2018-2019学年最新北师大版九年级数学上册12月份月考检测题及答案解析-精品试题
最新北师大版2018-2019学年数学七年级上册12月份综合测试题及答案解析-精编试题
七年级(上)月考数学试卷(12月份)A 卷(共100分)一、精心选一选:(每小题3分,共30分)1、︱-5︱的相反数是( )A.5B.-5C.±5D.51 2、去年11月份我市某一天的最高气温是10℃,最低气温是﹣1℃,那么这一天的最高气温比最低气温高( ) A . ﹣9℃ B. ﹣11℃ C. 9℃ D . 11℃3、下列关于单项式532xy -的说法中,正确的是( ) A .系数是3,次数是2 B .系数是53,次数是2 C .系数是53,次数是3 D .系数是53-,次数是3 4、下列图形中,不是..正方体表面展开图的是( )5、每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为150000000千米,将150000000千米用科学记数法表示为( )A. 1.5×810千米 B .1.5×910千米 C .15×710千米 D .1.5×710千米6、在方程23=-y x ,021=-+x x ,2121=x ,0322=--x x 中,一元一次方程的个数为( ) (第4题图)A.1个B.2个C.3个D.4个7、解方程()()()2518324---=+x x x 时,去括号正确的是( )A .8x +12=8-x -5x +10B .8x +3=8-8x -5x +10C .8x +12=-8x -5x -10D .8x +12=8-8x -5x +108、下列说法正确的是( )A .射线PA 和射线AP 是同一条射线B .射线OA 的长度是10cmC .直线ab 、cd 相交于点MD .两点确定一条直线9、若532-+x x 的值为7,则2932-+x x 的值为( )A. 0B. 24C. 34D. 4410、用火柴棒按下面的方式搭图形,搭第1个图形需要7根火柴棒,搭第2个图形需要12根火柴棒,搭第3个图形需要17根火柴棒,…,照这样的规律搭下去,搭第n 个图形需要的火柴棒的根数是( )A.5n-2B.5n+1C.5n+2D.5n+3二、耐心填一填:(每小题3分,共15分)11、比较大小:54- 65-.(填“>”或“<”) 12、绝对值不小于-1且小于3的所有整数的积为. ==-++ab b a ,则、如果02)3(132.14、=+-+n m xy y x m n 是同类项,则与若13213. 15、在3时40分时,时钟的时针与分针的夹角是度.(第10题图)三、解答题:(本大题共5个小题,共55分)16、(每小题6分,共24分)(1)计算:⎪⎭⎫ ⎝⎛--⨯-97614336 (2)计算: ()313248522⨯-÷+-+-(3)解方程:6)5(34=--x x (4)解方程:163221=--+x x17、(6分)先化简,再求值: ())17(2352222+---ab b a ab b a ,其中21=-=b a ,.18、(3+4=7分)如图,直线AB 、CD 相交与点O ,OE 是∠AOD 的平分线,∠AOC=26°, 求∠AOE 和∠COE 的度数.(第18题图)19、(6分)如图是由几个小正方体所搭几何体的俯视图,小正方形中的数字表示在该位置的小正方体的个数,请画出这个几何体的主视图和左视图.(第19题图)20、(4+4+4=12分)某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球x盒(不小于5盒).(1)请用含x的代数式表示两家商店的付款。
2018-2019学年最新北师大版九年级上学期第一次月考数学试卷及解析-精品试题
九年级(上)第一次月考数学试卷一、选择题(每题3分,共60分)1.下列方程中不一定是一元二次方程的是()A.(a﹣3)x2=8 (a≠3)B.ax2+bx+c=0C.(x+3)(x﹣2)=x+5 D.2.方程(m2﹣1)x2+mx﹣5=0是关于x的一元二次方程,则m满足的条件是()A.m≠1 B.m≠0 C.|m|≠1 D.m=±13.把方程x(x+2)=5x化成一般式,则a、b、c的值分别是()A.1,3,5 B.1,﹣3,0 C.﹣1,0,5 D.1,3,04.方程x2﹣2x=0的解为()A.x1=1,x2=2 B.x1=0,x2=1 C.x1=0,x2=2 D.x1=,x2=25.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2 B.(x+2)2=2 C.(x﹣2)2=﹣2 D.(x﹣2)2=66.四边形ABCD与四边形A1B1C1D1相似,相似比为2:3,四边形A1B1C1D1与四边形A2B2C2D2相似,相似比为5:4,则四边形ABCD与四边形A2B2C2D2相似且相似比为()A.5:6 B.6:5 C.5:6或6:5 D.8:157.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x﹣6=﹣4 B.x﹣6=4 C.x+6=4 D.x+6=﹣48.方程x2﹣4=0的根是()A.x=2 B.x=﹣2 C.x1=2,x2=﹣2 D.x=49.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12 B.12或15 C.15 D.不能确定10.下列四组图形中必相似的是()A.有一组邻边相等的两个平行四边形B.有一个角相等的两个等腰梯形C.对角线互相垂直的两个矩形D.对角线互相垂直且相等的两个四边形11.8x2﹣(k﹣1)x﹣k﹣7=0的一个根为零,则k=()A.﹣1 B.C.4 D.﹣712.一元二次方程x2﹣4x+5=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根D.没有实数根13.如果关于x的方程x2﹣2x﹣=0没有实数根,那么k的最大整数值是()A.﹣3 B.﹣2 C.﹣1 D.014.