2018届中考数学复习第一部分数与代数第十二课时一次函数练习含答案
(完整word版)2018中考一次函数真题(可编辑修改word版)
一次函数参考答案与试题解析一.选择题(共10 小题)1.(2018•常德)若一次函数y=(k﹣2)x+1 的函数值y 随x 的增大而增大,则()A.k<2 B.k>2 C.k>0D.k<0【分析】根据一次函数的性质,可得答案.【解答】解:由题意,得k﹣2>0,解得k>2,故选:B.2.(2018•台湾)已知坐标平面上,一次函数y=3x+a 的图形通过点(0,﹣4),其中a 为一数,求a 的值为何?()A.﹣12 B.﹣4 C.4 D.12【分析】利用待定系数法即可解决问题.【解答】解:∵次函数y=3x+a 的图形通过点(0,﹣4),∴﹣4=0×3+a,∴a=﹣4,故选:B.3.(2018•娄底)将直线y=2x﹣3 向右平移2 个单位,再向上平移3 个单位后,所得的直线的表达式为()A.y=2x﹣4 B.y=2x+4 C.y=2x+2 D.y=2x﹣2【分析】根据平移的性质“左加右减,上加下减”,即可找出平移后的直线解析式,此题得解.【解答】解:y=2(x﹣2)﹣3+3=2x﹣4.化简,得y=2x﹣4,故选:A.4.(2018•枣庄)如图,直线l 是一次函数y=kx+b 的图象,若点A(3,m)在直线l 上,则m 的值是(),解答A .﹣5B .C .D .7【分析】待定系数法求出直线解析式,再将点 A 代入求解可得.【解答】解:将(﹣2,0)、(0,1)代入,得:,∴y= x +1,将点 A (3,m )代入,得:+1=m ,即 m=,故选:C .月份 1 2 3 4成绩(s ) 15.6 15.4 15.2 15( ) (温馨提示;目前 100m 短跑世界记录为 9 秒 58)A .14.8sB .3.8sC .3sD .预测结果不可靠【分析】由表格中的数据可知,每加 1 个月,成绩提高 0.2 秒,所以 y 与 x 之间是一次函数的关系,可设 y=kx +b ,利用已知点的坐标,即可求解.【解答】解:(1)设 y=kx +b 依题意得(1 分),∴y=﹣0.2x +15.8.当 x=5 时,y=﹣0.2×5+15.8=14.8.故选:A .解得:6.(2018•宿迁)在平面直角坐标系中,过点(1,2)作直线l,若直线l 与两坐标轴围成的三角形面积为4,则满足条件的直线l 的条数是()A.5 B.4 C.3 D.2【分析】根据题意可以设出直线l 的函数解析式,然后根据题意即可求得k 的值,从而可以解答本题.【解答】解:设过点(1,2)的直线l 的函数解析式为y=kx+b,2=k+b,得b=2﹣k,∴y=kx+2﹣k,当x=0 时,y=2﹣k,当y=0 时,x=,令=4,解得,k1=﹣2,k2=6﹣4 ,k3=6+4 ,故满足条件的直线l 的条数是3 条,故选:C.7.(2018•泰州)如图,平面直角坐标系xOy 中,点A 的坐标为(9,6),AB⊥y 轴,垂足为B,点P 从原点O 出发向x 轴正方向运动,同时,点Q 从点A 出发向点B 运动,当点Q 到达点B 时,点P、Q 同时停止运动,若点P 与点Q 的速度之比为1:2,则下列说法正确的是()A.线段PQ 始终经过点(2,3)B.线段PQ 始终经过点(3,2)C.线段PQ 始终经过点(2,2)D.线段PQ 不可能始终经过某一定点【分析】当OP=t 时,点P 的坐标为(t,0),点Q 的坐标为(9﹣2t,6).设直线PQ 的解析式为y=kx+b(k≠0),利用待定系数法求出PQ 的解析式即可判断;【解答】解:当OP=t 时,点P 的坐标为(t,0),点Q 的坐标为(9﹣2t,6).设直线PQ 的解析式为y=kx+b(k≠0),将P(t,0)、Q(9﹣2t,6)代入y=kx+b,,解得:,∴直线PQ 的解析式为y=x+ .∵x=3 时,y=2,∴直线PQ 始终经过(3,2),故选:B.8.(2018•湘潭)若b>0,则一次函数y=﹣x+b 的图象大致是()A.B.C.D.【分析】根据一次函数的k、b 的符号确定其经过的象限即可确定答案.【解答】解:∵一次函数y=x+b 中k=﹣1<0,b>0,∴一次函数的图象经过一、二、四象限,故选:C.9.(2018•南充)直线y=2x 向下平移2 个单位长度得到的直线是()A.y=2(x+2)B.y=2(x﹣2)C.y=2x﹣2 D.y=2x+2【分析】据一次函数图象与几何变换得到直线y=2x 向下平移 2 个单位得到的函数解析式为y=2x﹣2.【解答】解:直线y=2x 向下平移 2 个单位得到的函数解析式为y=2x﹣2.故选:C.10.(2018•南通)函数y=﹣x 的图象与函数y=x+1 的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据题目中的函数解析式可以求得这两个函数的交点坐标,从而可以解答本题.【解答】解:,解得,,∴函数y=﹣x 的图象与函数y=x+1 的图象的交点是(,),故函数y=﹣x 的图象与函数y=x+1 的图象的交点在第二象限,故选:B.。
2018年全国一次函数中考题(含答案)
3. (2018年山东省枣庄市,5,3分) 如图,直线l 是一次函数b kx y +=的图象,如果点),3(m A 在直线l 上,则m 的值为( )A .5-B .23C .25D .7 【答案】C【解析】由图像可得直线l 与x 轴的两个交点的坐标为(0,1)(-2,0),代入到b kx y +=求得直线 l 的解析式为112y x =+,再把点),3(m A 代入到直线l 的解析式中,求得m 的值为25.故选C. 【知识点】点的坐标;待定系数法求一次函数的表达式;4. (2018四川省南充市,第7题,3分)直线2y x =向下平移2个单位长度得到的直线是( )A .2(2)y x =+B .2(2)y x =-C .22y x =-D .22y x =+ 【答案】C【解析】直线y =2x 向下平移2个单位长度得到直线的解析式是y =2x -2,故选C. 【知识点】一次函数的平移5. (2018浙江绍兴,6,3分)如图,一个函数的图象由射线BA 、线段BC 、射线CD 组成,其中点(1,2)A -,(1,3)B ,(2,1)C ,(6,5)D ,则此函数( )(第6题图)A .当1x <时,y 随x 的增大而增大B .当1x <时,y 随x 的增大而减小C .当1x >时,y 随x 的增大而增大D .当1x >时,y 随x 的增大而减小【答案】A【解析】由函数图像可知,当1x <时,y 随x 的增大而增大,A 正确;当x 1<<2时,y 随x 的增大而减小,B 错误;当2x >时,y 随x 的增大而增大,C 错误,当1x >时,y 随x 的增大而增大,D 错误,故选A 。
