开关稳压电源

合集下载

直流稳压电源的分类及原理

直流稳压电源的分类及原理

直流稳压电源的分类及原理直流稳压电源是一种能够将交流电转换为稳定的直流电并提供给各种电器设备使用的装置。

它主要由变压器、整流电路、滤波电路和稳压电路等组成。

根据其输出方式和输出电压特点,可以将直流稳压电源分为线性稳压电源和开关稳压电源。

一、线性稳压电源线性稳压电源是利用线性元件(如二极管、三极管、场效应管等)将交流电转换为直流电,并通过稳压电路将输出电压维持在稳定的水平。

线性稳压电源的原理如下:1.变压器:将输入电源的电压变换为适合的电压,通常会降低电压。

2.整流电路:通过二极管或三极管将交流电转换为半波或全波的脉动直流电。

3.滤波电路:使用电容器对脉动电流进行滤波,使得输出电流平滑化。

4.稳压电路:通过负反馈机制控制输出电压,使其保持在稳定值。

线性稳压电源具有输出电压稳定性高、噪声和纹波小等优点,适用于对电压稳定性要求较高的场合,如科研实验、仪器设备等。

但由于采用了线性元件,效率较低,体积较大,无法满足高功率需求。

二、开关稳压电源开关稳压电源是利用开关管(如MOSFET、IGBT等)进行高频开关操作,实现输入交流电转换为稳定的直流电的一种电源。

开关稳压电源的原理如下:1.变压器:将输入电源的电压变换为适合的电压,通常会升降电压。

2.整流电路:通过开关管的高频开关操作,将输入电源转换为高频脉冲信号。

3.滤波电路:使用电感和电容对高频脉冲信号进行过滤,使输出电流平滑化。

4.稳压电路:通过负反馈机制控制开关管的开关频率和占空比,使输出电压稳定。

开关稳压电源具有体积小、效率高、功率大等优点,适用于工业控制、通信设备、变频器等大功率、高效率的应用场合。

但开关频率较高,容易产生高频噪声,需要进行精确的电磁干扰控制。

总结来说,直流稳压电源主要分为线性稳压电源和开关稳压电源两种类型。

线性稳压电源适用于对电压稳定性要求较高的场合,而开关稳压电源适用于功率较大、效率要求高的场合。

不同类型的稳压电源具有各自的特点和适用范围,根据实际需求选择合适的类型和规格的电源是非常重要的。

开关稳压电源的工作原理

开关稳压电源的工作原理

开关稳压电源的工作原理
开关稳压电源的工作原理是通过采用开关器件(如MOSFET 等)和一系列电子元器件来控制输入电压的开关状态,从而实现对输出电压的稳定调节。

工作原理如下:
1. 输入电压经过整流(如桥式整流电路)并通过滤波电容进行滤波处理,以去除电源中的交流成分和波动。

2. 基于控制电路内部的反馈机制,比较输入电压与期望输出电压之间的差异,以确定开关器件的开关状态。

3. 当输入电压过低时,控制电路将开关器件导通,让电流通过电感储能,进而提高输出电压。

4. 当输入电压过高时,控制电路将开关器件断开,使电感储能的电流通过输出电容器供电,从而降低输出电压。

5. 控制电路根据反馈信息连续地监测和调整开关器件的开关状态,以使输出电压始终维持在设定的稳定值。

6. 为了提供更加稳定的输出电压,开关稳压电源通常还包括过电压保护、过载保护、短路保护等功能。

通过不断地开关和调整开关器件的状态,开关稳压电源可以实
现对输入电压的有效调节,从而保证输出电压的稳定性和可靠性。

开关式稳压电源的工作原理

开关式稳压电源的工作原理

开关式稳压电源的工作原理1. 引言稳压电源是电子设备中常见的一种电源类型,它能够将不稳定的输入电压转换为稳定的输出电压,以保证电子设备的正常工作。

开关式稳压电源是一种常用的稳压电源设计,它采用了开关管和电容的组合,以实现高效能量转换和稳定输出。

2. 基本原理开关式稳压电源的基本工作原理是通过开关管控制电源输入与输出之间的连接与断开,以实现对电能的有效转换和输出的稳定。

2.1 输入端开关式稳压电源的输入端通常接收交流(AC)电源或直流(DC)电源。

当输入电源为交流电源时,通常还会有一个整流电路用于将交流电转换为直流电。

整流电路可以采用整流二极管桥或者整流三极管等元件。

2.2 控制电路开关式稳压电源还需要一个控制电路来控制开关管的开关状态,以实现输入与输出之间的连接与断开。

常用的控制电路包括脉冲宽度调制(PWM)控制和恒压/恒流控制等。

2.2.1 脉冲宽度调制(PWM)控制脉冲宽度调制是一种常见的开关式稳压电源控制方法,它通过改变开关管通断时间的比例来控制输出电压的大小。

当输出电压偏高时,控制电路会减小开关管的导通时间,从而降低输出电压;当输出电压偏低时,控制电路会增加开关管的导通时间,从而提高输出电压。

2.2.2 恒压/恒流控制恒压/恒流控制是另一种常见的开关式稳压电源控制方法,它通过感知输出电压和输出电流的变化来调整开关管的导通时间,以保持输出电压和输出电流在设定的范围内。

