微观经济学讲义(黄有光)4

合集下载

《微观经济学》最全课件

《微观经济学》最全课件

47
(3)定性分析与定量分析
定性分析:说明经济现象的性质及其内在规定 性与规律性。 定量分析:分析经济现象之间量的关系。 实证经济分析中特别注重定量分析,也是经济 学中广泛运用数学工具的原因
2011-6-18
48
(4)边际分析
实现既定目标的最优化离不开边际分析 方法,近似于数学上的求导过程。 边际值是因变量的变化率 >0
产 品种 类
可供选择的产品组合
A
B
C
D
E
黄油
0
1
2
3
4
(亿公斤)
大 炮 10
9
7
4
0
(万 门)
2011-6-18
14
★生ssibilities Frontier
按上表,给出几何的表达,就 形成生产可能性边界。
2011-6-18
15
图:生产可能性边界
Guns
。A
生产要素市场
2011-6-18
29
第一章导论 第二章价格理论—中心 第三章消费者行为理论—图的左上方(需求理论) 第四章生产理论
第五章成本理论 第六章完全安全竞争市场 图的右上(供给理论)
第七章不完全竞争市场 第八章分配理论—图的右下方和左下方 第九章一般均衡理论与福利经济学 第十章市场失灵与微观经济政策
A.定义:当正反二种力量正好相等,相互抵消时的状态。
状态均衡与行为均衡
在经济学中,不仅是指这种状态意义下的均衡,更是指行为 意义下的均衡。 所谓行为均衡,是指在这种状态下,谁也没有动机来打破现 存在状态。 市场均衡,就不仅是状态均衡,更是行为均衡:供需双方都 不再愿意改变价格与产量。
2011-6-18

微观经济学讲义

微观经济学讲义

微观经济学教案主讲:柳治国目录第一章导言第一节(西方)经济学涵义第二节经济学的研究对象第三节经济学的十大原理第四节微观经济学的研究方法第五节(西方)经济学的由来和演变第二章供求理论第一节需求第二节供给第三节均衡价格和价格机制第三章弹性理论第一节需求价格弹性第二节其他弹性第四章消费者行为理论第一节欲望与效用第二节边际效用分析法第三节无差异分析法第五章生产理论第一节生产与生产函数第二节一种要素的合理投入第三节多种要素的合理投入(1):规模经济第四节多种要素的合理投入(2):最佳组合第六章成本与收益第一节成本函数分析第二节几个重要的成本概念第三节收益与利润最大法原则第七章厂商均衡理论第一节完全竞争条件下的厂商均衡第二节完全垄断条件下的厂商均衡第三节垄断竞争条件下的企业行为模式第四节寡头垄断市场条件下企业行为模式第八章分配理论第一节分配的基本原理第二节工资第三节利息第四节地租第五节利润第六节收入分配均等程度的度量第九章市场失灵与微观经济政策第一章导论第一节(西方)经济学涵义教学重点:介绍经济学的定义教学难点:西方经济学与政治经济学的区别与联系教学方法:讲授法,比较法教学安排:2课时教学过程:一、(西方)经济学的定义经济学是一门实践性的社会科学,内容博大庞杂,分支众多,研究者阵营强大,因而难以有标准的定义。

这里给出若干定义,以见其内涵。

1.定义一:经济学是研究国民财富生产的。

( 亚当·斯密)2.定义二:经济学是研究人类日常生活事物的科学。

(阿尔弗雷德·马歇尔)3.定义三:经济学是对经济理论的研究和考察。

4.定义四:经济学是“研究如何利用稀缺的资源以生产有价值的商品,并将它们分配给不同的个人”的科学(萨谬尔森)。

5.其他含义:“企事业的经营管理方法和经验,对某一经济部门或问题的集中研究成果。

”二、经济学是一门理论科学1.经济科学是一个庞大的学科体系科学分为理论学科和应用学科,如物理学与各种工程技术学。

高级微观经济学 (黄有光) AdMicro-L7-Mesoeconomics

高级微观经济学 (黄有光) AdMicro-L7-Mesoeconomics

ECC5650- Microeconomic TheoryTopic 7MesoeconomicsA Micro- Macroeconomic AnalysisThis topic provides a micro-macroeconomic analysis with elements of general equilibrium without assuming perfect competition. It concentrates on a representative firm, taking account of the influence of macro variables like the price level, aggregate income/output, and interactions with the rest of the economy. It is called mesoeconomics as it synthesizes micro, macro and general equilibrium analysis. It provides many comparative-static results, including the Keynesian and the Monetarist results on the effects of a change of nominal aggregate demand as special cases.ReferencesY ew-Kwang Ng, “A micro-macroeconomics analysis based on a representative firm”, Econmica, 1982, 49: 121-139.Y.-K. Ng, Mesoeconomics: A Micro-Macro Analysis, London: Harvester, 1986.Ng, “Business confidence and depression prevention: A mesoeconomic perspective”, American Economic Review, 1992, 82(2): 365-371.Ng, “Non-neutrality of money under non-perfect competition: why do economists fail to see the possibility?” In Arrow, Ng, and Y ang, eds., Increasing Returns and Economic Analysis, London: Macmillan, 1998, pp.232-252.Ng, “On estimating the effects of events like the Asian financial crisis: A mesoeconomic approach”, Taiwan Economic Review(經濟論文叢刊), 27 (4): 393-412, December 1999.Mesoeconomic Analysis(A4) q xF p p g gi i Ig N I≡==∑111(,...,,,...,)ααTwo simplifications: 1. used by virtually all macro and aggregative studies of ignoring distributional effects by replacing the vector α1, ..., αI by α ≡ ∑αi .2. concentrate on the representative firm and replace the price vector of all other firms by theIn Ng (1986, Appendix 3I), a fully general equilibrium analysis is used to show that (1) for any (exogenous) change (in cost or demand) there exists (in a hypothetical sense) a representative firm whose response to the change accurately (no approximation needed) represents the response of the whole economy in aggregateoutput and average price, and (2) a representative firm defined by a simple method (that of a weighted average) can be used as a good approximation of the response of the whole economy to any economy-wide change in demand and/or costs that does not result in drastic inter-firm changes. The representative firm takes the aggregate variables as given and maximize its profit:where C = total cost, Y = aggregate output of the economy , εexogenous factors affect costs. The possible effects of Y on C may work through the input market. It may be noted that the cost function is rather general. First-order condition:where ()q C/ c p/q,p q/ ∂∂≡∂∂≡η and μ is marginal revenue. From the representativeness of the firm and the requirement of equilibrium, we havewhere A = real aggregate demand, N = number of firms.The nominal aggregate demand of the economy:where the restriction 1>>0Y αη is similar to the case of the Keynesian cross diagram that the slope of C + I is positive but less than one to avoid an explosive system. Similarly for ηαP . (A11) is a very general function and include the simple Keynesian and Monetarist aggregate demand functions as special cases.Comparative-statics analysis. The total differentiation of (A8), after substituting in the totalwhere xyx y y x, DA A p, P = -p A Aημμηηη≡∂∂≡∂∂∂∂ is the proportionate effect of realaggregate demand on marginal revenue at given prices through possible effects on the demand elasticity (in Ng 1982, D is assumed zero for simplicity), d c c d cc≡∂∂⎛⎝⎫⎭⎪εε is the exogenous change in marginal cost. The total differentiation of (A11), after dividing through by α and substituting in d α/α = dP/P + dY/Y from the total differentiation of (A10), gives where d d ααεεαα≡∂∂⎛⎝ ⎫⎭⎪is the exogenous change in nominal aggregate demand.Substituting dY/Y and dP/P from (A13) in turn into (A12):where ()()()()∆ 1-1-+1-+-D Y cP P cq cY ≡ααηηηηη, ηab ≡ (∂a/∂b)b/a.The effects on the price level and aggregate output depends on the exogenous changes in demand and costs as well as the endogenous response variables, including the slope of the MC curve (of the representative firm), how much MC responds to aggregate output and the price level (shifts in the MC curve), how much the price elasticity of demand changes in response to real aggregate demand, how much the nominal aggregate demand changes in response to realaggregate income and the price level. An estimate of these changes and responses would then give us our estimate of the effects on the price level and aggregate output using the above equations.The effects of an exogenous cost changesThe effects of an exogenous demand changes:The various possible cases: monetarist (traditional), Keynesian, intermediate, expectation wonderland, cumulative expansion/contradiction.Continuum of EquilibriaInterfirm macroeconomic externality⎥⎦⎤⎢⎣⎡-⎪⎪⎭⎫⎝⎛--+-=CY Y CP P ji N q R ηηηηηη∂∂αα1111The effects of the Sep. 11 incident on the economy1. Aggregate demand decreases exogenously; costs increases exogenously . Hence, dY < 0.2. dP ambiguous; opposing effects.3. Expectation wonderland.Long run : where the number of firms is allowed to change, we allow N, the number of firms, to enter the demand function and also add the additional condition of zero long-run profit (A14) ()()pf p /P, /P - C q,Y, P, c αε= 0 Comparative results for the long run: (A15)∇=++-++-++-dP P M E M D E d E dC C M dc c cYcqCYYcqY/[()()](/)()()(/)()(/)ηηηααηηηαα11(A16)∇=-++---+--dY Y M E d E dC C M dc c cPcqCPPcqP/[()()()](/)()()(/)()(/)1111ηηηααηηηααwhere∇=-++-++--++-()[()()](/)()[()()()]1111ηηηηααηηηηααPcYcqCYYcPcqcPM E M D E d M EM ≡ (p-c)/p is the markup of price over marginal cost, E ≡ (∂μ/∂N)N/μ at given prices (where μ ≡ marginal revenue of the representative firm) is the effect on MR of entry of new firms through a higher absolute price elasticity of demand due to increased competition. The long-run effects of a shock may then be analyzed using (A15) and (A16) above by estimating the long-run exogenous changes in aggregate demand and costs as well as the long-run endogenous response variables contained in these two equations.Effects of the incident: Similar to short run in qualitative conclusions but with thedeterminants of the quantitaive effects different.Some Extensions:1.Revenue maximization and AC-pricing (ch.6), making the non-traditional results morelikely.2.Oligopoly (ch.7) –reconciling the apparent inconsistency between the price rigiditypredicted by the kinked demand curve hypothesis with Stigler’s empirical evidence.3.The government sector (ch.10), with the results of a negative balance-budget multiplierand the possibilities of non-inflationary expansion, non-deflationary contraction, self-financing tax reduction.4.The role of the labour market and union power (ch.13); the mistake of increasing wagerates as an anti-depression policy (ch.10).The case of an industry. Ch.5, taxes and cost increases passed on to consumers more than 100%.Also partly explains:1.Why markup pricing is prevalent (ch.8).2.Why business cycles exist (ch.12).3.Why do financial crises matter.4.Why the World Bank and IMF differ in their financial-crisis rescue policies.5.Some controversies in macroeconomics, including the natural rate of unemployment,the non-vertical long-run Phillips curve.6.Why economic forecasts are difficult.。