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28 B.x(x﹣1)=28 C.x(x+1)=28 D.x(x﹣1)=2815.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣1 B.k<1且k≠0 C.k≥﹣1且k≠0 D.k>﹣1且k≠016.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2= B.(1+x)2= C.1+2x=D.1+2x=17.已知(x2+y2+1)(x2+y2+3)=8,则x2+y2的值为()A.﹣5或1 B.1 C.5 D.5或﹣118.已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k﹣1=0根的存在情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根 D.无法确定19.有两个一元二次方程M:ax2+bx+c=0,N:cx2+bx+a=0,其中a+c=0,以下列四个结论中错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=120.如图,在宽为20米,长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为()A.1米 B.1.5米C.2米 D.2.5米二、填空题(每小题3分,共12分)21.已知是方程x2+mx+7=0的一个根,则m= ,另一根为.22.一个五边形的边长分别是2、3、4、5、6,另一个和它相似的五边形的最短边长为6,则这个五边形的最长边为.23.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为.24.如图,在矩形ABCD中,AB=1,BC=2,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为.三、解答题(满分48分)25.解方程(1)2x2+1=3x(配方法)(2)x2﹣3x+3=0(公式法)(3)解方程x2﹣|x|﹣2=0.26.某企业2010年盈利1500万元,2012年克服全球金融危机的不利影响,仍实现盈利2160万元.从2010年到2012年,如果该企业每年盈利的年增长率相同,求:(1)该企业2011年盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计2013年盈利多少万元?27.已知关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,求k的值.28.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?29.如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s 的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?(2)点P、Q在移动过程中,是否存在某点时刻,使得△PCQ的面积等于△ABC的面积的一半?若存在,求出运动的时间;若不存在,说明理由.参考答案与试题解析一、选择题(每题3分,共60分)1.下列方程中不一定是一元二次方程的是()A.(a﹣3)x2=8 (a≠3)B.ax2+bx+c=0C.(x+3)(x﹣2)=x+5 D.考点:一元二次方程的定义.分析:本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.解答:解:A、由于a≠3,所以a﹣3≠0,故(a﹣3)x2=8 (a≠3)是一元二次方程;B、方程二次项系数可能为0,不一定是一元二次方程;C、方程展开后是:x2﹣11=0,符合一元二次方程的定义;D、符合一元二次方程的定义.故选:B.点评:本题考查了一元二次方程的概念,解答时要先观察方程特点,再依据以上四个方面的要求进行有针对性的判断.2.方程(m2﹣1)x2+mx﹣5=0是关于x的一元二次方程,则m满足的条件是()A.m≠1 B.m≠0 C.|m|≠1 D.m=±1考点:一元二次方程的定义.分析:本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.解答:解:∵方程(m2﹣1)x2+mx﹣5=0是关于x的一元二次方程,∴m2﹣1≠0,即|m|≠1.故选C点评:要特别注意二次项系数a≠0这一条件,当a=0时,上面的方程就不是一元二次方程了,当b=0或c=0时,上面的方程在a≠0的条件下,仍是一元二次方程,只不过是不完全的一元二次方程.3.把方程x(x+2)=5x化成一般式,则a、b、c的值分别是()A.1,3,5 B.1,﹣3,0 C.﹣1,0,5 D.1,3,0考点:一元二次方程的定义.分析:一元二次方程的一般式是:ax2+bx+c=0(a,b,c是常数且a≠0),ax2叫二次项,bx叫一次项,c是常数项;其中a,b,c分别叫二次项系数,一次项系数,常数项.把方程x(x+2)=5x化成一般式,问题可求.解答:解:∵x(x+2)=5x,∴x2+2x﹣5x=0,∴x2﹣3x=0;∴a=1,b=﹣3,c=0.故选B.点评:本题要明确a、b、c的含义分别是指一元二次方程的二次项系数、一次项系数、常数项.说明一个一元二次方程的二次项系数、一次项系数、常数项时首先要把方程化为一般形式.4.方程x2﹣2x=0的解为()A.x1=1,x2=2 B.x1=0,x2=1 C.x1=0,x2=2 D.x1=,x2=2考点:解一元二次方程-因式分解法.分析:先分解因式,即可得出两个一元一次方程,求出即可.解答:解:x2﹣2x=0,x(x﹣2)=0,x=0,x﹣2=0,x1=0,x2=2,故选C.点评:本题考查了解一元二次方程的应用,关键是把一元二次方程转化成一元一次方程.5.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2 B.(x+2)2=2 C.(x﹣2)2=﹣2 D.