当输出电压或输出电流超出设定范围时,控制电路会相应地调整开关管的导通时间,以实现稳定的输出。

2.3 输出端开关式稳压电源的输出端通常连接到被供电的设备或装置。

输出端需要提供稳定的输出电压和输出电流,以满足设备或装置的工作需求。

3. 工作流程开关式稳压电源的工作流程可以概括为以下几个步骤:1.输入端接收电源输入,可以是交流电源或直流电源。

2.控制电路感知输出端的电压和电流,并根据设定范围调整开关管的导通时间。

3.开关管根据控制电路的指令,控制输入与输出之间的连接与断开。

开关稳压电源设计

开关稳压电源设计

开关稳压电源设计简介开关稳压电源是一种常见的电源设计,它可以将不稳定的输入电压转换成稳定的输出电压。

在电子设备和电子系统中,稳定的电源是至关重要的。

本文将介绍开关稳压电源的设计原理和步骤,并提供一个基本的设计示例。

设计原理开关稳压电源的设计基于开关电源的原理,通过开关管的开关操作,将输入电压切换成高频脉冲电压,经过滤波和调整电路后,得到稳定的输出电压。

输入与输出开关稳压电源的输入电压通常是交流电源,通过整流电路将交流电压转换成直流电压。

输出电压可以是固定的也可以是可调的,通过控制脉冲宽度调制(PWM)或变换频率调制(AFM)来实现。

控制电路开关稳压电源的核心是控制电路,它负责对开关管的开关操作进行控制。

一般情况下,控制电路由反馈电路、调整电路和开关控制器组成。

•反馈电路:用于监测输出电压,并将监测到的电压与设定的目标电压进行比较,得到误差信号。

•调整电路:根据误差信号调整开关管的开关周期和占空比,使输出电压接近设定的目标电压。

•开关控制器:根据调整电路的信号,控制开关管的开关操作。

开关管开关稳压电源的关键组件是开关管,它负责控制输入电压的切换。

常见的开关管有晶体管和MOSFET。

晶体管适用于小功率应用,而MOSFET适用于大功率应用。

设计步骤下面是一个基本的开关稳压电源设计步骤,供参考:1.确定设计需求:确定输入电压范围、输出电压需求、输出电流需求等。

2.选择开关管和开关控制器:根据设计需求选择适合的开关管和开关控制器。

3.设计反馈电路:根据输出电压需求设计反馈电路,包括误差放大器、参考电压源和比较器等。

4.设计调整电路:根据误差信号设计调整电路,包括比较器和PWM控制器等。

5.设计输入电路:根据输入电压范围设计整流电路和滤波电路,将交流电源转换成直流电源。

6.设计输出电路:根据输出电压需求设计输出电路,包括滤波电路和稳压电路等。

7.进行仿真和调试:使用电路仿真软件对设计进行仿真,调试出理想的输出电压波形。

开关稳压电源电路原理

开关稳压电源电路原理

开关稳压电源电路原理
开关稳压电源是一种常用的电源供电方式,它通过开关管的开关动作来调节输出电压,从而实现对负载电压的稳定控制。

本文将从原理、工作过程和应用领域三个方面介绍开关稳压电源的相关知识。

一、原理
开关稳压电源的核心组成部分是开关稳压电源芯片和开关管。

芯片是控制开关管开关动作的重要元件,它通过反馈电路感知输出电压,并将感知到的电压信号与设定值进行比较,从而控制开关管的导通与截止。

开关管则负责将输入电源与输出负载连接或断开,实现对输出电压的调节与控制。

二、工作过程
开关稳压电源的工作过程可以分为两个阶段:导通状态和截止状态。

当芯片感知到输出电压低于设定值时,它会控制开关管导通,使得输入电源与输出负载连接,从而提供稳定的输出电压。

当输出电压达到设定值时,芯片会控制开关管截止,切断输入电源与输出负载的连接,以维持输出电压的稳定性。

三、应用领域
开关稳压电源由于其输出电压稳定、效率高和体积小等特点,被广泛应用于各个领域。

在家用电器领域,开关稳压电源常用于电视、音响、电脑等设备的电源供应;在工业控制领域,开关稳压电源常用于PLC、变频器、伺服系统等设备的电源供应;在通信领域,开
关稳压电源常用于无线基站、通信设备等的电源供应。

此外,开关稳压电源还广泛应用于医疗设备、航空航天、军事装备等领域。

总结:
开关稳压电源通过芯片和开关管的协同工作,实现对输出电压的稳定控制。

其工作过程简单明了,应用领域广泛。

在今后的发展中,随着电子技术的不断进步,开关稳压电源将更加高效、稳定和可靠,为各个领域的电子设备提供更好的电源供应。

《开关型稳压电源》PPT课件

《开关型稳压电源》PPT课件

i1
VD4
VD2
uin
uo
i1
i2
图 5 - 2 单相桥式整流电路输入电压和电流的波形
第5章 开关型稳压电源
功率因数较低的开关电源存在许多问题, 主要有: (1) 谐波电流污染电网, 干扰其他用电设备, 造 成测量仪表产生较大的误差, 还会使电动机产生较大 的噪声。 (2) 在输入功率一定的条件下, 输入电流有效值 较大, 因此必须增大输入熔断器、 断路器和电源线的 规格。 (3) 特别应当指出, 通信用开关型电源通常都采 用三相五线制供电, 三相基波电流可分别由下列各式 表示:
第5章 开关型稳压电源
5.1.2 目前, 通信和其他电子设备采用的稳压电源主要
有线性稳压电源、 相控型稳压电源和开关型稳压电路。 线性稳压电源中, 调整元件串联在负载回路中,
其作用就像一只可变电阻, 输入电压或负载变化时, 串联调整元件的压降改变, 从而使输出电压稳定不变。 当输入电压过高时, 串联调整管的功耗很大, 因此效 率很低。 当输入电压波动范围为±20 %时, 5 V稳压 器 的 典 型 效 率 只 有 35% , 输 入 电 压 波 动 范 围 小 于 ±16%时, 典型效率也只能达到50%。
第5章 开关型稳压电源
由此可知, 三相电流的三次谐波分量是同相位的, 同理, 三相电流的六次、 九次等谐波分量也是同相位 的。 由于三相电流都流过中线, 当功率因数为1时, 流过中线的电流为零; 当功率因数很低时, 中线内的 电流很大。 由于中线无过流保护装置, 所以, 中线有 可能因过热而着火。
IR为电网电流有效值; I1为基波电流有效值; VL为电网电压有效值; cosφ为基波电流与基波电压的位移因数。
第5章 开关型稳压电源

