高中数学线性规划(精品)

合集下载

高中线性规划

高中线性规划

高中线性规划高中线性规划是高中数学课程中的一个重要内容,它是线性代数的一个分支,主要研究线性方程组的解及其相关问题。

线性规划是一种数学优化方法,通过建立数学模型,解决最优化问题。

下面将介绍高中线性规划的基本概念、解法和应用。

一、基本概念1. 线性规划问题:线性规划问题是在一定的约束条件下,求解线性目标函数的最大值或最小值的问题。

2. 目标函数:线性规划问题中需要最大化或最小化的函数称为目标函数,通常用Z表示。

3. 约束条件:线性规划问题中的限制条件称为约束条件,通常用不等式或等式表示。

4. 可行解:满足所有约束条件的解称为可行解。

5. 最优解:在所有可行解中,使目标函数取得最大值或最小值的解称为最优解。

二、解法1. 图形法:对于二元线性规划问题,可以通过绘制约束条件的直线和目标函数的等高线来求解最优解。

2. 单纯形法:对于多元线性规划问题,可以使用单纯形法进行求解。

单纯形法是一种迭代方法,通过不断调整可行解来逼近最优解。

3. 对偶问题:线性规划问题存在一个与之对应的对偶问题,通过对偶问题的求解可以得到原问题的最优解。

三、应用1. 生产计划:线性规划可以用于确定生产计划中各种资源的最优分配,以达到最大利润或最小成本。

2. 运输问题:线性规划可以应用于解决运输问题,如货物从多个供应地到多个需求地的最优运输方案。

3. 投资组合:线性规划可以用于确定资产组合中各种投资标的的最优权重,以达到最大收益或最小风险。

4. 作业调度:线性规划可以应用于作业调度问题,如确定多个作业的最优执行顺序和分配方案,以最小化总执行时间或最大化资源利用率。

四、案例分析以生产计划为例,假设某公司有两种产品A和B,每天的生产时间为8小时。

产品A每件需耗时1小时,利润为100元;产品B每件需耗时2小时,利润为200元。

另外,公司还有以下约束条件:每天最多生产10件产品A和12件产品B;每天最多能生产的总件数为15件。

现在需要确定每天的最优生产方案。

高中线性规划

高中线性规划

高中线性规划线性规划是运筹学中的一种优化方法,用于在给定的约束条件下寻觅一个线性目标函数的最优解。

在高中数学中,线性规划是一个重要的内容,它可以匡助我们解决一些实际问题,例如资源分配、生产计划等。

一、线性规划的基本概念线性规划的基本概念包括目标函数、约束条件和可行解。

目标函数是我们要优化的线性函数,通常表示为最大化或者最小化某个变量。

约束条件是限制目标函数变量的取值范围的条件,可以是等式或者不等式。

可行解是满足所有约束条件的解。

二、线性规划的数学模型线性规划可以通过数学模型来表示。

设有n个决策变量x1, x2, ..., xn,目标函数为f(x1, x2, ..., xn),约束条件为g1(x1, x2, ..., xn)≤b1, g2(x1, x2, ..., xn)≤b2, ...,gm(x1, x2, ..., xn)≤bm。

其中,f(x1, x2, ..., xn)为线性函数,g1(x1, x2, ..., xn)≤b1,g2(x1, x2, ..., xn)≤b2, ..., gm(x1, x2, ..., xn)≤bm为线性不等式。