【知识点】一次函数的性质 1. (2018贵州遵义,7题,3分)如图,直线y=kx+3经过点(2,0),则关于x 的不等式kx+3>0的解集是A.x>2B.x<2C.x≥2D.x≤2【答案】B【解析】由图可知,函数y=kx+3随着x 的增大而减小,与x 轴的交点为(2,0),kx+3>0,即y>0,即图像在x 轴上方的部分,故不等式的解集为x<2 【知识点】一次函数与一元一次不等式的关系,数形结合3. (2018湖南省湘潭市,7,3分)若b >0,则一次函数y=-x+b 的图象大致是( )【答案】C【解析】根据一次函数y=kx+b 中,k >0时,图象从左到右上升;k <0时,图象从左到右下降;b >0时,图象与y 轴的交点在y 轴上方;b=0时,图象与y 轴的交点在原点;b <0时,图象与y 轴的交点在y 轴下方.∵-1<0,所以图象从左到右下降,b >0所以图象与y 轴交于y 轴上方,故选择C.【知识点】一次函数的图象和性质4. (2018山东德州,10,3分)给出下列函数:①32y x =-+;②3y x=;③22y x =;④3y x =.上述函数中符合条件“当1x >时,函数值y 随自变量x 增大而增大”的是( ) A .①③ B .③④ C.②④ D .②③ 【答案】B【解析】函数32y x =-+的y 随自变量x 增大而减小;因为函数3y x=在每个象限内时的y 随自变量x 增大而减小,所以在当1x >时的y 随自变量x 增大而减小;函数22y x =在0x >时的y 随自变量x 增大而增大,所以在当1x >时的y 随自变量x 增大而增大;函数3y x =的y 随自变量x 增大而增大. 故选B.【知识点】函数增减性5. (2018广东省深圳市,7,3分)把函数y =x 向上平移3个单位,下列在该平移后的直线上的点是( ) A .(2,2) B .(2,3) C .(2,4) D .(2,5) 【答案】D【解析】一次函数的平移规律是:左加右减,上加下减,故把函数y =x 向上平移3个单位后的函数关系式为y =x +3,当x =2时,y =2+3=5,故选D . 【知识点】一次函数的平移;点的坐标6.(2018湖北荆州,T7,F3)已知:将直线1y x =-向上平移2个单位长度后得到直线y kx b =+,则下列关于直线y kx b =+的说法正确的是( )A.经过第一、二、四象限B.与x 轴交于(1,0)C.与y 轴交于(0,1)D.y 随x 的增大而减小 【答案】C【解析】解:根据题意,将直线y=x ﹣1向上平移2个单位后得到的直线解析式为:y=x-1+2,即y=x +1,当x=0时,y=1, ∴与y 轴交于点(0,1);当y=0时,x=-1,与x轴交于点(-1,0);图象经过第一、二、三象限;y 随x 的增大而增大.故选B . 【知识点】一次函数图象的平移、坐标轴的交点、函数值随自变量的增减情况.7. (2018广西玉林,5题,3分)等腰三角形底角与顶角之间的函数关系是 A.正比例函数 B.一次函数 C.反比例函数 D.二次函数 【答案】B【解析】设顶角为x ,底角为y ,由三角形内角和定理可得,y=12(180-x)=-12x+90,所以二者之间为一次函数关系,故选B【知识点】三角形内角和,一次函数8. (2018陕西,4,3分)如图,在矩形ABCD 中,A (-2,0),B (0,1). 若正比例函数y =kx 的图象经过点C ,则k 的值为( ) A .12-B .12C .-2D .2【答案】A【解析】由A(-2,0),B(0,1)可得C(-2,1).把点C代入y=kx,得:-2k=1,1 2k=-,故选择A.【知识点】正比例函数,图形与坐标9.(2018陕西,7,3分)若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(-2,0)B.(2,0)C.(-6,0)D.(6,0)【答案】B【解析】设直线l1解析式为y1=kx+4,∵l1与l2关于x轴对称,∴直线l2的解析式为y2=-kx-4,∵l2经过点(3,2),∴-3k-4=2.∴k=-2.∴两条直线的解析式分别为y1=-2x+4,y2=2x-4联立方程组,解得:x=2,y=0.∴交点坐标为(2,0),故选择B.【知识点】一次函数2.(2018浙江衢州,第14题,4分)星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家,他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是________千米。
[名师推荐]2018年中考数学一轮基础复习试卷专题十二:一次函数及其应用含参考答案
备考2018年中考数学一轮基础复习:专题十二一次函数及其应用一、单选题(共15题;共30分)1.下列函数中,是一次函数的有()①y=πx②y=2x﹣1 ③y= ④y=2﹣3x ⑤y=x2﹣1.A. 4个B. 3个C. 2个D. 1个2.(2017•德州)公式L=L0+KP表示当重力为P时的物体作用在弹簧上时弹簧的长度,L0代表弹簧的初始长度,用厘米(cm)表示,K表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是()A. L=10+0.5PB. L=10+5PC. L=80+0.5PD. L=80+5P3.如图,在同一平面直角坐标系中,反比例函数y=与一次函数y=kx-1(k为常数,且k>0)的图象可能是()A. B. C. D.4.二次函数y=a(x+m)2+n的图象如图所示,则一次函数y=mx+n的图象经过()A. 第一、二、三象限B. 第一、二、四象限C. 第二、三、四象限D. 第一、三、四象限5.若一次函数y=kx+b,当x的值减小1,y的值就减小2,则当x的值增加2时,y的值()A. 增加4B. 减小4C. 增加2D. 减小26.直线l:y=mx﹣m+1(m为常数,且m≠0)与坐标轴交于A、B两点,若△AOB(O是原点)的面积恰为2,则符合要求的直线l有()A. 1条B. 2条C. 3条D. 4条7.如图,等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点M与点A重合,点N到达点B时运动终止),过点M、N分别作AB边的垂线,与△ABC的其它边交于P、Q两点.线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.则大致反映S与t变化关系的图象是()A. B.C. D.8.(2017•鄂州)小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min到家,再过5min小东到达学校,小东始终以100m/min的速度步行,小东和妈妈的距离y(单位:m)与小东打完电话后的步行时间t(单位:min)之间的函数关系如图所示,下列四种说法:①打电话时,小东和妈妈的距离为1400米;②小东和妈妈相遇后,妈妈回家速度为50m/min;③小东打完电话后,经过27min到达学校;④小东家离学校的距离为2900m.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个9.(2017•贵阳)若直线y=﹣x+a与直线y=x+b的交点坐标为(2,8),则a﹣b的值为()A. 2B. 4C. 6D. 810.(2017•温州)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A. 0<y1<y2B. y1<0<y2C. y1<y2<0D. y2<0<y111.(2017•齐齐哈尔)已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y 与x之间函数关系的图象是()A. B.C. D.12.(2017•福建)若直线y=kx+k+1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的值可以是()A. 3B. 4C. 5D. 613.(2017•泰安)已知一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,则下列结论正确的是()A. k<2,m>0B. k<2,m<0C. k>2,m>0D. k<0,m<014.将2×2的正方形网格如图所示的放置在平面直角坐标系中,每个小正方形的顶点称为格点,每个小正方形的边长都是1,正方形ABCD的顶点都在格点上,若直线y=kx(k≠0)与正方形ABCD有公共点,则k不可能是()A. 3B. 2C. 1D.15.(2017•枣庄)如图,直线y= x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A. (﹣3,0)B. (﹣6,0)C. (﹣,0)D. (﹣,0)二、填空题(共6题;共6分)16.(2017•广安)已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为________.17.