lnx1,令h(x)=1﹣x++2xlnx(0<x<),h′(x)=+2lnx,由0<x<,则<0,又2lnx<0,则h′(x)<0,即h(x)在(0,)递减,即有h(x)>h()=﹣﹣ln2,即m≤﹣﹣ln2,即有实数m的取值范围为(﹣∞,﹣﹣ln2].【点评】本题考查导数的运用:求切线方程和单调区间,主要考查导数的几何意义,同时考查函数的单调性的运用,以及不等式恒成立问题转化为求函数的最值或范围,属于中档题.[选修4-1:几何证明选讲]22.(10分)(2015•海南模拟)如图所示,已知PA与⊙O相切,A为切点,PBC为割线,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且DE2=EF•EC.(Ⅰ)求证:∠P=∠EDF;(Ⅱ)求证:CE•EB=EF•EP.【考点】与圆有关的比例线段.【专题】证明题.【分析】(1)根据所给的乘积式和对应角相等,得到两个三角形相似,由相似得到对应角相等,再根据两直线平行内错角相等,角进行等量代换,得到要证的结论.(2)根据第一问所得的结果和对顶角相等,得到两个三角形相似,根据三角形相似得到对应线段成比例,把比例式转化为乘积式,再根据相交弦定理得到比例式,等量代换得到结果.【解答】证明:(1)∵DE2=EF•EC,∴DE:CE=EF:ED.∵∠DEF是公共角,∴△DEF∽△CED.∴∠EDF=∠C.∵CD∥AP,∴∠C=∠P.∴∠P=∠EDF.(2)∵∠P=∠EDF,∠DEF=∠PEA,∴△DEF∽△PEA.∴DE:PE=EF:EA.即EF•EP=DE•EA.∵弦AD、BC相交于点E,∴DE•EA=CE•EB.∴CE•EB=EF•EP.【点评】本题考查三角形相似的判定和性质,考查两条直线平行的性质定理,考查相交弦定理,是一个比较简单的综合题目.[选修4-4:坐标系与参数方程]23.(2016春•宁夏校级期末)在平面直角坐标系xOy中,已知曲线C1:(θ为参数),以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(2cosθ﹣sinθ)=6.(1)将曲线C1上的所有点的横坐标伸长为原来的倍,纵坐标伸长为原来的2倍后得到曲线C2,试写出直线l的直角坐标方程和曲线C2的参数方程;(2)在曲线C2上求一点P,使点P到直线l的距离最大,并求出此最大值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【专题】方程思想;转化思想;坐标系和参数方程.【分析】(1)直线l:ρ(2cosθ﹣sinθ)=6.把x=ρcosθ,y=ρsinθ代入可得直角坐标方程.由曲线C1:(θ为参数),将曲线C1上的所有点的横坐标伸长为原来的倍,纵坐标伸长为原来的2倍后得到曲线C2的参数方程:(α为参数).(2)设P,点P到直线l的距离d==,利用三角函数的单调性与值域即可得出.【解答】解:(1)直线l:ρ(2cosθ﹣sinθ)=6.可得:直线l的直角坐标方程为:2x﹣y﹣6=0.由曲线C1:(θ为参数),将曲线C1上的所有点的横坐标伸长为原来的倍,纵坐标伸长为原来的2倍后得到曲线C2的参数方程:(α为参数).(2)设P,点P到直线l的距离d==.∴当=﹣1时,d取得最大值=2,此时P.【点评】本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、点到直线的距离公式、三角函数的值域,考查了推理能力与计算能力,属于中档题.[选修4-5:不等式选讲]24.(2014•河南模拟)已知函数f(x)=|x+a|+|2x﹣1|(a∈R).(l)当a=1,求不等式f(x)≥2的解集;(2)若f(x)≤2x的解集包含[,1],求a的取值范围.【考点】绝对值不等式的解法.【专题】不等式.【分析】对第(1)问,利用零点分段法,令|x+1|=0,|2x﹣1|=0,获得分类讨论的标准,最后取各部分解集的并集即可;对第(2)问,不等式f(x)≤2x的解集包含[,1],等价于f(x)≤2x在[,1]内恒成立,由此去掉一个绝对值符号,再探究f(x)≤2x的解集与区间[,1]的关系.【解答】解:(1)当a=1时,由f(x)≥2,得|x+1|+|2x﹣1|≥2,①当x≥时,原不等式可化为(x+1)+(2x﹣1)≥2,得x≥,∴x≥;②当﹣1≤x<时,原不等式可化为(x+1)﹣(2x﹣1)≥2,得x≤0,∴﹣1≤x≤0;③当x<﹣1时,原不等式可化为﹣(x+1)﹣(2x﹣1)≥2,得x≤,∴x<﹣1.综上知,原不等式的解集为{x|x≤0,或}.(2)不等式f(x)≤2x的解集包含[,1],等价于f(x)≤2x在[,1]内恒成立,从而原不等式可化为|x+a|+(2x﹣1)≤2x,即|x+a|≤1,∴当x∈[,1]时,﹣a﹣1≤x≤﹣a+1恒成立,∴,解得,故a的取值范围是[﹣].【点评】1.本题考查了含两个绝对值不等式的解法,一般有零点分段法,函数图象法等.2.第(2)问的关键是将条件转换成不等式恒成立问题,这也是本题的难点所在.。
宁夏银川市2018届高三数学上学期第一次月考试题理2017092002123
宁夏银川市 2018届高三数学上学期第一次月考试题 理试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第 22~23题为选考 题,其它题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后, 将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的 姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用 2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号; 非选择题答案使用 0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卡面清洁,不折叠,不破损。
5.做选考题时,考生按照题目要求作答,并用 2B 铅笔在答题卡上把所选题目对应的题号 涂黑。
第 I 卷一、选择题:本大题共 12小题,每小题 5分,共 60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合 Mx x 2k 1, k Z,Nx x k 2, k Z,则()A .M NB . M NC .N MD . M N≠≠2. “x 5”的一个必要不充分条件是( )A x6B x3 C x6D x 10x 21x1 x 13.命题“,则或”的逆否命题为()x 2 1 x1 x 1x 2 1x 1x 1 A .若,则且B .若 ,则且 C .若 x 1且 x1,则 x 21 D .若 x 1或 x1,则 x 2 1y ln(x 2x ) 4 - 2x4.函数 的定义域为( )A.(-,0)(1, ) B.(-,0)(1,2] C.(-,0) D.(- ,2]5.下列函数中,既是偶函数又在区间(0,)上单调递减的是()1yy lg | x |y xx2yy lg | x |y xA .1ye xB.C.D.12f x m m x0,m244m6m86.幂函数在为增函数,则的值为()A.1或3 B.1 C.3 D.2x2x47.已知函数,则的值为( )f(x)f(1log3)f(x2)x42A.6B.11 C.24D.362f(x)ln x8.函数x的零点所在的大致区间是()A.(1,2)B.(2,3)C.(1,1)和(3,4)D.(e,)e9.设a=log0.50.8,b=log1.10.8,c=1.10.8,则a,b,c的大小关系为().A.a<b<c B.a<c<b C.b<c<a D.b<a<c10.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=()A.e x+1 B.e x-1 C.e-x+1 D.e-x-111.定义在R上的函数f(x)满足f(x+6)=f(x).当-3≤x<-1时,f(x)=-(x+2)2,当-1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2 017)=()A.335 B.337 C.1 678 D.2 017lg x,0<x10,f x12.已知函数若a,b,c互不相等,且,则abcf a f b f c1x6,x>102的取值范围是()A.1,10B.5,6C.10,12D.20,24第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第23题为选考题,考生根据要求做答二.填空题:本大题共4小题,每小题5分。
宁夏银川一中2017-2018学年高二上学期期末考试数学(理)试题
(上)高二期末考试数学试卷一、精心选一选:每小题5分,共60分,1.若复数z 满足i i z -=+1)1((i 是虚数单位),则z 的共轭复数z = A .i - B .i 2- C .i D .i 22.演绎推理是A .部分到整体,个别到一般的推理B .特殊到特殊的推理C .一般到一般的推理D .一般到特殊的推理3.用数学归纳法证明:“1+a +a 2+…+a2n+1=aa n --+1112(a ≠1)”,在验证n =1时,左端计算所得项为A .1+aB .1+a +a 2+a 3C .1+a +a 2D .1+a +a 2+a 3+a 4 4.双曲线8822=-ky kx 的一个焦点是(0,-3),则k 的值是 A .1B .-1C .315 D .-315 5.在正方体ABCD —A 1B 1C 1D 1中,E 是AD 的中点,则异面直线C 1E 与BC 所成的角的余弦值是 A .510B .1010C .31D .322 6.已知椭圆C :22221x y a b +=(0)a b >>的左、右焦点为1F 、2F ,离心率为3,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为43,则C 的方程为A .22132x y +=B .2213x y += C .221128x y += D .221124x y +=7.曲线1x y xe -=在点(1,1)处切线的斜率等于 A .2eB .eC .2D .18.已知函数f (x )=x 2(ax +b )(a ,b ∈R )在x =2时有极值,其图象在点(1,f (1))处的切线与直线3x +y =0平行,则函数f (x )的单调减区间为A .(-∞,0)B .(0,2)C .(2,+∞)D .(-∞,+∞) 9.已知函数53)(23-+-=x ax x x f 在区间[1,2]上单调递增,则a 的取值范围是 A .]5,(-∞B .)5,(-∞C .]437,(-∞ D .]3,(-∞10.设函数()()()()()222,2,0,8x e e f x x f x xf x f x f x x '+==>满足则时,A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值11.设双曲线12222=-by a x (a >0,b >0)的右焦点为F ,过点F 作与x 轴垂直的直线l 交两渐近线于A 、B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点, 若),(R OB OA OP ∈+=μλμλ,163=λμ,则该双曲线的离心率为 A .332 B .553 C .223 D .8912.已知函数f (x )=1a x x ⎛⎫-⎪⎝⎭-2lnx (a ∈R ),g (x )=ax-,若至少存在一个x 0∈[1,e ],使得f (x 0)>g (x 0)成立,则实数a 的取值范围为A .[1,+∞)B .(1,+∞)C .[0,+∞)D .(0,+∞) 二、填空题:本大题共4小题,每小题5分. 13.观察下列不等式213122+< 231151233++<, 474131211222<+++……照此规律,第五个...不等式为 .14.已知抛物线)0(22>=p px y ,过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为 . 15.若⎰+=12)(2)(dx x f x x f ,则⎰=1)(dx x f .16.已知椭圆12222=+by a x (0)a b >>的左、右焦点分别为F 1,F 2,点A 为椭圆的上顶点,B 是直线 A F 2与椭圆的另一个交点,且B AF AF F 1021,60∆=∠的面积为340,则a 的值是 . 三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本大题满分10分)已知动圆C 过点A (-2,0),且与圆M :(x -2)2+y 2=64相内切求动圆C 的圆心的轨迹方程.18.(本大题满分12分)已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1时都取得极值 (1)求a ,b 的值与函数f (x )的单调区间(2)若对x ∈〔-1,2〕,不等式f (x )<c 2恒成立,求c 的取值范围19.(本大题满分12分)如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点.建立如图的空间直角坐标系。