三、线性规划的求解方法线性规划可以使用图形法、单纯形法等方法进行求解。

其中,图形法适合于二维问题,通过绘制约束条件的直线和目标函数的等高线,找到最优解。

而单纯形法适合于多维问题,通过构造初始单纯形表,不断迭代求解,找到最优解。

四、线性规划的应用举例1.资源分配问题:某工厂生产两种产品A和B,每天可用的资源有限,产品A和B的生产所需资源不同,且每种产品的利润也不同。

如何合理分配资源,使得利润最大化?2.生产计划问题:某工厂需要生产多种产品,每种产品的生产时间、所需资源和利润不同。

如何安排生产计划,使得产量最大化同时资源利用率最高?3.投资组合问题:某投资者有多种投资标的可选,每种标的的收益率、风险和投资额不同。

如何合理选择投资标的,使得收益最大化同时风险最小化?五、线性规划的局限性线性规划方法在解决一些实际问题时可能存在一些局限性。

高中线性规划

高中线性规划

高中线性规划引言概述:线性规划是数学中的一种优化方法,用于解决最大化或者最小化目标函数的问题。

在高中数学中,线性规划是一个重要的概念,它可以应用于各种实际问题,如资源分配、生产计划等。

本文将详细介绍高中线性规划的概念、应用以及解题方法。

一、线性规划的基本概念1.1 目标函数:线性规划的目标是最大化或者最小化一个线性函数,该函数称为目标函数。

目标函数通常表示为Z = c1x1 + c2x2 + ... + cnxn,其中ci为常数,xi 为变量。

1.2 约束条件:线性规划的解必须满足一组约束条件,这些条件通常表示为一组线性不等式或者等式。

例如,Ax ≤ b,其中A是一个矩阵,x和b是向量。

1.3 可行解和最优解:满足所有约束条件的解称为可行解。

在可行解中,使目标函数达到最大或者最小值的解称为最优解。

二、线性规划的应用领域2.1 生产计划:线性规划可以用于确定最佳的生产计划,以最大化利润或者最小化成本。

通过考虑资源约束和市场需求,可以确定每种产品的生产量。

2.2 资源分配:线性规划可以用于确定资源的最佳分配方式,以最大化资源利用率或者最小化浪费。

例如,可以确定每一个部门的资源分配,以满足不同项目的需求。

2.3 运输问题:线性规划可以用于解决运输问题,即确定如何将货物从供应地点运送到需求地点,同时最小化运输成本。

三、线性规划的解题方法3.1 图形法:对于二维问题,可以使用图形法来解决线性规划问题。

通过绘制目标函数和约束条件的图形,可以确定最优解所在的区域。

3.2 单纯形法:对于多维问题,单纯形法是一种常用的解题方法。

该方法通过迭代计算,逐步接近最优解。

3.3 整数规划:在某些情况下,变量的值必须是整数。

这种情况下,可以使用整数规划方法来解决问题。

整数规划通常比线性规划更复杂,需要使用特定的算法进行求解。

四、线性规划的局限性4.1 线性假设:线性规划假设目标函数和约束条件都是线性的,但实际问题中往往存在非线性因素。

高中线性规划

高中线性规划

高中线性规划引言概述:高中线性规划是数学中的一个重要概念,它是一种用于解决最优化问题的数学方法。

线性规划可以应用于各种实际情况,如资源分配、生产计划和投资决策等。

本文将详细介绍高中线性规划的基本概念、解决方法和实际应用。

一、线性规划的基本概念1.1 目标函数:线性规划中的目标函数是需要最小化或最大化的线性表达式。

它通常表示为一系列变量的线性组合。

1.2 约束条件:线性规划中的约束条件是限制变量取值范围的条件。

这些条件可以是等式或不等式,用于限制解的可行域。

1.3 可行解:满足所有约束条件的解称为可行解。

线性规划的目标是找到一个最优可行解,使目标函数达到最小值或最大值。

二、线性规划的解决方法2.1 图形法:对于二维线性规划问题,可以通过绘制约束条件的图形来求解最优解。

最优解通常出现在可行域的顶点上。

2.2 单纯形法:对于多维线性规划问题,可以使用单纯形法进行求解。

该方法通过迭代计算,逐步接近最优解。

单纯形法是一种高效且广泛使用的线性规划求解算法。

2.3 整数规划:当问题要求变量取整数值时,可以使用整数规划方法求解。

整数规划是线性规划的扩展,它在求解过程中限制变量取值为整数。

三、线性规划的实际应用3.1 资源分配:线性规划可以用于优化资源的分配,如生产线上的机器分配、员工排班和原材料采购等。

通过合理安排资源的使用,可以最大化效益并降低成本。

3.2 生产计划:线性规划可以应用于生产计划中,如确定产品的生产数量和生产时间。

通过最优化生产计划,可以提高生产效率和产品质量。

3.3 投资决策:线性规划可以帮助进行投资决策,如确定投资的资金分配和投资组合。

通过最优化投资决策,可以实现最大化回报和降低风险。

四、线性规划的局限性和发展方向4.1 非线性问题:线性规划只适用于目标函数和约束条件均为线性的问题。

对于非线性问题,需要采用其他数学方法进行求解。

4.2 多目标优化:线性规划只能处理单一目标的优化问题。

对于多目标优化问题,需要引入多目标规划方法进行求解。

高中数学线性规划

高中数学线性规划

教师辅导教案学员编号:年级:高三课时数:学员姓名:辅导科目: 数学学科教师:授课主题线性规划授课日期及时段教学内容线性规划1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.我们把直线画成虚线以表示区域不包括边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包括边界直线,则把边界直线画成实线.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得的符号都相同,所以只需在此直线的同一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C的符号即可判断Ax+By+C>0表示的直线是Ax+By+C=0哪一侧的平面区域.2.线性规划相关概念名称意义约束条件由变量x,y组成的一次不等式线性约束条件由x,y的一次不等式(或方程)组成的不等式组目标函数欲求最大值或最小值的函数线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题3.重要结论(1)画二元一次不等式表示的平面区域的直线定界,特殊点定域:①直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线;②特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.(2)利用“同号上,异号下”判断二元一次不等式表示的平面区域:对于Ax +By +C >0或Ax +By +C <0,则有①当B (Ax +By +C )>0时,区域为直线Ax +By +C =0的上方; ②当B (Ax +By +C )<0时,区域为直线Ax +By +C =0的下方. (3)最优解和可行解的关系:最优解必定是可行解,但可行解不一定是最优解.最优解不一定唯一,有时唯一,有时有多个.1.下列各点中,不在x +y -1≤0表示的平面区域内的是( ) A .(0,0) B .(-1,1) C .(-1,3) D .(2,-3)答案 C解析 把各点的坐标代入可得(-1,3)不适合,故选C.2.(教材改编)不等式组⎩⎪⎨⎪⎧x -3y +6<0,x -y +2≥0表示的平面区域是( )答案 C解析 用特殊点代入,比如(0,0),容易判断为C. 3.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y ≥-1,x +y ≥1,3x -y ≤3,则该约束条件所围成的平面区域的面积是( )A .3 B.52C .2D .2 2答案 C解析 因为直线x -y =-1与x +y =1互相垂直, 所以如图所示的可行域为直角三角形,易得A (0,1),B (1,0),C (2,3),故|AB |=2,|AC |=22, 其面积为12×|AB |×|AC |=2.4.(2015·北京)若x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y ≤1,x ≥0,则z =x +2y 的最大值为( )A .0B .1 C.32 D .2答案 D解析 可行域如图所示.目标函数化为y =-12x +12z ,当直线y =-12x +12z 过点A (0,1)时,z 取得最大值2.5.(教材改编)投资生产A 产品时,每生产100吨需要资金200万元,需场地200平方米;投资生产B 产品时,每生产100吨需要资金300万元,需场地100平方米.现某单位可使用资金1 400万元,场地900平方米,则上述要求可用不等式组表示为__________________(用x ,y 分别表示生产A ,B 产品的吨数,x 和y 的单位是百吨). 答案 ⎩⎪⎨⎪⎧200x +300y ≤1 400,200x +100y ≤900,x ≥0,y ≥0解析 用表格列出各数据A B 总数 产品吨数 x y 资金 200x 300y 1 400 场地200x100y900所以不难看出,x ≥0,y ≥0,200x +300y ≤1 400,200x +100y ≤900.题型一 二元一次不等式(组)表示的平面区域 命题点1 不含参数的平面区域问题例1 (1)不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示),应是下列图形中的( )(2)不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于( )A.32 B.23 C.43D.34答案 (1)C (2)C解析 (1)(x -2y +1)(x +y -3)≤0⇒⎩⎪⎨⎪⎧x -2y +1≥0,x +y -3≤0,或⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0.画出平面区域后,只有C 符合题意. (2)由题意得不等式组表示的平面区域如图阴影部分,A (0,43),B (1,1),C (0,4),则△ABC 的面积为12×1×83=43.故选C.命题点2 含参数的平面区域问题 例2 若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是__________________________________________.答案 73解析 不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝⎛⎭⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域. 因为A (1,1),B (0,4),所以AB 中点D ⎝⎛⎭⎫12,52. 当y =kx +43过点⎝⎛⎭⎫12,52时,52=k 2+43, 所以k =73.思维升华 (1)求平面区域的面积:①首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;②对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和即可.(2)利用几何意义求解的平面区域问题,也应作出平面图形,利用数形结合的方法去求解.(1)不等式组⎩⎪⎨⎪⎧x ≥0,x +y ≤3,y ≥x +1表示的平面区域为Ω,直线y =kx -1与区域Ω有公共点,则实数k 的取值范围为( ) A .(0,3] B .[-1,1] C .(-∞,3]D .[3,+∞)(2)已知约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,kx -y ≤0表示面积为1的直角三角形区域,则实数k 的值为( )A .1B .-1C .0D .-2 答案 (1)D (2)A解析 (1)直线y =kx -1过定点M (0,-1),由图可知,当直线y =kx -1经过直线y =x +1与直线x +y =3的交点C (1,2)时,k 最小,此时k CM =2-(-1)1-0=3,因此k ≥3,即k ∈[3,+∞).故选D.(2)由于x =1与x +y -4=0不可能垂直,所以只有可能x +y -4=0与kx -y =0垂直或x =1与kx -y =0垂直. ①当x +y -4=0与kx -y =0垂直时,k =1,检验知三角形区域面积为1,即符合要求. ②当x =1与kx -y =0垂直时,k =0,检验不符合要求. 题型二 求目标函数的最值问题 命题点1 求线性目标函数的最值例3 (2014·广东)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n 等于( ) A .5 B .6 C .7 D .8答案 B解析 画出可行域,如图阴影部分所示.由z =2x +y ,得y =-2x +z .由⎩⎪⎨⎪⎧ y =x ,y =-1,得⎩⎪⎨⎪⎧x =-1,y =-1,∴A (-1,-1).由⎩⎪⎨⎪⎧ x +y =1,y =-1,得⎩⎪⎨⎪⎧x =2,y =-1,∴B (2,-1).当直线y =-2x +z 经过点A 时,z min =2×(-1)-1=-3=n .当直线y =-2x +z 经过点B 时,z max =2×2-1=3=m ,故m -n =6.命题点2 求非线性目标函数的最值例4 实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2.(1)若z =yx ,求z 的最大值和最小值,并求z 的取值范围;(2)若z =x 2+y 2,求z 的最大值与最小值,并求z 的取值范围. 解 由⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2,作出可行域,如图中阴影部分所示.(1)z =yx表示可行域内任一点与坐标原点连线的斜率,因此yx的范围为直线OB 的斜率到直线OA 的斜率(直线OA 的斜率不存在,即z max 不存在).由⎩⎪⎨⎪⎧x -y +1=0,y =2,得B (1,2), ∴k OB =21=2,即z min =2,∴z 的取值范围是[2,+∞).(2)z =x 2+y 2表示可行域内的任意一点与坐标原点之间距离的平方. 因此x 2+y 2的值最小为|OA |2(取不到),最大值为|OB |2.由⎩⎪⎨⎪⎧x -y +1=0,x =0,得A (0,1), ∴|OA |2=(02+12)2=1,|OB |2=(12+22)2=5, ∴z 的取值范围是(1,5]. 引申探究1.若z =y -1x -1,求z 的取值范围.解 z =y -1x -1可以看作过点P (1,1)及(x ,y )两点的直线的斜率.∴z 的取值范围是(-∞,0).2.若z =x 2+y 2-2x -2y +3.求z 的最大值、最小值. 解 z =x 2+y 2-2x -2y +3 =(x -1)2+(y -1)2+1,而(x -1)2+(y -1)2表示点P (1,1)与Q (x ,y )的距离的平方|PQ |2,|PQ |2max =(0-1)2+(2-1)2=2,|PQ |2min =(|1-1+1|12+(-1)2)2=12, ∴z max =2+1=3,z min =12+1=32.命题点3 求线性规划的参数例5 已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a =________.答案 12解析 作出不等式组表示的可行域,如图(阴影部分).易知直线z =2x +y 过交点A 时,z 取最小值,由⎩⎪⎨⎪⎧ x =1,y =a (x -3),得⎩⎪⎨⎪⎧x =1,y =-2a ,∴z min =2-2a =1,解得a =12.思维升华 (1)先准确作出可行域,再借助目标函数的几何意义求目标函数的最值.(2)当目标函数是非线性的函数时,常利用目标函数的几何意义来解题,常见代数式的几何意义有: ①x 2+y 2表示点(x ,y )与原点(0,0)的距离,(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )的距离; ②yx 表示点(x ,y )与原点(0,0)连线的斜率,y -b x -a 表示点(x ,y )与点(a ,b )连线的斜率. (3)当目标函数中含有参数时,要根据临界位置确定参数所满足条件.