(x﹣2)2=6考点:解一元二次方程-配方法.专题:配方法.分析:在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.解答:解:把方程x2﹣4x+2=0的常数项移到等号的右边,得到x2﹣4x=﹣2,方程两边同时加上一次项系数一半的平方,得到x2﹣4x+4=﹣2+4,配方得(x﹣2)2=2.故选:A.点评:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.6.四边形ABCD与四边形A1B1C1D1相似,相似比为2:3,四边形A1B1C1D1与四边形A2B2C2D2相似,相似比为5:4,则四边形ABCD与四边形A2B2C2D2相似且相似比为()A.5:6 B.6:5 C.5:6或6:5 D.8:15考点:相似多边形的性质.分析:首先将2:3转化为10:15,将5:4转化为15:12,然后求得四边形ABCD与四边形A2B2C2D2相似比即可.解答:解:∵四边形ABCD与四边形A1B1C1D1相似,相似比为2:3,即:相似比为:10:15;四边形A1B1C1D1与四边形A2B2C2D2相似,相似比为5:4,即:15:12;∴四边形ABCD与四边形A2B2C2D2且相似比为10:12,也就是5:6.故选A.点评:本题考查了相似多边形的性质,解题的关键是将相似比进行转换.7.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x﹣6=﹣4 B.x﹣6=4 C.x+6=4 D.x+6=﹣4考点:解一元二次方程-直接开平方法.分析:方程两边直接开平方可达到降次的目的,进而可直接得到答案.解答:解:(x+6)2=16,两边直接开平方得:x+6=±4,则:x+6=4,x+6=﹣4,故选:D.点评:本题主要考查了直接开平方法解一元二次方程,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.8.方程x2﹣4=0的根是()A.x=2 B.x=﹣2 C.x1=2,x2=﹣2 D.x=4考点:解一元二次方程-直接开平方法.分析:先移项,然后利用数的开方解答.解答:解:移项得x2=4,开方得x=±2,∴x1=2,x2=﹣2.故选C.点评:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0),ax2=b(a,b同号且a ≠0),(x+a)2=b(b≥0),a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”;(2)运用整体思想,会把被开方数看成整体;(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.9.(3分)(2009•青海)方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12 B.12或15 C.15 D.不能确定考点:等腰三角形的性质;解一元二次方程-因式分解法;三角形三边关系.专题:分类讨论.分析:先解一元二次方程,由于未说明两根哪个是腰哪个是底,故需分情况讨论,从而得到其周长.解答:解:解方程x2﹣9x+18=0,得x1=6,x2=3∵当底为6,腰为3时,由于3+3=6,不符合三角形三边关系∴等腰三角形的腰为6,底为3∴周长为6+6+3=15故选C.点评:此题是一元二次方程的解结合几何图形的性质的应用,注意分类讨论.10.下列四组图形中必相似的是()A.有一组邻边相等的两个平行四边形B.有一个角相等的两个等腰梯形C.对角线互相垂直的两个矩形D.对角线互相垂直且相等的两个四边形考点:相似多边形的性质.分析:根据相似图形的定义和图形的性质对每一项进行分析,即可得出一定相似的图形.解答:解:A、一组邻边相等的两个平行四边形的对应角不一定相等,故选项错误;B、有一个角相等的两个等腰梯形不一定对应边相等,故选项错误;C、对角线互相垂直的两个矩形是正方形,所有的正方形都相似,故选项正确;D、对角线互相垂直且相等的两个四边形不能判定其形状,故选项错误.故选C.点评:本题考查了相似形的定义,熟悉各种图形的性质和相似图形的定义是解题的关键.11.8x2﹣(k﹣1)x﹣k﹣7=0的一个根为零,则k=()A.﹣1 B.C.4 D.﹣7考点:一元二次方程的解;一元二次方程的定义.专题:方程思想.分析:把x=0代入方程中,就可以求出k的值.解答:解:∵方程8x2﹣(k﹣1)x﹣k﹣7=0的一个根为0,∴把x=0代入此方程有:﹣k﹣7=0,k=﹣7.故本题选D.点评:本题考查的是一元二次方程的根,把方程的根代入方程就可以求出字母系数k的值.12.一元二次方程x2﹣4x+5=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根D.没有实数根考点:根的判别式.分析:把a=1,b=﹣4,c=5代入△=b2﹣4ac进行计算,根据计算结果判断方程根的情况.解答:解:∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,所以原方程没有实数根.故选:D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.13.如果关于x的方程x2﹣2x﹣=0没有实数根,那么k的最大整数值是()A.﹣3 B.﹣2 C.﹣1 D.0考点:根的判别式.分析:由关于x的方程x2﹣2x﹣=0没有实数根,即可得判别式△<0,解不等式即可求得求得k 的取值范围,继而求得k的最大整数值.解答:解:∵关于x的方程x2﹣2x﹣=0没有实数根,∴△=b2﹣4ac=(﹣2)2﹣4×1×(﹣)=4+2k<0,∴k<﹣2.∴k的最大整数值是﹣3.故选A.点评:此题考查了一元二次方程根的判别式的知识.此题难度不大,注意一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.14.