宁夏回族自治区银川一中2024-2025学年高二上学期第一次月考数学试卷
宁夏回族自治区银川一中2024-2025学年高二上学期第一次月考数学试卷一、单选题1.已知倾斜角为π4的直线的方向向量为(1,)k ,则k 的值为( )A .1-B .CD .12.已知四面体OABC 中,OA a =u u u r r ,OB b =u u u r r ,OC c =u u u r r,E 为BC 中点,点F 在OA 上,且2OF FA =,则EF =u u u r( )A .121232a b c -+r r rB .211322a b c -++r r rC .121232a b c -+-r r rD .211322a b c --r r r3.已知直线l 的一个方向向量为()1,2,1m =-r ,平面α的一个法向量为1,1,2n x ⎛⎫= ⎪⎝⎭r ,若//l α,则x =( )A .52B .52-C .12-D .124.“3a =”是“直线()1:1210l a x y -++=与直线2:310l x ay +-=平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.在空间中,“经过点()000,,P x y z ,法向量为(,,)e A B C =r的平面的方程(即平面上任意一点的坐标(,,)x y z 满足的关系式)为:()()()0000A x x B y y C z z -+-+-=”.用此方法求得平面α和平面β的方程,化简后的结果为1x y z -+=和26x y z +-=,则这两平面所成角的余弦值为( )A .BC .D 6.直线()1210m x my m ++--=与圆229x y += 交于,M N 两点,则弦长MN 的最小值为( )A .1B .2CD .7.由动点P 向圆22:(2)(3)1M x y +++=引两条切线,PA PB ,切点分别为,A B ,若四边形APBM 为正方形,则动点P 的轨迹方程为( )A .22(2)(3)4x y +++=B .22(2)(3)2x y +++=C .22(2)(3)4-+-=x yD .22(2)(3)2x y -+-=8.数学家欧拉在1765年发现,任意三角形的外心、重心、垂心位于同一条直线上,这条直线称为欧拉线已知ΔABC 的顶点()()2,0,0,4A B ,若其欧拉线的方程为20x y -+=,则顶点C 的坐标为 A .()4,0-B .()3,1--C .()5,0-D .()4,2--二、多选题9.在同一直角坐标系下,直线0ax by c ++=与圆()()222x a y b r -+-=的位置可能为( )A .B .C .D .10.下列说法中,不正确的有( )A .若()2,8a ∈-,则两条平行直线1l 10y -+=和2l :20y a -+=之间的距离小于1B .若直线10ax y ++=与连接()2,3A ,()3,2B -的线段没有公共点,则实数a 的取值范围为()1,2-C .已知点(),2P a ,()1,21Q a -,若直线PQ 的倾斜角为锐角,则实数a 的取值范围为31,2⎛⎫⎪⎝⎭D .若集合()2,31y M x y x ⎧⎫-==⎨⎬-⎩⎭,(){},20N x y ax y a =++=满足M N ⋂=∅,则6a =-11.如图,在菱形ABCD 中,60AB BAD ∠=o ,沿对角线BD 将ABD △折起,使点A ,C 之间的距离为,P Q 分别为直线,BD CA 上的动点,则下列说法正确的是( )A .当,4AQ QC PD DB ==时,点D 到直线PQB .线段PQC .平面ABD ⊥平面BCDD .当,P Q 分别为线段,BD CA 的中点时,PQ 与AD三、填空题12.已知点()1,1在圆()()22x a y a -++=4的外部,则实数a 的取值范围为.13.已知实数x 、y 满足方程260x y +-=,当04x <<时,则12y x -+的取值范围是.14.已知圆22:2,,O x y A B +=为圆O 上两个动点,且||2,AB M =为弦AB 的中点,)1C a -,)3Da +,当A ,B 在圆O 上运动时,始终有CMD ∠为锐角,则实数a 的取值范围是.四、解答题15.已知圆22:2240C x y x my +--+=. (1)求m 的取值范围;(2)当m 取最小正整数时,若点P 为直线43120x y -+=上的动点,过P 作圆C 的一条切线,切点为A ,求线段PA 的最小值.16.如图,AB 是圆的直径,平面P AC ⊥面ACB ,且AP ⊥AC .(1)求证:⊥BC 平面PAC ;(2)若2,1,1AB AC AP ===,求直线AC 与面PBC 所成角的正弦值. 17.已知直线l 的方程为()()21214130m x m y m +++--=. (1)证明:不论m 为何值,直线l 过定点M .(2)过(1)中点M ,且与直线l 垂直的直线与两坐标轴的正半轴所围成的三角形的面积最小时,求直线l 的方程.18.如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,其中,AD BC AD BA ⊥∥,3,2,AD AB BC PA ===⊥平面ABCD ,且3PA =,点M 在棱PD 上(不包括端点),点N 为BC 中点.(1)若2DM MP =u u u u r u u u r,求证:直线MN ∥平面PAB ;(2)求平面CPD 与平面CPN 的夹角的余弦值;(3)是否存在点M ,使NM 与平面PCD ?若存在,求出PM PD 的值;若不存在,说明理由.19.平面直角坐标系中,圆M 经过点)A ,()0,4B ,()2,2C -.(1)求圆M 的标准方程;(2)设D 0,1 ,过点D 作直线1l ,交圆M 于PQ 两点,PQ 不在y 轴上.①过点D 作与直线1l 垂直的直线2l ,交圆M 于EF 两点,记四边形EPFQ 的面积为S ,求S 的最大值;②设直线OP ,BQ 相交于点N ,试证明点N 在定直线上,求出该直线方程.。
宁夏银川市2017-2018学年高二第一学期第一次月考数学试卷
宁夏银川市2017-2018学年高二数学上学期第一次月考试题(本试卷满分150分)(注:班级、姓名、学号、座位号一律写在装订线以外规定的地方,卷面不得出现任何标记)第Ⅰ卷一.选择题(本题共12小题,每小题只有..一项是符合题目要求的,每小题5分)1、函数的定义域是( )A. {x|x≤-4或x≥3}B. {x|-4≤x≤3}C. {x|x<-4或x>3}D. {x|-4<x<3}2、设,,,且,则()A. B. C. D.3、在等比数列{}中,若 =2, =16,则{ }的前5项和等于()A. 30B. 31C. 62D. 644、若实数满足,则的最大值为 ( )A. 1B. 4C. 6D. 55、数列前项的和为()A. B. C. D.6、设等比数列的前n项和为S n,若 , 则7、不等式的解集是()A. B. C. D.8、在平面直角坐标系中,已知第一象限的点(a,b)在直线2x+3y-1=0上,则的最小值为()A. 24B. 25C. 26D. 279、已知等比数列中,各项都是正数,且,,成等差数列,则()A. B. C. D.10、已知数列{a n}的通项a n=2n cos(nπ),则a1+a2+…+a99+a100=()A.0 B. C.2﹣2101 D.(2100﹣1)11、若关于的不等式的解集为,且,则()A. B. C. D.12、定义为个正数的“均倒数”,已知数列的前项的“均倒数”为,又,则()A. B. C. D.第Ⅱ卷二.填空题(本题共4小题,每小题5分)13.设是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是.14、设a>0,b>0 , 若是3a与b的等比中项,则的最小值为_______.。
2017-2018学年宁夏银川一中高三(上)第一次月考数学试卷(文科)
2017-2018学年宁夏银川一中高三(上)第一次月考数学试卷(文科)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|≥0},B={x|3x>1}则()A.A∪B={x|x>﹣2}B.A∪B={x|x≥﹣2}C.A∪B={x|﹣2<x<0或x>0}D.A∪B={x|0<x≤1}2.(5分)“x>1”是“(x+2)<0”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件3.(5分)函数y=的一个对称轴为()A.x=B.x=C.x=D.x=4.(5分)设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系()A.a<b<c B.a<c<b C.b<a<c D.b<c<a5.(5分)函数(ω>0)的最小正周期为π,则f(x)满足()A.在上单调递增B.图象关于直线对称C.D.当时有最小值﹣16.(5分)函数f(x)=cos2x+sin(+x)的最小值是()A.﹣2 B.﹣ C.﹣ D.07.(5分)函数f(x)=ln(x2﹣2x﹣8)的单调递减区间是()A.(﹣∞,﹣2)B.(﹣∞,﹣1)C.(1,+∞)D.(4,+∞)8.(5分)在△ABC中,角A,B,C的对边分别是a,b,c,且满(2a﹣c)cosB=bcosC,则A的取值范围()A.(0,)B.(0,π) C.(,)D.(π)9.(5分)已知函数f(x)=,且f(a)=﹣4,则f(14﹣a)=()A.﹣ B.﹣ C.﹣ D.﹣10.(5分)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,)B.(,1)C.(1,)D.(,2)11.(5分)已知函数f(x)=Asin(ωx+φ)的图象如图所示,则该函数的解析式可能是()A.f(x)=sin(x+)B.f(x)=sin(x+)C.f(x)=sin(x+)D.f(x)=sin(x﹣)12.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)二、填空题:本大题共4小题,每小题5分.13.(5分)对于任意的两个正数m,n,定义运算⊙:当m、n都为偶数或都为奇数时,m⊙n=;当m、n为一奇一偶时,m⊙n=,设集合A={(a,b)|a⊙b=4,a,b∈N*},则集合A的子集个数为.14.(5分)如图,某工程中要将一长为100m,倾斜角为75°的斜坡改造成倾斜角为30°的斜坡,并保持坡高不变,则坡底需加长m.15.(5分)已知命题p:关于x的不等式a x>1(a>0,且a≠1)的解集是{x|x >0},命题q:函数y=lg(ax2﹣x+a)的定义域为R,如果p∨q为真命题,p∧q 为假命题,则实数a的取值范围为.16.(5分)设函数f(x)(x∈R)满足f(x+π)=f(x)+sinx,当0≤x<π时,f (x)=0,则f()=.三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(12分)设函数f(x)=ωx﹣sinωxcosωx(ω>0)且y=f(x)的图象的两个相邻对称轴的距离为.(1)求ω的值;(2)求f(x)在区间[π,]上的最大值和最小值.18.(12分)已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10.(1)求a,b.(2)若方程g(x)=f(x)+m在[,+∞)上有两个零点,求m的范围.19.(12分)△ABC中,角A,B,C所对的边分别为a,b,c.已知cosB=,sin(A+B)=(1)求sinA.(2)若ac=2,求c.20.(12分)已知函数f(x)=,(a>0,且a≠1)在R上单调递减.(1)a的取值范围是;(2)若关于x的方程|f(x)|=2﹣x恰好有两个不相等的实数解,则a的取值范围是.21.