(1)(2015·山东)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0,若z =ax +y 的最大值为4,则a 等于( )A .3B .2C .-2D .-3(2)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( ) A.12或-1 B .2或12C .2或1D .2或-1答案 (1)B (2)D解析 (1)不等式组表示的平面区域如图阴影部分所示.易知A (2,0),由⎩⎪⎨⎪⎧x -y =0,x +y =2,得B (1,1). 由z =ax +y ,得y =-ax +z .∴当a =-2或a =-3时,z =ax +y 在O (0,0)处取得最大值,最大值为z max =0,不满足题意,排除C ,D 选项;当a =2或3时,z =ax +y 在A (2,0)处取得最大值, ∴2a =4,∴a =2,排除A ,故选B.(2)如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2; 当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1. 题型三 线性规划的实际应用例6 某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?解 设A 型、B 型车辆分别为x 、y 辆,相应营运成本为z 元,则z =1 600x +2 400y .由题意,得x ,y 满足约束条件 ⎩⎪⎨⎪⎧x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N .作可行域如图所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1 600x +2 400y 经过可行域的点P 时,直线z =1 600x +2 400y 在y 轴上的截距z 2 400最小,即z取得最小值.故应配备A 型车5辆、B 型车12辆,可以满足公司从甲地去乙地的营运成本最小. 思维升华 解线性规划应用问题的一般步骤: (1)分析题意,设出未知量; (2)列出线性约束条件和目标函数; (3)作出可行域并利用数形结合求解; (4)作答.(2015·陕西)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )甲 乙 原料限额 A (吨) 3 2 12 B (吨)128A.12万元 B .16万元 C .17万元 D .18万元答案 D解析 设每天甲、乙的产量分别为x 吨,y 吨,由已知可得⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数z =3x +4y ,线性约束条件表示的可行域如图阴影部分所示:可得目标函数在点A 处取到最大值.由⎩⎪⎨⎪⎧x +2y =8,3x +2y =12,得A (2,3). 则z max =3×2+4×3=18(万元).9.含参数的线性规划问题的易错点典例 已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m =________.易错分析 题目给出的区域边界“两静一动”,可先画出已知边界表示的区域,分析动直线的位置时容易出错,没有抓住直线x +y =m 和直线y =-x 平行这个特点;另外在寻找最优点时也容易找错区域的顶点. 解析 显然,当m <2时,不等式组表示的平面区域是空集;当m =2时,不等式组表示的平面区域只包含一个点A (1,1).此时z min =1-1=0≠-1. 显然都不符合题意.故必有m >2,此时不等式组⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m所表示的平面区域如图所示,平面区域为一个三角形区域,其顶点为A (1,1),B (m -1,1),C (m +13,2m -13).由图可知,当直线y =x -z 经过点C 时,z 取得最小值, 最小值为m +13-2m -13=2-m3.由题意,得2-m3=-1,解得m =5.答案 5温馨提醒 (1)当约束条件含有参数时,要注意根据题目条件,画出符合条件的可行域.本题因含有变化的参数,可能导致可行域画不出来.(2)应注意直线y =x -z 经过的特殊点.[方法与技巧]1.平面区域的画法:线定界、点定域(注意实虚线).2.求最值:求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-a b x +zb ,通过求直线的截距zb的最值间接求出z 的最值.最优解在顶点或边界取得.3.解线性规划应用题,可先找出各变量之间的关系,最好列成表格,然后用字母表示变量,列出线性约束条件;写出要研究的函数,转化成线性规划问题.4.利用线性规划的思想结合代数式的几何意义可以解决一些非线性规划问题. [失误与防范]1.画出平面区域.避免失误的重要方法就是首先使二元一次不等式标准化.2.在通过求直线的截距z b 的最值间接求出z 的最值时,要注意:当b >0时,截距z b 取最大值时,z 也取最大值;截距zb 取最小值时,z 也取最小值;当b <0时,截距z b 取最大值时,z 取最小值;截距zb取最小值时,z 取最大值.A 组 专项基础训练 (时间:25分钟)1.直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20表示的平面区域的公共点有( )A .0个B .1个C .2个D .无数个答案 B解析 由不等式组画出平面区域如图(阴影部分).直线2x +y -10=0恰过点A (5,0),且其斜率k =-2<k AB =-43,即直线2x +y -10=0与平面区域仅有一个公共点A (5,0).2.(2015·天津)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2≥0,x -y +3≥0,2x +y -3≤0,则目标函数z =x +6y 的最大值为( )A .3B .4C .18D .40答案 C解析 画出约束条件的可行域如图阴影,作直线l :x +6y =0,平移直线l 可知,直线l 过点A 时,目标函数z =x +6y 取得最大值,易得A (0,3),所以z max =0+6×3=18,选C.3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z =x +2y 的最小值为( )A .2B .3C .4D .5答案 B解析 由线性约束条件画出可行域(如图所示).由z =x +2y ,得y =-12x +12z ,12z 的几何意义是直线y =-12x +12z 在y 轴上的截距,要使z 最小,需使12z 最小,易知当直线y =-12x +12z 过点A (1,1)时,z 最小,最小值为3,故选B.4.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域是一个三角形,则a 的取值范围是( ).A.⎣⎡⎭⎫43,+∞ B .(0,1]C.⎣⎡⎦⎤1,43 D .(0,1]∪⎣⎡⎭⎫43,+∞ 答案 D解析 不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图(阴影部分),求A ,B 两点的坐标分别为⎝⎛⎭⎫23,23和(1,0),若原不等式组表示的平面区域是一个三角形,则a 的取值范围是0<a ≤1或a ≥43.5.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( ) A .1 800元 B .2 400元 C .2 800元 D .3 100元答案 C解析 设每天生产甲种产品x 桶,乙种产品y 桶, 则根据题意得x 、y 的约束条件为⎩⎪⎨⎪⎧x ≥0,x ∈N ,y ≥0,y ∈N ,x +2y ≤12,2x +y ≤12.设获利z 元, 则z =300x +400y . 画出可行域如图.画直线l :300x +400y =0, 即3x +4y =0.平移直线l ,从图中可知,当直线过点M 时, 目标函数取得最大值.由⎩⎪⎨⎪⎧ x +2y =12,2x +y =12,解得⎩⎪⎨⎪⎧x =4,y =4,即M 的坐标为(4,4), ∴z max =300×4+400×4=2 800(元).故选C.6.若函数y =2x 图象上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( )A.12 B .1 C.32 D .2答案 B解析 在同一直角坐标系中作出函数y =2x的图象及⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0所表示的平面区域,如图阴影部分所示.由图可知,当m ≤1时,函数y =2x 的图象上存在点(x ,y )满足约束条件, 故m 的最大值为1.7.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x >0,4x +3y ≤4,y ≥0,则ω=y +1x的最小值是( )A .-2B .2C .-1D .1答案 D解析 作出不等式组对应的平面区域如图,ω=y +1x的几何意义是区域内的点P (x ,y )与定点A (0,-1)所在直线的斜率,由图象可知当P 位于点D (1,0)时,直线AP 的斜率最小,此时ω=y +1x 的最小值为-1-00-1=1.故选D.8.已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是( ) A .[53,5]B .[0,5]C .[53,5)D .[-53,5)答案 D解析 画出不等式组所表示的区域,如图中阴影部分所示,可知2×13-2×23-1≤z <2×2-2×(-1)-1,即z 的取值范围是[-53,5).9.铁矿石A 和B 的含铁率a ,冶炼每万吨铁矿石的CO 2的排放量b 及每万吨铁矿石的价格c 如表:a b (万吨) c (百万元)A 50% 1 3 B70%0.56某冶炼厂至少要生产1.9(万吨)铁,若要求CO 2的排放量不超过2(万吨),则购买铁矿石的最少费用为________(百万元). 答案 15解析 设购买铁矿石A 、B 分别为x 万吨,y 万吨,购买铁矿石的费用为z (百万元),则 ⎩⎪⎨⎪⎧0.5x +0.7y ≥1.9,x +0.5y ≤2,x ≥0,y ≥0.目标函数z =3x +6y ,由⎩⎪⎨⎪⎧0.5x +0.7y =1.9,x +0.5y =2,得⎩⎪⎨⎪⎧x =1,y =2.记P (1,2), 画出可行域可知,当目标函数z =3x +6y 过点P (1,2)时,z 取到最小值15.10.设实数x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为10,则a 2+b 2的最小值为________. 答案2513解析 因为a >0,b >0,所以由可行域得,如图,当目标函数线过点(4,6)时z 取最大值,∴4a +6b =10.a 2+b 2的几何意义是直线4a +6b =10上任意一点到点(0,0)的距离的平方,那么其最小值是点(0,0)到直线4a +6b =10距离的平方,则a 2+b 2的最小值是2513.B 组 专项能力提升 (时间:15分钟)11.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥1,x -y ≤1,y -1≤0,若z =x -2y 的最大值与最小值分别为a ,b ,且方程x 2-kx +1=0在区间(b ,a )上有两个不同实数解,则实数k 的取值范围是( )A .(-6,-2)B .(-3,2)C .(-103,-2)D .(-103,-3)答案 C解析 作出可行域,如图所示,则目标函数z =x -2y 在点(1,0)处取得最大值1,在点(-1,1)处取得最小值-3, ∴a =1,b =-3,从而可知方程x 2-kx +1=0在区间(-3,1)上有两个不同实数解. 令f (x )=x 2-kx +1,则⎩⎪⎨⎪⎧f (-3)>0,f (1)>0,-3<k2<1,Δ=k 2-4>0⇒-103<k <-2,故选C.12.在平面直角坐标系中,点P 是由不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1所确定的平面区域内的动点,Q 是直线2x +y =0上任意一点,O 为坐标原点,则|OP →+OQ →|的最小值为( ) A.55 B.23C.22D .1答案 A解析 在直线2x +y =0上取一点Q ′,使得Q ′O →=OQ →, 则|OP →+OQ →|=|OP →+Q ′O →| =|Q ′P →|≥|P ′P →|≥|BA →|,其中P ′,B 分别为点P ,A 在直线2x +y =0上的投影,如图.因为|AB →|=|0+1|12+22=55,因此|OP →+OQ →|min =55,故选A.13.设平面点集A ={(x ,y )|(y -x )·(y -1x )≥0},B ={(x ,y )|(x -1)2+(y -1)2≤1},则A ∩B 所表示的平面图形的面积为( ) A.3π4 B.3π5 C.4π7 D.π2答案 D解析 平面点集A 表示的平面区域就是不等式组⎩⎪⎨⎪⎧ y -x ≥0,y -1x ≥0与⎩⎪⎨⎪⎧y -x ≤0,y -1x ≤0表示的两块平面区域,而平面点集B 表示的平面区域为以点(1,1)为圆心, 以1为半径的圆及圆的内部, 作出它们表示的平面区域如图所示,图中的阴影部分就是A ∩B 所表示的平面图形. 由于圆和曲线y =1x 关于直线y =x 对称,因此,阴影部分所表示的图形面积为圆面积的12,即为π2,故选D.14.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .49答案 C解析 由已知得平面区域Ω为△MNP 内部及边界. ∵圆C 与x 轴相切,∴b =1.显然当圆心C 位于直线y =1与x +y -7=0的交点(6,1)处时,a max =6. ∴a 2+b 2的最大值为62+12=37.故选C. 15.设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x 3a +y 4a ≤1,若z =x +2y +3x +1的最小值为32,则a 的值为________.答案 1解析 ∵x +2y +3x +1=1+2(y +1)x +1的最小值为32,∴y +1x +1的最小值为14,而y +1x +1表示点(x ,y )与(-1,-1)连线的斜率,易知a >0,∴可行域如图中阴影部分所示,∴(y +1x +1)min =0-(-1)3a -(-1)=13a +1=14,∴a =1.16.(2015·浙江)若实数x ,y 满足x 2+y 2≤1,则|2x +y -2|+|6-x -3y |的最小值是________. 答案 3解析 满足x 2+y 2≤1的实数x ,y 表示的点(x ,y )构成的区域是单位圆及其内部. f (x ,y )=|2x +y -2|+|6-x -3y |21 =|2x +y -2|+6-x -3y=⎩⎪⎨⎪⎧4+x -2y ,y ≥-2x +2,8-3x -4y ,y <-2x +2. 直线y =-2x +2与圆x 2+y 2=1交于A ,B 两点,如图所示,易得B ⎝⎛⎭⎫35,45.设z 1=4+x -2y ,z 2=8-3x -4y ,分别作直线y =12x 和y =-34x 并平移,则z 1=4+x -2y 在点B ⎝⎛⎭⎫35,45取得最小值为3,z 2=8-3x -4y 在点B ⎝⎛⎭⎫35,45取得最小值为3,所以|2x +y -2|+|6-x -3y |的最小值是3.。