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28 B.x(x﹣1)=28 C.x(x+1)=28 D.x(x﹣1)=28考点:由实际问题抽象出一元二次方程.分析:关系式为:球队总数×每支球队需赛的场数÷2=4×7,把相关数值代入即可.解答:解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=4×7.点评:本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.15.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣1 B.k<1且k≠0 C.k≥﹣1且k≠0 D.k>﹣1且k≠0考点:根的判别式;一元二次方程的定义.专题:计算题.分析:根据方程有两个不相等的实数根,得到根的判别式的值大于0列出不等式,且二次项系数不为0,即可求出k的范围.解答:解:∵一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴△=b2﹣4ac=4+4k>0,且k≠0,解得:k>﹣1且k≠0.故选D点评:此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.16.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2= B.(1+x)2= C.1+2x=D.1+2x=考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能≤10%,所以至少要经过两天的上涨才可以.设平均每天涨x,每天相对于前一天就上涨到1+x.解答:解:设平均每天涨x.则90%(1+x)2=1,即(1+x)2=,点评:此题考查增长率的定义及由实际问题抽象出一元二次方程的知识,这道题的关键在于理解:价格上涨x%后是原来价格的(1+x)倍.17.已知(x2+y2+1)(x2+y2+3)=8,则x2+y2的值为()A.﹣5或1 B.1 C.5 D.5或﹣1考点:换元法解一元二次方程;解一元二次方程-因式分解法.专题:换元法.分析:解题时把x2+y2当成一个整体来考虑,再运用因式分解法就比较简单.解答:解:原方程变形得,(x2+y2)2+4(x2+y2)﹣5=0,(x2+y2+5)(x2+y2﹣1)=0,又∵x2+y2的值是非负数,∴x2+y2的值为只能是1.故选:B.点评:任何数的平方都是非负数,解这类问题要特别注意这一点.18.已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k﹣1=0根的存在情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根 D.无法确定考点:根的判别式;一次函数图象与系数的关系.分析:先根据函数y=kx+b的图象可得;k<0,再根据一元二次方程x2+x+k﹣1=0中,△=12﹣4×1×(k﹣1)=5﹣4k>0,即可得出答案.解答:解:根据函数y=kx+b的图象可得;k<0,b<0,则一元二次方程x2+x+k﹣1=0中,△=12﹣4×1×(k﹣1)=5﹣4k>0,则一元二次方程x2+x+k﹣1=0根的存在情况是有两个不相等的实数根,故选:C.点评:此题考查了一元二次方程根的判别式,用到的知识点是一次函数图象的性质,关键是根据函数图象判断出△的符号.19.有两个一元二次方程M:ax2+bx+c=0,N:cx2+bx+a=0,其中a+c=0,以下列四个结论中错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=1考点:根的判别式;一元二次方程的解.分析:首先由a+c=0,得出a、c互为相反数,利用根的判别式△=b2﹣4ac判定A即可;由根与系数的可知:方程M的两根和为﹣,两根积为,方程N的两根和为﹣,两根积为,进一步由根的符号判定B即可;进一步由两个方程的根的积判定C即可;把x=1分别代入两个方程得出a+b+c=0,进一步判断D即可.解答:解:A、两个方程根的判别式都是△=b2﹣4ac,所以如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根,此选项正确;B、由根与系数的可知:方程M的两根和为﹣,两根积为,方程N的两根和为﹣,两根积为,a、c异号,两个方程的两根和异号,两根积同号,所以此选项错误;C、由两个方程的两根积•=1,可以得出如果5是方程M的一个根,那么是方程N的一个根是正确的;D、当x=1时,代入两个方程得出a+b+c=0,所以果方程M和方程N有一个相同的根,那么这个根必是x=1是正确的.故选:B.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.以及根与系数的关系.20.如图,在宽为20米,长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为()A.1米 B.1.5米C.2米 D.2.5米考点:一元二次方程的应用.专题:几何图形问题.分析:要求修建的路宽,就要设修建的路宽应为x米,根据题意可知:矩形地面﹣所修路面积=耕地面积,依此列出等量关系解方程即可.解答:解:设修建的路宽应为x米根据等量关系列方程得:20×30﹣(20x+30x﹣x2)=551,解得:x=49或1,49不合题意,舍去,故选A.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.注意:矩形面积在减路的面积时,20x+30x中有一个小正方形的面积是重复计算的,所以要再减去x×x面积.二、填空题(每小题3分,共12分)21.已知是方程x2+mx+7=0的一个根,则m= ﹣,另一根为.考点:一元二次方程的解.分析:先把代入方程x2+mx+7=0,求出m的值,再设方程的另一个根为a,由根与系数的关系即可求出a的值.解答:解:∵是方程x2+mx+7=0的一个根,∴2+m+7=0,解得m=﹣,∴原方程可化为x2﹣x+7=0,设方程的另一根为a,则+a=,∴a=.