(12分)已知函数f(x)=b(x+1)lnx﹣x+1,斜率为1的直线与f(x)相切于(1,0)点.(1)求h(x)=f(x)﹣xlnx的单调区间;(2)证明:(x﹣1)f(x)≥0.请考生在第22、23两题中任选一题作答,如果多做.则按所做的第一题记分.作答时请写清题号.[选修4-4:极坐标系与参数方程]22.(10分)在直角坐标系中,曲线C1的参数方程为(α为参数),M是曲线C1上的动点,点P满足=2(1)求点P的轨迹方程C2;(2)以O为极点,x轴正半轴为极轴的极坐标系中,射线与曲线C1、C2交于不同于极点的A、B两点,求|AB|.[选修4-5:不等式选讲]23.设函数f(x)=|x﹣a|.(1)当a=2时,解不等式f(x)≥7﹣|x﹣1|;(2)若f(x)≤2的解集为[﹣1,3],=a(m>0,n>0),求证:m+4n.2017-2018学年宁夏银川一中高三(上)第一次月考数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|≥0},B={x|3x>1}则()A.A∪B={x|x>﹣2}B.A∪B={x|x≥﹣2}C.A∪B={x|﹣2<x<0或x>0}D.A∪B={x|0<x≤1}【解答】解:根据题意,≥0⇒﹣2<x≤1,则集合A={x|≥0}={x|﹣2<x≤1},3x>1⇒3x>30⇒x>0,则集合B={x|3x>1}={x|x>0},则A∪B={x|x>﹣2};故选:A.2.(5分)“x>1”是“(x+2)<0”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件【解答】解:由“(x+2)<0”得:x+2>1,解得:x>﹣1,故“x>1”是“(x+2)<0”的充分不必要条件,故选:B.3.(5分)函数y=的一个对称轴为()A.x=B.x=C.x=D.x=【解答】解:y=2sin(2x+),令2x+=+kπ,得x=,k∈Z.当x=1时,函数的对称轴为x=,故选C.4.(5分)设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系()A.a<b<c B.a<c<b C.b<a<c D.b<c<a【解答】解:函数y=0.6x为减函数;故a=0.60.6>b=0.61.5,函数y=x0.6在(0,+∞)上为增函数;故a=0.60.6<c=1.50.6,故b<a<c,故选:C.5.(5分)函数(ω>0)的最小正周期为π,则f(x)满足()A.在上单调递增B.图象关于直线对称C.D.当时有最小值﹣1【解答】解:函数(ω>0)的最小正周期为T==π,∴ω=2,∴f(x)=cos(2x+);当x∈(0,)时,2x+∈(,),f(x)单调递减,∴A错误;x=时,2x+=,f()=0,其图象不关于直线对称,B错误;f()=cos(2×+)=﹣,C错误;x=时,f(x)=cos(2×+)=﹣1,D正确.故选:D.6.(5分)函数f(x)=cos2x+sin(+x)的最小值是()A.﹣2 B.﹣ C.﹣ D.0【解答】解:函数f(x)=cos2x+sin(+x)=2cos2x+cosx﹣1=2(cosx+)2﹣.当cosx=﹣时,f(x)取得最小值为:﹣.故选:B.7.(5分)函数f(x)=ln(x2﹣2x﹣8)的单调递减区间是()A.(﹣∞,﹣2)B.(﹣∞,﹣1)C.(1,+∞)D.(4,+∞)【解答】解:由x2﹣2x﹣8>0,解得x<﹣2或x>4.∴函数f(x)=ln(x2﹣2x﹣8)的定义域为(﹣∞,﹣2)∪(4,+∞).令t=x2﹣2x﹣8,则函数t=x2﹣2x﹣8在(﹣∞,﹣2)上为减函数,而y=lnt为增函数,∴函数f(x)=ln(x2﹣2x﹣8)的单调递减区间是(﹣∞,﹣2).故选:A.8.(5分)在△ABC中,角A,B,C的对边分别是a,b,c,且满(2a﹣c)cosB=bcosC,则A的取值范围()A.(0,)B.(0,π) C.(,)D.(π)【解答】解:∵(2a﹣c)cosB=Bcosc,∴(2sinA﹣sinC)cosB=sinBcosC,可得:2sinAcosB=sinCcosB+sinBcosC=sin(B+C)=sinA.…(3分)∴2cosB=1,即:cosB=,∴由B为三角形内角,B∈(0,π),可得:B=.∴可得:0<A<,故选:A.9.(5分)已知函数f(x)=,且f(a)=﹣4,则f(14﹣a)=()A.﹣ B.﹣ C.﹣ D.﹣【解答】解:分类讨论:当a≤1时:f(a)=2a﹣1﹣2=﹣4,方程无解;当a>1时:f(a)=﹣log2(a+1)=﹣4,解得:a=15,据此可得:.故选:A.10.(5分)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,)B.(,1)C.(1,)D.(,2)【解答】解:∵0<x≤时,1<4x≤2要使4x<log a x,由对数函数的性质可得0<a<1,数形结合可知只需2<log a x,∴即对0<x≤时恒成立∴解得<a<1故选B11.(5分)已知函数f(x)=Asin(ωx+φ)的图象如图所示,则该函数的解析式可能是()A.f(x)=sin(x+)B.f(x)=sin(x+)C.f(x)=sin(x+)D.f(x)=sin(x﹣)【解答】解:由函数f(x)=Asin(ωx+φ)的图象可得0<A<1,T=>2π,求得0<ω<1.再根据f(2π)<0,结合所给的选项,故选:B.12.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)【解答】解:设g(x)=e x(2x﹣1),y=ax﹣a,由题意知存在唯一的整数x0使得g(x0)在直线y=ax﹣a的下方,∵g′(x)=e x(2x﹣1)+2e x=e x(2x+1),∴当x<﹣时,g′(x)<0,当x>﹣时,g′(x)>0,∴当x=﹣时,g(x)取最小值﹣2,当x=0时,g(0)=﹣1,当x=1时,g(1)=e>0,直线y=ax﹣a恒过定点(1,0)且斜率为a,故﹣a>g(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解得≤a<1故选:D二、填空题:本大题共4小题,每小题5分.13.(5分)对于任意的两个正数m,n,定义运算⊙:当m、n都为偶数或都为奇数时,m⊙n=;当m、n为一奇一偶时,m⊙n=,设集合A={(a,b)|a⊙b=4,a,b∈N*},则集合A的子集个数为512..【解答】解:a⊙b=6,a、b∈N*,若a和b一奇一偶,则a⊙b==4,即ab=16,满足此条件的1×16=16×1,故点(a,b)有2个;若a和b同奇偶,则a⊙b=(a+b)=4,即a+b=8,满足此条件的有1+7=2+6=3+5=4+4=5+3=6+2=7+1共6组,故点(a,b)有2×4﹣1=7个,所以满足条件的个数2+7=9个,故集合A的真子集的个数是29﹣1=512个,故答案为:512.14.(5分)如图,某工程中要将一长为100m,倾斜角为75°的斜坡改造成倾斜角为30°的斜坡,并保持坡高不变,则坡底需加长m.【解答】解:由题意,保持坡高不变,设AC=h.则斜边AD=,即100=.可得:h=25()DC=ADcos75°=25()斜坡改造成倾斜角为30°的斜坡:即BC==h=25(3+)坡底需加长为:BC﹣CD=25(3+)﹣25()=100故答案为:.15.(5分)已知命题p:关于x的不等式a x>1(a>0,且a≠1)的解集是{x|x >0},命题q:函数y=lg(ax2﹣x+a)的定义域为R,如果p∨q为真命题,p∧q为假命题,则实数a的取值范围为.【解答】解:命题p:关于x的不等式a x>1(a>0,且a≠1)的解集是{x|x>0},则a>1.命题q:函数y=lg(ax2﹣x+a)的定义域为R,a=0时,不满足条件,舍去;a≠0时,,解得.如果p∨q为真命题,p∧q为假命题,则命题p与q必然一真一假.∴,或.解得.因此实数a的取值范围是.故答案为:.16.(5分)设函数f(x)(x∈R)满足f(x+π)=f(x)+sinx,当0≤x<π时,f(x)=0,则f()=.【解答】解:∵函数f(x)(x∈R)满足f(x+π)=f(x)+sinx,当0≤x<π时,f(x)=0,∴f()=f()+sin=f()+sin+sin=f()+sin+sin+sin=0+=.故答案为:.三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(12分)设函数f(x)=ωx﹣sinωxcosωx(ω>0)且y=f(x)的图象的两个相邻对称轴的距离为.(1)求ω的值;(2)求f(x)在区间[π,]上的最大值和最小值.【解答】解:(1)f(x)=﹣sin2ωx﹣sinωxcosωx=﹣•﹣sin 2ωx=cos 2ωx﹣sin 2ωx=cos(2ωx+)∵y=f(x)的图象的两个相邻对称轴的距离为,故该函数的周期T=2×=π.又ω>0,∴=π,∴ω=1.则f(x)=cos(2x+)(2)x∈[π,]上,∴2x+∈[,]即2x+∈[,]当2x+=π时,f(x)取得最小值为﹣1.当2x+=时,f(x)取得最大值为故得f(x)在区间[π,]上的最大值为,最小值为﹣1.18.(12分)已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10.(1)求a,b.(2)若方程g(x)=f(x)+m在[,+∞)上有两个零点,求m的范围.【解答】解:(1)∵f(x)=x3+ax2+bx+a2,∴f′(x)=3x2+2ax+b,∵函数f(x)=x3+ax2+bx+a2在x=1处有极值10,∴f′(1)=0,f(1)=10,∴,解得a=4,b=﹣11,或a=﹣3,b=3,当a=4,b=﹣11时,f′(x)=3x2+8x﹣11=(3x+11)(x﹣1),当<x<1时,f′(x)<0,当x>1时,f′(x)>0,满足x=1处为极值点;当a=﹣3,b=3时,f′(x)=3x2﹣6x+3=3(x﹣1)2,易知在x=1的两侧f′(x)>0,故x=1不是极值点,应舍去.故只有a=4,b=﹣11,满足题意.∴a=﹣4,b=11.(2)解方程g(x)=f(x)+m在[,+∞)上有两个零点,∴f(x)+m=0有两个根即f(x)=m,函数y=f(x)与y=﹣m在[,+∞)有两个交点.由(1)知,f(x)=x3+4x2﹣11x+16,f′(x)=(3x+11)(x﹣1),∴函数y=f(x)在[,1]单调递减,在(1,+∞)单调递增∵f()=,f(1)=1,∴m∈[(﹣,﹣1)19.(12分)△ABC中,角A,B,C所对的边分别为a,b,c.已知cosB=,sin(A+B)=(1)求sinA.(2)若ac=2,求c.【解答】解:(1)在△ABC中中,A+B+C=π.由cosB=,可得:sinB=,∵sin(A+B)=sinC=,sinB=>sinC=,C为锐角,∴cosC=,∴sinA=sin(B+C)=sinBcosC+cosBsinC=.(2)由正弦定理:,可得a==,又ac=2.∴c=1.20.(12分)已知函数f(x)=,(a>0,且a≠1)在R 上单调递减.(1)a的取值范围是[,] ;(2)若关于x的方程|f(x)|=2﹣x恰好有两个不相等的实数解,则a的取值范围是[,)∪{} .【解答】解:(1)∵f(x)是R上的单调递减函数,∴,解得≤a≤.(2)∵y=log a(x+1)+1是减函数,且f(0)=1,∴y=|log a(x+1)+1|与y=2﹣x在(0,+∞)上必有一解,∴y=x2+(4a﹣3)x+3a=2﹣x在(﹣∞,0)上必有一解.即x2+(4a﹣2)x+3a﹣2=0在(﹣∞,0)上有一解,∴或,又,解得a=或≤a<.故答案为:[,],[,)∪{}.21.(12分)已知函数f(x)=b(x+1)lnx﹣x+1,斜率为1的直线与f(x)相切于(1,0)点.(1)求h(x)=f(x)﹣xlnx的单调区间;(2)证明:(x﹣1)f(x)≥0.【解答】解:(1)由题意知:f′(x)=b(lnx+)﹣1,f′(1)=2b﹣1=1,b=1,h(x)=f(x)﹣xlnx=lnx﹣x+1,h′(x)=﹣1,h′(x)=﹣1>0解得0<x<1;h′(x)=﹣1<0解得x>1;∴h(x)=f(x)﹣xlnx的单调增区间(0,1);单调减区间(1,+∞);(2)证明:由(1)知:当x>0时,h(x)≤h(1)=﹣1,即lnx﹣x+1≤0,当0<x<1时,f(x)=(x+1)lnx﹣x+1≤0,当x≥1时,f(x)=lnx+(xlnx﹣x+1)=lnx﹣x(ln+1﹣)≥0…(12分)所以(x﹣1)f(x)≥0.请考生在第22、23两题中任选一题作答,如果多做.则按所做的第一题记分.作答时请写清题号.[选修4-4:极坐标系与参数方程]22.(10分)在直角坐标系中,曲线C1的参数方程为(α为参数),M是曲线C1上的动点,点P满足=2(1)求点P的轨迹方程C2;(2)以O为极点,x轴正半轴为极轴的极坐标系中,射线与曲线C1、C2交于不同于极点的A、B两点,求|AB|.【解答】解:(1)设P(x,y),由题意知M(,),M是曲线C1上的动点,所以:(α为参数),整理得:(α为参数),从而C2的轨迹方程为:(x﹣4)2+y2=16.(2)依题意把曲线C1的方程转化为极坐标方程为:ρ=4cosθ,曲线C2方程转化为的极坐标方程为:ρ=8cosθ,射线与C1的交点A的极径为,射线与C2的交点B的极径为.,所以:|AB|=|ρ1﹣ρ2|=2.[选修4-5:不等式选讲]23.设函数f(x)=|x﹣a|.(1)当a=2时,解不等式f(x)≥7﹣|x﹣1|;(2)若f(x)≤2的解集为[﹣1,3],=a(m>0,n>0),求证:m+4n.【解答】解:(1)当a=2时,不等式f(x)≥7﹣|x﹣1|,即|x﹣2|+|x﹣1|≥7,∴①,或②,或③.解①求得x≤﹣2,解②求得x∈∅,解③求得x≥5,∴不等式的解集为(﹣∞﹣2]∪[5,+∞).(2)f(x)≤2,即|x﹣a|≤2,解得a﹣2≤x≤a+2,而f(x)≤2解集是[﹣1,3],∴,解得a=1,∴+=1 (m>0,n>0).∴m+4n=(m+4n)•(+)=3++≥3+2,当且仅当=,即m=+1,n=时,取等号.。