微观经济学教学课件ppt

微观经济学教学课件ppt
详细描述
厂商在生产过程中需要最小化成本、最大化收益,从而实现利润最大化。厂商需要寻求最优的生产规模,以达到成本最小化与利润最大化的平衡。
成本最小化与利润最大化
市场结构与竞争策略
市场结构类型与竞争策略对厂商行为和产量有着重要影响。
总结词
市场结构类型对厂商行为和产量有着重要影响。完全竞争市场中,厂商只能被动接受市场价格,而在垄断市场中,厂商可以通过控制产量来影响市场价格。厂商需要根据市场结构类型制定相应的竞争策略以获得最大利润。
收入效应与替代效应
当价格变化时,消费者的预算约束也会发生变化,从而产生收入效应和替代效应。
消费者最优选择是指在给定预算约束下,选择最优的商品组合以获得最大效用。
消费者最优选择:边际效用理论
定义
随着消费量的增加,边际效用逐渐减少。
边际效用递减规律
在最优选择点处,无差异曲线与预算约束线相切,即边际替代率等于价格之比。
06
微观经济学的发展动态
行为经济学
研究在复杂的心理和社会环境下,经济主体如何做出并执行决策的科学。
神经经济学
利用神经科学的方法,研究大脑如何处理信息并做出决策,以揭示经济行为的神经基础。
行为经济学与神经经济学
产业组织理论
研究企业与市场之间的相互关系,以及市场结构、企业行为和政府规制对企业和市场的影响。
要点一
要点二
偏好公理
偏好具有完备性、反身性、传递性和无差异曲线凸性等公理性质。
效用函数
对于每个消费者,都存在一个效用函数,该函数表示消费者对于不同商品组合的偏好程度。
要点三
定义
消费者预算约束是指消费者在一定收入水平下,可以购买的商品组合的集合。
消费者预算约束

微观经济学讲义

微观经济学讲义

例子:个体的需求建模
离散的商品
要么选择远的,要么近的
近的受欢迎但是价格高
外生变量的影响
如果收入高或者远的价格升高(外生),人们会倾向于选择近处的房屋
需求曲线
保留价格(Reservation price)
某人愿意接受的、购买有关商品的最高价格,也就是说,一个人的保留价格是他对于买 或不买有关商品并不在乎的价格。
外生变量(exogenous):不被特定模型所讨论的、但影响结果的因素 内生变量(endogenous):被特定模型讨论的因素
例子:大学城外的公寓模型
研究问题
价格由什么决定
假设
公寓除了距离远近,其他完全相同 远处的公寓的房价是外生的并且已知 有很多的潜在房东和租户,也就是说这是一个完全竞争市场
长期均衡
一般来说,由私营市场供给的新住房的数量取决于供应住房的利润大小。
第三章 消费者行为
消费者行为的三个问题
消费者偏好 预算约束 偏好和收入给定,消费者会选择什么样的消费组合(种类和数量)
预算约束
描述预算约束
消费束
用 X=(x1, x2)表示消费者的消费束 (Consumption bundle),解释当消费者选择商品 x1 时,他 的消费量是多少。我们认为商品 2 代表了一种复合商品,它代表着除了商品 1 外消费者需要 的其他商品。
消费集
所有实际上可以满足的消费束集合就是消费集(consumption set) 其中实际约束 (Physical Constraints)即指 满足温饱需求 时间约束 非负性 预算集
我们把当价格为(p1, p2)和收入为 m 时能够负担的消费束成为消费者的预算集(Budget Constraints)。 预算线

微观经济学辅导说课讲解

微观经济学辅导说课讲解

微观经济学辅导说课讲解第一章绪论1、现代西方经济学家理解的经济学:这里要理解的是资源的稀缺性和需求的无限性的含义。

2、经济学就是要用有限的资源尽可能地去满足人们的需求,如何去满足就要面对生产什么产品,怎样生产和为谁生产三个基本问题。

3、作为了解,大家要知道什么是实证经济学,什么是规范经济学。

第二章需求、供给与均衡价格理论根据西方经济学家的观点,市场上的均衡价格是该市场的需求与供给共同作用的结果。

1、需求曲线的基本特征:一般情况下是一条负斜率的曲线,即从左上向右下倾斜。

为何会有这样的特征?两个原因:一来低价会吸引更多的购买者,从而使需求量增加;二来低价会使同一个购买者对该商品的购买量增加,而减少对其他类似(可替代)商品的购买。

第二种原因又可以表现为两种效应,一是收入效应: 价格降低等于收入增加;二是替代效应:既对同类商品的替代作用。

再进一步从理论上,从西方经济学认为的“边际效用价值论”思考,因为效用是价格的源泉,一种商品越稀缺,其边际效用越大,价格也就越大。

因此,由于人们消费某种商品的边际效用不断递减,对应商品的价格会一断下降,这样需求曲线就会呈负斜率。

从第四章的知识我们还可以知道:需求曲线所以向右下方倾斜是因为消费者在购买商品时总是遵循最大效用原则。

这里要注意:需求曲线所反映的需求量是消费者希望购买的商品的数量而不是实际购买商品的数量,但是这种希望不是消费者的主观愿望而是消费者有能力实现的愿望。

2、区分需求量的变化与需求的变化。

影响需求量变化的原因:需求曲线呈以上基本特征的时候我们观察图形可以知道横坐标是需求量,纵坐标是价格。

所以其实需求曲线是在假设其他条件不变的情况下,只考虑价格的影响画出的。

所以价格变化使得需求量沿着原来的曲线滑动。

影响需求变化(需求曲线本身发生移动)的原因:消费者的收入,消费者的偏好,其他商品的价格。

3、供给曲线的基本特征:在一般情况下是一条正斜率的曲线,即从左下向右上倾斜。

微观经济学名词解释(黄亚钧版课后习题摘录).doc

微观经济学名词解释(黄亚钧版课后习题摘录).doc

机会成本:生产一单位的某种商品的机会成本是指生产者所放弃的使用相同的生产要素在其他生产用途中所能得到的最高收入。

需求的价格弹性:一定时期内一种商品的需求量变动对于该商品的价格变动的反应程度。

或者说,表示在一定时期内当一种商品的价格变化百分之一时所引起的该商品的需求量变化的百分比。

边际效用递减规律:在一定时间内,在其它商品的消费数量保持不变的条件下,随着消费者对某种商品消费量的增加,消费者从该商品连续增加的每一单位中所得到的效用增量即边际效用是递减的。

消费者均衡:消费者均衡是研究单个消费者在既定收入条件下实现效用最大化的均衡条件。

是指在既定收人和各种商品价格的限制下选购一定数量的各种商品,以达到最满意的程度, 称为消费者均衡。

消费者均衡是消费者行为理论的核心。

恩格尔曲线:恩格尔曲线(Engel curve),反映的是所购买的一种商品的均衡数量与消费者收入水平之I'可的关系消费者剩余:消费者在购买一定数量的某种商品时愿意支付的最高总价格和实际支付的总价格之间的差额无差异曲线:是用来表示消费者偏好相同的两种商品的所有组合。

或者说表示能给消费者带来相同的效用水平或满足程度的两种商品的所有组合。

预算约束线:表示在消费者的收入和商品的价格给定的条件下,消费者的全部收入所能购买到的两种商品的组合边际替代率(MRS):在维持效用水平不变的前提下,消费者增加一单位某种商品的消费数量时所需要的放弃另一种商品的消费数量。

等产量线:是在技术水平不变的条件下生产同一产量的两种生产要素投入量的所以不同组合的轨迹。

经济成本:机会成本,显成本,隐成本之和。

完全竞争市场:具备4个条件,市场上有大量的买者和卖者,市场上每一个厂商提供的商品都是同质的,所有的资源具有完全的流动性,信息是完全的规模报酬:分析的是企业的生产规模变化与所引起的产量变化之间的关系边际替代率递减规律:随着一种商品的消费数量的逐少增加,消费者想要获得更多的这种商品的愿望就会递减,从而他为了多获得一单位的这种商品而愿意放弃的另一种商品的数量就会越来越少。

微观经济学(第六版)第四章PPT课件

微观经济学(第六版)第四章PPT课件

2、总产量曲线与平均产量曲线关系:连接总产量曲 线上任何一点与坐标原点的线段的斜率,就是相应的 平均产量值。
3、平均产量曲线与边际产量曲线的关系
APL↑, MPL > APL APL ↓, MPL < APL ↑ APL →max, MPL= APL
为什么? 边际量对平均量的拉动作 用!
五、短期生产的三个阶段
等产量线的特征
A.距原点越远的等产量曲线 表示的产量水平越高
B.同一平面上有无数条等产 量线,且任何两条等产量 曲线不会相交。
C.等产量线向右下方倾斜, 且凸向原点。
表明:在产量水平一定时,增 加某一要素的投入量,必须减 少另一要素的投入量。
三、边际技术替代率
(Marginal Rate of Technical Substitution)
此,让我们来关注北方农场的经验。北方农场的投入
主要是土地和劳动两种要素,主要生产小麦。根据历
年的经验,北方农场的产量和要素投入的关系大致可
以表示为:
11
Q 0.5L2K 2
其中,Q表示小麦的产量(吨),L表示劳动投入量,K 表示土地的投入量(亩)。
最初农场租用25亩土地,在第一年雇用了4个人,在实 际耕种过程中,农场主发现人手非常紧张,以至于有 很多土地上麦苗长得不齐,并且除草也不是很好,所 以第二年他决定增加人手,雇佣了9个人。不过,一年 下来农场主仍觉得还没有做到精耕细作,决定继续增 加人手,第三年雇佣人数增加到16个人。
二、企业的本质
1、马克思的分工协作观点。马克思认为,企业产生的原 因是能够更好地分工协作,从而能产生更高的劳动生 产率。
马克思:《资本论》第1卷358页:同一资本雇佣较多 的工人协作劳动,“这在历史上和逻辑上是资本主义 产生的起点”。

微观经济学讲义(黄有光)

微观经济学讲义(黄有光)