高中线性规划

高中线性规划

高中线性规划高中线性规划是高中数学课程中的重要内容之一,它是线性代数的一个分支,主要研究如何在一定约束条件下,找到使目标函数达到最大或者最小值的最优解。

线性规划广泛应用于经济学、管理学、工程学等领域,在实际生活中也有不少应用。

首先,我们来了解一下线性规划的基本概念。

线性规划的基本形式可以表示为:Maximize(或者Minimize):Z = c₁x₁ + c₂x₂ + ... + cₙxₙSubject to:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ其中,Z表示目标函数值,c₁、c₂、...、cₙ为目标函数的系数,x₁、x₂、...、xₙ为决策变量,a₁₁、a₁₂、...、aₙₙ为约束条件的系数,b₁、b₂、...、bₙ为约束条件的常数。

线性规划的求解过程普通分为以下几个步骤:1. 确定决策变量:根据实际问题,确定需要优化的变量,例如生产数量、销售数量等。

2. 建立目标函数:根据问题要求,将目标转化为数学形式,确定目标函数及其系数。

3. 建立约束条件:根据问题给出的限制条件,建立约束条件的不等式。

4. 确定可行解集:将约束条件转化为图形,确定可行解集,即满足所有约束条件的解的集合。

5. 确定最优解:在可行解集中寻觅使目标函数达到最大(或者最小)值的解。

6. 检验最优解:将最优解代入目标函数和约束条件,验证是否满足所有条件。

下面通过一个实例来说明线性规划的具体应用。

假设某工厂生产两种产品A和B,每单位产品A的利润为10元,产品B的利润为8元。

根据市场需求和生产能力,工厂每天最多能生产100个A产品和150个B产品。

此外,工厂生产这两种产品所需要的原材料和人工资源有限,每一个A产品需要2个单位的原材料和3个单位的人工资源,每一个B产品需要1个单位的原材料和4个单位的人工资源。