宁夏银川一中2017-2018学年高三上学期第一次月考数学理试卷 Word版含解析
2017-2018学年宁夏银川一中高三(上)第一次月考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设U=R,A={x|x2﹣3x﹣4>0},B={x|x2﹣4<0},则(∁U A)∩B=()A.{x|x≤﹣1,或x≥2}B.{x|﹣1≤x<2}C.{x|﹣1≤x≤4}D.{x|x≤4} 2.设i为虚数单位,复数(2﹣i)z=1+i,则z的共轭复数在复平面中对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.若“x>a”是“x>1或x<﹣3”的充分不必要条件,则a的取值范围是()A.a≥1 B.a≤1 C.a≥﹣3 D.a≤﹣34.下列函数中,既是偶函数又在(﹣∞,0)上单调递增的是()A.y=x2 B.y=2|x|C.y=log2D.y=sinx5.当0<x<1时,则下列大小关系正确的是()A.x3<3x<log3x B.3x<x3<log3x C.log3x<x3<3x D.log3x<3x<x36.f(x)=﹣+log2x的一个零点落在下列哪个区间()A.(0,1)B.(1,2)C.(2,3)D.(3,4)7.已知f(x)=,则不等式x+2xf(x+1)>5的解集为()A.(1,+∞)B.(﹣∞,﹣5)∪(1,+∞)C.(﹣∞,﹣5)∪(0,+∞)D.(﹣5,1)8.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x﹣1C.e﹣x+1 D.e﹣x﹣19.已知函数f(x)=e|x|+x2,(e为自然对数的底数),且f(3a﹣2)>f(a﹣1),则实数a 的取值范围是()A. B.C.D.10.函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.11.已知定义在R上的函数y=f(x)满足:函数y=f(x﹣1)的图象关于直线x=1对称,且当x∈(﹣∞,0),f(x)+xf′(x)<0(f′(x)是函数f(x)的导函数)成立.若,b=(ln2)•,则a,b,c的大小关系是()A.a>b>c B.b>a>c C.c>a>b D.a>c>b12.已知函数f(x)=,若方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则x3(x1+x2)+的取值范围是()A.(﹣1,+∞)B.(﹣1,1] C.(﹣∞,1)D.[﹣1,1)二、填空题:本大题共4小题,每小题5分.13.f(x)=的定义域为.14.已知函数y=f(x﹣1)是奇函数,且f (2)=1,则f (﹣4)=.15.已知f(x)为偶函数,当x<0时,f(x)=ln(﹣x)+3x,则曲线y=f(x)在点(1,﹣3)处的切线方程是.16.已知函数f(x)=,若关于x的方程f2(x)﹣af(x)=0恰有5个不同的实数解,则a的取值范围是.三、解答题:本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(12分)有两个命题,p:关于x的不等式a x>1(a>0,且a≠1)的解集是{x|x<0};q:函数y=lg(ax2﹣x+a)的定义域为R.如果p∨q为真命题,p∧q为假命题,求实数a的取值范围.18.(12分)某厂生产某种产品的年固定成本为250万元,每生产x万件,需另投入的成本为C(x)(单位:万元),当年产量小于80万件时,C(x)=x2+10x;当年产量不小于80万件时,C(x)=51x+﹣1450.假设每万件该产品的售价为50万元,且该厂当年生产的该产品能全部销售完.(1)写出年利润L(x)(万元)关于年产量x(万件)的函数关系式;(2)年产量为多少万件时,该厂在该产品的生产中所获利润最大?最大利润是多少?19.(12分)已知函数f(x)的图象与函数h(x)=x++2的图象关于点A(0,1)对称.(Ⅰ)求f(x)的解析式;(Ⅱ)若g(x)=x2•[f(x)﹣a],且g(x)在区间[1,2]上为增函数,求实数a的取值范围.20.(12分)已知f(x)═ax﹣﹣51nx,g(x)=x2﹣mx+4(1)若x=2是函数f(x)的极值点,求a的值;(2)当a=2时,若∃x1∈(0,1),∀x2∈[1,2]都有f(x1)≥g(x2)成立,求实数m的取值范围.21.(12分)已知函数f(x)=﹣x2+alnx(a∈R).(Ⅰ)当a=2时,求函数f(x)在点(1,f(1))处的切线方程;(Ⅱ)若函数g(x)=f(x)﹣2x+2x2,讨论函数g(x)的单调性;(Ⅲ)若(Ⅱ)中函数g(x)有两个极值点x1,x2(x1<x2),且不等式g(x1)≥mx2恒成立,求实数m的取值范围.[选修4-1:几何证明选讲]22.(10分)如图所示,已知PA与⊙O相切,A为切点,PBC为割线,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且DE2=EF•EC.(Ⅰ)求证:∠P=∠EDF;(Ⅱ)求证:CE•EB=EF•EP.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,已知曲线C1:(θ为参数),以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(2cosθ﹣sinθ)=6.(1)将曲线C1上的所有点的横坐标伸长为原来的倍,纵坐标伸长为原来的2倍后得到曲线C2,试写出直线l的直角坐标方程和曲线C2的参数方程;(2)在曲线C2上求一点P,使点P到直线l的距离最大,并求出此最大值.[选修4-5:不等式选讲]24.已知函数f(x)=|x+a|+|2x﹣1|(a∈R).(l)当a=1,求不等式f(x)≥2的解集;(2)若f(x)≤2x的解集包含[,1],求a的取值范围.2016-2017学年宁夏银川一中高三(上)第一次月考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2016秋•临猗县校级月考)设U=R,A={x|x2﹣3x﹣4>0},B={x|x2﹣4<0},则(∁U A)∩B=()A.{x|x≤﹣1,或x≥2}B.{x|﹣1≤x<2}C.{x|﹣1≤x≤4}D.{x|x≤4}【考点】交、并、补集的混合运算.【专题】集合思想;综合法;集合.【分析】分别求出集合A、B,从而求出A的补集,再求出其和B的交集即可.【解答】解:A={x|x2﹣3x﹣4>0}={x|x>4或x<﹣1},B={x|x2﹣4<0}={x|﹣2<x<2},则(∁U A)∩B=[﹣1,4]∩(﹣2,2)=[﹣1,2),故选:B.【点评】本题考查了集合的运算,考查解不等式问题,是一道基础题.2.(2016•海南校级三模)设i为虚数单位,复数(2﹣i)z=1+i,则z的共轭复数在复平面中对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数代数形式的乘除运算.【专题】转化思想;综合法;数系的扩充和复数.【分析】利用复数的运算法则、共轭复数的定义、几何意义即可得出.【解答】解:复数(2﹣i)z=1+i,∴(2+i)(2﹣i)z=(2+i)(1+i),∴z=则z的共轭复数=﹣i在复平面中对应的点在第四象限.故选:D.【点评】本题考查了复数的运算法则、共轭复数的定义、几何意义,考查了推理能力与计算能力,属于基础题.3.(2016•杭州校级模拟)若“x>a”是“x>1或x<﹣3”的充分不必要条件,则a的取值范围是()A.a≥1 B.a≤1 C.a≥﹣3 D.a≤﹣3【考点】必要条件、充分条件与充要条件的判断.【专题】数形结合;转化思想;不等式的解法及应用;简易逻辑.【分析】根据“x>a”是“x>1或x<﹣3”的充分不必要条件即可得出.【解答】解:∵“x>a”是“x>1或x<﹣3”的充分不必要条件,如图所示,∴a≥1,故选:A.【点评】本题考查了简易逻辑的判定方法、不等式的性质,考查了推理能力与计算能力,属于基础题.4.(2013秋•洛阳期末)下列函数中,既是偶函数又在(﹣∞,0)上单调递增的是()A.y=x2 B.y=2|x|C.y=log2D.y=sinx【考点】函数单调性的判断与证明;函数奇偶性的判断.【专题】函数的性质及应用.【分析】利用基本初等函数的性质逐一判断得出结论.【解答】解:对于A,由二次函数性质可知,函数又在(﹣∞,0)上单调递减,故排除A;对于B,由在(﹣∞,0)上y=得函数又在(﹣∞,0)上单调递减,故排除B;对于C,当x∈(﹣∞,0)时,y=,由复合函数的单调性可知,函数在(﹣∞,0)上单调递增,且由偶函数的定义可知函数为偶函数,故正确;对于D,由正弦函数的性质可知为奇函数,故排除D.故选C.【点评】考查学生对基本初等函数的性质单调性、奇偶性的掌握运用能力,可用排除法.5.(2014•钟祥市校级模拟)当0<x<1时,则下列大小关系正确的是()A.x3<3x<log3x B.3x<x3<log3x C.log3x<x3<3x D.log3x<3x<x3【考点】不等关系与不等式;对数值大小的比较.【专题】函数的性质及应用.【分析】因为0<x<1,所以可选取中间数0,1,利用对数函数、幂函数、指数函数的单调性即可比较出其大小.【解答】解:∵0<x<1,∴log3x<log31=0,0<x3<1,1=30<3x,∴,故选C.【点评】掌握对数函数、指数函数、幂函数的单调性是解题的前提.6.(2012•市中区校级一模)f(x)=﹣+log2x的一个零点落在下列哪个区间()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【考点】函数零点的判定定理.【专题】计算题.【分析】根据函数的实根存在定理,要验证函数的零点的位置,只要求出函数在区间的两个端点上的函数值,得到结果.【解答】解:根据函数的实根存在定理得到f(1)•f(2)<0.故选B.【点评】本题考查函数零点的判定定理,本题解题的关键是做出区间的两个端点的函数值,本题是一个基础题.7.(2016秋•荆州校级月考)已知f(x)=,则不等式x+2xf(x+1)>5的解集为()A.(1,+∞)B.(﹣∞,﹣5)∪(1,+∞)C.(﹣∞,﹣5)∪(0,+∞)D.(﹣5,1)【考点】一元二次不等式的解法.【专题】分类讨论;转化法;不等式的解法及应用.【分析】根据分段函数f(x)的解析式,讨论x的取值,解对应的不等式即可.【解答】解:由f(x)=知,当x+1>1,即x>0时,不等式x+2xf(x+1)>5可化为x+2•2x>5,解得x>1;当x+1≤1,即x≤0时,不等式x+2xf(x+1)>5可化为x﹣2x>5,解得x<﹣5;综上,不等式的解集为(﹣∞,﹣5)∪(1,+∞).故选:B.【点评】本题考查了分段函数与不等式的解法和应用问题,也考查了分类讨论思想的应用问题,是基础题目.8.(2013•北京)函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x﹣1C.e﹣x+1 D.e﹣x﹣1【考点】函数解析式的求解及常用方法;函数的图象与图象变化.