Department of EconomicsA DVANCED M ICROECONOMICS -Course Outline and Reading Guide Students who have solid background and are not adverse to a mathematical approach may use H.R. Varian, Microeconomic Analysis, Norton, 3rd edition, 1992. An alternative advanced text emphasizing game theory is David M. Kreps, A Course in Microeconomic Theory, Princeton University Press, 1990. Even more advanced texts includes:Andreu Mas-Colell, Michael D. Whinston and Jerry R. Green, 1995. Microeconomics Theory. Oxford University Press. (An advanced textbook in microeconomics theory.)However, the following texts are referred to frequently.Geoffery A. Jehle & Philip J. Reny (2001). Advanced Microeconomic Theory (2nd Edition). Boston: Addison-Wesley. (JR)Y.-K. Ng, Mesoeconomics: A Micro-Macro Analysis, London: Harvester, 1986.A simpler alternative to JR is:David G. Luenberger (1995). Microeconomic Theory. McGraw-Hill. (DL)The following topics are provided for reading. The lectures may not cover all topics and may not proceed in the same order.:(0) Mathematical Introduction (May be skipped if students are already familiar)JR: Ch. A1 & A2DL: Appendix C(1) Basic Consumer TheoryMainly on consumer preferences and the existence of utility functions, properties of demand functions, the composite commodity theorem, and the Slutsky equation.DL: Ch. 4JR: Ch. 1, 2, 3.Ng, Welfare Economics, App.1B.H.A.J. Green, Consumer Theory, Chapters 1-7P.R.G. Layard and A.A. Walters, Microeconomic Theory, McGraw-Hill, Sections 5.1 and 5.2Varian, Chapters 7-9(2) Some ExtensionsR.H. Frank, “If Homo Economicus could choose his own utility function, would he want one with a conscience?” American Economic Review, September 1987,593-604; June 1989, 588-596.Y.-K. Ng, “Step-optimization, secondary constraints, and Giffen goods”, Canadian Journal of Economics, November 1972, 553-560.Y.-K. Ng, “Diamonds are a government’s best friend: Burden-free taxes on goods valued for their values”, American Economic Review, March 1987, 77: 186-191.Y.-K. Ng, “Mixed diamond goods and anomalies in consumer theory: Upward-sloping compensated demand curves with unchanged diamondness”, Mathematical Social Sciences, 1993, 25: 287-293.(3) UncertaintyDL: Ch.11Gravelle & Rees, Chapters 19 and 20Green, Chapters 13, 14 & 15Y.-K. Ng, “Why do people buy lottery tickets? Choices involving risk and the indivisibility of expenditure”, Journal of Political Economy, October 1965, 530-535.Varian, Chapter 11Y.-K. Ng, “Expected subjective utility: Is the Neumann-Morgenstern utility the same as the neoclassical’s?” Social Choice Welfare, 1984, pp. 177-186.(4) Production and Marginal Productivity TheoriesDL: Ch. 5JR: Ch. 2, 3.Baumol, Chapter 11Henderson & Quandt, Chapter 3Varian, Chapters 1-5R.H. Frank, “Are workers paid their marginal products”, American Economic Review, 1984, 549-571.L. Borghans & L. Groot, “Superstardom and monopolistic power: Why media stars earn more than their marginal contribution to welfar e”, Journal of Institutional and Theoretical Economics, 1998, pp.546-(5) Introduction to Mesoeconomic AnalysisY.-K. Ng, Mesoeconomics: A Micro-Macro Analysis, London: Harvester, 1986.Y.-K. Ng, “Business confidence and depression prevention: A meso economic perspective”, American Economic Review, May 1992, 82(2): 365-371.Ng, “Non-neutrality of money under non-perfect competition: why do economists fail to see the possibility?” In Arrow, Ng, and Yang, eds., Increasing Returns and Economic Analysis, London: Macmillan, 1998, pp.232-252.(6) General EquilibriumDL: Ch. 7; JR: Ch.5K.J. Arrow & F. Hahn (1971), General Competitive Analysis, Chapter 1F. Black (1995), Exploring General Equilibrium, Cambridge, Mass.: MIT Press.J.S. Chipman, “The nature and meaning of equilibrium in economic theory”, in D.Martindale, ed., Functionalism in Social Sciences; reprinted in H. Townsend, ed., Price Theory, Penguin.Gravelle & Rees, Chapter 16W. Nicholson, Appendix B to Chapter 19, “The existence of genera l equilibrium prices”, Microeconomic Theory, 1985, The Dryden Press, 684-694.Starr. R.M. (1997). General Equilibrium Theory: An Introduction. Cambridge University Press.Varian, Chapters 17 & 21S. Zamagni, Microeconomic Theory. Oxford: Blackwell, 1987, Ch. 16.(7) Selected Topics in Microeconomic Analysis(a)Adverse selection, signalling, and screening.Akerlof, G. “The market for lemons: quality uncertainty and the market mechanism”, Quarterly Journal of Economics, 1970, 89: 488-500.Mas-Colell, Andreu, Whinston, Michael D. & Green, Jerry R., Microeconomic theory New York : Oxford University Press, 1995, Ch. 13.(b)The principal-agent problemHolmstrom, B., (1979), “Moral hazard and Observability”, Bell Journal of Economics, 10(1), 74-91Mas-Colell, Andreu, Whinston, Michael D. & Green, Jerry R., Microeconomic theory New York : Oxford University Press, 1995, Ch. 14.3typescript.(h) Specialization and Economic OrganizationYang, Xiaokai, Economics: New Classical versus Neoclassical Frameworks, Blackwell, 2001, Chs.5-7, 11.Yang, Xiaokai & Ng, Y.-K. Specialization and Economic Organization: A New Classical Microeconomic Framework. In "Contributions to Economic Analysis", V ol. 215, 1993, Amsterdam: North Holland, pp. xvi + 507. (Mainly Chs.0-2, 5.)Yang, X iaokai & Ng, Siang, “Specialization and Division of Labour: A Survey”, in Kenneth J. Arrow, et al, eds., Increasing Returns and Economic Analysis, London: Macmillan, 1998, pp. 3-63.Yang, Xiaokai & Ng, Y.-K. “Theory of the Firm and Structur e of Residual Rights”, Journal of Economic Behaviour and Organization, V ol. 16, pp. 107-28, 1995.(i)Does the enrichment of a sector benefit others?Ng, "The Enrichment of a Sector (Individual/Region/Country) Benefits Others: The Third Welfare Theorem?", Pacific Economic Review, Nov. 1996, V ol. 1, No.2, pp.93-115.Ng, Siang & Y.-K., “The enrichment of a sector(individual/region/country) benefits others: a generalization”, Pacific Economic Review, Oct. 2000, 5(3): 299-302.Ng, Siang & Y.-K., “The enrichmen t of a sector(individual/region/country) benefits others: the case of trade for specialization”, International Journal of Development Planning Literature, 1999, 14(3): 403-410.。