故答案为:﹣,.点评:本题考查的是一元二次方程解的意义,根与系数的关系,根据题意求出该一元二次方程解答此题的关键.22.一个五边形的边长分别是2、3、4、5、6,另一个和它相似的五边形的最短边长为6,则这个五边形的最长边为18 .考点:相似多边形的性质.分析:根据相似多边形的对应边的比相等可得.解答:解:两个相似的五边形,一个最短的边是2,另一个最短边长为6,则相似比是2:6=1:3,根据相似五边形的对应边的比相等,设后一个五边形的最长边的长为x,则6:x=1:3,解得:x=18.即后一个五边形的最长边的长为18.故答案为18.点评:本题主要考查了相似多边形的性质,对应边的比相等,因而最长的边一定是对应边,最短的边一定也是对应边.23.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为20% .考点:一元二次方程的应用.专题:增长率问题.分析:解答此题利用的数量关系是:商品原来价格×(1﹣每次降价的百分率)2=现在价格,设出未知数,列方程解答即可.解答:解:设这种商品平均每次降价的百分率为x,根据题意列方程得,125(1﹣x)2=80,解得x1=0.2=20%,x2=1.8(不合题意,舍去);故答案为:20%点评:本题考查了一元二次方程的应用,此题列方程得依据是:商品原来价格×(1﹣每次降价的百分率)2=现在价格.24.如图,在矩形ABCD中,AB=1,BC=2,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为.考点:翻折变换(折叠问题);勾股定理.专题:探究型.分析:先由勾股定理求出AC的长,再根据图形折叠的性质求出AF及CF的长,设BE=x,则CE=2﹣x,EF=x,在直角三角形EFC中利用勾股定理即可求出x的值,即点E到点B的距离.解答:解:过E作EF⊥AC,交AC于F,∵矩形ABCD中,AB=1,BC=2,∴AC===,∵△AEF是△ABE沿直线AE折叠而成,∴AF=AB=1,BE=EF,设BE=x,则CE=2﹣x,EF=x,在Rt△EFC中,CF2+EF2=CE2,即(﹣1)2+x2=(2﹣x)2,解得x=.故答案为:.点评:本题考查的是图形折叠的性质及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.三、解答题(满分48分)25.解方程(1)2x2+1=3x(配方法)(2)x2﹣3x+3=0(公式法)(3)解方程x2﹣|x|﹣2=0.考点:解一元二次方程-因式分解法;解一元二次方程-配方法;解一元二次方程-公式法.分析:(1)移项后把二次项系数化为1,然后进行配方,进而求出方程的根;(2)首先找出方程a,b和c的值,求出△,代入求根公式即可;(3)分x>0和x<0两种情况,利用因式分解法求出方程的根即可.解答:解:(1)∵2x2+1=3x,∴2x2﹣3x+1=0,∴x2﹣x+=0,∴x2﹣x+=,∴(x﹣)2=,∴x1=1,x2=;(2)∵a=1,b=﹣3,c=3,∴△=b2﹣4ac=18﹣12=6,∴x=,∴x1=,x2=;(3)当x>0时,x2﹣x﹣2=0,即(x﹣2)(x+1)=0,解得x1=2,x2=﹣1(舍去),当x<0时,x2+x﹣2=0,即(x+2)(x﹣1)=0,解得x3=﹣2,x4=1(舍去);综上x=2或x=﹣2.点评:本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.26.某企业2010年盈利1500万元,2012年克服全球金融危机的不利影响,仍实现盈利2160万元.从2010年到2012年,如果该企业每年盈利的年增长率相同,求:(1)该企业2011年盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计2013年盈利多少万元?考点:一元二次方程的应用.专题:增长率问题.分析:(1)设每年盈利的年增长率为x,就可以表示出2012年的盈利,根据2012年的盈利为2160万元建立方程求出x的值就可以求出2011年的盈利;(2)根据(1)求出的年增长率就可以求出结论.解答:(1)设每年盈利的年增长率为x,根据意,得1500(1+x)2=2160解得:x1=0.2,x2=﹣2.2(不合题意,舍去)∴该企业2011年盈利为:1500(1+0.2)=1800万元.答:2011年该企业盈利1800万元;(2)由题意,得2160(1+0.2)=2592万元答:预计2013年该企业盈利2592万元.点评:本题考查了增长率问题的数量关系的运用,运用增长率的数量关系建立一元二次方程的运用,一元二次方程的解法的运用,解答时求出平均增长率是关键.27.已知关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,求k的值.考点:根的判别式;一元二次方程的定义.分析:根据根的判别式令△=0,建立关于k的方程,解方程即可.解答:解:∵关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,∴△=0,∴[﹣(k﹣1)]2﹣4(k﹣1)×=0,整理得,k2﹣3k+2=0,即(k﹣1)(k﹣2)=0,解得:k=1(不符合一元二次方程定义,舍去)或k=2.∴k=2.点评:本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.28.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?考点:一元二次方程的应用.专题:应用题.分析:此题利用每一台冰箱的利润×每天售出的台数=每天盈利,设出每台冰箱应降价x元,列方程解答即可.解答:解:设每台冰箱应降价x元,每件冰箱的利润是:(2400﹣2000﹣x)元,卖(8+×4)件,列方程得,(2400﹣2000﹣x)(8+×4)=4800,x2﹣300x+20000=0,解得x1=200,x2=100;要使百姓得到实惠,只能取x=200,答:每台冰箱应降价200元.点评:此题考查基本数量关系:每一台冰箱的利润×每天售出的台数=每天盈利.29.