【专题】函数的性质及应用.【分析】首先求出与函数y=e x的图象关于y轴对称的图象的函数解析式,然后换x为x+1即可得到要求的答案.【解答】解:函数y=e x的图象关于y轴对称的图象的函数解析式为y=e﹣x,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y轴对称,所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e﹣x﹣1.故选D.【点评】本题考查了函数解析式的求解与常用方法,考查了函数图象的对称变换和平移变换,函数图象的平移遵循“左加右减,上加下减”的原则,是基础题.9.(2014•江岸区校级模拟)已知函数f(x)=e|x|+x2,(e为自然对数的底数),且f(3a﹣2)>f(a﹣1),则实数a的取值范围是()A. B.C.D.【考点】函数单调性的性质.【专题】计算题.【分析】先判定函数的奇偶性和单调性,然后将f(3a﹣2)>f(a﹣1)转化成f(|3a﹣2|)>f(|a﹣1|),根据单调性建立不等关系,解之即可.【解答】解:∵f(x)=e|x|+x2,∴f(﹣x)=e|﹣x|+(﹣x)2=e|x|+x2=f(x)则函数f(x)为偶函数且在[0,+∞)上单调递增∴f(﹣x)=f(x)=f(|﹣x|)∴f(3a﹣2)=f(|3a﹣2|)>f(a﹣1)=f(|a﹣1|),即|3a﹣2|>|a﹣1|两边平方得:8a2﹣10a+3>0解得a<或a>故选A.【点评】本题主要考查了函数的单调性和奇偶性的综合应用,绝对值不等式的解法,同时考查了转化的思想和计算能力,属于属于基础题.10.(2016春•厦门校级期末)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【考点】函数的图象.【专题】图表型;分析法;函数的性质及应用.【分析】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D【点评】本题考查的知识点是函数的图象,对于超越函数的图象,一般采用排除法解答.11.(2015秋•韶关期末)已知定义在R上的函数y=f(x)满足:函数y=f(x﹣1)的图象关于直线x=1对称,且当x∈(﹣∞,0),f(x)+xf′(x)<0(f′(x)是函数f(x)的导函数)成立.若,b=(ln2)•,则a,b,c的大小关系是()A.a>b>c B.b>a>c C.c>a>b D.a>c>b【考点】对数值大小的比较.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】由导数性质推导出当x∈(﹣∞,0)或x∈(0,+∞)时,函数y=xf(x)单调递减.由此能求出结果.【解答】解:∵函数y=f(x﹣1)的图象关于直线x=1对称,∴y=f(x)关于y轴对称,∴函数y=xf(x)为奇函数.∵[xf(x)]'=f(x)+xf'(x),∴当x∈(﹣∞,0)时,[xf(x)]'=f(x)+xf'(x)<0,函数y=xf(x)单调递减,当x∈(0,+∞)时,函数y=xf(x)单调递减.∵,,,,∴a>b>c.故选:A.【点评】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意导数性质、函数性质的合理运用.12.(2015•郴州模拟)已知函数f(x)=,若方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则x3(x1+x2)+的取值范围是()A.(﹣1,+∞)B.(﹣1,1] C.(﹣∞,1)D.[﹣1,1)【考点】函数的零点与方程根的关系.【专题】计算题;作图题;函数的性质及应用.【分析】作函数f(x)=的图象如下,由图象可得x1+x2=﹣2,x3x4=1;1<x4≤2;从而化简x3(x1+x2)+,利用函数的单调性求取值范围.【解答】解:作函数f(x)=,的图象如下,由图可知,x1+x2=﹣2,x3x4=1;1<x4≤2;故x3(x1+x2)+=﹣+x4,其在1<x4≤2上是增函数,故﹣2+1<﹣+x4≤﹣1+2;即﹣1<﹣+x4≤1;故选B.【点评】本题考查了分段函数的应用,属于中档题.二、填空题:本大题共4小题,每小题5分.13.(2016秋•襄城区校级月考)f(x)=的定义域为(0,2).【考点】函数的定义域及其求法.【专题】计算题;函数思想;数学模型法;函数的性质及应用.【分析】由分母中根式内部的代数式大于0,然后求解对数不等式得答案.【解答】解:由1﹣log2x>0,得log2x<1,解得0<x<2.∴f(x)=的定义域为(0,2).故答案为:(0,2).【点评】本题考查函数的定义域及其求法,考查了对数不等式的解法,是基础题.14.已知函数y=f(x﹣1)是奇函数,且f (2)=1,则f (﹣4)=﹣1.【考点】函数奇偶性的性质.【专题】综合题;转化思想;演绎法;函数的性质及应用.【分析】先推得函数y=f(x)的图象关于点(﹣1,0)中心对称,由此得出恒等式:f(x)+f(﹣2﹣x)=0,再令x=2代入即可解出f(﹣4).【解答】解:因为函数y=f(x﹣1)是奇函数,所以y=f(x﹣1)的图象点(0,0)中心对称,而f(x﹣1)的图象向左平移一个单位,即得f(x)的图象,所以,y=f(x)的图象关于点(﹣1,0)中心对称,因此,对任意的实数x都有,f(x)+f(﹣2﹣x)=0,令x=2代入上式得,f(2)+f(﹣4)=0,由于f(2)=1,所以,f(﹣4)=﹣1,故答案为:﹣1.【点评】本题主要考查了抽象函数的图象和性质,涉及奇偶性的应用,函数图象对称中心的性质,属于中档题.15.(2016春•德宏州校级期末)已知f(x)为偶函数,当x<0时,f(x)=ln(﹣x)+3x,则曲线y=f(x)在点(1,﹣3)处的切线方程是2x+y+1=0.【考点】利用导数研究曲线上某点切线方程.【专题】方程思想;函数的性质及应用;导数的概念及应用.【分析】由偶函数的定义,可得f(﹣x)=f(x),即有x>0时,f(x)=lnx﹣3x,求出导数,求得切线的斜率,由点斜式方程可得切线的方程.【解答】解:f(x)为偶函数,可得f(﹣x)=f(x),当x<0时,f(x)=ln(﹣x)+3x,即有x>0时,f(x)=lnx﹣3x,f′(x)=﹣3,可得f(1)=ln1﹣3=﹣3,f′(1)=1﹣3=﹣2,则曲线y=f(x)在点(1,﹣3)处的切线方程为y﹣(﹣3)=﹣2(x﹣1),即为2x+y+1=0.故答案为:2x+y+1=0.【点评】本题考查导数的运用:求切线的方程,同时考查函数的奇偶性的定义和运用,考查运算能力,属于中档题.16.(2016•绍兴二模)已知函数f(x)=,若关于x的方程f2(x)﹣af(x)=0恰有5个不同的实数解,则a的取值范围是(0,1).【考点】根的存在性及根的个数判断.【专题】作图题;函数的性质及应用.【分析】作f(x)的图象,从而由f2(x)﹣af(x)=f(x)(f(x)﹣a)=0可得f(x)=a 有三个不同的解,从而结合图象解得.【解答】解:作f(x)的图象如下,,f2(x)﹣af(x)=f(x)(f(x)﹣a)=0,∴f(x)=0或f(x)=a;∵f(x)=0有两个不同的解,故f(x)=a有三个不同的解,故a∈(0,1);故答案为:(0,1).【点评】本题考查了函数的零点与方程的根的关系应用.三、解答题:本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(12分)(2016秋•庄浪县校级月考)有两个命题,p:关于x的不等式a x>1(a>0,且a≠1)的解集是{x|x<0};q:函数y=lg(ax2﹣x+a)的定义域为R.如果p∨q为真命题,p∧q为假命题,求实数a的取值范围.【考点】复合命题的真假.【专题】函数的性质及应用;不等式的解法及应用;简易逻辑.【分析】对于命题p:利用指数函数的单调性可得:0<a<1.对于命题q:函数y=lg(ax2﹣x+a)的定义域为R.等价于∀x∈R,ax2﹣x+a>0.对a分类讨论,利用函数的图象与性质即可得出.如果p∨q为真命题,p∧q为假命题,则p真q假,或p假q真,即可得出.【解答】解:p:关于x的不等式a x>1(a>0,且a≠1)的解集是{x|x<0},∴0<a<1.q:函数y=lg(ax2﹣x+a)的定义域为R.等价于∀x∈R,ax2﹣x+a>0.如果p∨q为真命题,p∧q为假命题,求实数a的取值范围.(i)a=0 不成立.(ii)a≠0 时,,解得,即q:a.如果p∨q为真命题,p∧q为假命题,则p真q假,或p假q真,∴或,解得,或a≥1.∴实数a的取值范围是,或a≥1.【点评】本题考查了不等式的解法、简易逻辑的判定方法、函数的性质,考查了推理能力与计算能力,属于中档题.18.(12分)(2016春•德州期末)某厂生产某种产品的年固定成本为250万元,每生产x万件,需另投入的成本为C(x)(单位:万元),当年产量小于80万件时,C(x)=x2+10x;当年产量不小于80万件时,C(x)=51x+﹣1450.假设每万件该产品的售价为50万元,且该厂当年生产的该产品能全部销售完.(1)写出年利润L(x)(万元)关于年产量x(万件)的函数关系式;(2)年产量为多少万件时,该厂在该产品的生产中所获利润最大?最大利润是多少?【考点】函数模型的选择与应用;函数解析式的求解及常用方法.【专题】应用题;函数的性质及应用.【分析】(1)分两种情况进行研究,当0<x<80时,投入成本为(万元),根据年利润=销售收入﹣成本,列出函数关系式,当x≥80时,投入成本为,根据年利润=销售收入﹣成本,列出函数关系式,最后写成分段函数的形式,从而得到答案;(2)根据年利润的解析式,分段研究函数的最值,当0<x<80时,利用二次函数求最值,当x≥80时,利用基本不等式求最值,最后比较两个最值,即可得到答案.【解答】解:(1)∵每件商品售价为0.005万元,∴x千件商品销售额为0.005×1000x万元,①当0<x<80时,根据年利润=销售收入﹣成本,∴=;②当x≥80时,根据年利润=销售收入﹣成本,∴=.综合①②可得,.(2)由(1)可知,,①当0<x<80时,=,∴当x=60时,L(x)取得最大值L(60)=950万元;②当x≥80时,=1200﹣200=1000,当且仅当,即x=100时,L(x)取得最大值L(100)=1000万元.综合①②,由于950<1000,∴当产量为10万件时,该厂在这一商品中所获利润最大,最大利润为1000万元.【点评】本题主要考查函数模型的选择与应用.解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型.本题建立的数学模型为分段函数,对于分段函数的问题,一般选用分类讨论和数形结合的思想方法进行求解.属于中档题.19.(12分)(2013•合肥二模)已知函数f(x)的图象与函数h(x)=x++2的图象关于点A(0,1)对称.(Ⅰ)求f(x)的解析式;(Ⅱ)若g(x)=x2•[f(x)﹣a],且g(x)在区间[1,2]上为增函数,求实数a的取值范围.【考点】函数单调性的性质;函数解析式的求解及常用方法;奇偶函数图象的对称性.【专题】函数的性质及应用.【分析】(I)先设f(x)的图象上任一点P(x,y),再由点点对称求出对称的坐标,由题意把对称点的坐标代入h(x)的解析式,进行整理即可;(II)由(I)求出g(x)的解析式,再求出导数,将条件转化为:3x2﹣2ax+1≥0在区间[1,2]上恒成立,再分离出常数a,利用函数y=在区间[1,2]上的单调性求出函数的最小值,再求出a的范围.【解答】解:(I)设f(x)的图象上任一点P(x,y),则点P关于点A(0,1)对称P′(﹣x,2﹣y)在h(x)的图象上,∴2﹣y=﹣x﹣+2,得y=,即f(x)=,(II)由(I)得,g(x)=x2•[f(x)﹣a]=x2•[﹣a]=x3﹣ax2+x,则g′(x)=3x2﹣2ax+1,∵g(x)在区间[1,2]上为增函数,∴3x2﹣2ax+1≥0在区间[1,2]上恒成立,即a≤()在区间[1,2]上恒成立,∵y=在区间[1,2]上递增,故此函数的最小值为y=4,则a≤4=2.【点评】本题考查了利用轨迹法求函数解析式,导数与函数单调性、最值问题,以及恒成立问题,考查了转化思想.20.(12分)已知f(x)═ax﹣﹣51nx,g(x)=x2﹣mx+4(1)若x=2是函数f(x)的极值点,求a的值;(2)当a=2时,若∃x1∈(0,1),∀x2∈[1,2]都有f(x1)≥g(x2)成立,求实数m的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的极值.