高中线性规划

高中线性规划

高中线性规划线性规划是数学中一种重要的优化方法,可以用来解决各种实际问题。

它的目标是在给定的约束条件下,寻觅一个线性模型的最优解。

在高中数学中,线性规划是一个重要的内容,学生需要了解其基本概念、解题方法和应用领域。

一、线性规划的基本概念线性规划是一种数学模型,它的目标是在一组线性约束条件下,寻觅一个线性函数的最大值或者最小值。

线性规划的基本要素包括决策变量、目标函数和约束条件。

1. 决策变量:决策变量是问题中需要决定的未知量,用来表示问题的解。

通常用x1、x2、x3...等符号表示。

2. 目标函数:目标函数是需要最大化或者最小化的线性函数,它通常与问题的目标相关。

目标函数的形式可以是线性函数,也可以是线性函数的凸或者凹组合。

3. 约束条件:约束条件是问题中的限制条件,它们限制了决策变量的取值范围。

约束条件通常是一组线性不等式或者等式。

二、线性规划的解题方法解线性规划问题的常用方法有图形法和单纯形法。

1. 图形法:图形法适合于二维线性规划问题。

通过绘制目标函数和约束条件的图形,找到可行域和最优解。

可行域是满足所有约束条件的解集合,最优解是目标函数在可行域上取得最大或者最小值的解。

2. 单纯形法:单纯形法适合于多维线性规划问题。

它是一种迭代算法,通过不断交换基变量和非基变量,找到最优解。

单纯形法的基本思想是从一个初始基可行解开始,通过迭代计算,不断改进目标值,直到找到最优解。

三、线性规划的应用领域线性规划在实际生活中有广泛的应用,涉及经济、工程、物流、资源分配等领域。

1. 生产计划:线性规划可以用来优化生产计划,确定最佳的生产数量和资源分配,以最大化利润或者最小化成本。

2. 运输问题:线性规划可以用来解决运输问题,确定最佳的货物运输方案,以最小化运输成本。

3. 供应链管理:线性规划可以用来优化供应链管理,确定最佳的供应商选择、库存控制和定单分配策略,以最大化供应链效益。

4. 投资组合:线性规划可以用来优化投资组合,确定最佳的资产配置比例,以最大化投资回报或者最小化风险。

高中线性规划

高中线性规划

高中线性规划线性规划是运筹学中的一种数学方法,用于解决最优化问题。

在高中数学中,线性规划是一种重要的应用题型,涉及到线性不等式、线性函数和最大化或者最小化目标函数等概念。

本文将详细介绍高中线性规划的标准格式,以及如何解决该类问题。

一、线性规划的标准格式线性规划的标准格式通常包括以下几个要素:1. 决策变量(Decision Variables):表示问题中需要决策的变量,通常用字母表示。

例如,假设有两种产品A和B需要生产,可以用x表示产品A的产量,用y表示产品B的产量。

2. 目标函数(Objective Function):表示问题的最大化或者最小化目标,通常用线性函数表示。

例如,假设我们希翼最大化总利润,则目标函数可以表示为z = cx + dy,其中c和d分别表示单位产品A和B的利润。

3. 约束条件(Constraints):表示问题中的限制条件,通常用线性不等式或者等式表示。

例如,假设产品A和B的生产需要的资源有限,则约束条件可以表示为:- 2x + 3y ≤ 10 (资源1的限制)- 4x + 2y ≤ 8 (资源2的限制)- x ≥ 0, y≥ 0 (产量不能为负)二、解决高中线性规划问题的步骤解决高中线性规划问题的普通步骤如下:1. 确定决策变量:根据问题描述,确定需要决策的变量,并用字母表示。

2. 建立目标函数:根据问题的最大化或者最小化目标,建立目标函数,并将决策变量代入其中。

3. 建立约束条件:根据问题的限制条件,建立约束条件,并将决策变量代入其中。

4. 绘制可行域:将约束条件转化为不等式的图形表示,并绘制在坐标系中,得到可行域。

5. 确定最优解:在可行域中确定目标函数的最大值或者最小值的点,即为最优解。

6. 检验最优解:将最优解代入目标函数和约束条件中,验证是否满足所有条件。

三、实例分析为了更好地理解高中线性规划的应用,我们以一个实例进行分析。

假设某公司生产两种产品A和B,每单位产品A的利润为10元,每单位产品B的利润为15元。

人教版高中数学课件:线性规划16页文档

人教版高中数学课件:线性规划16页文档


26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——在明眼的跛子肩上。——叔本华
谢谢!
16
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
人教版高中数学课件:线性规划 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。

高中线性规划

高中线性规划

高中线性规划一、概述线性规划是数学中的一个分支,用于解决最优化问题。

在高中数学中,线性规划通常是在给定一些约束条件下,寻找一个目标函数的最大值或最小值。

本文将详细介绍高中线性规划的基本概念、解题步骤和示例。

二、基本概念1. 目标函数:线性规划的目标是通过最大化或最小化一个线性函数来达到某种目标。

目标函数通常表示为Z = c1x1 + c2x2 + ... + cnxn,其中c1、c2、...、cn为常数,x1、x2、...、xn为变量。

2. 约束条件:线性规划的解必须满足一系列约束条件。

约束条件通常表示为一组线性不等式或等式。

例如,ax1 + bx2 + ... + zxn ≤ d,其中a、b、...、z为常数,x1、x2、...、xn为变量,d为常数。

3. 可行解:满足所有约束条件的解称为可行解。

4. 最优解:在所有可行解中,使目标函数达到最大值或最小值的解称为最优解。

三、解题步骤高中线性规划的解题步骤如下:1. 确定问题:明确问题的目标和约束条件。

2. 建立数学模型:将问题转化为数学形式,确定目标函数和约束条件。

3. 绘制图形:根据约束条件绘制图形,确定可行解的区域。

4. 确定顶点:在可行解的区域内,确定顶点(极值点)。

5. 计算目标函数值:计算每个顶点对应的目标函数值。

6. 比较目标函数值:比较所有顶点对应的目标函数值,找出最优解。

四、示例假设某公司生产两种产品A和B,每天生产时间为8小时。

产品A每件利润为100元,产品B每件利润为200元。

生产一件产品A需要2小时,生产一件产品B 需要4小时。

公司希望最大化每天的利润。

1. 确定问题:最大化每天的利润。

2. 建立数学模型:目标函数:Z = 100A + 200B(最大化利润)约束条件:2A + 4B ≤ 8(生产时间约束)非负约束:A ≥ 0,B ≥ 03. 绘制图形:根据约束条件绘制图形,可行解区域为一个三角形。