开关稳压电源的原理分析和应用

开关稳压电源的原理分析和应用

开关稳压电源的原理分析和应用一、什么是开关稳压电源开关稳压电源是一种能够将输入电压转换为稳定输出电压的电源设备。

它通过采用开关管和电感等元件,通过周期性开关操作,将输入电压进行高效的转换和稳定,提供给需要稳定电压的设备使用。

二、开关稳压电源的原理开关稳压电源的工作原理基于开关电源中的开关管和电感元件。

以下是开关稳压电源的工作原理:1.开关管工作原理:开关稳压电源中通常采用MOS管或IGBT作为开关管。

通过控制开关管的导通和截止状态,实现电流的开关控制。

当开关管导通时,电流从输入端流过,而当开关管截止时,电流被阻断。

2.电感元件工作原理:电感是开关稳压电源中的重要元件之一。

它通过电流在其线圈中建立磁场,当电流改变时,磁场也随之改变。

这种磁场变化会导致产生电动势,实现电压的转换和稳定。

3.控制电路工作原理:开关稳压电源中的控制电路负责对开关管进行精确的开关控制。

它通常由反馈电路和PWM调制器组成。

反馈电路通过对输出电压进行监测,将信息反馈给PWM调制器,从而控制开关管的导通和截止,稳定输出电压。

三、开关稳压电源的应用开关稳压电源由于其高效稳定的特点,被广泛应用于各种领域。

以下是一些开关稳压电源的常见应用:1.电子设备:开关稳压电源被广泛应用于各种电子设备,如计算机、通信设备、音频设备等。

它能够提供稳定的电源供给,保证设备的正常运行。

2.工业自动化:在工业自动化领域,开关稳压电源可用于供应PLC(可编程逻辑控制器)、传感器和执行器等设备。

它能够提供可靠的电源,确保工业系统的正常运行。

3.医疗设备:在医疗设备中,如医疗成像设备、手术仪器等,开关稳压电源可提供高品质、稳定、可靠的电源供应,确保医疗设备的安全运行。

4.军事领域:在军事领域,开关稳压电源可用于供应军事通信、雷达、导航和武器系统等设备。

它能够提供稳定的电源供应,确保军事设备的正常运行。

5.太阳能和风能转换:开关稳压电源可以用于太阳能和风能转换系统中。

开关电源分类及原理

开关电源分类及原理

开关电源分类及原理开关电源是一种常见的电源类型,广泛应用于各种电子设备中。

根据其工作原理和特点,可以将开关电源分为多种类型。

本文将介绍几种常见的开关电源分类及其原理。

一、开关电源的分类1. 基于工作方式的分类开关电源可以根据其工作方式进行分类,主要包括以下几种类型:(1)开关模式电源:开关模式电源是一种常见的开关电源类型,其工作原理是通过开关管的开关动作来控制电源的输出。

开关模式电源具有高效率、稳定性好等特点,广泛应用于计算机、通信设备等领域。

(2)开关逆变器电源:开关逆变器电源是一种将直流电转换为交流电的开关电源。

它通过开关管的开关动作,将直流电源转换为高频交流电,再通过滤波电路得到稳定的交流电输出。

开关逆变器电源在太阳能发电、电动汽车等领域有着广泛的应用。

(3)开关稳压电源:开关稳压电源是一种能够提供稳定输出电压的开关电源。

它通过反馈控制电路来实现对输出电压的调节,具有输出电压稳定、响应速度快等特点,常用于精密仪器、医疗设备等领域。

2. 基于拓扑结构的分类开关电源还可以根据其拓扑结构进行分类,主要包括以下几种类型:(1)开关电源的原理开关电源的工作原理是通过开关管的开关动作来控制电源的输出。

当开关管导通时,电源输出电压;当开关管关断时,电源停止输出。

通过不断地开关动作,可以控制输出电压的大小和稳定性。

(2)开关电源的优点开关电源相比传统的线性电源具有以下优点:- 高效率:开关电源采用开关管进行开关动作,能够实现高效率的能量转换,减少能量损耗。

- 小体积:开关电源采用高频开关动作,可以减小变压器和滤波电容的体积,使整个电源模块更加紧凑。

- 宽输入电压范围:开关电源能够适应较宽的输入电压范围,具有较好的电网适应性。

- 稳定性好:开关电源通过反馈控制电路来实现对输出电压的调节,具有较好的稳定性和响应速度。

(3)开关电源的应用领域开关电源广泛应用于各种电子设备中,包括计算机、通信设备、工业自动化设备、医疗设备等。

开关型稳压电源介绍

开关型稳压电源介绍

开关型稳压电源介绍1、开关型稳压电源的组成开关型稳压电源(简称开关电源)的基本电路一般由线性滤波器、整流滤波器、功率变换器和稳压控制电路组成。

开关电源构成框图如下图所示。

▲开关电源构成框图线性滤波器又称电磁干扰(EMI)滤波器、噪声滤波器(PNF)、电源滤波器等,它是20世纪80年代问世的一种新型器件,防止电网中的干扰脉冲进入整流滤波电路,同时也阻碍本机产生的噪声反馈到公共电网,输出直流高压加到功率变换器进行功率变换,向负载输出符合要求的直流电压。

开关电源控制器一般包括取样、比较放大、基准源和控制调整电路等,当某种原因使输出电压不稳定时,通过开关电源控制器自动调整功率变换器中的功率开关器件的通断时间比或频率,达到自动调节输出电压的目的,使输出电压保持稳定。

功率变换器亦称DC/DC变换器,是将直流电压变换成另一种直流电压的变换电路。

通常各种电子、通信设备需要的电源电压不同,利用DC/DC变换器,就可以把整流器输出的直流电压变换成电子、通信设备所需要的直流电压。

2、开关电源特点与线性稳压电源相比,开关电源有以下特点:(1)效率高、功耗小开关电源的功率开关管(调整管)工作在开关状态,因此功率开关管的功耗极小,效率在80%以上。