【专题】综合题;转化思想;演绎法;导数的概念及应用.【分析】(1)利用x=2是函数f(x)的极值点,求出f′(2)=0,即可求出a的值;(2)对g(x)进行配方,讨论其最值问题,根据题意∃x1∈(0,1),∀x2∈[1,2],总有f(x1)≥g(x2)成立,只要要求f(x)max≥g(x)max,即可,从而求出m的范围.【解答】解:(1)∵f(x)═ax﹣﹣51nx,∴f′(x)═a+﹣,∵x=2是函数f(x)的极值点,∴f′(2)═a+﹣=0,∴a=2,经检验a=2,x=2是函数f(x)的极值点;(2)当a=2时,f(x)=2x﹣﹣5lnx,g(x)=x2﹣mx+4=+4﹣,∃x1∈(0,1),∀x2∈[1,2],总有f(x1)≥g(x2)成立,∴要求f(x)的最大值大于g(x)的最大值即可,f′(x)=,令f′(x)=0,解得x1=,x2=2,当0<x<,x>2时,f′(x)>0,f(x)为增函数;当<x<2时,f′(x)<0,f(x)为减函数.∵x1∈(0,1),∴f(x)在x=出取得极大值,也是最大值,∴f(x)max=f()=1﹣4+5ln2=5ln2﹣3,∵g(x)=x2﹣mx+4=+4﹣,若m≤3,g max(x)=g(2)=4﹣2m+4=8﹣2m,∴5ln2﹣3≥8﹣2m,∴m≥,∵>3,故m不存在;若m>3时,g max(x)=g(1)=5﹣m,∴5ln2﹣3≥5﹣m,∴m≥8﹣5ln2.【点评】本题考查了利用导数研究函数的单调性极值与最值、通过构造函数研究函数的单调性解决问题的方法,考查了转化能力、推理能力与计算能力,属于难题.21.(12分)(2016•抚顺一模)已知函数f(x)=﹣x2+alnx(a∈R).(Ⅰ)当a=2时,求函数f(x)在点(1,f(1))处的切线方程;(Ⅱ)若函数g(x)=f(x)﹣2x+2x2,讨论函数g(x)的单调性;(Ⅲ)若(Ⅱ)中函数g(x)有两个极值点x1,x2(x1<x2),且不等式g(x1)≥mx2恒成立,求实数m的取值范围.【考点】利用导数研究函数的极值;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【专题】综合题;转化思想;综合法;导数的概念及应用.【分析】(Ⅰ)求当a=2时,函数的导数,求得切线的斜率和切点,由点斜式方程即可得到切线方程;(Ⅱ)求出g(x)的导数,分类讨论,令导数大于0,得增区间,令导数小于0,得减区间;(Ⅲ)不等式g(x1)≥mx2恒成立即为≥m,求得=1﹣x1++2x1lnx1,令h(x)=1﹣x++2xlnx(0<x<),求出导数,判断单调性,即可得到h(x)的范围,即可求得m的范围.【解答】解:(Ⅰ)因为当a=2时,f(x)=﹣x2+2lnx,所以f′(x)=﹣2x+.因为f(1)=﹣1,f'(1)=0,所以切线方程为y=﹣1;(Ⅱ)g(x)=x2﹣2x+alnx的导数为g′(x)=2x﹣2+=,a≤0,单调递增区间是(,+∞);单调递减区间是(0,);0<a<,单调递增区间是(0,),(,+∞);单调递减区间是(,);a≥,g(x)的单调递增区间是(0,+∞),无单调递减区间;(Ⅲ)由(II)函数g(x)有两个极值点x1,x2(x1<x2),0<a<,x1+x2=1,0<x1<,<x2<1=1﹣x1++2x1lnx1,令h(x)=1﹣x++2xlnx(0<x<),h′(x)=+2lnx,由0<x<,则<0,又2lnx<0,则h′(x)<0,即h(x)在(0,)递减,即有h(x)>h()=﹣﹣ln2,即m≤﹣﹣ln2,即有实数m的取值范围为(﹣∞,﹣﹣ln2].【点评】本题考查导数的运用:求切线方程和单调区间,主要考查导数的几何意义,同时考查函数的单调性的运用,以及不等式恒成立问题转化为求函数的最值或范围,属于中档题.[选修4-1:几何证明选讲]22.(10分)(2015•海南模拟)如图所示,已知PA与⊙O相切,A为切点,PBC为割线,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且DE2=EF•EC.(Ⅰ)求证:∠P=∠EDF;(Ⅱ)求证:CE•EB=EF•EP.【考点】与圆有关的比例线段.【专题】证明题.【分析】(1)根据所给的乘积式和对应角相等,得到两个三角形相似,由相似得到对应角相等,再根据两直线平行内错角相等,角进行等量代换,得到要证的结论.(2)根据第一问所得的结果和对顶角相等,得到两个三角形相似,根据三角形相似得到对应线段成比例,把比例式转化为乘积式,再根据相交弦定理得到比例式,等量代换得到结果.【解答】证明:(1)∵DE2=EF•EC,∴DE:CE=EF:ED.∵∠DEF是公共角,∴△DEF∽△CED.∴∠EDF=∠C.∵CD∥AP,∴∠C=∠P.∴∠P=∠EDF.(2)∵∠P=∠EDF,∠DEF=∠PEA,∴△DEF∽△PEA.∴DE:PE=EF:EA.即EF•EP=DE•EA.∵弦AD、BC相交于点E,∴DE•EA=CE•EB.∴CE•EB=EF•EP.【点评】本题考查三角形相似的判定和性质,考查两条直线平行的性质定理,考查相交弦定理,是一个比较简单的综合题目.[选修4-4:坐标系与参数方程]23.(2016春•宁夏校级期末)在平面直角坐标系xOy中,已知曲线C1:(θ为参数),以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(2cosθ﹣sinθ)=6.(1)将曲线C1上的所有点的横坐标伸长为原来的倍,纵坐标伸长为原来的2倍后得到曲线C2,试写出直线l的直角坐标方程和曲线C2的参数方程;(2)在曲线C2上求一点P,使点P到直线l的距离最大,并求出此最大值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【专题】方程思想;转化思想;坐标系和参数方程.【分析】(1)直线l:ρ(2cosθ﹣sinθ)=6.把x=ρcosθ,y=ρsinθ代入可得直角坐标方程.由曲线C1:(θ为参数),将曲线C1上的所有点的横坐标伸长为原来的倍,纵坐标伸长为原来的2倍后得到曲线C2的参数方程:(α为参数).(2)设P,点P到直线l的距离d==,利用三角函数的单调性与值域即可得出.【解答】解:(1)直线l:ρ(2cosθ﹣sinθ)=6.可得:直线l的直角坐标方程为:2x﹣y﹣6=0.由曲线C1:(θ为参数),将曲线C1上的所有点的横坐标伸长为原来的倍,纵坐标伸长为原来的2倍后得到曲线C2的参数方程:(α为参数).(2)设P,点P到直线l的距离d==.∴当=﹣1时,d取得最大值=2,此时P.【点评】本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、点到直线的距离公式、三角函数的值域,考查了推理能力与计算能力,属于中档题.[选修4-5:不等式选讲]24.(2014•河南模拟)已知函数f(x)=|x+a|+|2x﹣1|(a∈R).(l)当a=1,求不等式f(x)≥2的解集;(2)若f(x)≤2x的解集包含[,1],求a的取值范围.【考点】绝对值不等式的解法.【专题】不等式.【分析】对第(1)问,利用零点分段法,令|x+1|=0,|2x﹣1|=0,获得分类讨论的标准,最后取各部分解集的并集即可;对第(2)问,不等式f(x)≤2x的解集包含[,1],等价于f(x)≤2x在[,1]内恒成立,由此去掉一个绝对值符号,再探究f(x)≤2x的解集与区间[,1]的关系.【解答】解:(1)当a=1时,由f(x)≥2,得|x+1|+|2x﹣1|≥2,①当x≥时,原不等式可化为(x+1)+(2x﹣1)≥2,得x≥,∴x≥;②当﹣1≤x<时,原不等式可化为(x+1)﹣(2x﹣1)≥2,得x≤0,∴﹣1≤x≤0;③当x<﹣1时,原不等式可化为﹣(x+1)﹣(2x﹣1)≥2,得x≤,∴x<﹣1.综上知,原不等式的解集为{x|x≤0,或}.(2)不等式f(x)≤2x的解集包含[,1],等价于f(x)≤2x在[,1]内恒成立,从而原不等式可化为|x+a|+(2x﹣1)≤2x,即|x+a|≤1,∴当x∈[,1]时,﹣a﹣1≤x≤﹣a+1恒成立,∴,解得,故a的取值范围是[﹣].【点评】1.本题考查了含两个绝对值不等式的解法,一般有零点分段法,函数图象法等.2.第(2)问的关键是将条件转换成不等式恒成立问题,这也是本题的难点所在.。
宁夏银川一中2017-2018学年高二上学期期中考试数学试题 Word版含答案
银川一中2017-2018学年度(上)高二期中考试数 学 试 卷本试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。
第Ⅰ卷(共60分)一、选择题(本大题共12小题,每小题5分,共60分,) 1.若0<<b a ,则下列不等式中不成立的是( ) A .||||b a >B .ab a 11>- C .ba 11> D .22b a >2.下列不等式的解集是R 的为( )A .0122>++x x B .02>x C .01)21(>+xD .xx 131<- 3.满足2,6,45===a c A 的△ABC 的个数为m ,则a m 的值为( )A .4B .2C .1D .不确定 4.在△ABC 中,bc c b a ++=222,则A 等于( ) A .60°B .45°C .120°D .30°5.在各项都为正数的等比数列}{n a 中,a 1=3,前三项和为21,则a 3 + a 4 + a 5 =( ) A .33B .72C .84D .1896.一个等差数列共有10项,其中偶数项的和为15,则这个数列的第6项是( ) A .3B .4C .5D .67.在△ABC 中,4:2:3sin :sin :sin =C B A ,则cosC 的值为 ( )A .32B .32-C .41 D .41-8.数列{x n }满足)2(211,32,11121≥=+==+-n x x x x x nn n 且,则x n 等于( ) A .11+n B .1)32(-nC .n)32(D .12+n 9.在△ABC 中,若a 、b 、c 成等比数例,且c = 2a ,则cos B 等于( )A .41 B .43 C .42 D .32 10.正数a 、b 的等差中项是21,且βαβα++=+=则,1,1bb a a 的最小值是( )A .3B .4C .5D .611.在△ABC 中,若2lg sin lg cos lg sin lg =--C B A ,则△ABC 是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形12.某人为了观看2018年世界杯,从2011年起,每年8月10日到银行存入a 元定期储蓄,若年利率为P ,且保持不变,并约定每年到期存款均自动转为新的一年定期,到2018年8月10日将所有存款和利息全部取回,则可取回的钱的总数(元)为( )A .7)1(p a +B .8)1(p a +C .)]1()1[(7p p pa+-+ D .)]1()1[(8p p pa+-+ 第Ⅱ卷(共90分)二、填空题(本题共4个小题,每小题5分,共20分) 13.若关于x 的不等式mx x x >+-2212的解集为}20|{<<x x ,则m 的值为 . 14.设a 、R b ∈,且a + b = 3,则2a + 2b 的最小值是 .15.根据下图中5个图形及相应点的个数的变化规律,试猜测第n 个图中有 个点.16.在22738和之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为 . 三、解答题(本题共6小题,共70分,解答应写出文字说明,证明过程或推演步骤) 17.(本小题满分10分)一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4t ,硝酸盐18t ;生产1车乙种肥料的主要原料是磷酸盐1t 、硝酸盐15t 。
2017届宁夏银川一中高三上学期第一次月考文科数学试卷及答案