4. 确定顶点:可行解区域的顶点为(0, 0),(0, 2),(4, 0)。

高中线性规划

高中线性规划

高中线性规划引言概述:线性规划是一种数学建模方法,通过建立数学模型来解决实际问题。

在高中数学中,线性规划是一个重要的概念,它可以帮助我们解决一些优化问题。

本文将详细介绍高中线性规划的概念、原理和应用。

一、线性规划的概念1.1 线性规划的定义线性规划是一种数学优化方法,它的目标是找到一组变量的最佳取值,使得目标函数达到最大或最小值,同时满足一组线性约束条件。

1.2 线性规划的基本要素线性规划包含以下基本要素:- 目标函数:表示需要最大化或最小化的数学模型。

- 决策变量:需要确定的变量,它们的取值将影响目标函数的结果。

- 约束条件:限制决策变量的取值范围,通常为一组线性不等式或等式。

1.3 线性规划的解法线性规划可以使用图像法、单纯形法或二次规划等方法进行求解。

其中,图像法适用于二维问题,单纯形法适用于多维问题,而二次规划适用于目标函数为二次函数的问题。

二、线性规划的原理2.1 线性规划的线性性质线性规划的目标函数和约束条件都是线性的,这意味着它们的图像是直线或平面。

这种线性性质使得线性规划问题的求解相对简单。

2.2 线性规划的可行解与最优解线性规划的可行解是指满足所有约束条件的解,而最优解是在可行解集合中使得目标函数取得最大或最小值的解。

线性规划问题可能存在多个最优解,或者无解。

2.3 线性规划的应用领域线性规划广泛应用于生产计划、资源分配、运输问题等领域。

例如,企业可以使用线性规划来确定最佳的生产计划,以最大化利润或最小化成本。

三、线性规划的应用举例3.1 生产计划问题一个工厂需要生产两种产品,每种产品的生产时间、材料成本和利润不同。

通过线性规划,可以确定每种产品的生产数量,以最大化利润。

3.2 运输问题一个物流公司需要将商品从多个仓库运送到多个销售点,每个仓库和销售点之间的运输成本不同。

通过线性规划,可以确定每个仓库和销售点之间的货物运输量,以最小化总运输成本。

3.3 资源分配问题一个学校需要将教师和教室分配给不同的班级,每个班级的人数和课程要求不同。

高中线性规划

高中线性规划

高中线性规划一、概述线性规划是运筹学中的一种优化方法,通过建立数学模型,解决最大化或最小化目标函数的问题。

在高中数学中,线性规划是一种重要的内容,旨在培养学生的数学建模和解决实际问题的能力。

本文将详细介绍高中线性规划的基本概念、解题步骤和应用案例。

二、基本概念1. 目标函数:线性规划的目标是通过最大化或最小化目标函数来寻找最优解。

目标函数通常是一个线性函数,可以表示为z = c₁x₁ + c₂x₂ + ... + cₙxₙ,其中c₁、c₂、...、cₙ为常数,x₁、x₂、...、xₙ为变量。

2. 约束条件:线性规划的解必须满足一系列约束条件,通常表示为一组线性不等式或等式。

约束条件可以用不等式组的形式表示,如a₁x₁ + a₂x₂ + ... + aₙxₙ ≤ b,也可以用等式组的形式表示,如a₁x₁ + a₂x₂ + ... + aₙxₙ = b。

3. 变量:线性规划中的变量表示问题中需要求解的未知数,通常用x₁、x₂、...、xₙ表示。

三、解题步骤1. 建立数学模型:根据实际问题,确定目标函数和约束条件,并将其转化为数学模型。

2. 确定可行域:将约束条件表示为几何图形,确定可行域,即满足所有约束条件的解集合。

3. 确定最优解:在可行域内,确定目标函数的最大值或最小值。

可以使用图形法、代入法或单纯形法等方法求解。

4. 检验最优解:将最优解代入原问题,验证是否满足所有约束条件。

四、应用案例假设某公司生产两种产品A和B,每单位产品A的利润为5元,每单位产品B 的利润为8元。

公司的生产能力限制为每天生产A产品不超过1000个,B产品不超过800个。

另外,公司的销售部门预计每天销售A产品最多900个,B产品最多700个。

问如何安排生产,使得利润最大化?解题步骤如下:1. 建立数学模型:设x₁为生产的A产品数量,x₂为生产的B产品数量。

目标函数:z = 5x₁ + 8x₂(最大化利润)约束条件:- 生产能力限制:x₁ ≤ 1000,x₂ ≤ 800- 销售限制:x₁ ≤ 900,x₂ ≤ 700- 非负约束:x₁ ≥ 0,x₂ ≥ 02. 确定可行域:根据约束条件,绘制出可行域的图形。

高中线性规划

高中线性规划

高中线性规划一、概述线性规划是数学中的一种优化方法,用于解决一类特定的最优化问题。

在高中数学中,线性规划是一种常见的应用题型,通过建立数学模型,可以求解出最优解,从而得出问题的最佳解决方案。

二、问题描述假设某公司生产两种产品A和B,每天的生产时间为8小时。

产品A每单位利润为10元,产品B每单位利润为8元。

生产一个单位的产品A需要2小时,生产一个单位的产品B需要1小时。

公司希翼在有限的时间内最大化利润,同时考虑到生产能力和市场需求。

三、数学建模1. 定义变量:设产品A的产量为x,产品B的产量为y。

2. 建立目标函数:目标函数是要最大化的利润。

由于产品A的利润为10元,产品B的利润为8元,所以目标函数为:Z = 10x + 8y3. 建立约束条件:(1)生产时间约束:由于每天生产时间为8小时,且产品A生产一个单位需要2小时,产品B生产一个单位需要1小时,所以生产时间约束为:2x + y ≤ 8(2)产量非负约束:产品的产量必须为非负数,即:x ≥ 0y ≥ 04. 模型的数学描述:求解目标函数 Z = 10x + 8y 的最大值,同时满足约束条件:2x + y ≤ 8x ≥ 0y ≥ 0四、求解最优解根据线性规划的求解方法,可以使用图形法、单纯形法或者线性规划软件进行求解。

下面以图形法为例进行求解。

1. 构建约束条件的图形表示:将约束条件2x + y ≤ 8 转化为直线形式,即 y = -2x + 8。

在坐标系中画出该直线,并标出可行域。

2. 确定目标函数的等高线:将目标函数 Z = 10x + 8y 转化为直线形式,即 y = -(10/8)x + Z/8。

在坐标系中画出该直线,并标出等高线。

3. 确定最优解:目标函数的等高线与可行域的交点中,使目标函数取最大值的点即为最优解。

五、结果分析根据图形法的求解结果,最优解为目标函数取最大值时的点。

假设最优解为(x*, y*),则代入目标函数可得最大利润值。

高中线性规划

高中线性规划

高中线性规划线性规划是一种数学优化方法,它用于在给定的约束条件下,找到使目标函数最大或最小的变量值。

在高中数学中,线性规划通常作为一种应用题出现,要求学生根据给定的条件,建立数学模型并求解最优解。

一、问题描述假设某公司生产两种产品A和B,每天可供应的资源有限,且每种产品的生产所需资源不同。

产品A每个单位的利润为10元,产品B每个单位的利润为15元。

已知产品A每天最多可生产100个单位,产品B每天最多可生产80个单位。

同时,产品A每个单位需要2个单位的资源,产品B每个单位需要3个单位的资源。

现在的问题是,如何安排生产,使得每天的利润最大化。

二、建立数学模型设x为生产产品A的单位数,y为生产产品B的单位数。

根据题目中的条件,可以得到以下约束条件:1. x≥0,y≥0,即生产单位数不能为负数;2. x≤100,y≤80,即每天生产的单位数不能超过最大限制;3. 2x+3y≤R,其中R为每天可供应的资源总数,即每天所需资源不能超过可供应的资源总数。

三、确定目标函数根据题目中的条件,利润最大化是我们的目标。

设P为每天的利润,可以得到以下目标函数:P=10x+15y四、求解最优解通过线性规划的方法,我们可以求解出最优解。

下面是求解过程:1. 根据上述的约束条件和目标函数,可以列出线性规划问题的标准形式:Maximize P=10x+15ysubject tox≥0, y≥0x≤100, y≤802x+3y≤R2. 将目标函数和约束条件转化为不等式形式:P-10x-15y=0-x≤0, -y≤0x-100≤0, y-80≤0-2x-3y+R≤03. 构建拉格朗日函数:L(x,y,λ)=P-10x-15y-λ(-x)-λ(-y)-(λ(x-100))-(λ(y-80))-(λ(-2x-3y+R))4. 对拉格朗日函数求偏导数,并令其等于0,得到如下方程组:∂L/∂x=-10-λ+λ=0∂L/∂y=-15-λ+λ=0∂L/∂λ=-x≤0∂L/∂λ=-y≤0∂L/∂λ=x-100≤0∂L/∂λ=y-80≤0∂L/∂λ=-2x-3y+R≤05. 解方程组,得到最优解。