微观经济学讲义(黄有光)2

微观经济学讲义(黄有光)2

Advanced MicroeconomicsTopic 1: Set, Topology, Real Analysis and Optimization Readings: JR - Chapters 1 & 2, supplemented by DL - Appendix C1.1 IntroductionIn this lecture, we will quickly go through some basic mathematical concepts and tools that will be used throughout the rest of the course. As this is a review session, the attention will be mainly on refreshing on the language, style and rigor of mathematical reasoning. In economic analysis, especially microeconomic analysis, mathematics is always treated as a tool, never the end. On the other hand, by integrating economics with rigorous mathematics, we will be able to develop the theoretical expositions in a sound and logical manner, which is why economics is also known as economic science. Not many other traditionally known as social science fields manage to pass this critical stage. But it is important to remember that as an economist, we must go beyond the normal mathematical treatment and the underlying economics and their policy implications are far more important and interesting.The plan of this lecture goes like this. First, we will review the basic set theory. We then move on to a bit of topology. After reviewing basic elements of real analysis, we will cover some key results in optimization.1.2 Basics of Set Theory 1.2.1 B asic Concepts∙ set : a collection of elements∙ sets operations : union, intersection ∙ real sets : n n +R R R , , (the notion of vectors)∙ ∀ : for any; ∃ : there exists; ∍ : such that; ∈ : belongs to; is an element of1.2.2 C onvexity & RelationsConvex Set:∙ A set S ⊂ R n is convex if .10 and ,,)1(2121≤≤∈∀∈-+t S S t t x x x x∙ Intuitively, a set is a convex set if and only if (iff) we can connect any two points in a straightline that lies entirely within the set.∙ Convex set has no holes, no breaks, no awkward curvatures on the boundaries; they areconsidered as “nice sets”.∙ The intersection of two convex sets remains convex.Relations∙ For any two given sets, S and T , a binary relation R between S and T is a collection ofordered pairs (s , t ) with s ∈S and t ∈T .∙ It is clear that R is a subset of S ⨯ T : (s , t ) ∈ R or s R t .Properties of Relations :∙ Completeness∙ R ⊂ S ⨯ S is complete iff for all x and y (x ≠ y ) in S , x R y or y R x .∙ Reflexivity∙ R ⊂ S ⨯ S is reflexive if for all x in S , x R x .∙ Transitivity∙ R ⊂ S ⨯ S is transitive if for all x, y, z in S , x R y and y R z implies x R z .1.3 TopologyTopology attempts to study the fundamental properties of sets and mappings. Our discussion will be mainly on the real space R n .∙ A real topological space is normally denoted as (R n , d ), where d is the metric defined on thereal space. Intuitively speaking, d is a distance measure between two points in the real space. ∙ Euclidean spaces are special real topological spaces associated with the Euclidean metricdefined as follows:n n n x x x x x x d R x x x x x x ∈∀-++-+-=-=2122122212221112121,;)()()(||||),(1.3.1 S ets on a Real Topological Spaceε-Balls∙ Open ε-Ball for a point x 0: for ε > 0,}),(|{)(00εε<∈≡x x R x x d B n∙ Closed ε-Ball for a point x 0: for ε > 0,}),(|{)(00εε≤∈≡x x R x x d B nOpen Sets∙ S ⊂ R n is open set if, ∀ x ∈ S , ∃ ε > 0 such that (∍) B ε(x ) ⊂ S . ∙ Properties of Open Sets:∙ The empty set and the whole set are open set∙ Union of open sets is open; intersection of open sets is open too. ∙ Any open set can be represented as a union of open balls:)(x x x εB S S∈= , where S B ⊂)(x x ε.Closed Sets∙ S is a closed set if its complement, S c , is an open set.∙ A point x ∈S is an interior point if there is some ε-ball centered at x that is entirely containedin S . The collection of all interior points of S is denoted by int S , known as the interior of S .∙ Properties of Closed Sets:∙ The empty set and the whole set are closed;∙ Union of any finite collection of closed sets is a closed set; ∙ Intersection of closed sets is a closed set.Compact Sets∙ A set S is bounded if ∃ ε > 0 such that (∍): S ⊂ B ε(x ) for some x ∈ S . ∙ A set in R n that is closed and bounded is called a compact set .1.3.2 F unctions/Mappings on R n∙ Let D ⊂ R m , f : D → R n . We say f is continuous at the point x 0 ∈D if∀ ε > 0, ∃ δ > 0 ∍ ))(())((00x x f B D B f εδ⊂⋂∙ Special Case: D ⊂ R , f : D → R . f is continuous at x 0 ∈D if ∀ ε > 0, ∃ δ > 0 ∍ δε<-∈<-|| and whenever ,|)()(|00x x D x x f x fProperties of Continuous Mappings:∙ Let D ⊂ R m , f : D → R n . Then∙ f is continuous ⇔ for all open ball B ⊂ R n , f --1(B ) is open in D⇔ for all open set S ⊂ R n , f --1(S ) is open in D∙ If S ⊂ D is compact (closed and bounded), then its image f (S ) is compact in R n .1.3.3 W eierstrass Theorem & The Brouwer Fixed-Point TheoremThese two theorems, known as existence theorems , are very important in microeconomic theory. “An existence theorem” specifies conditions that, if met, something exists . In the meantime, please keep in mind that the conditions in the existence theorems are normally sufficient conditions , meaning that if the required conditions are NOT met, it does not mean the nonexistence of something – it may still exist. The existence theorems say very little about exact location of this something . In other words, existence theorems are powerful tools for showing that something is there; but it is not sufficient in actually finding the equilibrium.Weierstrass Theorem – Existence of Extreme Values∙ This is a fundamental result in optimization theory .∙ (Weierstrass Theorem ) Let f : S ⊂ R be a continuous real-valued mapping where S is a nonemptycompact subset of R n . Then a global maximum and a global minimum exist, namely,.),~()()( that such ~,**S f f f S S ∈∀≤≤∈∈∃x x x x x xThe Brouwer Fixed-Point TheoremMany profound questions about the fundamental consistency of microeconomic systems have been answered by reformulating the question as one of the existence of a fixed point. Examples include:∙ The view of a competitive economy as a system of interrelated markets is logically consistentwith this setting;∙ The well-known Minimax Theorem in game theory∙ (Brouwer Fixed-Point Theorem ) Let S ⊂ R n be a nonempty compact and convex set. Let f : S→ S be continuous mapping. Then there exists at least one fixed point of f in S . That is, ∃ x * ∈S such that x * = f (x *).1.4 Real-Valued Functions∙ By definition, a real-valued function is a mapping from an arbitrary set D (domain set ) of R n to a subsetR of the real line R (range set ).∙ f : D → R , with D ⊂ R n & R ⊂ R.Increasing/Decreasing Functions:∙ Increasing function : f (x 0) ≥ f (x 1) whenever x 0 ≥ x 1;∙ Strictly increasing function : f (x 0) > f (x 1) whenever x 0 > x 1;∙ Strongly increasing function : f (x 0) > f (x 1) whenever x 0 ≠ x 1 and x 0 ≥ x 1∙ Similarly, we can define the three types of decreasing functions.Concavity of Real-Valued Functions∙ Assumption f : D → R , with D ⊂ R n is convex subset of R n & R ⊂ R.∙ f : D → R is concave if for all x 1, x 2 ∈ D ,]1 ,0[),()1()())1((2121∈∀-+≥-+t f t tf t t f x x x x∙ Intuitively speaking, a function is concave iff for every pair of points on its graph, the chordbetween them lies on or below the graph.∙ f : D → R is strict concave if for all x 1≠ x 2 in D ,)1 ,0(),()1()())1((2121∈∀-+>-+t f t tf t t f x x x x∙ f : D → R is quasiconcave if for all x 1, x 2 ∈ D ,]1 ,0[)],(),(min[))1((2121∈∀≥-+t f f t t f x x x x∙ f : D → R is strictly quasiconcave if for all x 1≠ x 2 in D ,)1 ,0()],(),(min[))1((2121∈∀>-+t f f t t f x x x xConvexity of Real-Valued Functions∙ After the discussion of concave functions, we can take care of the convex functions by taking thenegative of a concave function.∙ f : D → R is convex if for all x 1, x 2 ∈ D ,]1 ,0[),()1()())1((2121∈∀-+≤-+t f t tf t t f x x x x∙ f : D → R is strict convex if for all x 1≠ x 2 in D ,)1 ,0(),()1()())1((2121∈∀-+<-+t f t tf t t f x x x x∙ f : D → R is quasiconvex if for all x 1, x 2 ∈ D ,]1 ,0[)],(),(min[))1((2121∈∀≤-+t f f t t f x x x x∙ f : D → R is strictly quasiconvex if for all x 1≠ x 2 in D ,)1 ,0()],(),(min[))1((2121∈∀<-+t f f t t f x x x xProperties of Concave/Convex Functions∙ f : D → R is concave ⇔ the set of points beneath the graph, i.e., {(x , y )| x ∈ D , f (x ) ≥ y } is a convexset.∙ f : D → R is convex ⇔ the set of points above the graph, i.e., {(x , y )| x ∈ D , f (x ) ≤ y } is a convex set. ∙ f : D → R is quasiconcave ⇔ superior sets, i.e., {x | x ∈ D , f (x ) ≥ y } are convex for all y ∈ R . ∙ f : D → R is quasiconvex ⇔ inferior sets, i.e., {x | x ∈ D , f (x ) ≤y } are convex for all y ∈ R .∙ If f is concave/convex ⇒ f is quasiconcave/quasiconvex;∙ f (strictly) concave/quasiconcave ⇔ -f (strictly) convex/quasiconvex.∙ Let f be a real-valued function defined on a convex subset D of R n with a nonempty interior on which f isa twice differentiable function, then the following statements are equivalent: ∙ If f is concave.∙ The Hessian matrix H (x ) is negative semidefinite for all x in D . ∙ For all x 0 ∈ D , f (x ) ≤ f (x 0) + ∇ f (x 0) (x – x 0), ∀ x ∈ D .Homogeneous Functions∙ A real-valued function f (x ) is called homogeneous of degree k if0 all for )()(>=t f t t f k x x .Properties of Homogeneous Functions:∙ f is homogeneous of degree k , its partial derivatives are homogeneous of degree k – 1. ∙ (Euler’s Theorem) f (x ) is homogeneous of degree k iff. all for )()(1x x x ∑=∂∂=ni i ix x f kf1.5 Introduction to Optimization∙ We will focus on real-valued functions only.Main Concepts of Optima∙ Local minimum/maximum ∙ Global minimum/maximum∙ Interior maxima, boundary maxima 1.5.1 U nconstrained OptimizationFirst-Order (Necessary) Condition for Local Interior Optima∙ If the differentiable function f (x ) reaches on a local interior maximum or minimum at x *, then x *solves the system of simultaneous equations:∇ f (x *) = 0.Second-Order (Necessary) Condition for Local Interior OptimaLet f (x ) be twice differentiable.1. If f (x ) reaches a local interior maximum at x *, then H (x *) is negative semidefinite.2. If f (x ) reaches a local interior minimum at x *, then H (x *) is positive semidefinite.Notes:∙ There is a simple method in checking whether a matrix is a negative (positive) semidefinte,which is to examine the signs of the determinants of the principle minors for the given matrix.Local-Global Optimization Theorem∙ For a twice continuously differentiable real-valued concave function f on D , the following threestatements are equivalent, where x* is an interior point of D : 1. ∇ f (x*) = 0.2. f achieves a local maximum at x*.3. f achieves a global maximum at x*.Strict Concavity/Convexity and Uniqueness of Global Optima∙ If x * maximizes the strictly concave (convex) function f , then x * is the unique global maximizer(minimizer).1.5.2 C onstrained OptimizationThe Lagrangian MethodConsider the following optimization problem:m j g f j n,,1,0)( subject to )(max ==∈x x RxNote:∙ If the objective function f is real-valued and differentiable, and if the constraint set defined bythe constraint equations is compact, then according to Weierstrass Theorem, optima of the objective function over the constraint set do exist.To solve this, we form the Lagrangian by multiplying each constraint equation g i by a different Lagrangian multiplier λj and adding them all to the objective function f . Namely,∑=+=mj j j g f L 1).()(),(x x Λx λLagrange’s TheoremLet f and g j be continuously differentiable real-valued function over some D ⊂ R n . Let x * be an interior point of D and suppose that x * is an optimum (maximum or minimum) of f subject to the constraints, g j (x *) = 0, j = 1, …, m . If the gradient vectors, ∇ g j (x *), j = 1, …, m , are linearly independent, then there exist m unique numbers λ, j = 1,…, m , such that.,...,1for 0 )()(),(1**n i x g x f x L m j ij j i i ==∂∂+∂∂=∂Λ∂∑=x x x λSpecial Case: Graphical InterpretationConsider the special case: max f (x 1, x 2) subject to g (x 1, x 2) = 0.As our primary interest is to solve the problem for x 1, x 2, then the Lagrangian condition becomes:21212211*x g x g x f x f x g x f x g x f ∂∂∂∂-=∂∂∂∂-⇒∂∂∂∂-=∂∂∂-=λ which is what we commonly known as tangency condition . To see this, define the level set as follows:L (y 0) = {(x 1, x 2) | f (x 1, x 2) = y 0}.and refer the diagram below.Second-Order Condition & Bordered HessianFor ease of discussion, let us focus the special case: max f (x 1, x 2) subject to g (x 1, x 2) = 0. Assume that there is a (curve) solution to the constraint, namely, x 2 = x 2(x 1), such thatg (x 1, x 2(x 1)) = 0Lettingy = f (x 1, x 2(x 1))be the value of the objective function subject to the constraint.∙ As a function of single variable, the second-order (sufficient) condition for a maximum/minimum is thatthe second-order derivative of y with respect to x 1 is negative (concave) or positive (convex).∙ This second-order derivative is associated with the determinant of the following matrix, known asbordered Hessian of the Lagrange function L :⎪⎪⎪⎭⎫ ⎝⎛=0212222111211g g g L L g L L H ∙ In particular, we have the following relationship:22212)()1(g D dx y d -= where D is the determinant of the bordered Hessian, i.e.,])(2)([0212221122211212222111211g L g g L g L g g g L L g L L D +--== ∙ The above discussion can be extended to the general case.Inequality ConstraintsLet f (x ) be continuously differentiable.∙ If x* maximizes f (x ) subject to x ≥ 0, then x satisfies:ni x n i x f x n i x f i i i i ,...,1 ,0,...,1 ,0*)(,...,1 ,0*)(**=≥==⎥⎦⎤⎢⎣⎡∂∂=≤∂∂x x∙ If x* mimimizes f (x ) subject to x ≥ 0, then x satisfies:ni x n i x f x n i x f i i i i ,...,1 ,0,...,1 ,0*)(,...,1 ,0*)(**=≥==⎥⎦⎤⎢⎣⎡∂∂=≥∂∂x xKuhn-Tucker Conditions(Kuhn-Tucker) Necessary Conditions for Optima of Real-Valued Functions Subject to Inequality Constraints:Let f (x ) and g j (x ), j = 1,…,m , be continuously differentiable real-valued functions over some domain D ⊂ R n . Let x * be an interior point of D and suppose that x * is an optimum (maximum or maximum) of f subject to the constraints, g j (x ) ≥ 0, j = 1,…,m .If the gradient vectors ∇ g j (x*) associated with all binding constraints are linearly independent, then there exists a unique vector Λ* such that (x*, Λ*) satisfies the Kuhn-Tucker conditions:.,...,1 0*)( ,0*)( ,...,1 0*)(*)(*)*,(*1*m j g g ni x g x f L j j j m j i j j i i =≥===∂∂+∂∂≡Λ∑=x x x x x λλ Furthermore, the vector Λ* is nonnegative if x* is a maximum, and nonpositive if it is a minimum.1.5.3 V alue FunctionsConsider the following parameterized optimization problem:max {x } f (x, a ) subject to g (x, a ) = 0 and x ≥ 0.where x is a vector of choice variables, and a = (a 1, …, a m ) is a vector of parameters that may enter the objective function, the constraint, or both.∙ Suppose that for each a , there is a unique solution denoted by x(a).∙ Define the value function M (a ) = f (x(a), a ), which is the optimal value of the objective functionassociated with a .The Envelope TheoremConsider the same optimization problem as identified above. For each a , let x(a). > 0 uniquely solve the problem. Assume that the objective function and the constraints are continuously differentiable in the parameters a . Let L (x,a,λ) be the problem's associated Lagrangian function and let (x(a), λ(a )) solve the Kuhn-Tucker conditions. And let M (a ) be the problem's associated maximum-value function. Then, the Envelope Theorem states that.,...,1 )()(),(m j a La M jj =∂∂=∂∂a a x a λNote:∙ The theorem says that the total effect on the optimized value of the objective function when aparameter changes (and so, presumably, the whole problem must be reoptimized) can bededuced simply by taking the partial of the problem's Lagarangian with respect to the parameter and then evaluating that derivative at the solution to the original problem's first-order Kuhn-Tucker conditions.The theorem applies to cases having many constraints.。