(2)稳压范围宽线性稳压电源在交流输入电压低于160V时,输出电压就不稳定,而输入交流电压偏高时则效率降低。

而开关电源交流输入电压在130~260V范围变化时都能达到很好的稳压效果。

现在三端、多端单片开关电源在85~265V范围内均能正常工作。

(3)稳定性和可靠性高功耗小使得电子、通信设备内的温升也低,减小了周围元器件的高温损坏率,使设备的热稳定性和可靠性大大提高。

(4)体积小、重量轻开关电源可将电网交流电压直接输入整流,再通过高频变压器获得各种不同的交流电压,省去了笨重的变压器,使电源的重量减轻很多。

开关电源的功率密度(输出功率P与体积V之比,单位为W/cm3)很大,可达0.37W/cm3,而相控型稳压电源的功率密度只能达到0.043W/cm3。

稳压电源工作原理

稳压电源工作原理

稳压电源工作原理稳压电源是一种能够提供稳定电压输出的电子设备,它在电子设备中起着至关重要的作用。

在许多电子设备中,如计算机、手机、电视等,稳压电源都是必不可少的部分。

稳压电源的工作原理是通过一系列电子元件和电路来确保输出电压稳定在设定的数值范围内,以满足电子设备对稳定电压的需求。

稳压电源的工作原理可以分为线性稳压和开关稳压两种类型。

线性稳压电源是通过调节电源输入端和输出端之间的电压差来实现稳压的。

其基本原理是利用稳压器件(如晶体管、二极管等)来消耗多余的电压,从而使输出电压保持在稳定的水平。

当输入电压发生波动时,稳压器件会自动调整以保持输出电压不变。

线性稳压电源的优点是输出电压稳定性高,但效率较低,适用于对输出电流要求不高的场合。

开关稳压电源则是通过开关管来控制输入电压的占空比,从而实现稳压。

其基本原理是将输入电压转换成高频脉冲信号,经过滤波和调节后形成稳定的输出电压。

开关稳压电源的优点是效率高,适用于对输出电流要求较高的场合。

但其缺点是输出电压稳定性不如线性稳压电源。

无论是线性稳压还是开关稳压,稳压电源的核心部分都是稳压器件和控制电路。

稳压器件是用来消耗多余电压或者控制输入电压的占空比,以保持输出电压稳定。

控制电路则是用来监测输出电压,并根据需要调节稳压器件的工作状态,以使输出电压保持在设定的范围内。

这些稳压器件和控制电路通常由集成电路来实现,以确保稳压电源的稳定性和可靠性。

除了稳压器件和控制电路,稳压电源还包括输入滤波电路、输出滤波电路和保护电路等部分。

输入滤波电路用来滤除输入电压中的杂波和干扰,以保证稳压器件和控制电路的正常工作。

输出滤波电路则用来滤除输出电压中的纹波和杂波,以确保输出电压的稳定性和纯净度。

保护电路则用来保护稳压电源和被供电设备不受过压、过流、短路等异常情况的影响,以确保稳压电源的安全可靠。

总的来说,稳压电源的工作原理是通过稳压器件和控制电路来确保输出电压稳定在设定的范围内,以满足电子设备对稳定电压的需求。

开关稳压电源原理及特点

开关稳压电源原理及特点

随着 半导体集 成技术 的快 速发展 , 电子产 品正朝着 微小型化 的方 向迅速 推 进。 连续导 电式稳压 电源 , 也称 线性稳 压 电源 , 有简单 , 纹 波小 , 干扰 小等 优点 , 然而 这种 电源体 积大 , 效率 低 , 散热难 , 无 法适 应新 的要求 , 这就 必然 要改革 和 创新。 开关稳压电源是一种新颖的稳压电源。 微小型化的最大困难是变压器的 体积 和散 热的 困难 它 比连 续导 电式稳压 电源 效率 高 , 稳 压范 围宽 , 体积 小 , 重 量轻 。 正是 由于这一 系列 的优 点 , 使得 开 关稳压 电源获得越来 越广 泛的应用 , 尤 其在航天 航空技术中, 在计算机中, 正在逐步取代连续导电式稳压电源。 近年 来, 已有 标 准系列 产 品出现 , 开 关稳压 电源正在 应用 到工 业 、 民用 各个 领域 。 在介绍 开 关稳压 电源 时 , 先 介绍一 下开 关 。 开 关分 两类 : 简单 的有 机械 触 点, 闭合 时 , 机械 触点接 触 , 电 阻接 近于 零 , 断开 时 , 机 械触 点断开 , 呈 现很 大 电 阻。 这种机 械开 关包 括钮子 开关 、 按键开 关、 离 合器 、 继 电器 等 ・ 还 有一类是 电子 开关, 没有 机械触 点的离合 动作 , 其主要 元件有 晶体管 、 电子 管、 可 控硅等 。 它们 在一 定条件 下呈导通 状态 , 电阻很 小 , 在 另一些条 件下 , 呈断开 状态 , 电 阻很 大 。 比如 晶体三极 管 , 在 其基 极和 发射极 间 , 加上一 定 的正 向偏 置 , 在 它 的集 电极 、 发射极间 , 呈饱 和导通状 态 , 等 效 电阻 很小 ; 在其基极 、 发射 极间 , 加零偏 或反 向 偏置 时 , 在它 的集电极 、 发射极 间 , 呈 截止状 态 , 等 效 电阻很 大 。 可控硅元 件亦如 此: 阳极 、 阴极 间加正 向 电压 , 控 制极 加正 向触发 , 使 阳极 、 阴极 间呈导 通状 态 , 两 个条件 缺一不可 , 否则 不能触发 导通 。 调整元件 工作在开 关状态 的稳压 电源 , 称为开关稳压电源 它是通过改变调整元件的导通时间和截止时间的相对长 短, 来改变 输 出 电压 的大小 , 达到 稳压 的 目的 。 开关稳压电源与连续导电稳压电源比较, 为什么会具有效率高等一系列优 点呢? 以串联 式连续导 电稳压 电源 为例来分 析连续导 电式稳 压电源效 率低的 原 因 串联式连续导电稳压电源不论调压还是稳压 , 都是通过改变调整管上的压 降来实现的。 当输入电压最低、 输出电压最高时, 这时调整管上的压降至少还要 有撒 , 当输入 电压 中有 较大 的纹波 时 , 要 以波形 的最低 点算 , 只有这 样 才能保 证调 整元件 工作 在线性放 大状 态 , 保证调 压和 稳压 系统正 常工作 。 这 时若输 入 电压 升高或 输 出电压减 少时 , 要保 证调压 和稳压 , 无疑就 要加大 调整 元件上 的 电压 降 。 此 时负载上 的 电流又全 部通过 调整 元件 , 这就必 然加 大调 整元件上 的 功耗 。 实质上 连续导 电式稳压 电源输 出电压的 稳定是靠将 输入功率 在负载和 调 整元 件上 的分 配来实 现 的。 效 率常在4 O %到6 0 % 之间 。 而开 关稳压 电源是靠 改 变调整 元件 的导通 时间和截止 时间的相对 长短来 改变输 出电压的大小 。 导 通时 元件 工作在 饱 和导通状 态 , 管压 降很小 , 调 整管 的功耗 为管压 降与 流过 电流的 乘积, 因此此时的功耗很小阚 整元件截止时, 电流很小, 此时的功耗也很小, 调