如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s 的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?(2)点P、Q在移动过程中,是否存在某点时刻,使得△PCQ的面积等于△ABC的面积的一半?若存在,求出运动的时间;若不存在,说明理由.考点:一元二次方程的应用;勾股定理.分析:(1)设x秒钟后,可使△PCQ的面积为8平方厘米,用x表示出△PCQ的边长,根据面积是8可列方程求解.(2)假设y秒时,△PCQ的面积等于△ABC的面积的一半,列出方程看看解的情况,可知是否有解.解答:解:(1)设x秒钟后,可使△PCQ的面积为8平方厘米,由题意得:(6﹣x)•2x=8,x=2或x=4,当2秒或4秒时,面积可为8平方厘米;(2)不存在.理由:设y秒时,△PCQ的面积等于△ABC的面积的一半,由题意得:(6﹣y)•2y=××6×8y2﹣6y+12=0.△=36﹣4×12<0.方程无解,所以不存在.点评:本题考查一元二次方程的应用,三角形的面积公式的求法,和一元二次方程的解的情况.。
最新北师大版九年级数学上册12月份月考检测题及答案解析
九年级(上)月考数学试卷(12月份)一、选择题(每小题3分,共30分)1.从1到9这9个自然数中任取一个,既是2的倍数,又是3的倍数的概率是()A.B.C.D.2.在RtABC中,∠C=90°,AB=13,AC=12,BC=5,则下列各式中正确的是()A.B.C.D.3.反比例函数y=的图象,当x>0时,y随x的增大而增大,则k的取值范围是()A. k<3 B. k≤3 C. k>3 D. k≥34.某商店举办有奖储蓄活动,购货满100元者发兑奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个.若某人购物满100元,那么他中一等奖的概率是()A.B.C.D.5.已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,2)B. y随x的增大而增大C.图象在第二、四象限内D.若x>1,则y>﹣26.在△ABC中,sinB=cos(90°﹣C)=,那么△ABC是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形7.反比例函数y=图象上有三个点(x1,y1),(x2,y2),(x3,y3),其中x1<x2<0<x3,则y1,y2,y3的大小关系是()A. y1<y2<y3B. y2<y1<y3C. y3<y1<y2D. y3<y2<y18.函数y=ax﹣a与(a≠0)在同一直角坐标系中的图象可能是()A. B.C.D.9.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,D为垂足,若AC=4,BC=3,则sin∠ACD的值为()A.B.C.D.10.如图,在高为2m,坡角为30°的楼梯表面铺地毯,地毯的长度至少需要()A. 2(+1)m B. 4m C.(+2)m D. 2(+3)m二.填空题(每题3分,共24分).11.函数中,自变量x的取值范围是.12.小红、小芳、小明在一起做游戏时需要确定作游戏的先后顺序,他们约定用“锤子、剪刀、布”的方式确定,请问在一个回合中三个都出“布”的概率是.13.如图,P是∠AOx的边OA上的一点,且点P的坐标为(1,),则∠AOx= 度.14.如图,有一斜坡AB长40m,此斜坡的坡角为60°,则坡顶离地面的高度为.(答案可以带根号)15.学校校园内有一块如图所示的三角形空地,计划将这块空地建成一个花园,以美化校园环境.预计花园每平方米造价为30元,学校建这个花园需要投资元.(精确到1元)16.在一个不透明的袋中装有除颜色外其余都相同的3个小球,其中一个红球、两个黄球.如果第一次先从袋中摸出一个球后不再放回,第二次再从袋中摸出一个,那么两次都摸到黄球的概率是.17.如图,正比例函数y1=kx和反比例函数y2=的图象交于A(﹣1,2)、(1,﹣2)两点,若y1<y2,则x的取值范围是.18.如图,已知点A在双曲线y=上,且OA=4,过A作AC⊥x轴于C,OA的垂直平分线交OC于B,则△AOC的面积= ;△ABC的周长为.三、解答题(共46分).19.小英和小丽用两个转盘做“配紫色”游戏,配成紫色小英得1分,否则小丽得1分,这个游戏对双方公平吗?(红色+蓝色=紫色,配成紫色者胜)20.某池塘里养了鱼苗1万条,根据这几年的经验,鱼苗成活率为95%,一段时间后准备打捞出售,第一网捞出40条,称得平均每条鱼重2.5千克,第二网捞出25条,称得平均每条鱼重2.2千克,第三网捞出35条,称得平均每条鱼重2.8千克,试估计这池塘中鱼的质量.21.如图,为测得峰顶A到河面B的高度h,当游船行至C处时测得峰顶A的仰角为α,前进m米至D处时测得峰顶A的仰角为β(此时C、D、B三点在同一直线上).当α=44°,β=61°,m=50米时,求h的值.(精确到1米)22.如图,已知反比例函数y=与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4)(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标.23.如图,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x 轴上找一点P,使PA+PB最小.求P点坐标?24.如图,甲、乙两只捕捞船同时从A港出海捕鱼.甲船以每小时千米的速度沿西偏北30°方向前进,乙船以每小时15千米的速度沿东北方向前进.甲船航行2小时到达C处,此时甲船发现渔具丢在乙船上,于是甲船快速(匀速)沿北偏东75°的方向追赶,结果两船在B处相遇.(1)甲船从C处追赶上乙船用了多少时间?(2)甲船追赶乙船的速度是每小时多少千米?参考答案与试题解析一、选择题(每小题3分,共30分)1.从1到9这9个自然数中任取一个,既是2的倍数,又是3的倍数的概率是()A.B.C.D.