银川一中2017届高三年级第一次月考数 学 试 卷(文)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U 是实数集R ,M=}31|{},4|{2≤<=>x x N x x ,则图中阴影部分所表示的集合是( )A .}12|{<≤-x xB .}22|{≤≤-x xC .}21|{≤<x xD .}2|{<x x2.下列函数中既是奇函数,又在区间()1,1-上是增函数的为( ) A .y x = B .3y x =- C .x x y e e -=+ D .sin y x = 3.实数0.2,a b c ===的大小关系正确的是( )A .a c b <<B .a b c <<C .b a c <<D .b c a <<4.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=( ).A . -1B .-eC .1D .e 5.根据表格中的数据,可以断定函数3()ln f x x x=-的零点所在的区间是 ( )A .(1,2)B .(2,e)C .(e,3)D .(3,5)6.已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若则sinC=( )A .1B . 21C .22 D .237.下列四个ss:①ss “若1,0232==+-x x x 则”的逆否ss 为“若023,12≠+-≠x x x 则”; ②“x>2”是“0232>+-x x ”的充分不必要条件; ③若p ∧q 为假ss ,则p,q 均为假ss;④对于ss 01,:,01,:22≥++∈∀⌝<++∈∃x x R x p x x R x p 均有为则使得. 其中,错误的ss 的个数是( )A .1个B .2个C .3个D .4个8.若函数y =()g x 与函数()2x f x =的图像关于直线y x =对称,则1()2g 的值为( ) A.1 C .12D .1- 9.已知函数sin()y x ωϕ=+,(0,0)2πωϕ><≤,且此函数的图象如图所示,则点P ωϕ(,)的坐标为( ) A .(2,2π) B .(4,2π) C .(2,4π)D .(4,4π)10.若实数y x ,满足01ln |1|=--x ,则y 关于x 的函数的图象大致是( ).11.已知奇函数()x f 在()0,∞-上单调递减,且()02=f ,则不等式()()11--x f x >0的解集是( )A. ()1,3--B. ()()+∞-,21,3C. ()()+∞-,30,3D. ()()3,11,1 - 12.若关于x 的方程||()e ||x f x x =+=k.有两个不同的实根,则实数k 的取值范围是( )A .(0,1)B .(1,)+∞C .(1,0)-D .(,1)-∞-第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分,共20分. 13.函数)(x f 对于任意实数x 满足条件)(1)2(x f x f =+,若5)1(-=f , 则))5((f f = 。
宁夏银川一中2017-2018学年高一上学期第一次月考数学试卷
银川一中2017/2018学年度(上)高一第一次月考数 学 试 卷命题人:尹向阳第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。
1.已知集合M ={-1,0,1,3,5},N ={-2,1,2,3,5},则=⋂N M ( ) A .{-1,1,3} B .{1,2,5} C .{1,3,5} D .φ2.已知全集U =R ,集合{}|23A x x =-≤≤,{}|14B x x x =<->或,那么集合)(B C A U ⋂等于( )A .{}|24x x -<≤ B .{}|34x x x 或≤≥ C .{}|21x x -<-≤D .{}|13x x -≤≤3.下列函数f (x )与g (x )表示同一函数的是 ( ) A .f (x )=x 0与g (x )=1 B .1)(2-=x x f 与 11)(+⋅-=x x x gC .f (x )= |x | 与g (x )=2D .f (x )=x 与g (x4.设集合{}20|≤≤=x x A ,{}20|≤≤=y x B ,则下列四个图形中,能表示从集合A 到集合B 的函数关系的是( )A .①②③④B .①②③C .②③D .②5.函数y =的值域为 ( )A .[]0,2B .[]0,4C .(],4-∞D .[)0,+∞ 6.函数f (x )=1122--x x 的定义域是( ) A .⎪⎭⎫⎢⎣⎡+∞,21 B .()+∞,1 C .()+∞⋃⎪⎭⎫⎢⎣⎡,11,21 D .()+∞⋃⎥⎦⎤ ⎝⎛-,121,17.已知⎩⎨⎧>-<+=044)(x x x x x f ,则)]3([-f f 的值为( ) A .3B .2C .-2D .-38.如果函数f (x )=x 2+2(a -1)x +2在区间[)+∞,4上是递增的,那么实数a 的取值范围是( ) A .a ≤-3 B .a ≥-3 C .a ≤5 D .a ≥5 9.若)1(-x f 的定义域为[1,2],则)2(+x f 的定义域为( ) A .[0,1]B .[2,3]C .[-2,-1]D .无法确定10.设a 为常数,函数34)(2+-=x x x f . 若()f x a +为偶函数,则a 等于( )A. -2B. 2C. -1D. 111.设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( )A .{}|303x x x -<<>或 B .{}|303x x x <-<<或 C .{}|33x x x <->或D .{}|3003x x x -<<<<或12.已知函数⎩⎨⎧<-≥+=0,40,4)(22x x x x x x x f 若2(2)(),f a f a ->则实数a 的取值范围是( )A .(2,1)-B .(1,2)-C .(,1)(2,)-∞-⋃+∞D .(,2)(1,)-∞-⋃+∞第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在答题卷的相应位置。
宁夏银川市2017-2018学年高二数学上学期第一次月考试题(1)
宁夏银川市2017-2018学年高二数学上学期第一次月考试题 一、选择题1.命题“042,2≤+-∈∀x x R x ”的否定为( ) A .042,2≥+-∈∀x x R x B .042,2≤+-∉∀x x R x C .042,020>+-∈∃x x R x D .042,020>+-∉∃x x R x2.下列结论正确的是( )A .事件A 的概率P (A )必有0〈P (A )〈1B .事件A 的概率P (A )=0.999,则事件A 是必然事件C .用某种药物对患有胃溃疡的500名病人治疗,结果有380人有明显的疗效,现有胃溃疡的病人服用此药,则估计其有明显的疗效的可能性为76%D .某奖券中奖率为50%,则某人购买此券10张,一定有5张中奖3.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口 都会随机地选择一条路径,则它能获得食物的概率为( )A 。
B 。
C 。
D 。
4.某中学有高中生3500人,初中生1500人。
为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取了70人,则n 为( ) A 。
100 B 。
150 C 。
200 D 。
2505.某校从参加高二年级数学测试的学生中抽出了100 名学生,其数学成绩的频率分布直方图如图所示,其 中成绩分组区间是[40,50),[50,60),[60,70),[70,80), [80,90),[90,100],则成绩在[80,100]上的人数是( ) A .70 B .60 C .35 D .306.某程序框图如图所示,若输出的结果是126,则判断框中可以是( )A .?6>iB .?7>iC .?6≥iD .?5≥i7。
如图,在边长为a 的正方形内有不规则图形Ω. 向正方形内随机撒豆子,若撒在图形Ω 内和正方形内的豆子数分别为n m ,,则图形Ω面积的估计值为( )A. n maB. m naC. nma 2 D 。
宁夏银川一中高二上学期期末考试数学(理)试题Word版含答案
银川一中2017/2018学年度(上)高二期末考试数学试卷(理科)命题教师:一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足i i z -=+1)1((i 是虚数单位),则z 的共轭复数z = A .i - B .i 2- C .i D .i 22.演绎推理是A .部分到整体,个别到一般的推理B .特殊到特殊的推理C .一般到一般的推理D .一般到特殊的推理3.用数学归纳法证明:“1+a +a 2+…+a 2n+1=aa n --+1112(a ≠1)”,在验证n =1时,左端计算所得项为A .1+aB .1+a +a 2+a 3C .1+a +a 2D .1+a +a 2+a 3+a 4 4.双曲线8822=-ky kx 的一个焦点是(0,-3),则k 的值是 A .1B .-1C .315 D .-315 5.在正方体ABCD —A 1B 1C 1D 1中,E 是AD 的中点,则异面直线C 1E 与BC 所成的角的余弦值是 A .510B .1010C .31D .3226.已知椭圆C :22221x y a b +=(0)a b >>的左、右焦点为1F 、2F ,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为C 的方程为A .22132x y +=B .2213x y += C .221128x y += D .221124x y +=7.曲线1x y xe -=在点(1,1)处切线的斜率等于 A .2eB .eC .2D .18.已知函数f (x )=x 2(ax +b )(a ,b ∈R )在x =2时有极值,其图象在点(1,f (1))处的切线与直线3x +y =0平行,则函数f (x )的单调减区间为A .(-∞,0)B .(0,2)C .(2,+∞)D .(-∞,+∞) 9.已知函数53)(23-+-=x ax x x f 在区间[1,2]上单调递增,则a 的取值范围是A .]5,(-∞B .)5,(-∞C .]437,(-∞ D .]3,(-∞10.设函数()()()()()222,2,0,8x e e f x x f x xf x f x f x x '+==>满足则时,A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值11.设双曲线12222=-by a x (a >0,b >0)的右焦点为F ,过点F 作与x 轴垂直的直线l 交两渐近线于A 、B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点, 若),(R OB OA OP ∈+=μλμλ,163=λμ,则该双曲线的离心率为 A .332 B .553 C .223 D .8912.已知函数f (x )=1a x x ⎛⎫-⎪⎝⎭-2lnx (a ∈R ),g (x )=ax-,若至少存在一个x 0∈[1,e ],使得f (x 0)>g (x 0)成立,则实数a 的取值范围为A .[1,+∞)B .(1,+∞)C .[0,+∞)D .(0,+∞) 二、填空题:本大题共4小题,每小题5分. 13.观察下列不等式213122+< 231151233++<, 474131211222<+++……照此规律,第五个...不等式为 .14.已知抛物线)0(22>=p px y ,过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为 . 15.若⎰+=12)(2)(dx x f x x f ,则⎰=1)(dx x f .16.已知椭圆12222=+by a x (0)a b >>的左、右焦点分别为F 1,F 2,点A 为椭圆的上顶点,B 是直线 A F 2与椭圆的另一个交点,且B AF AF F 1021,60∆=∠的面积为340,则a 的值是 .三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本大题满分10分)已知动圆C 过点A (-2,0),且与圆M :(x -2)2+y 2=64相内切求动圆C 的圆心的轨迹方程.18.(本大题满分12分)已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1时都取得极值 (1)求a ,b 的值与函数f (x )的单调区间(2)若对x ∈〔-1,2〕,不等式f (x )<c 2恒成立,求c 的取值范围19.(本大题满分12分)如图,正三棱柱111ABC A B C -的所有棱长都为2,D角坐标系。
2017-2018学年宁夏银川市第一中学高二数学上期末考试(理)试题