开关直流稳压电源设计

开关直流稳压电源设计

开关直流稳压电源设计设计原理:关键参数:开关直流稳压电源的关键参数包括输出电压精度、输出电流、纹波电压和负载调节率等。

输出电压精度表示开关直流稳压电源输出的电压与设定值之间的偏差。

输出电流表示电源能够提供的最大负载电流。

纹波电压表示输出电压的波动情况,是由开关器件的开关操作引起的。

负载调节率表示在负载变化时,输出电压的变化程度。

主要组成部分:一个典型的开关直流稳压电源由以下几个主要组成部分构成:1.输入端:输入端通常有一个交流电源或者一个整流电路,将交流电转换为直流电。

在输入端还可能包含一些滤波电容和短路保护电路。

2.开关电路:开关电路由各种开关器件组成,包括晶体管、场效应管和硅控整流元件等。

开关周期性地打开和关闭,调节输入电压的占空比,从而调节输出电压。

在开关电路中,还可能包含一些保护电路,如过流保护和过压保护等。

3.控制电路:控制电路是开关直流稳压电源中的重要组成部分。

它根据输出电压与设定值之间的偏差,生成控制信号,控制开关器件的开关操作。

控制电路通常由一个误差放大器、一个比较器和一个参考电压源组成。

4.输出端:输出端是开关直流稳压电源输出电压的终点。

它通常由一个输出电感、一个输出滤波电容和一个负载组成。

输出电感和输出电容起到滤波作用,减小输出电压的纹波。

负载则是电源供电的目标设备。

5.反馈回路:反馈回路起到监测输出电压并调整开关操作的作用。

它通常由一个反馈电阻和一个反馈电压比较器组成。

反馈电阻将输出电压分压为反馈电压,反馈电压比较器将反馈电压与设定值进行比较,生成控制信号。

总结:开关直流稳压电源是一种常用的电源设计,用于提供稳定的直流电压输出。

它通过开关器件的开关操作调节输入电压,并通过反馈机制保持输出电压稳定。

设计开关直流稳压电源需要考虑关键参数,包括输出电压精度、输出电流、纹波电压和负载调节率等。

主要的组成部分包括输入端、开关电路、控制电路、输出端和反馈回路。

开关直流稳压电源的设计涉及到多个领域的知识,包括电源电路、电子器件和控制理论等。

开关式稳压电路

开关式稳压电路

第七章 *输出电压Uo的确定 输出电压为:
Uo(1R7) 5.( 1 V) R8
分析时,注意的是R8上端接的是11脚,然后看原理 图,分析这是的压降。
第七章
7.5.3并联开关电源
一.基本构成
并联开关电源换能电路如图7.21, 储能电感,负载和输入电压是并联 的VT。饱和导通时,UI给电感L储能,同 时L自感电动势使VD截止。VT截止时, L自感使自感电动势极性立即改变, VD导通,L通过VD释放能量向C2充 电,并同时向负载供电。当VT再次饱 和导通时,L储能,VD反向截止,电 容C2向负载供电,负载上获得连续能 量。既VT导通期间,L储能,电容C2 向负载供电;VT截止时,L释放能量 对C2充电,同时向负载供电;L,C2 同时具备滤波作用,使得输出波形平 滑。
LC(C0 C) CC0 C
fp
C C1C2 C1 C2
由于
C C0C
f0 21LCfs
第六章
2.串联型石英晶体振荡电路
当振荡频率等于 fS 时, 晶体阻抗最小,且为纯电 阻,此时正反馈最强,相 移为零,电路满足自激振 荡条件。
振荡频率 f0 fs
图 6.1.30 串联型石英晶 体振荡电路
4.比较器是组成非正弦波发生电路的基本单元,在 测量、控制、D/A和A/D转换电路中应用广泛。
第六章 一、 电压比较器的传输特性
1.电压比较器的输出电压与输入端的电压之间函数关系
u f(u)
O
I
2.阈值电压: UT
当比较器的输出电压由一种状态跳变为另一种状态所 对应的输入电压。
3.电压传输特性的三要素 (1)输出电压的高电平UOH和低电平UOL的数值。 (2)阈值电压的数值UT。 (3)当uI变化且经过UT时, uO跃变的方向。

线性稳压电源和开关稳压电源详解

线性稳压电源和开关稳压电源详解

线性稳压电源和开关稳压电源详解根据调整管的工作状态,我们常把稳压电源分成两类:线性稳压电源和开关稳压电源。

线性稳压电源,是指调整管工作在线性状态下的稳压电源。

而在开关电源中则不一样,开关管(在开关电源中,我们一般把调整管叫做开关管)是工作在开、关两种状态下的:开——电阻很小;关——电阻很大。

开关电源是一种比较新型的电源。

它具有效率高,重量轻,可升、降压,输出功率大等优点。

但是由于电路工作在开关状态,所以噪声比较大。

?通过下图,我们来简单的说说降压型开关电源的工作原理。

如图所示,电路由开关K(实际电路中为三极管或者场效应管),续流二极管D,储能电感L,滤波电容C等构成。

当开关闭合时,电源通过开关K、电感L给负载供电,并将部分电能储存在电感L以及电容C中。

由于电感L的自感,在开关接通后,电流增大得比较缓慢,即输出不能立刻达到电源电压值。

一定时间后,开关断开,由于电感L的自感作用(可以比较形象的认为电感中的电流有惯性作用),将保持电路中的电流不变,即从左往右继续流。

这电流流过负载,从地线返回,流到续流二极管D的正极,经过二极管D,返回电感L的左端,从而形成了一个回路。

通过控制开关闭合跟断开的时间(即PWM——脉冲宽度调制),就可以控制输出电压。

如果通过检测输出电压来控制开、关的时间,以保持输出电压不变,这就实现了稳压的目的。

在开关闭合期间,电感存储能量;在开关断开期间,电感释放能量,所以电感L叫做储能电感。

二极管D在开关断开期间,负责给电感L提供电流通路,所以二极管D叫做续流二极管。

在实际的开关电源中,开关K由三极管或场效应管代替。

当开关断开时,电流很小;当开关闭合时,电压很小,所以发热功率U×I就会很小。

这就是开关电源效率高的原因。

什么是线性电源?线性电源(Linear power supply)是先将交流电经过变压器降低电压幅值,再经过整流电路整流后,得到脉冲直流电,后经滤波得到带有微小波纹电压的直流电压。