(2017•吉林)我们规定:当k,b为常数,k≠0,b≠0,k≠b时,一次函数y=kx+b与y=bx+k互为交换函数.例如:y=4x+3的交换函数为y=3x+4.一次函数y=kx+2与它的交换函数图象的交点横坐标为________.18.(2017•通辽)如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线l将图形分成面积相等的两部分,则将直线l向右平移3个单位后所得直线l′的函数关系式为________.19.(2017•十堰)如图,直线y=kx和y=ax+4交于A(1,k),则不等式kx﹣6<ax+4<kx的解集为________.20.(2017•重庆)A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是________米.21.(2017•盘锦)如图,点A1(1,1)在直线y=x上,过点A1分别作y轴、x轴的平行线交直线y= x于点B1,B2,过点B2作y轴的平行线交直线y=x于点A2,过点A2作x轴的平行线交直线y= x于点B3,…,按照此规律进行下去,则点A n的横坐标为________.三、综合题(共4题;共44分)22.(2017•吉林)如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图②所示.(1)正方体的棱长为________cm;(2)求线段AB对应的函数解析式,并写出自变量x的取值范围;(3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.23.(2017•达州)小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:P1P2= 他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:x= ,y= .(1)请你帮小明写出中点坐标公式的证明过程;(2)①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为________;②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D的坐标:________;(3)如图3,点P(2,n)在函数y= x(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.24.(2017•日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d= .例如:求点P0(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P0(0,0)到直线4x+3y﹣3=0的距离为d= = .根据以上材料,解决下列问题:(1)点P1(3,4)到直线y=﹣x+ 的距离为________;(2)已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;(3)如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP 的最大值和最小值.25.(2017·衢州)“五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游。
2018年中考总复习之一次函数及反比例函数题的经典题型汇总(含答案)
面积,S2 为△OAB的面积,若 = ,则b的值是
.
解:(1)设点 P 的坐标为(m,n),则点 Q 的坐标为(m﹣1,n+2),
依题意得:
,解得:k=﹣2.故答案 为:﹣2.
(2)∵BO⊥x 轴,CE⊥x 轴,∴BO∥CE,∴△AOB∽△AEC.
∵点 M 是一次函数 Y=2x-4 与 Y 轴的交点,∴点 M 的坐标为(0,-4) 设 C 点的坐标为(0,Yc),由题意知
点的坐标为0yc由题意知3yc41yc410解得yc4当yc40时yc45解得yc1当yc40时yc45解得yc9的坐标为01或0922已知点p在一次函数ykxbkb向左平移1个单位再向上平移2个单位得到点q点q也在该函数ykxb2如图该一次函数的图象分别与x轴y轴交于ab两点且与反比例函数y图象交于cd两点点c在第二为四边形ceob的面积s2box轴cex轴boceaobaec
并求
的面积。
(2)若反比例函数 y= (x>0)的图象经过点 M, 求该反比函数的解析式,并通过计算判断点 N 是否在该函数的图象上.
1、如图,在平面直角坐标系 xoy 中,反比例函数 y = 的图象与一次函数 y =k(x -2 )
的图象交点为 A(3,2),B(x,y)。 (1)求反比例函数与一次函数的解析式及 B 点坐标; (2)若 C 是 y 轴上的点,且满足△ABC 的面积为 10, 求 C 点坐标。
3、如图,直线 y=x+4 与双曲线 y= (k≠0)相交于 A(﹣1,a)、B 两点,在 y
轴上找一点 P,当 PA+PB 的值最小时,点 P 的坐标为?
(1)k的值是
;
4、如图,在直角坐标系中,直线 y=﹣ x 与反比例函数 y= 的图象交于关于原点对
初三数学教案-2018年中考数学复习-一次函数(含答案) 精品
第二节 一次函数【回顾与思考】一次函数0,0,y y x k y x ⎧≠⎧⎪⎨≠⎩⎪⎪>⎧⎪⎨⎨<⎩⎪⎪⎪⎪⎩一般式y=kx+b(k 0)概念正比例函数y=kx(k 0)随的增大而增大性质随的增大而减小b图象:经过(0,b),(-,0)的直线k【例题经典】理解一次函数的概念和性质例1 若一次函数y=2x 222m m --+m-2的图象经过第一、第二、三象限,求m 的值.【分析】这是一道一次函数概念和性质的综合题.一次函数的一般式为y=kx+b (k ≠0).首先要考虑m 2-2m-2=1.函数图象经过第一、二、三象限的条件是k>0,b>0,而k=2,只需考虑m-2>0.由222120m m m ⎧--=⎨->⎩便可求出m 的值.用待定系数法确定一次函数表达式及其应用例2 (2006年济宁市)鞋子的“鞋码”和鞋长(cm )存在一种换算关系,•下表是几组“鞋码”与鞋长的对应数值:(1)分析上表, (2)设鞋长为x ,“鞋码”为y ,求y 与x 之间的函数关系式; (3)如果你需要的鞋长为26cm ,那么应该买多大码的鞋?【评析】本题是以生活实际为背景的考题.题目提供了一个与现实生活密切联系的问题情境,以考查学生对有关知识的理解和应用所学知识解决问题的能力,同时为学生构思留下了空间.建立函数模型解决实际问题例3 (2006年南京市)某块试验田里的农作物每天的需水量y (千克)与生长时间x (天)之间的关系如折线图所示.•这些农作物在第10•天、•第30•天的需水量分别为2000千克、3000千克,在第40天后每天的需水量比前一天增加100千克. (1)分别求出x ≤40和x ≥40时y 与x 之间的关系式;(2)如果这些农作物每天的需水量大于或等于4000千克时,需要进行人工灌溉,•那么应从第几天开始进行人工灌溉?【评析】本题提供了一个与生产实践密切联系的问题情境,要求学生能够从已知条件和函数图象中获取有价值的信息,判断函数类型.建立函数关系.为学生解决实际问题留下了思维空间.【考点精练】 基础训练1.下列各点中,在函数y=2x-7的图象上的是( ) A .(2,3) B .(3,1) C .(0,-7) D .(-1,9)2.如图,一次函数y=kx+b 的图象经过A 、B 两点,则kx+b>0的解集是( )A .x>0B .x>2C .x>-3D .-3<x<2(第2题) (第4题) (第7题) 3.已知两个一次函数y 1=-2b x-4和y 2=-1a x+1a的图象重合,则一次函数y=ax+b 的图象所经过的象限为( )A .第一、二、三象限B .第二、三、四象限C .