考点:概率公式.分析:从1到9这9个自然数中,既是2的倍数,又是3的倍数只有6一个,所以既是2的倍数,又是3的倍数的概率是九分之一.解答:解:P(既是2的倍数,又是3的倍数)=.故选A.点评:本题考查了统计与概率中概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.2.在RtABC中,∠C=90°,AB=13,AC=12,BC=5,则下列各式中正确的是()A.B.C.D.考点:锐角三角函数的定义.分析:作出图形,然后根据锐角三角函数的定义对各选项分析判断后利用排除法求解.解答:解:如图,∵∠C=90°,AB=13,AC=12,BC=5,∴A、sinA==,故本选项错误;B、cosA==,故本选项正确;C、tanA==,故本选项错误;D、tanA==,故本选项错误.故选B.点评:本题考查锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.反比例函数y=的图象,当x>0时,y随x的增大而增大,则k的取值范围是()A. k<3 B. k≤3 C. k>3 D. k≥3考点:反比例函数的性质.分析:根据反比例函数的性质解题.解答:解:∵当x>0时,y随x的增大而增大,∴函数图象必在第四象限,∴k﹣3<0,∴k<3.故选A.点评:对于反比例函数(k≠0),(1)k>0,反比例函数图象在一、三象限,在每一个象限内,y随x的增大而减小;(2)k<0,反比例函数图象在第二、四象限内,在每一个象限内,y随x的增大而增大.4.某商店举办有奖储蓄活动,购货满100元者发兑奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个.若某人购物满100元,那么他中一等奖的概率是()A.B.C.D.考点:概率公式.分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数;二者的比值就是其发生的概率的大小.解答:解:中一等奖的概率是=,故选B.点评:本题主要考查了概率的求法,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,2)B. y随x的增大而增大C.图象在第二、四象限内D.若x>1,则y>﹣2考点:反比例函数的性质.分析:根据反比例函数的性质:当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x的增大而增大进行分析即可.解答:解:A、图象必经过点(﹣1,2),说法正确,不合题意;B、k=﹣2<0,每个象限内,y随x的增大而增大,说法错误,符合题意;C、k=﹣2<0,图象在第二、四象限内,说法正确,不合题意;D、若x>1,则﹣2<y<0,说法正确,不合题意;故选:B.点评:此题主要考查了反比例函数的性质,关键是掌握反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.注意:反比例函数的图象与坐标轴没有交点.6.在△ABC中,sinB=cos(90°﹣C)=,那么△ABC是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形考点:特殊角的三角函数值;等腰三角形的判定.分析:由题意可证∠C=∠B=30°,即证△ABC是等腰三角形.解答:解:sinB=cos(90°﹣C)=,即sinB=,∴∠B=30°;cos(90°﹣C)=,∴90°﹣∠C=60°,∴∠C=30°,∴∠C=∠B.∴△ABC是等腰三角形.故选A.点评:熟记特殊角的三角函数值是解题的关键,还考查了等腰三角形的判断.7.反比例函数y=图象上有三个点(x1,y1),(x2,y2),(x3,y3),其中x1<x2<0<x3,则y1,y2,y3的大小关系是()A. y1<y2<y3B. y2<y1<y3C. y3<y1<y2D. y3<y2<y1考点:反比例函数图象上点的坐标特征.分析:先根据反比例函数y=判断出函数图象所在的象限,再根据x1<x2<0<x3,判断出三点所在的象限,再根据点在各象限坐标的特点及函数在每一象限的增减性解答.解答:解:∵反比例函数y=中,k=6>0,∴此反比例函数图象的两个分支在一、三象限;∵x3>0,∴点(x3,y3)在第一象限,y3>0;∵x1<x2<0,∴点(x1,y1),(x2,y2)在第三象限,y随x的增大而减小,故y2<y1,由于x1<0<x3,则(x3,y3)在第一象限,(x1,y1)在第三象限,所以y1<0,y2>0,y1<y2,于是y2<y1<y3.故选B.点评:本题考查了反比例函数图象上点的坐标特征:当k>0时,图象分别位于第一、三象限,横纵坐标同号;当k<0时,图象分别位于第二、四象限,横纵坐标异号.8.函数y=ax﹣a与(a≠0)在同一直角坐标系中的图象可能是()A. B.C.D.考点:反比例函数的图象;一次函数的图象.专题:压轴题;分类讨论.分析:分别根据一次函数和反比例函数图象的特点进行逐一分析即可,由于a的符号不确定,所以需分类讨论.解答:解:A、由一次函数y=a(x﹣1)的图象y轴的正半轴相交可知﹣a>0,即a<0,与y=(x≠0)的图象a>0相矛盾,故A选项错误;B、由一次函数y=a(x﹣1)的图象y轴的正半轴相交可知﹣a>0,即a<0,与y=(x≠0)的图象a>0相矛盾,故B选项错误;C、由一次函数y=a(x﹣1)的图象与y轴的负半轴相交可知﹣a<0,即a>0,与y=(x≠0)的图象a<0相矛盾,故C选项错误;D、由一次函数y=a(x﹣1)的图象可知a<0,与y=(x≠0)的图象a<0一致,故D选项正确.故选:D.点评:本题考查了一次函数的图象及反比例函数的图象,重点是注意y=k1x+b中k1、b及y=中k2的取值.9.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,D为垂足,若AC=4,BC=3,则sin∠ACD的值为()A.B.C.D.考点:锐角三角函数的定义;勾股定理;相似三角形的判定与性质.