直流稳压电源的种类及选用

直流稳压电源的种类及选用

直流稳压电源的种类及选用一、线性稳压电源:线性稳压电源是最基本、最常见的一种直流稳压电源。

其工作原理是通过调节电源输出级的放大倍数,使输入电压经过放大后得到稳定的输出电压。

线性稳压电源具有输出纹波小、响应速度快等特点,可以提供较为精确的稳定电压输出。

但是线性稳压电源的效率一般较低,而且对输入电压波动较敏感,适用于对电流精度要求较高的场合。

二、开关稳压电源:开关稳压电源是一种采用开关电源技术的稳压电源。

开关稳压电源通过将输入电压通过开关进行高频开关控制,进而输出稳定的直流电压。

相比于线性稳压电源,开关稳压电源具有体积小、效率高、稳压精度高等优点,适用于对功率密度要求较高的场合。

不过开关稳压电源的输出纹波较大,输出电流负载能力一般较差。

三、开关调谐稳压电源:开关调谐稳压电源是一种结合了开关稳压电源和线性稳压电源的特点的稳压电源。

开关调谐稳压电源在线性稳压电源的基础上增加了开关电源的调谐电路,能够通过调谐电路实现线性和开关两种工作状态的切换,从而在保持稳压性能的同时提高电源的效率。

开关调谐稳压电源适用于对电源效率和稳压性能要求兼顾的场合。

四、直流稳压电源选用的要点:在选择直流稳压电源时,需要根据具体的应用需求和电源参数来进行选择。

1.输出电压范围:根据实际需求确定所需的输出电压范围,选择具备输出范围符合要求的稳压电源。

2.输出电流能力:根据所需的最大输出电流来选择电源的输出电流能力。

一般来说,电源的额定输出电流要大于所需的最大输出电流,以保证电源正常工作。

3.稳压性能:稳压电源的稳压性能是选择的关键指标之一、要求电源能够在额定负载下保持较低的输出纹波和较高的稳压精度。

4.效率:效率是衡量电源能量转换效率的指标,一般来说,效率越高,能耗越低。

选择效率较高的电源可以减少能耗和热量散失。

5.其他特性:根据实际需要,还可以考虑电源的保护功能、响应速度、稳定性等特性。

综上所述,直流稳压电源的种类包括线性稳压电源、开关稳压电源和开关调谐稳压电源,根据实际需求和电源参数来选择适合的电源。

《开关稳压电源》课件

《开关稳压电源》课件

不断试验
持续学习
常见问题与解决方案
问题1
01
电源发热严重
原因
02
可能由于电路设计不合理或元件性能不佳。
解决方案
03
优化电路设计,更换性能更好的元件。
常见问题与解决方案
问题2
电源效率低下
原因
可能由于损耗过大或电路结构不合理。
解决方案
降低损耗,对电路结构进行优化。
常见问题与解决方案
问题3
输出电压不稳定
应用
广泛应用于各种电子设备中,如音频功率放大器、逆变器等。
升降压型开关稳压电源
• 总结词:同时具有升压和降压功能的开关稳压电源。
• 详细描述:升降压型开关稳压电源是一种较为特殊的开关稳压电源类型,其工作原理是通过控制开关管的导通和截止时 间,既可以降低输入电压来降低输出电压,也可以增加输入电压来提高输出电压,具有双重调节功能。
空调
在空调中,开关稳压电源 用于控制压缩机和风扇的 运行,保持室内温度的恒 定。
冰箱
冰箱的开关稳压电源确保 冷藏和冷冻系统的正常运 行,保持食品的新鲜。源自通信领域的应用手机
手机的开关稳压电源为通 话、数据传输和各种功能 提供稳定的电力。
路由器
在路由器中,开关稳压电 源为处理数据和信号传输 提供稳定的电力。
初步检查
检查电路中各元件是否正常,无损坏。
调试步骤与注意事项
通电测试
逐步通电,观察各部分工作是否正常 。
调整参数
根据需要调整相关参数,如电压、电 流等。
调试步骤与注意事项
安全第一
确保调试过程中人员和设备安全。
逐步进行
不要一次性将所有参数调整到位,应逐步调整。

开关电源稳压电路工作原理

开关电源稳压电路工作原理

开关电源稳压电路工作原理
嘿,朋友们!今天咱来聊聊开关电源稳压电路工作原理,这可有意思啦!
想象一下啊,电流就像一群调皮的小孩子,在电路里欢蹦乱跳的。

而开关电源稳压电路呢,就像是一个超级厉害的管理员!它能让这些调皮的“电流小孩”变得乖乖的,稳定地为我们的各种电器设备工作。

比如说,我们家里的电视机,要是没有这个厉害的管理员来管理电流,那画面可能会一闪一闪的,多烦人呀!
开关电源稳压电路是怎么做到的呢?它有一些特别的元件和机制。

就好像一个团队里有不同角色的人一样。

比如说那个变压器,它就像一个大力士,能把电压升高或者降低,嘿,厉害吧!还有那些电容和电感,它们就像是反应迅速的小助手,帮助稳定电压和电流。

咱打个比方哈,把开关电源稳压电路比作一个乐团,变压器就是那个指挥家,引领着电流的节奏;电容和电感就是各种乐器演奏者,共同协作发出美妙的“电流乐章”。

如果指挥家不给力,或者乐器演奏者出问题了,那这“乐章”可就不美妙啦,咱的电器设备也没法好好工作了呀!
你看啊,要是没有开关电源稳压电路,我们的手机充电的时候可能会一会儿充得快,一会儿充得慢,甚至可能还会损害手机电池呢,这多吓人啊!它就像一个忠诚的卫士,默默地守护着我们电器的正常运行。