第一、三、四象限D .第一、二、四象限 4.如图,直线y=kx+b 与x 轴交于点(-4,0),则y>0时,x 的取值范围是( ) A .x>-4 B .x>0 C .x<-4 D .x<0 5.(2005年杭州市)已知一次函数y=kx-k ,若y 随x 的增大而减小,则该函数的图像经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限 6.点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y=-4x+3图象上的两个点,且x 1<x 2,则y 1与y 2的大小关系是( )A .y 1>y 2B .y 1>y 2>0C .y 1<y 2D .y 1=y 2 7.(2006年绍兴市)如图,一次函数y=x+5的图象经过点P (a ,b )和点Q (c ,d ),•则a (c-d )-b (c-d )的值为________. 8.(2006年贵阳市)函数y 1=x+1与y 2=ax+b 的图象如图所示,•这两个函数的交点在y 轴上,那么y 1、y 2的值都大于零的x 的取值范围是_______. 9.(2006年重庆市)如图,已知函数y=ax+b 和y=kx 的图象交于点P , 则根据图象可得,关于y ax b y kx =+⎧⎨=⎩的二元一次方程组的解是________.(第8题) (第9题)10.(2006年安徽省)一次函数的图象过点(-1,0),且函数值随着自变量的增大而减小,写出一个符合这个条件的一次函数的解析式:___________.能力提升11.(2006年宿迁市)经过点(2,0)且与坐标轴围成的三角形面积为2•的直线解析式是_________.12.(2006年德阳市)地表以下岩层的温度t(℃)随着所处的深度h(千米)•的变化而变化.t与h之间在一定范围内近似地成一次函数关系.(1)根据下表,求t(℃)与h(千米)之间的函数关系式;(213.(2006年陕西省)甲、乙两车从A地出发,沿同一条高速公路行驶至距A•地400千米的B地.L1、L2分别表示甲、乙两车行驶路程y(千米)与时间x(时)之间的关系(•如图所示),根据图象提供的信息,解答下列问题:(1)求L2的函数表达式(不要求写出x的取值范围);(2)甲、乙两车哪一辆先到达B地?该车比另一辆车早多长时间到达B地?14.(2006年伊春市)某工厂用一种自动控制加工机制作一批工件,该机器运行过程分为加油过程和加工过程;加工过程中,当油箱中油量为10升时,•机器自动停止加工进入加油过程,将油箱加满后继续加工,如此往复.已知机器需运行185分钟才能将这批工件加工完.下图是油箱中油量y(升)与机器运行时间x(分)之间的函数图象.根据图象回答下列问题:(1)求在第一个加工过程中,油箱中油量y(升)与机器运行时间x(分)之间的函数关系式(不必写出自变量x的取值范围);(2)机器运行多少分钟时,第一个加工过程停止?(3)加工完这批工件,机器耗油多少升?15.(2006年吉林省)小明受《乌鸦喝水》故事的启发,•利用量筒和体积相同的小球进行了如下操作:请根据图中给出的信息,解答下列问题:(1)放入一个小球量筒中水面升高_______cm;(2)求放入小球后量筒中水面的高度y(cm)与小球个数x(个)•之间的一次函数关系式(不要求写出自变量的取值范围);(3)量筒中至少放入几个小球时有水溢出?应用与探究16.(2006年宁波市)宁波市土地利用现状通过国土资源部验收,我市在节约集约用地方面已走在全国前列,1996~2004年,市区建设用地总量从33万亩增加到48万亩,相应的年GDP从295亿元增加到985亿元.宁波市区年GDP为y(亿元)•与建设用地总量x (万亩)之间存在着如图所示的一次函数关系.(1)求y关于x的函数关系式.(2)据调查2005年市区建设用地比2004年增加4万亩,•如果这些土地按以上函数关系式开发使用,那么2005年市区可以新增GDP多少亿元?(3)按以上函数关系式,我市年GDP每增加1亿元,需增建设用地多少万亩?(•精确到0.001万亩)答案:例题经典例1:m=3 例2:(1)一次函数, (2)设y=kx+b ,则由题意,得2216,22819,10k b k k b b =+=⎧⎧⎨⎨=+=-⎩⎩解得 , ∴y=•2x-10,(3)x=26时,y=2×26-10=42.答:应该买42码的鞋. 例3:解:(1)当x ≤40时,设y=kx+b . 根据题意,得20001050300030,1500.k b k k b b =+=⎧⎧⎨⎨=+=⎩⎩解这个方程组,得, ∴当x•≤40时,y 与x 之间的关系式是y=50x+1500,∴当x=40时,y=50×40+1500=3500,当x ≥40•时,根据题意得,y=100(x-40)+3500,即y=100x-500. ∴当x ≥40时,y 与x 之间的关系式是y=100x-500. (2)当y ≥4000时,y 与x 之间的关系式是y=100x-500, 解不等式100x-50≥4000,得x ≥45, ∴应从第45天开始进行人工灌溉. 考点精练1.C 2.C 3.D 4.A 5.B 6.A 7.25 8.1<x<2 9.42x y =-⎧⎨=-⎩ 10.答案不唯一.例如:y=-x-1 11.y=x-2或y=-x+212.(1)t 与h 的函数关系式为t=35h+20.(2)当t=1770时,有1770=35h+20,解得:h=50千米.13.解:(1)设L 2的函数表达式是y=k 2x+b ,则2230,419400.4k b k b ⎧=+⎪⎪⎨⎪=+⎪⎩解之,得k 2=100,b=-75,∴L 2的函数表达式为y=100x-75. (2)乙车先到达B 地,∵300=100x-75,∴x=154. 设L 1的函数表达式是y=k 1x ,∵图象过点(154,300),∴k 1=80.即y=80x .当y=400时,400=80x ,∴x=5,∴5-194=14(小时), ∴乙车比甲车早14小时到达B 地.14.解:(1)设所求函数关系式为y=kx+b ,由图象可知过(10,100),(30,80)两点,•得1010013080,110k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解得:,∴y=-x+110. (2)当y=10时,-x+110=10,x=100,机器运行100分钟时,•第一个加过程停止.(3)第一加工过程停止后再加满油只需9分钟,加工完这批工件,•机器耗油166升.15.解:(1)2,(2)设y=kx+b,把(0,30),(3,36)代入得:30,2, 336.30.b kk b b==⎧⎧⎨⎨+==⎩⎩解得:,即y=2x+30.(3)•由2x+30>49,得x>9.5,即至少放入10个小球时有水溢出.16.解:(1)设函数关系式为y=kx+b,由题意得33295, 48985.k bk b+=⎧⎨+=⎩,解得k=46,b=-1223,∴该函数关系式为y=46x-1223.(2)由(1)知2005年的年GDP为46×(48+4)-1223=1169(•亿元)•,• ∵1169-985=184(亿元),∴2005年市区相应可以新增加GDP184亿元.(3)•设连续两个建设用地总量分别为x1万亩和x2万亩,相应年GDP分别为y1亿元和y2亿元,满足y2-y1=1,•则y1=46x1-1223 ③y2=46x2-1223 ④,④-③得y2-y1=46(x2-x1),即46(x2-x1)=1,∴x2-x1=146≈0.022(万亩),即年GDP每增加1亿元,需增加建设用地约0.022万亩.。
2018年中考数学真题专题汇总---一次函数
∴A 点坐标是( ,0),B 点坐标是(0, ), ∵一次函数 y=kx+b 的图象与 x 轴、y 轴分别相交于 A、B 两点, ∴将 A,B 两点坐标带入 y=kx+b,得 k=-1,b= ,
∴ =- .