高中线性规划

高中线性规划

高中线性规划一、引言线性规划是运筹学中的一种重要方法,用于解决多个变量之间存在线性关系的优化问题。

在高中数学中,线性规划是一种常见的数学建模方法,用于解决实际生活中的最优化问题。

本文将详细介绍高中线性规划的基本概念、模型建立和求解方法。

二、基本概念1. 目标函数:线性规划的目标是通过最大化或者最小化目标函数来达到最优解。

目标函数是由决策变量线性组合而成的数学表达式。

2. 约束条件:线性规划问题通常有一组约束条件,这些条件限制了决策变量的取值范围。

约束条件可以是等式或者不等式。

3. 决策变量:决策变量是问题中需要决策的变量,通常用字母表示。

决策变量的取值将影响目标函数的值。

4. 可行解:满足所有约束条件的决策变量取值称为可行解。

5. 最优解:在所有可行解中,使目标函数取得最大(最小)值的解称为最优解。

三、模型建立1. 确定决策变量:根据问题的具体要求,确定需要决策的变量及其取值范围。

2. 建立目标函数:根据问题的最大化或者最小化要求,建立目标函数。

目标函数通常由决策变量线性组合而成。

3. 建立约束条件:根据问题中的限制条件,建立约束条件。

约束条件可以是等式或者不等式,通过对决策变量的限制来表达。

4. 确定可行解集合:根据约束条件,确定决策变量的取值范围,找出满足所有约束条件的可行解集合。

5. 求解最优解:通过数学方法求解目标函数在可行解集合上的最大(最小)值,得到最优解。

四、求解方法1. 图形法:对于二元线性规划问题,可以使用图形法求解。

首先,将约束条件转化为不等式,然后绘制约束条件的图形,确定可行解的区域。

接着,通过目标函数的等值线与可行解区域的边界相交,找到最优解。

2. 单纯形法:对于多元线性规划问题,可以使用单纯形法求解。

单纯形法是一种迭代求解的方法,通过不断调整决策变量的取值,使目标函数逐步趋近最优解。

3. 整数规划法:对于决策变量需要取整数值的线性规划问题,可以使用整数规划法求解。

整数规划法在单纯形法的基础上,增加了对决策变量取整的限制条件,通过枚举法或者分支定界法求解最优整数解。

高中线性规划

高中线性规划

高中线性规划高中线性规划是高中数学课程中的一个重要内容,主要涉及到线性规划的概念、性质、解法以及在实际问题中的应用等方面。

下面将详细介绍高中线性规划的相关知识。

一、线性规划的概念和性质线性规划是数学规划的一种,它是在一组线性约束条件下,寻觅一个目标函数值最大或者最小的解的问题。

线性规划的基本形式可以表示为:Maximize(或者Minimize)目标函数Subject to 线性约束条件线性规划的性质包括可行域的闭性、目标函数的线性性质以及线性约束条件的可加性等。