所以说啊,开关电源稳压电路真的超级重要!它让我们的生活更加便利,电器使用起来更加稳定可靠。

我们真的得好好感谢这个神奇的电路呀!
结论:开关电源稳压电路对于保障电器设备的稳定运行至关重要,我们的生活离不开它。

几种常见的开关电源工作原理及电路图

几种常见的开关电源工作原理及电路图

一、开关式稳压电源的基本工作原理开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。

因此下面就主要介绍调宽式开关稳压电源。

调宽式开关稳压电源的基本原理可参见下图。

对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。

直流平均电压U。

可由公式计算,即Uo=Um×T1/T式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。

从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。

这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。

二、开关式稳压电源的原理电路1、基本电路图二开关电源基本电路框图开关式稳压电源的基本电路框图如图二所示。

交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。

控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。

这部分电路目前已集成化,制成了各种开关电源用集成电路。

控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。

2、单端反激式开关电源单端反激式开关电源的典型电路如图三所示。

电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。

所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。

当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

单端反激式开关电源是一种成本最低的电源电路,输出功率为20-100W,可以同时输出不同的电压,且有较好的电压调整率。

唯一的缺点是输出的纹波电压较大,外特性差,适用于相对固定的负载。

开关稳压电源实验报告

开关稳压电源实验报告

开关稳压电源实验报告一、引言开关稳压电源是一种常用的电源供应器件,通过内部的开关器件和反馈控制电路,可以实现电源电压的稳定输出。

本实验旨在通过搭建开关稳压电源电路,探讨其原理和实际应用效果。

二、实验目的1.了解开关稳压电源的工作原理;2.掌握开关稳压电源的搭建方法;3.测量开关稳压电源的输出电压波形和稳定性。

三、实验原理开关稳压电源由开关电源控制器、功率开关管、输出变压器、输出整流滤波电路等部分组成。

1.开关电源控制器:开关电源控制器是开关稳压电源的核心部分,通过采样和比较反馈信号与参考电压的大小,控制开关管的开通和关闭,从而调节输出电压的稳定性。

2.功率开关管:功率开关管负责对输入电压进行开关调节,通过开关的开启和关闭,实现输入电压的切换和转换。

3.输出变压器:输出变压器将输入电压转换为适合的输出电压,并为后续的整流滤波电路提供稳定的工作电压。

4.输出整流滤波电路:输出整流滤波电路通过整流和滤波的方法,将输出电压中的纹波和干扰降到最低,保证输出电压的稳定性和纹波较小。

四、实验步骤1.搭建开关稳压电源电路,按照实验指导书提供的电路图连接各个器件和元件。

2.接通电源并调节开关稳压电源的输出电压调节旋钮,观察实验电路的输出电压变化。

3.使用示波器测量开关稳压电源的输出电压波形和稳定性,并记录测量结果。

4.调节开关稳压电源的负载,观察实验电路的输出电压变化。

5.记录实验数据并进行分析,比较开关稳压电源的输出电压稳定性。

五、实验结果与分析通过实验测量,我们得到了开关稳压电源的输出电压波形和稳定性数据。

根据测量结果,我们可以看到开关稳压电源的输出电压基本保持在设定值附近,并且输出电压的纹波较小。

当调节开关稳压电源的负载时,输出电压的稳定性有所波动,但整体上仍然满足要求。

六、实验总结通过本次开关稳压电源实验,我们进一步了解了开关稳压电源的工作原理和搭建方法,并掌握了测量开关稳压电源输出电压波形和稳定性的技巧。

开关稳压电源的优缺点分析

开关稳压电源的优缺点分析

开关稳压电源的优缺点分析
1 开关稳压电源的优点
功耗小,效率高。

在图(1)中的开关稳压电源电路中,晶体管V在激励信号的激励下,它交替地工作在导通截止和截止导通的开关状态,转换速度很快,频率一般为50kHz左右,在一些技术先进的国家,可以做到几百或者近1000kHz。

这使得开关晶体管V的功耗很小,电源的效率可以大幅度地提高,其效率可达到80%。

体积小,重量轻。

从开关稳压电源的原理框图可以清楚地看到这里没有采用笨重的工频变压器。

由于调整管V上的耗散功率大幅度降低后,又省去了较大的散热片。

由于这两方面原因,所以开关稳压电源的体积小,重量轻。

稳压范围宽。

从开关稳压电源的输出电压是由激励信号的占空比来调节的,输入信号电压的变化可以通过调频或调宽来进行补偿,这样,在工频电网电压变化较大时,它仍能够保证有较稳定的输出电压。

所以开关电源的稳压范围很宽,稳压效果很好。

此外,改变占空比的方法有脉宽调制型和频。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电源招聘专家
开关稳压电源
2013-03-07
关键字:开关稳压电源
引言
开关稳压电源(以下简称开关电源)问世后,在很多领域逐步取代了线性稳压电源和晶闸管相控电源。

早期出现的是串联型开关电源,其主电路拓扑与线性电源相仿,但功率晶体管工作于开关状态。

随着脉宽调制(PWM)技术的发展,PWM开关电源问世,它的特点是用20kHz的载波进行脉冲宽度调制,电源的效率可达65%~70%,而线性电源的效率只有30%~40%。

因此,用工作频率为20 kHz的PWM开关电源替代线性电源,可大幅度节约能源,从而引起了人们的广泛关注,在电源技术发展史上被誉为20kHz革命。

随着超大规模集成(ultra-large-scale-integrated-ULSI)芯片尺寸的不断减小,电源的尺寸与微处理器相比要大得多;而航天、潜艇、军用开关电源以及用电池的便携式电子设备(如手提计算机、移动电话等)更需要小型化、轻量化的电源。

因此,对开关电源提出了小型轻量要求,包括磁性元件和电容的体积重量也要小。

此外,还要求开关电源效率要更高,性能更好,可靠性更高等。

这一切高新要求便促进了开关电源的不断发展和进步。

1 开关电源的三个重要发展阶段
40多年来,开关电源经历了
三个重要发展阶段。

第一个阶段是功率半导体器件从双极型器件(BPT、SCR、GT0)发展为MOS型器件(功率MOS-FET、IGBT、IGCT等),使电力电子系统有可能实现高频化,并大幅度降低导通损耗,电路也更为简单。