黄亚钧《微观经济学》(第4版)笔记和课后习题(含考研真题)详解-导论(圣才出品)

黄亚钧《微观经济学》(第4版)笔记和课后习题(含考研真题)详解-导论(圣才出品)
1 / 38
圣才电子书 十万种考研考证电子书、题库视频学习平台

何限制的物质资源,也不可能拥有无限的时间来享受和利用这些资源,稀缺性始终要求人们 做出各种各样的选择,而选择意味着“取舍”,这正是经济学产生的根源。
2.基本问题 (1)生产什么 “生产什么”要解决的问题是如何选择用总量既定的生产资源来生产哪些产品,并最大 限度地满足人们的需要,也就是资源配置问题。由于资源的稀缺性,任何形式的资源配置都 会产生成本,这种成本就是人们选择所产生的成本。如果某人选择了某一资源用于某种用途, 这就意味着他同时放弃了这一资源的其他用途,而其他用途所产生的价值就构成了使用这一 资源的成本,经济学上称之为“机会成本”。如果某一种资源有两种以上的其他用途,那么, 机会成本就是指其中最有价值的用途所创造的收益。因此,机会成本是指所放弃的“次佳” 选择产生的收益。 (2)如何生产 由于选择生产什么需要成本,由此产生了“如何生产”的问题。“如何生产”要解决的 是在生产同一种产品的许多种不同方法(如多用资本和少用劳动的方法或少用资本多用劳动 的方法)中选择一种成本最低或者最有效率的方法,这既要从技术角度考虑,也要从经济角 度考虑。一种生产方法是有效的,是指不可能增加一种产品的生产而不从另一种产品的生产 中抽取资源,从而减少另一种产品的产量。 (3)为谁生产 “为谁生产”在相当程度上是一个收入分配问题,这既是一个经济问题,又是一个社会 问题。因此,不同社会制度、不同风俗习惯、不同道德规范会有不同的看法。 3.微观经济学 微观经济学研究的是微观或“小型”经济单位的经济行为,如消费者、投资者、工人、
2 / 38
圣才电子书 十万种考研考证电子书、题库视频学习平台

厂商以及单个行业和市场等。微观经济学提供了认识各种层次的经济运行的基础知识和基本 研究方法,因为,所有的经济决策最终是由个体经济单位(消费者、工人、厂商等)做出的, 微观经济学包含了对影响这些决策的各种因素的研究。这些个体决策的加总就构成了一个总 体经济的运行。