可行域是指满足所有约束条件的解的集合,它是一个闭集。

目标函数是线性的,即目标函数的系数都是常数。

线性约束条件的可加性是指如果两个解都满足约束条件,那末它们的线性组合也满足约束条件。

二、线性规划的解法线性规划的求解方法主要有图解法、单纯形法和对偶理论等。

其中,图解法适合于二维或者三维的线性规划问题,通过绘制约束条件的直线或者平面,找到目标函数在可行域上的最优解。

单纯形法是一种迭代算法,通过不断优化目标函数的值,逐步逼近最优解。

对偶理论则是通过线性规划的对偶问题来求解原问题,两者的最优解是相等的。

三、线性规划的应用线性规划在实际问题中有着广泛的应用,如生产计划、资源分配、投资组合等方面。

以下是几个典型的应用案例:1. 生产计划问题:某工厂生产两种产品A和B,每天的生产时间为8小时。

产品A每单位利润为100元,每单位所需生产时间为2小时;产品B每单位利润为150元,每单位所需生产时间为3小时。

假设产品A和B的生产量都是非负数,问如何安排生产才干使总利润最大化?2. 资源分配问题:某公司有两个项目,项目A和项目B,每一个项目需要的资源数量不同。

假设项目A需要2个工程师和3个技术人员,项目B需要3个工程师和2个技术人员。

公司现有10个工程师和12个技术人员,问如何分配资源才干使两个项目的需求都得到满足?3. 投资组合问题:某投资者有100万元可以投资于股票和债券两种资产。

高中线性规划

高中线性规划

高中线性规划线性规划是运筹学中的一个重要分支,它主要研究如何在一组线性约束条件下,寻找一个线性目标函数的最优解。

在高中数学课程中,线性规划是一个重要的内容,它不仅可以帮助学生理解线性方程组的应用,还可以培养学生的逻辑思维能力和解决问题的能力。

一、线性规划的基本概念线性规划的基本概念包括目标函数、约束条件、可行域和最优解等。

1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,这个线性函数被称为目标函数。

目标函数通常表示为Z = c1x1 + c2x2 + ... + cnxn,其中ci为常数,xi为决策变量。

2. 约束条件:线性规划的约束条件是一组线性不等式或等式,用来限制决策变量的取值范围。

约束条件通常表示为a1x1 + a2x2 + ... + anx ≤ b或a1x1 + a2x2 + ...+ anx = b,其中ai为常数,bi为常数。

3. 可行域:可行域是指满足所有约束条件的决策变量的取值范围。

可行域通常是一个多边形、多面体或多维空间中的一个区域。

4. 最优解:线性规划的最优解是指在可行域内使目标函数取得最大(或最小)值的决策变量的取值。

最优解通常是可行域的一个顶点或边界上的一个点。

二、线性规划的解法线性规划可以通过图形法、单纯形法和对偶理论等方法求解。

1. 图形法:图形法是线性规划的一种直观的解法,它通过绘制可行域和等高线图来找到最优解。

首先,将约束条件转化为不等式的形式,然后绘制可行域的边界。

接下来,将目标函数的等高线图绘制在可行域上,通过移动等高线图找到使目标函数取得最大(或最小)值的点。

2. 单纯形法:单纯形法是一种高效的线性规划求解方法,它通过迭代计算来找到最优解。

单纯形法首先将线性规划问题转化为标准形式,即目标函数为最大化、约束条件为等式、决策变量为非负的形式。

然后,通过迭代计算来找到最优解。

单纯形法的核心思想是通过改变基变量和非基变量来逐步接近最优解。

3. 对偶理论:对偶理论是线性规划的一个重要理论基础,它通过构建原问题和对偶问题之间的关系来求解线性规划问题。

高中线性规划

高中线性规划

高中线性规划一、引言线性规划是数学中的一种优化方法,用于解决线性约束条件下的最优化问题。

在高中数学中,线性规划是一种重要的应用题型,旨在培养学生的数学建模能力和解决实际问题的能力。

本文将介绍高中线性规划的基本概念、解题步骤和实例分析。

二、基本概念1. 目标函数:线性规划的目标是最大化或者最小化一个线性函数,称为目标函数。

目标函数通常表示为一个关于变量的代数式。

2. 约束条件:线性规划的变量需要满足一系列线性不等式或者等式,这些不等式或者等式称为约束条件。

3. 可行解:满足所有约束条件的解称为可行解。

4. 最优解:在所有可行解中,使目标函数取得最大(或者最小)值的解称为最优解。

三、解题步骤1. 确定变量:首先,需要确定问题中涉及的变量,并用字母表示。

2. 建立目标函数:根据问题的要求,建立目标函数。

如果是最大化问题,目标函数前面加之正号;如果是最小化问题,目标函数前面加之负号。

3. 建立约束条件:根据问题中给出的条件,建立约束条件。

每一个约束条件都可以转化为一个线性不等式或者等式。

4. 画出可行域:根据约束条件,将变量的取值范围画出来,形成一个区域,称为可行域。

5. 找到最优解:在可行域内,找到使目标函数取得最大(或者最小)值的点,即为最优解。

四、实例分析假设某公司生产两种产品A和B,每天的生产时间为8小时。

产品A每单位利润为100元,产品B每单位利润为150元。

产品A的生产时间为1小时,产品B 的生产时间为2小时。

公司希翼在有限的生产时间内最大化利润。

1. 确定变量:设产品A的生产数量为x,产品B的生产数量为y。

2. 建立目标函数:目标是最大化利润,因此目标函数为Z = 100x + 150y。

3. 建立约束条件:根据生产时间的限制,得到约束条件:x + 2y ≤ 8。

4. 画出可行域:将约束条件转化为不等式,得到可行域为x + 2y ≤ 8,x ≥ 0,y ≥ 0。

在坐标系中画出可行域的图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性规划一、选择题1.设直线l 的方程为:01=-+y x ,则下列说法不.正确的是( )A .点集{01|),(=-+y x y x }的图形与x 轴、y 轴围成的三角形的面积是定值B .点集{01|),(>-+y x y x }的图形是l 右上方的平面区域C .点集{01|),(<+--y x y x }的图形是l 左下方的平面区域D .点集{)(,0|),(R m m y x y x ∈=-+}的图形与x 轴、y 轴围成的三角形的面积有最小值2.已知x , y 满足约束条件,11⎪⎩⎪⎨⎧-≥≤+≤y y x x y y x z +=2则的最大值为( )A .3B .-3C .1D .23 3.如果函数a bx ax y ++=2的图象与x 轴有两上交点,则点(a ,b )在a Ob 平面上的区 域(不包含边界)为 ( )A .B .C .D . 4.图中的平面区域(阴影部分包括边界)可用不等式组表示为) A .20≤≤x B .⎩⎨⎧≤≤≤≤1020y xC .⎪⎩⎪⎨⎧>≤-+yx y x 022D .⎪⎩⎪⎨⎧≥≥≤-+00022y x y x 5.不等式组⎪⎩⎪⎨⎧-≥≤+<31y y x xy ,表示的区域为D ,点P 1(0,-2),P 2(0,0),则( )A .D P D P ∉∉21且B .D P D P ∈∉21且C .D P D P ∉∈21且D .D P D P ∈∈21且6.已知点P (x 0,y 0)和点A (1,2)在直线0823:=-+y x l 的异侧,则( )A .02300>+y xB .<+0023y x 0C .82300<+y xD .82300>+y x7.已知点P (0,0),Q (1,0),R (2,0),S (3,0),则在不等式063≥-+y x 表示的平面区域内的点是( )A .P 、QB .Q 、RC .R 、SD .S 、P8.在约束条件⎪⎩⎪⎨⎧≥≤+≤--0101x y x y x 下,则目标函数y x z+=10的最优解是( ) A .(0,1),(1,0) B .(0,1),(0,-1) C .(0,-1),(0,0) D .(0,-1),(1,0) 9.不在 3x + 2y < 6 表示的平面区域内的一个点是 ( ) A .(0,0)B .(1,1)C .(0,2)D .(2,0)10.已知点(3 , 1)和点(-4 , 6)在直线 3x –2y + m = 0 的两侧,则 ( )A .m <-7或m >24B .-7<m <24C .m =-7或m =24D .-7≤m ≤ 2411.若⎩⎨⎧≥+≤≤2,22y x y x ,则目标函数 z = x + 2 y 的取值范围是 ( )A .[2 ,6]B . [2,5]C . [3,6]D . [3,5] 12.不等式⎩⎨⎧≤≤≥++-300))(5(x y x y x 表示的平面区域是一个( )A .三角形B .直角三角形C .梯形D .矩形13.在△ABC 中,三顶点坐标为A (2 ,4),B (-1,2),C (1 ,0 ), 点P (x ,y )在△ABC 内部及边界运动,则 z= x –y 的最大值和最小值分别是()A .3,1B .-1,-3C .1,-3D .3,-114.在直角坐标系中,满足不等式 x 2-y 2≥0 的点(x ,y )的集合(用阴影部分来表示)的是 ( )A B C D15.已知平面区域如右图所示,)0(>+=m y mx z ( )A .207B .207-C .21D .不存在二、填空题1.表示以A (0,0),B (2,2),C (2,0)为顶点的三角形区域(含边界)的不等式组是2.已知点P (1,-2)及其关于原点的对称点均在不等式012>+-by x 表示的平面区域内,则b 的取值范围是 . 3.已知点(x ,y )在不等式组⎪⎩⎪⎨⎧≥+≤≤222y x y x 表示的平面区域内,则y x+的取值范围为.4.不等式1≤+y x 所表示的平面区域的面积是5.已知x ,y满足约束条件 35≤≥+≥+-x y x y x ,则y x z -=4的最小值为______________.6.已知约束条件2828,x y x y x N y N +++≤⎧⎪+≤⎨⎪∈∈⎩,目标函数z=3x+y ,某学生求得x =38, y=38时,z max =323, 这显然不合要求,正确答案应为x = ; y= ; z max = .三、解答题1.画出不等式组⎪⎩⎪⎨⎧≥+≤≥+-02042x y x y x 所表示的平面区域.(12分)2. 求由约束条件⎪⎩⎪⎨⎧≥≥≤+≤+0,0625y x y x y x 确定的平面区域的面积阴影部分S 和周长阴影部分C .(12分)3.求目标函数y x z 1510+=的最大值及对应的最优解,约束条件是⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+01001232122y x y x y x .(12分)4.设y x z +=2,式中变量y x ,满足条件⎪⎪⎩⎪⎪⎨⎧≤+≥+≥≥66311y x y x y x ,求z 的最小值和最大值.(12分) 5.由12+≤≤≤x y x y 及围成的几何图形的面积是多少?(12分)6.已知),2,0(∈a 当a 为何值时,直线422:422:2221+=+-=-a y a x l a y ax l 与及坐标轴围成的平面区域的面积最小?7.设422+-=x y z ,式中变量y x ,满足条件⎪⎩⎪⎨⎧≥-≤≤≤≤122010x y y x ,求z 的最小值和最大值.(12分)参考答案一.选择题二.填空题1.⎪⎩⎪⎨⎧≥≤≥-020y x y x 2.)21,23(-- 3.[2,4] 4. 2 5.5.12- 6.3,2,11三、解答题1.(12分)2.(12分)[解析]:由约束条件作出其所确定的平面区域(阴影部分),其四个顶点为O (0,0A (0,5),P (1,4).过P 点作y 轴的垂线,垂足为C . 则AC=|5-4|=1,PC=|1-0|=1OB=3,AP=2,PB=52)31()04(22=-+-得PC AC S ACP⋅=∆21=21,8)(21=⋅+=OC OB CP S COBP 梯形 所以阴影部分S =ACPS ∆+COBPS 梯形=217,阴影部分C =OA+AP+PB+OB=8+2+523.(12分)[解析]:作出其可行域如图所示,约束条件所确定的平面区域的五个顶点为(0,4),(0,6),(6,0)(10,0),(10,1),作直线l 0:10 x +15 y =0,再作与直线l 0平行的直线l :10 x +15 y =z , 由图象可知,当l 经过点(10,1)时使y x z 1510+=取得最大值, 显然1151151010max =⨯+⨯=z ,此时最优解为(10,1). 4.(12分)[解析]:作出其可行域如图所示,约束条件所确定的平面区域的四个顶点为(1,35),(1,5),(3,1),(5,1),作直线l 0:2 x + y =0,再作与直线l 0平行的直线l :2 x + y =z , 由图象可知,当l 经过点(1,35)时使y x z +=2取得最小值, 31135112min =⨯+⨯=z 当l 经过点(5,1)时使y x z +=2取得最大值,111152max =⨯+⨯=zl01=`5.(12分)[解析]:如下图由12+≤≤≤x y x y 及围成的几何图形就是其阴影部分,且312212421=⋅⋅-⋅⋅=S .6.(),2,2(1A l 恒过)2,0(),0,42,a C aB y x --(轴分别为交 ),2,2()2(22:222A l x a y l 恒过∴--=-42,0(),0,2,22aC aD y x ++(轴分别为交, 02,04220>-<-∴<<a aa ,由题意知21l l 与及坐标轴围成的平面区域为ACOD , ,41521(42)4(2142)(2(2122222+-=+-=⋅+-++=-=∴∆∆a a a a a aa S S S EC A EOD AC OD 415)(21min ==∴AC OD S a 时,当. 7.(12分)[解析]: 作出满足不等式⎪⎩⎪⎨⎧≥-≤≤≤≤122010x y y x .作直线,22:1t x y l =-.840222)2,0(max =+⨯-⨯=z A l 时,经过当 .441212)1,1(min =+⨯-⨯=z B l 时,经过当。

相关文档
最新文档