银川一中2017/2018 学年度(上)高二期末考试数学试卷(理科)命题教师:、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是 符合题目要求的.1.若复数z 满足z(1 • i) =1 — i ( i 是虚数单位),则z 的共轭复数;=A .-i2•演绎推理是J 荷C.——3329.已知函数f(x)=3x -ax ・x-5在区间[1 , 2]上单调递增,则 a 的取值范围是A •部分到整体,个别到一般的推理B .特殊到特殊的推理C . 一般到一般的推理D . 一般到特殊的推理2 ' 3.用数学归纳法证明: “1a+a+…+a‘2n+11 _a 2n 1(a M 1),在验证n=1时,左端计算所得项为 A . 1+aB . 1+a+a 2+a 3C . 1+a+a 22 3 4D . 1+a+a +a +a 24.双曲线8kx2-ky=8的一个焦点是(0,- 3),贝U k 的值是 5.在正方体 ABCD — A 1B 1C 1D 1中,E 是AD 的中点,则异面直线C 1E 与BC 所成的角的余弦值是10 106.已知椭圆 C : 2x一 +2a(a • b 0)的左、右焦点为 F 1、F 2,离心率为—,过F 2的3直线I 交C 于A 、 B 两点, 若厶AF 1B 的周长为4'、3 ,则C 的方程为2xA .32y=122 2x 2c x+ y =1 C .31 22xD .1 2=17.曲线y (1,1)处切线的斜率等于A . 2eC .28 .已知函数f(x)=x (ax+b)(a,b € R)在x=2时有极值,其图象在点 (1,f(1))处的切线与直线3x+y=0平行,则函数f(x)的单调减区间为 A .(- 8, 0)B . ( 0, 2)C . ( 2, +8)D . (- 8, +8)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
银川一中2017/2018学年度(上)高二第一次月考数 学 试 卷命题人:赵文博一、选择题1.命题“042,2≤+-∈∀x x R x ”的否定为( )A .042,2≥+-∈∀x x R xB .042,2≤+-∉∀x x R xC .042,0200>+-∈∃x x R xD .042,0200>+-∉∃x x R x2.下列结论正确的是( )A .事件A 的概率P (A )必有0<P (A )<1B .事件A 的概率P (A )=0.999,则事件A 是必然事件C .用某种药物对患有胃溃疡的500名病人治疗,结果有380人有明显的疗效,现有胃溃疡的病人服用此药,则估计其有明显的疗效的可能性为76%D .某奖券中奖率为50%,则某人购买此券10张,一定有5张中奖3.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它能获得食物的概率为( ) A. 12 B. 13 C. 38 D. 584.某中学有高中生3500人,初中生1500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取了70人,则n 为( )A.100B.150C.200D. 2505.某校从参加高二年级数学测试的学生中抽出了100名学生,其数学成绩的频率分布直方图如图所示,其中成绩分组区间是[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],则成绩在[80,100]上的人数是( )A .70B .60C .35D .306.某程序框图如图所示,若输出的结果是126,则判断框中可以是( )A .?6>iB .?7>iC .?6≥iD .?5≥i7. 如图,在边长为a 的正方形内有不规则图形Ω. 向正方形内随机撒豆子,若撒在图形Ω 内和正方形内的豆子数分别为n m ,,则图形Ω面积的估计值为( ) A. n ma B. m na C. n ma 2D. mna 28.如图是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,甲、乙两人这几场比赛得分的平均数分别为x 甲,x 乙;标准差分别是s 甲,s 乙,则有( ) A. x 甲 <x 乙,s 甲<s 乙 B. x 甲 <x 乙,s 甲>s 乙 C. x 甲 >x 乙,s 甲<s 乙 D. x 甲 >x 乙,s 甲>s 乙9.平面内有两定点B A ,,且4=AB ,动点P 4=+,则点P 的轨迹是( )A .线段B .半圆C .圆D .直线10.已知ABCD 为长方形,1,2==BC AB ,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( ) A.4π B.14π- C.8π D.18π- 11.已知椭圆)0(1:2222>>=+b a by a x C 的左焦点为F ,C 与过原点的直线相交与B A ,两点,连接BF AF ,若54cos ,8,10=∠==ABF BF AB ,则C 的离心率为( ) A.53 B.75 C.54 D.76 12.已知函数()2f x x =,()12x g x m ⎛⎫=- ⎪⎝⎭,若对任意[]20,2x ∈,总存在[]11,3x ∈-,使得()()12f x g x ≥成立,则实数m 的取值范围是( )A.[)1,+∞B. ]1,(-∞C. [)8,-+∞ D. ]8,(--∞二.填空题13.命题“若0=abc ,则c b a ,,中至少有一个为0.”的否命题为__________.14. 如果椭圆13610022=+y x 上一点P 到一个焦点的距离为6,那么点P 到另外一个焦点的距离是__________.15.已知某运动员每次投篮命中的概率等于40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0,表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为__________.16.已知直线b x y l +=:与曲线21:x y C -=只有一个公共点,则b 的取值范围为__________.三.解答题17. (本题满分10分)已知命题0208:2≤--x x p ,命题)0(012:22>≥-+-a a x x q ,若p ⌝是q 的充分不必要条件,求a 的取值范围.18.(本题满分12分)如图所示,茎叶图记录了甲、乙两组各四名同学完成某道数学题(满分12分)的得分情况.乙组某个数据的个位数模糊,记为x ,已知甲、乙两组的平均成绩相同.(1)求x 的值,并判断哪组学生成绩更稳定;(2)在甲、乙两组中各抽出一名同学,求这两名同学的得分之和低于20分的概率.19. (本题满分12分) 已知方程16122=---m y m x 表示椭圆, (1)求实数m 的取值范围.(2)若离心率21=e ,求实数m 的值.20. (本题满分12分)某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取n 人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:(1)补全频率分布直方图并求的值; (2)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.21. (本题满分12分)已知函数⎪⎩⎪⎨⎧≤≤-+-<--=)212(3)2(1)(x x x x x f (1)求函数)(x f 的最小值(2)已知R m ∈,命题:p 关于x 的不等式22)(2-+≥m m x f 对任意R x ∈恒成立;命题q :0122,2≤-++∈∃m m x m x R x ,若“q p ∨”为真,“q p ∧”为假,求实数m 的取值范围.22. (本题满分12分)已知椭圆)0(1:2222>>=+b a by a x C 的离心率为22,点)2,2(在C 上 (1)求C 的方程(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点B A ,,线段AB 的中点为M .证明:直线O M 的斜率与直线l 的斜率的乘积为定值.高二第一次月考数学试卷参考答案一.选择题1.C2.C3.B4.A5.D6.A7.C 8.B 9.C 10.B 11. B 12. C二.填空题13. 若0≠abc ,则c b a ,,全不为0. 14. 14 15. 0.25 16.}2{)1,1[⋃-三.解答题17. 因为p ⌝是q 的充分不必要条件所以q ⌝是p 的充分不必要条件q ⌝:01222<-+-a x x 设)1,1(a a A +-=0208:2≤--x x p 设]10,2[-=B ……………………………….6分 所以A 是B 的真子集,所以⎩⎨⎧≤+-≥-10121a a 所以30≤<a ……………………..10分18. [解] (1)x 甲=9+9+11+114=10, x 乙=8+9+12+10+x 4=10, ∴x =1,2分又s 2甲=14[(10-9)2+(10-9)2+(11-10)2+(11-10)2]=1, s 2乙=14[(10-8)2+(10-9)2+(11-10)2+(12-10)2]=52, ∴s 2甲<s 2乙,∴甲组成绩比乙组稳定. 5分(2)记甲组4名同学为:A 1,A 2,A 3,A 4;乙组4名同学为:B 1,B 2,B 3,B 4.分别从甲、乙两组中各抽取一名同学所有可能的结果为:(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,B 4),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,B 4),(A 3,B 1),(A 3,B 2),(A 3,B 3),(A 3,B 4),(A 4,B 1),(A 4,B 2),(A 4,B 3),(A 4,B 4),共16种. 10分其中得分之和低于20分的共6种,∴得分之和低于20分的概率P =616=38. 12分 19.(1)解:由已知得⎪⎩⎪⎨⎧-≠->->-m m m m 610601所以2761≠<<m m 且 4分 (2)当627<<m 时,41172=--m m 则727=m 当271<<m 时,41627=--m m 则722=m 12分 20.解析: (1)第二组的频率为1-(0.04+0.04+0.03+0.02+0.01)×5=0.3,所以高为0.35=0.06.频率直方图如下:第一组的人数为1200.6=200,频率为0.04×5=0.2, 所以n =2000.2=1 000. 由题可知,第二组的频率为0.3,所以第二组的人数为1 000×0.3=300,所以p =195300=0.65. 第四组的频率为0.03×5=0.15,所以第四组的人数为1 000×0.15=150,所以a =150×0.4=60.(2)因为[40,45)岁年龄段的“低碳族”与[45,50)岁年龄段的“低碳族”的比值为60∶30=2∶1,所以采用分层抽样法抽取6人,[40,45)岁中有4人,[45,50)岁中有2人.设[40,45)岁中的4人为a 、b 、c 、d ,[45,50)岁中的2人为m 、n ,则选取2人作为领队的有(a ,b )、(a ,c )、(a ,d )、(a ,m )、(a ,n )、(b ,c )、(b ,d )、(b ,m )、(b ,n )、(c ,d )、(c ,m )、(c ,n )、(d ,m )、(d ,n )、(m ,n ),共15种;其中恰有1人年龄在[40,45)岁的有(a ,m )、(a ,n )、(b ,m )、(b ,n )、(c ,m )、(c ,n )、(d ,m )、(d ,n ),共8种.所以选取的2名领队中恰有1人年龄在[40,45)岁的概率为P =815. 21.(1)利用函数的单调性得)(x f 的最小值为1)2(=f ………..4分(2)若p 为真,则1222≤-+m m ,所以13≤≤-m若q 假,则01222>-++m mx mx 恒成立,则⎩⎨⎧<∆>00m 解的1>m 所以⎩⎨⎧>≤≤-113m m 或⎩⎨⎧>-<≤131orm m m 所以3-<m ……………12分22.(1)14822=+y x ………..4分 (2)设AB 的直线方程为)0,0(≠≠+=b k b kx y 设),(),,(),,(002211y x M y x B y x A 将直线的方程代入14822=+y x 则0824)12(222=-+++b kbx x k 12222210+-=+=k kb x x x ,12200+=+=k b b kx y 所以k x y k M 21000-==,所以21-=⋅k k OM ……………12分。