微观经济学讲义黄有光4

微观经济学讲义黄有光4

Advanced Microeconomics Topic 3: Consumer DemandPrimary Readings: DL – Chapter 5; JR - Chapter 3; Varian, Chapters 7-9.3.1 Marshallian Demand FunctionsLet X be the consumer's consumption set and assume that the X = R m +. For a given price vector p of commodities and the level of income y , the consumer tries to solve the following problem:max u (x )subject to p ⋅x = y x ∈ X∙ The function x (p , y ) that solves the above problem is called the consumer's demand function .∙ It is also referred as the Marshallian demand function . Other commonly known namesinclude Walrasian demand correspondence/function , ordinary demand functions , market demand functions , and money income demands .∙ The binding property of the budget constraint at the optimal solution, i.e., p ⋅x = y , is theWalras’ Law .∙ It is easy to see that x (p , y ) is homogeneous of degree 0 in p and y .Examples:(1) Cobb-Douglas Utility Function:.,...,1,0 ,)(1m i x x u i mi i i =>=∏=ααFrom the example in the last lecture, the Marshallian demand functions are:.ii i p yx αα=where∑==mi i 1αα.(2) CES Utility Functions: )10( )(),(/12121<≠+=ρρρρx x x x uThen the Marshallian demands are:,),( ;),(2112221111rr r r r r p p yp y x p p y p y x +=+=--p p where r = ρ/(ρ -1). And the corresponding indirect utility function is given byrr r p p y y v /121)(),(-+=pLet us derive these results. Note that the indirect utility function is the result of the utility maximization problem:yx p x p x x x x =++2211/121, subject to )(max 21ρρρDefine the Lagrangian function:)()(),,(2211/12121y x p x p x x x x L -+-+=λλρρρThe FOCs are:00)(0)(22112121)/1(2121111)/1(211=-+=∂∂=-+=∂∂=-+=∂∂----y x p x p Lp x x x x L p x x x x L λλλρρρρρρρρ Eliminating λ, we get⎪⎩⎪⎨⎧+=⎪⎪⎭⎫⎝⎛=-2211)1/(12121x p x p y p p x x ρ So the Marshallian demand functions are:rr r rrr p p yp y x x p p yp y x x 211222211111),(),(+==+==--p pwith r = ρ/(ρ-1). So the corresponding indirect utility function is given by:r r r p p y y x y x u y v /12121)()),(),,((),(-+==p p p3.2 Optimality Conditions for Co nsumer’s ProblemFirst-Order ConditionsThe Lagrangian for the utility maximization problem can be written asL = u (x ) - λ( p ⋅x - y ).Then the first-order conditions for an interior solution are:yu i p x u i i =⋅=∇∀=∂∂x p p x x λλ)( i.e. ;)( (1)Rewriting the first set of conditions in (1) leads to,,k j p p MU MU MRS kj kj kj ≠==which is a direct generalization of the tangency condition for two-commodity case.Sufficiency of First-Order ConditionsProposition : Suppose that u (x ) is continuous and quasiconcave on R m +, and that (p , y ) > 0. If u if differentiable at x*, and (x*, λ*) > 0 solves (1), then x* solve the consumer's utility maximization problem at prices p and income y .Proof . We will use the following fact without a proof:∙ For all x , x ' ≥ 0 such that u (x') ≥ u (x ), if u is quasiconcave and differentiable at x , then∇u (x )(x' - x ) ≥ 0.Now suppose that ∇u (x*) exists and (x*, λ*) > 0 solves (1). Then,∇u (x*) = λ*p , p ⋅x* = y .If x* is not utility-maximizing, then must exist some x 0 ≥ 0 such thatu (x 0) > u (x*) and p ⋅x 0 ≤ y .Since u is continuous and y > 0, the above inequalities implies thatu (t x 0) > u (x*) and p ⋅(t x 0) < yfor some t ∈ [0, 1] close enough to one. Letting x' = t x 0, we then have∇u (x*)(x' - x ) = (λ*p )⋅( x' - x ) = λ*( p ⋅x' - p ⋅x ) < λ*(y - y ) = 0,which contradicts to the fact presented at the beginning of the proof since u (x 1) > u (x*).Remark∙ Note that the requirement that (x*, λ*) > 0 means that the result is true only forinterior solutions.Roy's IdentityNote that the indirect utility function is defined as the "value function" of the utility maximization problem. Therefore, we can use the Envelope Theorem to quickly derive the famous Roy's identity.Proposition (Roy's Identity?): If the indirect utility function v (p , y ) is differentiable at (p 0, y 0) and assume that ∂v (p 0, y 0)/ ∂y ≠ 0, then.,...,1 ,),(),(),(000000m i yy v p y v y x ii =∂∂∂∂-=p p pProof . Let x * = x (p , y ) and λ* be the optimal solution associated with the Lagrangian function:L = u (x ) - λ( p ⋅x - y ).First applying the Envelope Theorem, to evaluate ∂v (p 0, y 0)/ ∂p i gives.**)*,(),(*i ii x p L p y v λλ-=∂∂=∂∂x p But it is clear that λ* = ∂v (p , y )/ ∂y , which immediately leads to the Roy's identity.Exercise∙ Verify the Roy's identity for CES utility function.Inverse Demand FunctionsSometimes, it is convenient to express price vector in terms of the quantity demanded, which leads to the so-called inverse demand functions .∙ the inverse demand function may not always exist. But the following conditions willguarantee the existence of p (x ):∙ u is continuous, strictly monotonic and strictly quasiconcave. (In fact, these conditionswill imply that the Marshallian demand functions are uniquely defined.)Exercise (Duality of Indirect and Direct Demand Functions):(1) Show that for y = 1 the inverse demand function p = p (x ) is given by:.,...,1 ,)()()(1m i x x u x u p m j j jii =∂∂∂∂=∑=x x x(Consult JR, pp.79-80.)(2) Show that for y = 1, the (direct) demand function x = x (p, 1) satisfies.,...,1 ,)1,()1,()1,(1m i p p v p v x m j j j ii =∂∂∂∂=∑=p p p(Hint: Use Roy’s identity and the homogeneity of degree zero of the indirect uti lityfunction.)3.3 Hicksian Demand FunctionsRecall that the expenditure function e (p , u ) is the minimum-value function of the following optimization problem:,)( s.t. min ),(u u u e m≥⋅=+∈x x p p R x for all p > 0 and all attainable utility levels.It is clear that e (p , u ) is well-defined because for p ∈ R m ++, x ∈ R m +, p ⋅x ≥ 0.If the utility function u is continuous and strictly quasiconcave, then the solution to the above problem is unique, so we can denote the solution as the function x h (p , u ) ≥ 0. By definition, it follows thate (p , u ) = p ⋅x h (p , u ).∙ x h (p , u ) is called the compensated demand functions , also commonly known as Hicksiandemand functions , named after John Hicks when he first discussed this type of demand functions in 1939.Remarks1. The reason that they are called "compensated " demand function is that we mustimpose an artificial income adjustment when the price of one good is changing while the utility level is assumed to be fixed.2. It is important to understand that, in contrast with the Marshallian demands, theHicksian demands are not directly observable.As usual, it should be no longer a surprise that there is a close link between the expenditure function and the Hicksian demands, as summarized in the following result, which is again a direct application of the Envelope Theorem..Proposition (Shephard's Lemma for Consumer): If e (p , u ) is differentiable in p at (p 0, u 0) with p 0 > 0, then,.,...,1 ,),(),(000m i p u e u x ih i=∂∂=p pExample: CES Utility Functions)10( )(),(/12121<≠+=ρρρρx x x x uLet us now derive the Hicksian demands and the corresponding expenditure function.min {p 1x 1 + p 2x 2} subject to)(/121u x x =+ρρρThe Lagrangian function is))((),,(/121221121u x x x p x p x x L -+-+=ρρρλλThen the FOCs are:0)(0)((0)((/121121/12122111/12111=+-=∂∂=+-=∂∂=+-=∂∂----ρρρρρρρρρρρλλλx x u L x x x p x L x x x p x L Eliminating λ, we getρρρρ/121)1/(12121)(x x u p p x x +=⎪⎪⎭⎫ ⎝⎛=- From these, it is easy to derive the Hicksian demand functions given by:121)/1(212111)/1(211)(),()(),(----+=+=r r r r h r r r r h pp p u u x p p p u u x p pwhere r = ρ/(ρ-1). And the expenditure function is.)(),(),(),(/1212211rr r h h p p u u x p u x p u e +=+=p p pAlternatively, since we know that the indirect utility function is given by:,)(),(/121rr r p p y y v -+=p3.4 Recall that (last the indirect utility function v (p (a) e (p , v (b) v (p , eFurthermore, we solutions of both optimization the followinginteresting identities between Marshallian demands and Hicksian demands:x (p , y ) = x h (p , v (p , y )) x h (p , u ) = x (p , e (p , u ))which hold for all values of p , y and u .The second identity leads to a classic differentiation relation between Hicksian demands and Marshallian demands, known as Slutsky equation.Proposition (Slutsky Equation): If the Marshallian and Hicksian demands are all well-defined and continuously differentiable, then for p > 0, x > 0,),,(),(),(),(y x yy x p u x p y x j i j h i j i p p p p ⋅∂∂-∂∂=∂∂where u = v (p , y ).Proof . It follows easily from taking derivative and applying Shephard's Lemma.Substitution and Income Effects∙ The significance of Slutsky equation is that it decomposes the change caused by a pricechange into two effects: a substitution effect and an income effect .∙ The substitution effect is the change in compensated demand due to the change inrelative prices, which is the first item in Slutsky equation.∙ The income effect is the change in demand due to the effective change in incomecaused by the price change, which is the second item in Slutsky equation. ∙ The substitution effect is unobservable, while the income effect is observable.Question: From the above diagram (also know as Hicksian decomposition ), can you see crossing property between a Marshallian demand function and the corresponding Hicksian demand? (Hint: there are two general cases.)Slutsky MatrixThe substitution effect between good i and good j is measured byj i p u x s jh i ij ,,),(∀∂∂=pSo the Slutsky matrix or the substitution matrix is the m ⨯m matrix of the substitution items:⎥⎥⎦⎤⎢⎢⎣⎡∂∂==j h i ij p u x s ),(][p SThe following result summarizes the basic properties of the Slutsky matrix.Proposition (Substitution Properties). The Slutsky matrix S is symmetric and negative semidefinite.Proof . By Shephard’s Lemma (for consumer), we know thatji ihj i j j i j h i ij s p u x p p u e p p u e p u x s =∂∂=∂∂∂=∂∂∂=∂∂=),(),(),(),(22p p p pHence S is symmetric. It is evident that S is the Hessian matrix of the expenditure function e (p , u ).Since we know that e (p , u ) is concave, so its Hessian matrix must be negative semidefinite.Since the second-order own partial derivatives of a concave function are always nonpositive, this implies that s ii ≤ 0, i.e.,i p u x s ih i ii ∀≤∂∂=,0),(pwhich indicates the intuitive property of a demand function: as its own price increases, the quantity demanded will decrease. You are reminded that this is a general property for Hicksian demands.For the Marshallian demands, note that by Slutsky equation,).,(),(),(),(y x yy x p u x p y x i i i h i i i p p p p ⋅∂∂-∂∂=∂∂Then for a small change in p i , we will have the following:.),(),(),(),(i i i i i h i i i i i p y x yy x p p u x p p y x x ∆⋅∂∂-∆∂∂=∆∂∂≈∆p p p pThe first item, capturing the own price effect of the Hicksian demands, is of course nonpositive.The sign of the second item depends on the nature of the good:∙ Normal good : ∂x i (p , y )/ ∂y > 0.∙ This leads to a normal Marshallian demand function: it is decreasing in its ownprice.∙ Inferior good : ∂x i (p , y )/ ∂y < 0.∙ When the substitution effect still dominates the income effect, the resultingMarshallian demand is also decreasing in its own price.∙ When the substitution effect is dominated by the income effect, it will lead to aGiffen good, that is, its demand function is an increasing function of its own price.Because of Slutsky equation, the Slutsky matrix (i.e., the substitution matrix) also has the following form that is in terms of Marshallian demand functions.⎥⎥⎦⎤⎢⎢⎣⎡∂∂+∂∂=⎥⎥⎦⎤⎢⎢⎣⎡∂∂==),(),(),(),(][y x y y x p y x p u x s j i j i j h i ij p p p p SWe will get back to the above Slutsky matrix in the next lecture when we discuss the integrability problem .3.5. The Elasticity Relations for Marshallian Demand FunctionsDefinition . Let x (p , y ) be the consumer’s Marshallian demand functions. Define.),(,),(),(,),(),(yy x p s y x p p y x y x yy y x i i i i jj i ij i i i p p p p p =∂∂=∂∂=εηThen1. ηi is called the income elasticity of demand for good i .2. ε ij is called the price elasticity of the demand for good i with respect to a price change ingood j . ε ii is the own-price elasticity of the demand for good i . For i ≠ j , ε ij is the cross-price elasticity .3. s i is called the income share spent on good i .The following result summarizes some important relationships among the income shares, income elasticities and the price elasticities.Proposition . Let x (p , y ) be the consumer’s Marshallian demand functions. Then1. Engel aggregation :.11=∑=mi ii s η2. Cournot aggregation :.,...,1 ,1m j s s j mi iji =-=∑=εProof . Both identities are derived from the Walras’ Law, namely, the fact that the budget is tight or balanced:y = p ⋅x (p , y ) for all p and y . (A)To prove Engel aggregation, we differentiate both sides of (A) w.r.t. y :∑∑∑====∂∂=∂∂=m i mi i i ii i i mi i i s y x yy y x y y x p y y x p 111,),(),(),(),(1ηp p p pas required.To prove Cournot aggregation, we differentiate both sides of (A) w.r.t. p j :.),(),(),(),(),(01∑∑=≠∂∂=-⇒∂∂++∂∂=mi j i i j jj jj ji j i ip y x p y x p y x p y x p y x p p p p p pMultiplying both sides by p j /y leads to∑∑∑====-⇒∂∂=∂∂=-mi iji j mi i jj i i i mi j j i i j j s s y x p p y x y y x p p p y x y p yy x p 111),(),(),(),(),(εp p p p pas required too.3.6 Hicks ’ Composite Commodity TheoremAny group of goods & services with no change in relative prices between themselves may be treated as a single composite commodity, with the price of any one of the group used as the price of the composite good and the quantity of the composite good defined as the aggregate value of the whole group divided by this price. Important use in applied economic analysis.Additional ReferencesAfriat, S. (1967) "The Construction of Utility Functions from Expenditure Data," International Economic Review, 8, 67-77.Arrow, K. J. (1951, 1963) Social Choice and Individual Values. 1st Ed., Yale University Press, New Haven, 1951; 2nd Ed., John Wiley & Sons, New York, 1963.Becker, G. S. (1962) "Irrational Behavior and Economic Theory," Journal of Political Economy, 70, 1-13.Cook, P. (1972) "A One-line Proof of the Slutsky Equation," American Economic Review, 42, 139. Deaton, A. and J. Muellbauer (1980) Economics and Consumer Behavior. Cambridge University Press, Cambridge.Debreu, G. (1959) Theory of Value. John Wiley & Sons, New York.Debreu, G. (1960) "Topological Methods in Cardinal Utility Theory," in Mathematical Methods in the Social Sciences, ed. K. J. Arrow and M. D. Intriligator, North Holland, Amsterdam. Diewert, W. E. (1982) "Duality Approaches to Microeconomic Theory," Chapter 12 in Handbook of Mathematical Economics, ed. K. J. Arrow and M. D. Intriligator, North Holland, Amsterdam.Gorman, T. (1953) “Community Preference Fields,” Econometrica, 21, 63-80.Hicks, J. (1946) V alue and Capital. Clarendon Press, Oxford, England.Katzner, D.W. (1970) Static Demand Theory. MacMillan, New York.Marshall, A. (1920) Principle of Economics, 8th Ed. MacMillan, London.McKenzie, L. (1957) “Demand Theory Without a Utility Ind ex," Review of Economic Studies, 24, 183-189.Pollak, R. (1969) "Conditional Demand Functions and Consumption Theory," Quarterly Journal of Economics, 83, 60-78.Roy, R. (1942) De l'utilite. Hermann, Paris.Roy, R. (1947) "La distribution de revenu entre les divers biens," Econometrica, 15, 205-225. Samuelson, P. A. (1938) "A Note on the Pure Theory of Consumer's Behavior," Econometrica, 5, 61-71, 353-354.Samuelson, P. (1947) Foundations of Economic Analysis. Harvard University Press, Cambridge, Massachusetts.Sen, (1970) Collective Choice and Social Welfare. Holden Day, San Francisco.Stigler, G. (1950) "Development of Utility Theory," Journal of Political Economy, 59, parts 1 & 2, pp. 307-327, 373-396.Varian, H. R. (1992) Microeconomic Analysis. Third Edition. W.W. Norton & Company, New York. (Chapters 7, 8 and 9)Wold, H. and L. Jureen (1953) Demand Analysis. John Wiley & Sons, New York.11。