故答案为:- .
点睛:本题主要考查图形的分析运用和待定系数法求解析,找出 A,B 两点的坐标对解题 是关键之举.
B 的坐标为_____. 【来源】四川省宜宾市 2018 年中考数学试题 【答案】( , ) 【解析】分析:利用待定系数法求出点 A 坐标,再利用轴对称的性质求出点 B 坐标即可; 详解:由题意 A(- , ), ∵A、B 关于 y 轴对称, ∴B( , ),
故答案为( , ).
点睛:本题考查一次函数的应用、轴对称的性质等知识,解题的关键是熟练掌握基本知 识,属于中考常考题型.
.
点睛:本题考查一次函数图象上点的坐标特征、等腰直角三角形,解答本题的关键是明确
题意,找出所求问题需要的条件,利用数形结合的思想解答.学科&网
12.如图,一次函数
与
的图象相交于点
,则关于 的不等式组
的解集为__________.
点,已知 AB=2,则 的值为__________.
【来源】江苏省连云港市 2018 年中考数学试题 【答案】 【解析】分析:由图形可知:△OAB 是等腰直角三角形,AB=2,可得 A,B 两点坐标,利 用待定系数法可求 k 和 b 的值,进而得到答案. 详解:由图形可知:△OAB 是等腰直角三角形,OA=OB ∵AB=2,OA2+OB2=AB2, ∴OA=OB= ,
则
的长是
.
故答案为:
.
点睛:本题主要考查了一次函数图象上点的坐标特征,做题时要注意数形结合思想的运 用,是各地的中考热点,学生在平常要多加训练,属于中档题. 7.将直线 向上平移 2 个单位长度,平移后直线的解析式为__________. 【来源】天津市 2018 年中考数学试题 【答案】
2018年中考数学精选题专练一次函数(含答案)
20. 在一条笔直的公路上有 A.B 两地,甲骑自行车从 A 地到 B 地;乙骑自行车从 B 地到 A 地,
到达 A 地后立即按原路返回,如图是甲、乙两人距
B 地的距离 y(km)与行驶时间 x( h)之间
的函数图象,根据图象解答以下问题:
( 1)写出 A. B 两地之间的距离;
( 2)求出点 M的坐标,并解释该点坐标所表示的实际意义;
将 C(3, 2)代入 y=kx ,得 2=3k,∴ k= ;故答案为: ;
( 2)k 的值不会发生变化,理由:∵正方形边长为
a,∴ AB=a,
在直线 y=2x 中,当 y=a 时, x= ,∴ OA= , OD= ,∴ C( , a),
将 C( , a)代入 y=kx ,得 a=k× ,∴ k= .
路径 A→ D→C→ E运动,则△ APE的面积 y与点 P经过的路径长 x之间的函数关系用图象表示大致是 ()
二、填空题 :
9. 若将一次函数 y=﹣2x+1 的图象向
(上或下)平移
单位,使平移后的图象过点
( 0, ﹣ 2).
10. 已知直线 y=( k+2) x+
的截距为 1,那么该直线与 x 轴的交点坐标为
别表示行驶距离和时间,则这两人骑自行车的速度相差
km/ h.
s,t 分
15. 如图,在平面直角坐标系中,已知点 A(0, 4), B(﹣ 3, 0)轴上的点 A′处,折痕所在的直线交 y 轴正半轴于点 C,则点 C的坐
标为
.
16. 如图是某汽车行驶的路程 s( km)与时间 t ( m/n)的函数关系图,观察图中所提供的信息,
解答下列问题:
( 1)汽车在前 9 分钟内的平均速度是
2018年中考数学真题汇编一次函数
中考数学真题汇编 : 一次函数一、选择题1. 给出以下函数:①y=﹣ 3x+2;② y=;③ y=2x2;④ y=3x,上述函数中切合条作“当x>1 时,函数值y 随自变量x 增大而增大“的是()A.①③B.③④C.②④D.②③【答案】 B2. 把函数 y=x 向上平移 3 个单位,以下在该平移后的直线上的点是()A. B.C.D.【答案】 D3. 在平面直角坐标系中,过点(1,2 )作直线l ,若直线 l 与两坐标轴围成的三角形面积为4,则知足条件的直线 l 的条数是()。
【答案】 C4. 假如规定 [x] 表示不大于x 的最大整数,比如[2.3]=2,那么函数y=x ﹣ [x] 的图象为()A.B.C.D.【答案】 A5. 如图 , 函数和(是常数,且) 在同一平面直角坐标系的图象可能是()A. B. C.D.【答案】 B6.如图,菱形的边长是4厘米, , 动点以 1 厘米 / 秒的速度自点出发沿方向运动至点停止, 动点以 2 厘米 / 秒的速度自点出发沿折线运动至点停止若点同时出发运动了秒 , 记的面积为, 下边图象中能表示与之间的函数关系的是( ) A. B.C.D. 【答案】 D7. 如图,直线都与直线l 垂直,垂足分别为M,N, MN=1,正方形ABCD的边长为,对角线AC在直线l 上,且点 C 位于点M处,将正方形ABCD沿l 向右平移,直到点 A 与点N 重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y 对于x 的函数图象大概为()A. B.C. D.【答案】 A8. 如图,二次函数y=ax 2+bx 的图象张口向下,且经过第三象限的点P.若点P 的横坐标为-1 ,则一次函数y=( a-b ) x+b 的图象大概是()A. B. C. D.【答案】 D9. 一次函数和反比率函数在同向来角坐标系中大概图像是()A. B. C. D.【答案】 A10. 如图,平面直角坐标系向轴正方向运动,同时,点动,若点与点的速度之比为中,点从点的坐标为,出发向点运动,当点,则以下说法正确的选项是(轴,垂足为,点抵达点时,点)从原点出发、同时停止运A.线段一直经过点B.线段一直经过点C.线段一直经过点D.线段不行能一直经过某必定点【答案】 B11. 某通信企业就上宽带网推出A,B,C 三种月收费方式.这三种收费方式每个月所需的花费y(元)与上网时间x(h)的函数关系以下图,则以下判断错误的选项是()A. 每个月上网时间不足25 h 时,选择 A 方式最省钱 B.每个月上网花费为60 元时,B 方式可上网的时间比 A 方式多C. 每个月上网时间为35h 时,选择 B 方式最省钱D. 每个月上网时间超出70h 时,选择 C 方式最省钱【答案】 D二、填空题12. 将直线向上平移 2 个单位长度,平移后直线的分析式为________.【答案】13. 已知点A( x1, y 1) 、 B(x2,y 2)在直线y=kx+b 上,且直线经过第一、二、四象限,当x1< x2时,y1与 y2的大小关系为________.【答案】y1>y214. 已知点是直线上一点,其横坐标为. 若点与点对于轴对称,则点的坐标为 ________.【答案】(,)15. 礼拜天,小明上午8: 00 从家里出发,骑车到图书室去借书,再骑车回到家,他离家的距离y(千米)与时间t (分钟)的关系以下图,则上午8: 45 小明离家的距离是________千米。
北京市海淀区普通中学2018年1月初三数学中考复习 一次函数与方程、不等式 专题训练题 含答案
北京市海淀区普通中学2018年1月初三数学中考复习一次函数与方程、不等式专题训练题1.下面四条直线,其中直线上每个点的坐标都是二元一次方程x-2y=2的解是( )2.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为( ) A.x=2 B.y=2 C.x=-1 D.y=-13.一元一次方程ax-b=0的解x=3,函数y=ax-b的图象与x轴的交点坐标为( )A.(3,0) B.(-3,0) C.(a,0) D.(-b,0)4.如图,直线y=kx+b交坐标轴于A(-2,0),B(0,3)两点,则不等式kx+b >0的解集是( )A.x>3 B.-2<x<3 C.x<-2 D.x>-25.如图是一次函数y=kx+b的图象,当y<2时,x的取值范围是( )A .x <1B .x >1C .x <3D .x >36.把直线y =-x +3向上平移m 个单位后,与直线y =2x +4的交点在第一象限,则m 的取值范围是( )A .1<m <7B .3<m <4C .m >1D .m <47.若函数y =kx -b 的图象如图所示,则关于x 的不等式k(x -3)-b >0的解集为( )A .x <2B .x >2C .x <5D .x >58.如图,函数y =x -2与y =-2x +1的图象交于点P ,根据图象可得方程组⎩⎪⎨⎪⎧x -y =2,2x +y =1的解是____________.9.已知一次函数y =x +2与一次函数y =mx +n 的图象交于点P(a ,-2),则关于x 的方程x +2=mx +n 的解是____________.10.