第二个阶段自20世纪80年代开始,高频化和软开关技术的研究开发,使功率变换器性能更好、重量更轻、尺寸更小。

高频化和软开关技术是过去20年国际电力电子界研究的热点之一。

第三个阶段从20世纪90年代中期开始,集成电力电子系统和集成电力电子模块(IPEM)技术开始发展,它是当今国际电力电子界亟待解决的新问题之一。

2 开关电源技术的亮点
2.1 功率半导体器件性能
1998年,Infineon公司推出冷MOS管,它采用“超级结”(Super-Junction)结构,故又称超结功率MOSFET。

工作电压600~800V,通态电阻几乎降低了一个数量级,仍保持开关速度快的特点,是一种有发展前途的高频功率半导体器件。

IGBT刚出现时,电压、电流额定值只有600V、25A。

很长一段时间内,耐压水平限于1200~1700V,经过长时间的探索研究和改进,现在IGBT的电压、电流额定值已分别达到3300V/1200A和4500V/1800A,高压IGBT单片耐压已达到6500V,一般IGBT的工作频率上限为20~40kHz,基于穿通(PT)型结构应用新技术制造的IGBT,可工作于150kHz(硬开关)和300kHz(软开关)。

IGBT的技术进展实际上是通态压降,快速开关和高耐压能力三者的折中。

随着工艺和结构形式的不同,IGBT在20年的发展进程中,有以下几种类型:穿通(PT)型、非穿通(NPT)型、软穿通(SPT)型、沟漕型和电场截止(FS)型。

碳化硅(SiC)是功率半导体器件晶片的理想材料,其优点是禁带宽、工作温度高(可达600℃)、热稳定性好、通态电阻小、导热性能好、漏电流极小、PN结耐压高等,有利于
电源招聘专家制造出耐高温的高频大功率半导体器件。

可以预见,碳化硅将是21世纪最可能成功应用的新型功率半导体器件材料。

2.2 开关电源功率密度
提高开关电源的功率密度,使之小型化、轻量化,是人们不断追求的目标。

这对便携式电子设备(如移动电话,数字相机等)尤为重要。

使开关电源小型化的具体办法有以下几种。

一是高频化。

为了实现电源高功率密度,必须提高PWM变换器的工作频率、从而减小电路中储能元件的体积重量。

二是应用压电变压器。

应用压电变压器可使高频功率变换器实现轻、小、薄和高功率密度。

压电变压器利用压电陶瓷材料特有的“电压-振动”变换和“振动-电压”变换的性质传送能量,其等效电路如同一个串并联谐振电路,是功率变换领域的研究热点之一。

三是采用新型电容器。

为了减小电力电子设备的体积和重量,须设法改进电容器的性能,提高能量密度,并研究开发适合于电力电子及电源系统用的新型电容器,要求电容量大、等效串联电阻(ESR)小、体积小等。

2.3 高频磁性元件
电源系统中应用大量磁元件,高频磁元件的材料、结构和性能都不同于工频磁元件,有许多问题需要研究。

对高频磁元件所用的磁性材料,要求其损耗小、散热性能好、磁性能优越。

适用于兆赫级频率的磁性材料为人们所关注,纳米结晶软磁材料也已开发应用。

2.4 软开关技术
高频化以后,为了提高开关电源的效率,必须开发和应用软开关技术。

它是过去几十年国际电源界的一个研究热点。

PWM开关电源按硬开关模式工作(开/关过程中电压下降/上升和电流上升/下降波形有交叠),因而开关损耗大。

高频化虽可以缩小体积重量,但开关损耗却更大了。

为此,必须研究开关电压/电流波形不交叠的技术,即所谓零电压开关(ZVS)/零电流开关(ZCS)技术,或称软开关技术,小功率软开关电源效率可提高到800%~85%。

上世纪70年代谐振开关电源奠定了软开关技术的基础。

随后新的软开关技术不断涌现,如准谐振(上世纪80年代中)全桥移相ZVS -PWM,恒频ZVS-PWM/ZCS-PWM(上世纪80年代末)ZVS-PWM有源嵌位;ZVT-PWM/ZCT-PWM(上世纪90年代初)全桥移相ZV-ZCS-PWM(上世纪90年代中)等。

我国已将最新软开关技术应用于6kW通信电源中,效率达93%。

2.5 同步整流技术
对于低电压、大电流輸出的软开关变换器,进一步提高其效率的措施是设法降低开关的通态损耗。

例如同步整流(SR)技术,即以功率MOS管反接作为整流用开关二极管,代替萧特基二极管(SBD),可降低管压降,从而提高电路效率。

2.6 功率因数校正(PFC)变换器
由于AC/DC变换电路的输入端有整流器件和滤波电容,在正
弦电压输入时,单相整流电源供电的电子设备,电网侧(交流输入端)功率因数仅为0.6-0.65。

采用功率因数校正(PFC)变换器,网侧功率因数可提高到0.95~0.99,输入电流THD<10%。

既治理了对电网的谐波污染,又提高了电源的整体效率。

这一技术称为有源功率因数校正(APFC),单相APFC国内外开发较早,技术已较成熟;三相APFC的拓扑类型和控制策略虽然已经有很多种,但还有待继续研究发展。

高功率因数AC/DC开关电源,由两级拓扑组成,对于小功率AC/DC开关电源来说,采用两级拓扑结构总体效率低、成本高。

如果对输入端功率因数要求不特别高时,将PFC 变换器和后级DC/DC变换器组合成一个拓扑,构成单级高功率因数AC/DC开关电源,只
电源招聘专家用一个主开关管,可使功率因数校正到0.8 以上,并使输出直流电压可调,这种拓扑结构称为单管单级PFC变换器。

2.7 全数字化控制
电源的控制已经由模拟控制,模数混合控制,进入到全数字控制阶段。

全数字控制是发展趋势,已经在许多功率变换设备中得到应用。

全数字控制的优点是数字信号与混合模数信号相比可以标定更小的量,芯片价格也更低廉;对电流检测误差可以进行精确的数字校正,电压检测也更精确;可以实现快速,灵活的控制设计。

近两年来,高性能全数字控制芯片已经开发,费用也已降到比较合理的水平,欧美已有多家公司开发并制造出开关变换器的数字控制芯片及软件。

相关文档
最新文档