《微观经济学》讲义4

《微观经济学》讲义4

第九节 规模报酬
Q = F ( L, K ) bQ = F ( aL, aK )
• b>a,规模报酬递增 • b=a,规模报酬不变 • b<a,规模报酬递减
不同规模报酬特征的等产量曲线
K
K
300 200 100 L
K
300 100200L
300 200 100 L
课间休息
生产技术的要素密集类型
• 劳动密集型 • 资本密集型 • 技术密集型
第三节 一种可变生产要素的生产函数
短期与长期的区分 • 短期
– 短期里,至少一种生产要素的数量不可变 • 长期
– 长期内,所有要素的投入都是可变的
短期生产函数(劳动可变)
• 短期生产函数:
– K不变,L可变,则
• 与产量有关的几个概念
第二节 生产函数
• 定义:
– 在生产技术给定的条件下,在一定时期内商品的最 大产出量与生产要素的投入量之间的物质数量关系 。
– Q = F ( x, y, z, …) – 两种投入:劳动L与资本K,Q = F ( L, K )
• 特征:
– 投入不同,产出不同; – 生产技术决定了生产函数的具体形式。
《微观经济学》讲义4
上一次课内容回顾
• 导论 • 供给与需求 • 效用理论
第四章、厂商理论
厂商是商品的生产者和市场化供应者
第一节 企业的本质
• 科斯《企业的性质》(1937) (对交易成本的节约)
企业是有一组特别契约所界定的非自 然人主体——它主要以外部市场化交易 为必要转换途径,由此动态优化自己的 资产组合。(李健)
– 总产量 – 平均产量 – 边际产量
短期产量曲线(劳动可变)