如图,直线y =x +b 与直线y =kx +6交于点P(3,5),则关于x 的不等式x +b >kx +6的解集是_____________.11.如图,直线y =-x +m 与y =nx +4n(n≠0)的交点的横坐标为-2,则关于x 的不等式-x +m≥nx+4n≥0的整数解为___________________.12.若直线y =mx -5与y =-x +1无交点,则m 的值为____. 13.如图,直线l 1:y =3x +1与直线l 2:y =mx +n 相交于点P(1,b).(1) 求b 的值;(2) 不解关于x ,y 的方程组⎩⎪⎨⎪⎧y =3x +1,y =mx +n ,请你直接写出它的解;(3) 直线l 3:y =nx +m 是否也经过点P ?请说明理由.14.如图,直线l 1:y =2x 与直线l 2:y =kx +3在同一平面直角坐标系内交于点P(a ,2).(1)求出不等式2x≤kx+3的解集; (2)求出△OAP 的面积.15.某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费的函数关系式是__________________;乙种收费的函数关系式是_________________________;(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?16.某天早晨,张强从家跑步去体育场锻炼,同时妈妈从体育场晨练结束回家,途中两人相遇,张强跑到体育场后发现要下雨,立即按原路返回,遇到妈妈后两人一起回到家(张强和妈妈始终在同一条笔直的公路上行走).如图是两人离家的距离y(米)与张强出发的时间x(分)之间的函数图象,根据图象信息解答下列问题:(1)求张强返回时的速度;(2)妈妈比按原速返回提前多少分钟到家? (3)请直接写出张强与妈妈何时相距1000米? 答案:1---7 CCADC CC8. ⎩⎪⎨⎪⎧x =1,y =-19. x =-4 10. x >311. -2,-3,-4 12. -113. (1)把P(1,b)代入y =3x +1得b =3+1=4 (2)⎩⎪⎨⎪⎧x =1,y =4(3)直线l 3经过点P.理由:把P(1,4)代入直线l 2:y =mx +n 得m +n =4,当x =1时,y =nx +m =m +n =4,所以直线l 3经过点P14. (1) 把P(a ,2)代入y =2x 得2a =2,解得a =1,则P(1,2),当x≤1时,2x≤kx+3,所以不等式2x≤kx+3的解集为x≤1(2)把P(1,2)代入y =kx +3得k +3=2,解得k =-1,所以直线l 2的表达式为y =-x +3,当y =0时,-x +3=0,解得x =3,则A(3,0),所以△OAP 的面积=315. (1) y 1=0.1x +6(x≥0) y 2=0.12x(x≥0)(2) 由题意得,当y 1>y 2时,0.1x +6>0.12x ,解得x <300;当y 1=y 2时,0.1x +6=0.12x ,解得x =300;当y 1<y 2时,0.1x +6<0.12x ,解得x >300;∴当100≤x <300时,选择乙种方式合算;当x =300时,甲、乙两种方式一样合算;当300<x≤450时,选择甲种方式合算.答:印制100~300(含100)份学案,选择乙种印刷方式较合算,印制300份学案,甲、乙两种印刷方式都一样合算,印制300~450(含450)份学案,选择甲种印刷方式较合算16. (1)150米/分(2)(45-30)×150=2250(米),3000-2250=750,点B 的坐标为(45,750),妈妈原来的速度为2250÷45=50(米/分),妈妈原来回家所用的时间为3000÷50=60(分),60-50=10(分),妈妈比按原速返回提前10分钟到家(3)易得线段BD 的函数关系式为y =-50x +3000(0≤x≤45),线段OA 的函数关系式为y =100x(0≤x≤30),线段AC 的函数关系式为y =-150x +7500(30<x≤50),当张强与妈妈相距1000米时,即-50x +3000-100x =1000或100x -(-50x +3000)=1000或(-150x +7500)-(-50x +3000)=1000,解得x =403或x =803或x =35,∴当时间为403分或803分或35分时,张强与妈妈相距1000米。
2018年全国各地中考数学真题汇编:一次函数(含答案)-数学备课大师【全免费】
中考数学真题汇编:一次函数一、选择题1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A. ①③B. ③④C. ②④D. ②③【答案】B2.把函数y=x向上平移3个单位,下列在该平移后的直线上的点是( )A. B. C. D.【答案】D3.在平面直角坐标系中,过点(1,2)作直线l,若直线l与两坐标轴围成的三角形面积为4,则满足条件的直线l的条数是()。
A.5B.4C.3D.2【答案】C4.如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A. B.C. D.【答案】A5.如图,函数和( 是常数,且)在同一平面直角坐标系的图象可能是()A. B. C. D.【答案】B6.如图,菱形的边长是4厘米, ,动点以1厘米/秒的速度自点出发沿方向运动至点停止,动点以2厘米/秒的速度自点出发沿折线运动至点停止若点同时出发运动了秒,记的面积为,下面图象中能表示与之间的函数关系的是( )A. B.C. D.【答案】D7.如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC 在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象大致为()A. B. C. D.【答案】A8.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是()A. B. C. D.【答案】D9.一次函数和反比例函数在同一直角坐标系中大致图像是()A. B. C. D.【答案】A10.如图,平面直角坐标系中,点的坐标为,轴,垂足为,点从原点出发向轴正方向运动,同时,点从点出发向点运动,当点到达点时,点、同时停止运动,若点与点的速度之比为,则下列说法正确的是( )A. 线段始终经过点B. 线段始终经过点C. 线段始终经过点D. 线段不可能始终经过某一定点【答案】B11.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A. 每月上网时间不足25 h时,选择A方式最省钱B. 每月上网费用为60元时,B方式可上网的时间比A方式多C. 每月上网时间为35h时,选择B方式最省钱D. 每月上网时间超过70h时,选择C方式最省钱【答案】D二、填空题12.将直线向上平移2个单位长度,平移后直线的解析式为________.【答案】13.已知点A(x1,y1)、B(x2,y2)在直线y=kx+b上,且直线经过第一、二、四象限,当x1<x2时,y1与y2的大小关系为________.【答案】y1>y214.已知点是直线上一点,其横坐标为.若点与点关于轴对称,则点的坐标为________.【答案】(,)15.星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家,他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是________千米。
2018年全国各地中考数学真题汇编:一次函数(含答案)
中考数学真题汇编:一次函数一、选择题1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A. ①③B. ③④C. ②④D. ②③【答案】B2.把函数y=x向上平移3个单位,下列在该平移后的直线上的点是( )A. B. C. D.【答案】D3.在平面直角坐标系中,过点(1,2)作直线l,若直线l与两坐标轴围成的三角形面积为4,则满足条件的直线l的条数是()。