黄亚钧:微观经济学

黄亚钧:微观经济学
19
大炮 BM N
BN
M
AN
AM 黄油
20
边际技术转换率(MRT)
定义:西方经济学中把减少某种产品的数
量与增加△Y/△X另一种产品的数量之比 称为边际转换率(边际技术转换率). 公式:MRTXY= △Y/△X △Y/△Y恰好是生产可能性曲线的斜率 MRT是生产可能性曲线的斜率,它始终为 负值
10
问:现在销售商愿意出多少钱购买信息,减少风险. 进货6000千克的期望利润: 0.4 × 6000=2400 进货10000千克的期望利润: 0.5× 0.5×6000+0.5×6000 × 0.5 +0.5× 4000× (-0.8)=2400
11
在不完全信息下: 期望利润为: 2400元 在完全信息下: 购进6000千克柑橘,按照2.00元售完,可获得2400元的 利润, 若按照2.00元的单价售出10000千克柑橘,可获利 5000元 在完全信息下的期望利润为: 0.5 ×2400+0.5 ×5000=3700
第四节,不确定条件下的消费者
一、风险的测度
(一)风险与概率 在选择过程中存在的变化,就是风险。 概率是指一种结果发生的可能性有多大。 分为主观概率和客观概率。
1
客观概率是建立在已经发生过的事件 观察的基础上。
主观概率是个人对一种结果即将发生 的可能性的主观推测。 (二)期望值与方差 期望值是不确定性情况下所有可能结 果的各种取值,以相应的概率为权数 的加权平均数。
平均离差越大,风险就越大..反之,风险越小。
4
方差:各种可能数值与期望值之差的平方,以各 种结果的概率为权数的加权平均数,用δ2表示
δ2 =p [x -E(x)]2+ p2[x2 - E(x)]2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Advanced Microeconomics Topic 3: Consumer DemandPrimary Readings: DL – Chapter 5; JR - Chapter 3; Varian, Chapters 7-9.3.1 Marshallian Demand FunctionsLet X be the consumer's consumption set and assume that the X = R m +. For a given price vector p of commodities and the level of income y , the consumer tries to solve the following problem:max u (x )subject to p ⋅x = y x ∈ X∙ The function x (p , y ) that solves the above problem is called the consumer's demand function .∙ It is also referred as the Marshallian demand function . Other commonly known namesinclude Walrasian demand correspondence/function , ordinary demand functions , market demand functions , and money income demands .∙ The binding property of the budget constraint at the optimal solution, i.e., p ⋅x = y , is theWalras’ Law .∙ It is easy to see that x (p , y ) is homogeneous of degree 0 in p and y .Examples:(1) Cobb-Douglas Utility Function:.,...,1,0 ,)(1m i x x u i mi i i =>=∏=ααFrom the example in the last lecture, the Marshallian demand functions are:.ii i p yx αα=where ∑==mi i 1αα.(2) CES Utility Functions: )10( )(),(/12121<≠+=ρρρρx x x x uThen the Marshallian demands are:,),( ;),(2112221111rr r r r r p p yp y x p p y p y x +=+=--p p where r = ρ/(ρ -1). And the corresponding indirect utility function is given byrr r p p y y v /121)(),(-+=pLet us derive these results. Note that the indirect utility function is the result of the utility maximization problem:yx p x p x x x x =++2211/121, subject to )(max 21ρρρDefine the Lagrangian function:)()(),,(2211/12121y x p x p x x x x L -+-+=λλρρρThe FOCs are:00)(0)(22112121)/1(2121111)/1(211=-+=∂∂=-+=∂∂=-+=∂∂----y x p x p Lp x x x x L p x x x x L λλλρρρρρρρρ Eliminating λ, we get⎪⎩⎪⎨⎧+=⎪⎪⎭⎫⎝⎛=-2211)1/(12121x p x p y p p x x ρ So the Marshallian demand functions are:rrr rrr p p yp y x x p p yp y x x 211222211111),(),(+==+==--p pwith r = ρ/(ρ-1). So the corresponding indirect utility function is given by:r r r p p y y x y x u y v /12121)()),(),,((),(-+==p p p3.2 Optimality Conditions for Co nsumer’s ProblemFirst-Order ConditionsThe Lagrangian for the utility maximization problem can be written asL = u (x ) - λ( p ⋅x - y ).Then the first-order conditions for an interior solution are:yu i p x u i i =⋅=∇∀=∂∂x p p x x λλ)( i.e. ;)( (1)Rewriting the first set of conditions in (1) leads to,,k j p p MU MU MRS kj kj kj ≠==which is a direct generalization of the tangency condition for two-commodity case.Sufficiency of First-Order ConditionsProposition : Suppose that u (x ) is continuous and quasiconcave on R m +, and that (p , y ) > 0. If u if differentiable at x*, and (x*, λ*) > 0 solves (1), then x* solve the consumer's utility maximization problem at prices p and income y .Proof . We will use the following fact without a proof:∙ For all x , x ' ≥ 0 such that u (x') ≥ u (x ), if u is quasiconcave and differentiable at x , then∇u (x )(x' - x ) ≥ 0.Now suppose that ∇u (x*) exists and (x*, λ*) > 0 solves (1). Then,∇u (x*) = λ*p , p ⋅x* = y .If x* is not utility-maximizing, then must exist some x 0 ≥ 0 such thatu (x 0) > u (x*) and p ⋅x 0 ≤ y .Since u is continuous and y > 0, the above inequalities implies thatu (t x 0) > u (x*) and p ⋅(t x 0) < yfor some t ∈ [0, 1] close enough to one. Letting x' = t x 0, we then have∇u (x*)(x' - x ) = (λ*p )⋅( x' - x ) = λ*( p ⋅x' - p ⋅x ) < λ*(y - y ) = 0,which contradicts to the fact presented at the beginning of the proof since u (x 1) > u (x*).Remark∙ Note that the requirement that (x*, λ*) > 0 means that the result is true only forinterior solutions.Roy's IdentityNote that the indirect utility function is defined as the "value function" of the utility maximization problem. Therefore, we can use the Envelope Theorem to quickly derive the famous Roy's identity.Proposition (Roy's Identity?): If the indirect utility function v (p , y ) is differentiable at (p 0, y 0) and assume that ∂v (p 0, y 0)/ ∂y ≠ 0, then.,...,1 ,),(),(),(000000m i yy v p y v y x ii =∂∂∂∂-=p p pProof . Let x * = x (p , y ) and λ* be the optimal solution associated with the Lagrangian function:L = u (x ) - λ( p ⋅x - y ).First applying the Envelope Theorem, to evaluate ∂v (p 0, y 0)/ ∂p i gives.**)*,(),(*i ii x p L p y v λλ-=∂∂=∂∂x p But it is clear that λ* = ∂v (p , y )/ ∂y , which immediately leads to the Roy's identity.Exercise∙ Verify the Roy's identity for CES utility function.Inverse Demand FunctionsSometimes, it is convenient to express price vector in terms of the quantity demanded, which leads to the so-called inverse demand functions .∙ the inverse demand function may not always exist. But the following conditions willguarantee the existence of p (x ):∙ u is continuous, strictly monotonic and strictly quasiconcave. (In fact, these conditionswill imply that the Marshallian demand functions are uniquely defined.)Exercise (Duality of Indirect and Direct Demand Functions):(1) Show that for y = 1 the inverse demand function p = p (x ) is given by:.,...,1 ,)()()(1m i x x u x u p m j j jii =∂∂∂∂=∑=x x x(Consult JR, pp.79-80.)(2) Show that for y = 1, the (direct) demand function x = x (p, 1) satisfies.,...,1 ,)1,()1,()1,(1m i p p v p v x m j j jii =∂∂∂∂=∑=p p p(Hint: Use Roy’s identity and the homogeneity of degree zero of the indirect uti lityfunction.)3.3 Hicksian Demand FunctionsRecall that the expenditure function e (p , u ) is the minimum-value function of the following optimization problem:,)( s.t. min ),(u u u e m≥⋅=+∈x x p p R x for all p > 0 and all attainable utility levels.It is clear that e (p , u ) is well-defined because for p ∈ R m ++, x ∈ R m +, p ⋅x ≥ 0.If the utility function u is continuous and strictly quasiconcave, then the solution to the above problem is unique, so we can denote the solution as the function x h (p , u ) ≥ 0. By definition, it follows thate (p , u ) = p ⋅x h (p , u ).∙ x h (p , u ) is called the compensated demand functions , also commonly known as Hicksiandemand functions , named after John Hicks when he first discussed this type of demand functions in 1939.Remarks1. The reason that they are called "compensated " demand function is that we mustimpose an artificial income adjustment when the price of one good is changing while the utility level is assumed to be fixed.2. It is important to understand that, in contrast with the Marshallian demands, theHicksian demands are not directly observable.As usual, it should be no longer a surprise that there is a close link between the expenditure function and the Hicksian demands, as summarized in the following result, which is again a direct application of the Envelope Theorem..Proposition (Shephard's Lemma for Consumer): If e (p , u ) is differentiable in p at (p 0, u 0) with p 0 > 0, then,.,...,1 ,),(),(000m i p u e u x ih i=∂∂=p pExample: CES Utility Functions)10( )(),(/12121<≠+=ρρρρx x x x uLet us now derive the Hicksian demands and the corresponding expenditure function.min {p 1x 1 + p 2x 2} subject to)(/121u x x =+ρρρThe Lagrangian function is))((),,(/121221121u x x x p x p x x L -+-+=ρρρλλThen the FOCs are:0)(0)((0)((/121121/12122111/12111=+-=∂∂=+-=∂∂=+-=∂∂----ρρρρρρρρρρρλλλx x u L x x x p x L x x x p x L Eliminating λ, we getρρρρ/121)1/(12121)(x x u p p x x +=⎪⎪⎭⎫ ⎝⎛=- From these, it is easy to derive the Hicksian demand functions given by:121)/1(212111)/1(211)(),()(),(----+=+=r r r r h r r r r h pp p u u x p p p u u x p pwhere r = ρ/(ρ-1). And the expenditure function is.)(),(),(),(/1212211rr r h h p p u u x p u x p u e +=+=p p pAlternatively, since we know that the indirect utility function is given by:,)(),(/121rr r p p y y v -+=p3.4 Recall that (last the indirect utility function v (p (a) e (p , v (b) v (p , eFurthermore, we solutions of both optimization the followinginteresting identities between Marshallian demands and Hicksian demands:x (p , y ) = x h (p , v (p , y )) x h (p , u ) = x (p , e (p , u ))which hold for all values of p , y and u .The second identity leads to a classic differentiation relation between Hicksian demands and Marshallian demands, known as Slutsky equation.Proposition (Slutsky Equation): If the Marshallian and Hicksian demands are all well-defined and continuously differentiable, then for p > 0, x > 0,),,(),(),(),(y x yy x p u x p y x j i j h i j i p p p p ⋅∂∂-∂∂=∂∂where u = v (p , y ).Proof . It follows easily from taking derivative and applying Shephard's Lemma.Substitution and Income Effects∙ The significance of Slutsky equation is that it decomposes the change caused by a pricechange into two effects: a substitution effect and an income effect .∙ The substitution effect is the change in compensated demand due to the change inrelative prices, which is the first item in Slutsky equation.∙ The income effect is the change in demand due to the effective change in incomecaused by the price change, which is the second item in Slutsky equation. ∙ The substitution effect is unobservable, while the income effect is observable.Question: From the above diagram (also know as Hicksian decomposition ), can you see crossing property between a Marshallian demand function and the corresponding Hicksian demand? (Hint: there are two general cases.)Slutsky MatrixThe substitution effect between good i and good j is measured byj i p u x s jh i ij ,,),(∀∂∂=pSo the Slutsky matrix or the substitution matrix is the m ⨯m matrix of the substitution items:⎥⎥⎦⎤⎢⎢⎣⎡∂∂==j h i ij p u x s ),(][p SThe following result summarizes the basic properties of the Slutsky matrix.Proposition (Substitution Properties). The Slutsky matrix S is symmetric and negative semidefinite.Proof . By Shephard’s Lemma (for consumer), we know thatji ihj i j j i j h i ij s p u x p p u e p p u e p u x s =∂∂=∂∂∂=∂∂∂=∂∂=),(),(),(),(22p p p pHence S is symmetric. It is evident that S is the Hessian matrix of the expenditure function e (p , u ).Since we know that e (p , u ) is concave, so its Hessian matrix must be negative semidefinite.Since the second-order own partial derivatives of a concave function are always nonpositive, this implies that s ii ≤ 0, i.e.,i p u x s ih i ii ∀≤∂∂=,0),(pwhich indicates the intuitive property of a demand function: as its own price increases, the quantity demanded will decrease. You are reminded that this is a general property for Hicksian demands.For the Marshallian demands, note that by Slutsky equation,).,(),(),(),(y x yy x p u x p y x i i i h i i i p p p p ⋅∂∂-∂∂=∂∂Then for a small change in p i , we will have the following:.),(),(),(),(i i i i i h i i i i i p y x yy x p p u x p p y x x ∆⋅∂∂-∆∂∂=∆∂∂≈∆p p p pThe first item, capturing the own price effect of the Hicksian demands, is of course nonpositive.The sign of the second item depends on the nature of the good:∙ Normal good : ∂x i (p , y )/ ∂y > 0.∙ This leads to a normal Marshallian demand function: it is decreasing in its ownprice.∙ Inferior good : ∂x i (p , y )/ ∂y < 0.∙ When the substitution effect still dominates the income effect, the resultingMarshallian demand is also decreasing in its own price.∙ When the substitution effect is dominated by the income effect, it will lead to aGiffen good, that is, its demand function is an increasing function of its own price.Because of Slutsky equation, the Slutsky matrix (i.e., the substitution matrix) also has the following form that is in terms of Marshallian demand functions.⎥⎥⎦⎤⎢⎢⎣⎡∂∂+∂∂=⎥⎥⎦⎤⎢⎢⎣⎡∂∂==),(),(),(),(][y x y y x p y x p u x s j i j i j h i ij p p p p SWe will get back to the above Slutsky matrix in the next lecture when we discuss the integrability problem .3.5. The Elasticity Relations for Marshallian Demand FunctionsDefinition . Let x (p , y ) be the consumer’s Marshallian demand functions. Define.),(,),(),(,),(),(yy x p s y x p p y x y x yy y x i i i i jj i ij i i i p p p p p =∂∂=∂∂=εηThen1. ηi is called the income elasticity of demand for good i .2. ε ij is called the price elasticity of the demand for good i with respect to a price change ingood j . ε ii is the own-price elasticity of the demand for good i . For i ≠ j , ε ij is the cross-price elasticity .3. s i is called the income share spent on good i .The following result summarizes some important relationships among the income shares, income elasticities and the price elasticities.Proposition . Let x (p , y ) be the consumer’s Marshallian demand functions. Then1. Engel aggregation :.11=∑=mi ii s η2. Cournot aggregation :.,...,1 ,1m j s s j mi iji =-=∑=εProof . Both identities are derived from the Walras’ Law, namely, the fact that the budget is tight or balanced:y = p ⋅x (p , y ) for all p and y . (A)To prove Engel aggregation, we differentiate both sides of (A) w.r.t. y :∑∑∑====∂∂=∂∂=m i mi i i i i i i mi i i s y x yy y x y y x p y y x p 111,),(),(),(),(1ηp p p pas required.To prove Cournot aggregation, we differentiate both sides of (A) w.r.t. p j :.),(),(),(),(),(01∑∑=≠∂∂=-⇒∂∂++∂∂=mi j i i j jj jj ji j i ip y x p y x p y x p y x p y x p p p p p pMultiplying both sides by p j /y leads to∑∑∑====-⇒∂∂=∂∂=-mi iji j mi i jj i i i mi j j i i j j s s y x p p y x y y x p p p y x y p yy x p 111),(),(),(),(),(εp p p p pas required too.3.6 Hicks ’ Composite Commodity TheoremAny group of goods & services with no change in relative prices between themselves may be treated as a single composite commodity, with the price of any one of the group used as the price of the composite good and the quantity of the composite good defined as the aggregate value of the whole group divided by this price. Important use in applied economic analysis.Additional ReferencesAfriat, S. (1967) "The Construction of Utility Functions from Expenditure Data," International Economic Review, 8, 67-77.Arrow, K. J. (1951, 1963) Social Choice and Individual Values. 1st Ed., Yale University Press, New Haven, 1951; 2nd Ed., John Wiley & Sons, New York, 1963.Becker, G. S. (1962) "Irrational Behavior and Economic Theory," Journal of Political Economy, 70, 1-13.Cook, P. (1972) "A One-line Proof of the Slutsky Equation," American Economic Review, 42, 139. Deaton, A. and J. Muellbauer (1980) Economics and Consumer Behavior. Cambridge University Press, Cambridge.Debreu, G. (1959) Theory of Value. John Wiley & Sons, New York.Debreu, G. (1960) "Topological Methods in Cardinal Utility Theory," in Mathematical Methods in the Social Sciences, ed. K. J. Arrow and M. D. Intriligator, North Holland, Amsterdam. Diewert, W. E. (1982) "Duality Approaches to Microeconomic Theory," Chapter 12 in Handbook of Mathematical Economics, ed. K. J. Arrow and M. D. Intriligator, North Holland, Amsterdam.Gorman, T. (1953) “Community Preference Fields,” Econometrica, 21, 63-80.Hicks, J. (1946) V alue and Capital. Clarendon Press, Oxford, England.Katzner, D.W. (1970) Static Demand Theory. MacMillan, New York.Marshall, A. (1920) Principle of Economics, 8th Ed. MacMillan, London.McKenzie, L. (1957) “Demand Theory Without a Utility Ind ex," Review of Economic Studies, 24, 183-189.Pollak, R. (1969) "Conditional Demand Functions and Consumption Theory," Quarterly Journal of Economics, 83, 60-78.Roy, R. (1942) De l'utilite. Hermann, Paris.Roy, R. (1947) "La distribution de revenu entre les divers biens," Econometrica, 15, 205-225. Samuelson, P. A. (1938) "A Note on the Pure Theory of Consumer's Behavior," Econometrica, 5, 61-71, 353-354.Samuelson, P. (1947) Foundations of Economic Analysis. Harvard University Press, Cambridge, Massachusetts.Sen, (1970) Collective Choice and Social Welfare. Holden Day, San Francisco.Stigler, G. (1950) "Development of Utility Theory," Journal of Political Economy, 59, parts 1 & 2, pp. 307-327, 373-396.Varian, H. R. (1992) Microeconomic Analysis. Third Edition. W.W. Norton & Company, New York. (Chapters 7, 8 and 9)Wold, H. and L. Jureen (1953) Demand Analysis. John Wiley & Sons, New York.11。

相关文档
最新文档