A.5B.4C.3D.2【答案】C4.如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A. B.C. D.【答案】A5.如图,函数和( 是常数,且)在同一平面直角坐标系的图象可能是()A. B. C. D.【答案】B6.如图,菱形的边长是4厘米, ,动点以1厘米/秒的速度自点出发沿方向运动至点停止,动点以2厘米/秒的速度自点出发沿折线运动至点停止若点同时出发运动了秒,记的面积为,下面图象中能表示与之间的函数关系的是( )A. B.C. D.【答案】D7.如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC 在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象大致为()A. B. C. D.【答案】A8.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是()A. B. C. D.【答案】D9.一次函数和反比例函数在同一直角坐标系中大致图像是()A. B. C. D.【答案】A10.如图,平面直角坐标系中,点的坐标为,轴,垂足为,点从原点出发向轴正方向运动,同时,点从点出发向点运动,当点到达点时,点、同时停止运动,若点与点的速度之比为,则下列说法正确的是( )A. 线段始终经过点B. 线段始终经过点C. 线段始终经过点D. 线段不可能始终经过某一定点【答案】B11.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A. 每月上网时间不足25 h时,选择A方式最省钱B. 每月上网费用为60元时,B方式可上网的时间比A方式多C. 每月上网时间为35h时,选择B方式最省钱D. 每月上网时间超过70h时,选择C方式最省钱【答案】D二、填空题12.将直线向上平移2个单位长度,平移后直线的解析式为________.【答案】13.已知点A(x1,y1)、B(x2,y2)在直线y=kx+b上,且直线经过第一、二、四象限,当x1<x2时,y1与y2的大小关系为________.【答案】y1>y214.已知点是直线上一点,其横坐标为.若点与点关于轴对称,则点的坐标为________.【答案】(,)15.星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家,他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是________千米。
2018年中考一轮基础复习试卷专题十二:一次函数及其应用(有答案)
备考2018年中考数学一轮基础复习:专题十二一次函数及其应用一、单选题(共15题;共30分)1.下列函数中,是一次函数的有()①y=πx ②y=2x﹣1 ③y= ④y=2﹣3x ⑤y=x2﹣1.A. 4个B. 3个C. 2个D. 1个2.(2017•德州)公式L=L0+KP表示当重力为P时的物体作用在弹簧上时弹簧的长度,L0代表弹簧的初始长度,用厘米(cm)表示,K表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是()A. L=10+0.5PB. L=10+5PC. L=80+0.5PD. L=80+5P3.如图,在同一平面直角坐标系中,反比例函数y=与一次函数y=kx-1(k为常数,且k>0)的图象可能是()A. B. C. D.4.二次函数y=a(x+m)2+n的图象如图所示,则一次函数y=mx+n的图象经过()A. 第一、二、三象限B. 第一、二、四象限C. 第二、三、四象限D. 第一、三、四象限5.若一次函数y=kx+b,当x的值减小1,y的值就减小2,则当x的值增加2时,y的值()A. 增加4B. 减小4C. 增加2D. 减小26.直线l:y=mx﹣m+1(m为常数,且m≠0)与坐标轴交于A、B两点,若△AOB(O是原点)的面积恰为2,则符合要求的直线l有()A. 1条B. 2条C. 3条D. 4条7.如图,等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点M与点A重合,点N到达点B时运动终止),过点M、N分别作AB边的垂线,与△ABC的其它边交于P、Q两点.线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.则大致反映S与t变化关系的图象是()A. B.C. D.8.(2017•鄂州)小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min到家,再过5min小东到达学校,小东始终以100m/min的速度步行,小东和妈妈的距离y(单位:m)与小东打完电话后的步行时间t(单位:min)之间的函数关系如图所示,下列四种说法:①打电话时,小东和妈妈的距离为1400米;②小东和妈妈相遇后,妈妈回家速度为50m/min;③小东打完电话后,经过27min到达学校;④小东家离学校的距离为2900m.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个9.(2017•贵阳)若直线y=﹣x+a与直线y=x+b的交点坐标为(2,8),则a﹣b的值为()A. 2B. 4C. 6D. 810.(2017•温州)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A. 0<y1<y2B. y1<0<y2C. y1<y2<0D. y2<0<y111.(2017•齐齐哈尔)已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A. B.C. D.12.(2017•福建)若直线y=kx+k+1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的值可以是()A. 3B. 4C. 5D. 613.(2017•泰安)已知一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,则下列结论正确的是()A. k<2,m>0B. k<2,m<0C. k>2,m>0D. k<0,m<014.将2×2的正方形网格如图所示的放置在平面直角坐标系中,每个小正方形的顶点称为格点,每个小正方形的边长都是1,正方形ABCD的顶点都在格点上,若直线y=kx(k≠0)与正方形ABCD有公共点,则k不可能是()A. 3B. 2C. 1D.15.(2017•枣庄)如图,直线y= x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A. (﹣3,0)B. (﹣6,0)C. (﹣,0)D. (﹣,0)二、填空题(共6题;共6分)16.(2017•广安)已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为________.17.(2017•吉林)我们规定:当k,b为常数,k≠0,b≠0,k≠b时,一次函数y=kx+b与y=bx+k互为交换函数.例如:y=4x+3的交换函数为y=3x+4.一次函数y=kx+2与它的交换函数图象的交点横坐标为________.18.(2017•通辽)如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线l将图形分成面积相等的两部分,则将直线l向右平移3个单位后所得直线l′的函数关系式为________.19.(2017•十堰)如图,直线y=kx和y=ax+4交于A(1,k),则不等式kx﹣6<ax+4<kx的解集为________.20.(2017•重庆)A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A 地前行.甲到达A地时停止行走,乙到达A地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是________米.21.(2017•盘锦)如图,点A1(1,1)在直线y=x上,过点A1分别作y轴、x轴的平行线交直线y= x 于点B1,B2,过点B2作y轴的平行线交直线y=x于点A2,过点A2作x轴的平行线交直线y= x于点B3,…,按照此规律进行下去,则点A n的横坐标为________.三、综合题(共4题;共44分)22.(2017•吉林)如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图②所示.(1)正方体的棱长为________cm;(2)求线段AB对应的函数解析式,并写出自变量x的取值范围;(3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.23.(2017•达州)小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:P1P2= 他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:x= ,y= .(1)请你帮小明写出中点坐标公式的证明过程;(2)①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为________;②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D的坐标:________;(3)如图3,点P(2,n)在函数y= x(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.24.(2017•日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d= .例如:求点P0(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P0(0,0)到直线4x+3y﹣3=0的距离为d= = .根据以上材料,解决下列问题:(1)点P1(3,4)到直线y=﹣x+ 的距离为________;(2)已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;(3)如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.25.(2017·衢州)“五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游。
2018届中考数学复习第一部分数与代数第十二课时一次函数练习20180429380
第12课时一次函数备考演练一、精心选一选1.(2015·陕西)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=( A )A.2B.-2C.4D.-42.( 2016·邵阳)一次函数y=-x+2的图象不经过的象限是(C )A.第一象限B.第二象限C.第三象限D.第四象限3.(2016·广州)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式中总是成立的是( C )A.b<0B.a-b>0C.a2+b>0D.a+b>04.(2015·辽阳)如图,直线y=-x+2与y=ax+b(a≠0且a,b为常数)的交点坐标为(3,-1),则关于x的不等式-x+2≥ax+b的解集为( D ) A.x≥-1 B.x≥3C.x≤-1D.x≤31二、细心填一填5. (2015·无锡)一次函数y=2x-6的图象与x轴的交点坐标为(3,0).6.(2016·娄底)将直线y=2x+1向下平移3个单位长度后所得直线的解析式是y=2x-2.7.(2015·永州)已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0), 则当x≥2时,y≤0.三、用心解一解8.(2014·怀化)设一次函数y=kx+b(k≠0)的图象经过A(1,3)、B(0,-2)两点,试求k,b的值.解:把A(1,3)、B(0,-2)代入y=kx+b푘+푏=3푘=5得{푏=-2,解得{,푏=-2即k,b的值分别为5,-2.9.(2013·陕西)“五一节”期间,申老师一家自架游去了离家170千米的某地.下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)求出AB段图象的函数表达式;(3)他们出发2小时时,离目的地还有多少千米?解:(1)设函数的解析式为y=ax,由图象可知该函数的图象过点(1.5,90),y=60x,当x=0.5,y =30;(2)设函数的解析式为y=kx+b,由图象可知过点(1.5,90)和(2.5,170)∴函数关系式为y=80x-30;2(3)令x=2,∴y=130,∴他们出发2小时时,离目的地还有40千米.3。
2018年 九年级数学中考复习 一次函数 专题训练题 含答案
2018年九年级数学中考复习一次函数专题训练题含答案则m的值为( )A.2 B.-2 C.4 D.-49. 正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是( )10. 已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的表达式为( )A.y=-x-2 B.y=-x-6 C.y=-x+10 D.y=-x-111. 为了增强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元,超过10吨时,超过的部分按每吨1.8元收费.该市某户居民5月份用水x吨(x>10),应交水费y元,则y关于x的函数关系式是__ __.12. 将直线y=2x+1平移后经过点(2,1),则平移后的直线关系式为__ .13. 若一次函数y=-2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是__ __.(写出一个即可)14. 根据下表中一次函数的自变量x与函数y的对应值,可得p的值为____.x-2 0 1 …y 3 p0 …15. 写出下列各题中y关于x的函数关系式,并判断y是否为x的一次函数,是否为正比例函数.(1)长方形的面积为20,长方形的长y与宽x之间的关系;(2)刚上市时西瓜每千克3.6元,买西瓜的总价y元与所买西瓜x千克之间的关系;(3)仓库内有粉笔400盒,如果每个星期领出36盒,仓库内余下的粉笔盒数y 与星期数x 之间的关系.16. 已知一次函数y =(k -2)x +3k 2-12.(1) k 为何值时,图象平行于y =-2x 的图象?(2) k 为何值时,图象经过原点?参考答案:1---10 BBCDD DCBBC11. y =1.8x -612. y =2x -313. -114. 115. (1)y =20x,不是一次函数,也不是正比例函数 (2)y =3.6x ,是一次函数,也是正比例函数(3)y =-36x +400,是一次函数,不是正比例函数16. (1)∵一次函数的图象平行于y =-2x 的图象,∴k-2=-2,∴k=0(2)∵一次函数y =(k -2)x +3k 2-12的图象经过原点,∴⎩⎪⎨⎪⎧3k 2-12=0,k -2≠0,解得k =-2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第12课时一次函数
备考演练
一、精心选一选
1.(2015·陕西)设正比例函数y=mx的图象经过点A(m,4),且y的值
随x值的增大而减小,则m=( A )
A.2
B.-2
C.4
D.-4
2.( 2016·邵阳)一次函数y=-x+2的图象不经过的象限是(C )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
3.(2016·广州)若一次函数y=ax+b的图象经过第一、二、四象限,
则下列不等式中总是成立的是( C )
A.b<0
B.a-b>0
C.a2+b>0
D.a+b>0
4.(2015·辽阳)如图,直线y=-x+2与y=ax+b(a≠0且a,b为常数)
的交点坐标为(3,-1),则关于x的不等式-x+2≥ax+b的解集为( D ) A.x≥-1 B.x≥3
C.x≤-1
D.x≤3
二、细心填一填
5.(2015·无锡)一次函数y=2x-6的图象与x轴的交点坐标为
(3,0).
6.(2016·娄底)将直线y=2x+1向下平移3个单位长度后所得直线
的解析式是y=2x-2.
7.(2015·永州)已知一次函数y=kx+b的图象经过两点
A(0,1),B(2,0),则当x≥2时,y≤0.
三、用心解一解
8.(2014·怀化)设一次函数y=kx+b(k≠0)的图象经过A(1,3)、
B(0,-2)两点,试求k,b的值.
解:把A(1,3)、B(0,-2)代入y=kx+b
得,解得,
即k,b的值分别为5,-2.
9.(2013·陕西)“五一节”期间,申老师一家自架游去了离家170千米的某地.下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.
(1)求他们出发半小时时,离家多少千米?
(2)求出AB段图象的函数表达式;
(3)他们出发2小时时,离目的地还有多少千米?
解:(1)设函数的解析式为y=ax,由图象可知该函数的图象过点(1. 5,90),y=60x,当x=0.5,y=30;
(2)设函数的解析式为y=kx+b,由图象可知过点(1.5,90)和(2.5,170)
∴函数关系式为y=80x-30;
(3)令x=2,∴y=130,
∴他们出发2小时时,离目的地还有40千米.。