分析:先可证明∠ACD=∠B,再利用勾股定理求出AB的长度,代入就可以求解.解答:解:∵∠A=∠A,∠ADC=∠ACB=90°,∴△ACD∽△ABC.∴∠ACD=∠B.∵AC=4,BC=3,∴AB=5.∴sin∠ACD=sin∠B==.故选C.点评:此题主要考查了相似三角形的判断和性质,锐角三角形函数的定义及勾股定理的综合运用.10.如图,在高为2m,坡角为30°的楼梯表面铺地毯,地毯的长度至少需要()A. 2(+1)m B. 4m C.(+2)m D. 2(+3)m考点:解直角三角形的应用-坡度坡角问题.分析:由题意得,地毯的总长度至少为(AC+BC).在△ABC中已知一边和一个锐角,满足解直角三角形的条件,可求出AC的长,进而求得地毯的长度.解答:解:由题意得:地毯的竖直的线段加起来等于BC,水平的线段相加正好等于AC,即地毯的总长度至少为(AC+BC),在Rt△ABC中,∠A=30°,BC=2m,∠C=90°.∵tanA=,∴AC=BC÷tan30°=2.∴AC+BC=2+2.故选A.点评:本题考查了解直角三角形的应用,解题的关键是明白每个台阶的两条直角边的和是直角△ABC 的直角边的和.二.填空题(每题3分,共24分).11.函数中,自变量x的取值范围是x≠1 .考点:函数自变量的取值范围;分式有意义的条件.专题:计算题.分析:根据分式有意义的条件是分母不为0;分析原函数式可得关系式x﹣1≠0,解可得答案.解答:解:根据题意可得x﹣1≠0;解得x≠1;故答案为:x≠1.点评:本题主要考查函数自变量的取值范围,当函数表达式是分式时,要注意考虑分式的分母不能为0.12.小红、小芳、小明在一起做游戏时需要确定作游戏的先后顺序,他们约定用“锤子、剪刀、布”的方式确定,请问在一个回合中三个都出“布”的概率是.考点:列表法与树状图法.分析:欲求出在一回合中三个人都出“布”的概率,可先列举出所有情况,看所求的情况占总情况的多少即可.解答:解:列表得:可以得出一共有27种情况,在一回合中三个人都出“布”的概率是.故答案为:.点评:此题主要考查了树状图法求概率,树状图法适用于两步或两步以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.13.如图,P是∠AOx的边OA上的一点,且点P的坐标为(1,),则∠AOx= 60 度.考点:特殊角的三角函数值;坐标与图形性质.分析:过点P作PB⊥x轴与点B,根据点P坐标可得tan∠AOx,继而可得∠AOx的度数.解答:解:过点P作PB⊥x轴与点B,∵点P坐标为(1,),∴OB=1,PB=,∴tan∠AOx==,∴∠AOx=60°.故答案为:60.点评:本题考查了特殊角的三角函数值,一些特殊角的三角函数值需要我们熟练记忆.14.如图,有一斜坡AB长40m,此斜坡的坡角为60°,则坡顶离地面的高度为20m .(答案可以带根号)考点:解直角三角形的应用-坡度坡角问题.分析:由题意可得:∠ACB=90°,AB=40m,∠A=60°,然后在Rt△ABC中,利用三角函数即可求得答案.解答:解:∵∠ACB=90°,AB=40m,∠A=60°,∴在Rt△ABC中,BC=AB•sin60°=40×=20(m),即坡顶离地面的高度为:20m.故答案为:20m.点评:此题考查了坡度坡角问题.此题比较简单,注意利用解直角三角形的知识求解是关键.15.学校校园内有一块如图所示的三角形空地,计划将这块空地建成一个花园,以美化校园环境.预计花园每平方米造价为30元,学校建这个花园需要投资7794 元.(精确到1元)考点:解直角三角形的应用.专题:探究型.分析:延长BC,过A作AD⊥BC的延长线于点D,再根据补角的定义求出∠ACD的度数,由锐角三角函数的定义接可求出AD的长,再根据三角形的面积公式求出此三角形的面积,再根据每平方米造价为30元计算出所需投资即可.解答:解:延长BC,过A作AD⊥BC的延长线于点D,∵∠ACB=120°,∴∠ACD=180°﹣120°=60°,∵AC=20米,∴AD=AC•sin60°=20×=10(米),∴S△ABC=BC•AD=×30×10=150(平方米),∴所需投资=150×30≈7794(元).故答案为:7794.点评:本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.16.在一个不透明的袋中装有除颜色外其余都相同的3个小球,其中一个红球、两个黄球.如果第一次先从袋中摸出一个球后不再放回,第二次再从袋中摸出一个,那么两次都摸到黄球的概率是.考点:概率公式.专题:压轴题.分析:依据题意先分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.解答:解:共有3×2=6种可能,两次都摸到黄球的有2种,所以概率是.点评:用到的知识点为:概率=所求情况数与总情况数之比.17.如图,正比例函数y1=kx和反比例函数y2=的图象交于A(﹣1,2)、(1,﹣2)两点,若y1<y2,则x的取值范围是﹣1<x<0或x>1 .考点:反比例函数与一次函数的交点问题.分析:根据A、B的横坐标,结合图象即可得出当y1<y2时x的取值范围.解答:解:∵正比例函数y1=kx和反比例函数y2=的图象交于A(﹣1,2)、(1,﹣2)两点,y1<y2,∴∴此时x的取值范围是﹣1<x<0或x>1,故答案为:﹣1<x<0或x>1.点评:本题考查了一次函数与反比例函数的交点问题,主要考查学生的理解能力和观察图形的能力,题目具有一定的代表性,是一道比较好的题目,用了数形结合思想.18.如图,已知点A在双曲线y=上,且OA=4,过A作AC⊥x轴于C,OA的垂直平分线交OC于B,则△AOC的面积= 3 ;△ABC的周长为2.考点:反比例函数综合题;三角形的面积;线段垂直平分线的性质.专题:综合题;压轴题.分析:首先由反比例函数比例系数k的几何意义,直接得出△AOC的面积=|k|=3;如果设A(x,y),那么由线段垂直平分线的性质可知AB=OB,则△ABC的周长=OC+AC=x+y.由点A在双曲线y=上,且OA=4,可列出方程组,运用完全平方公式将方程组变形,求出x+y的值,从而得出结果.解答:解:∵点A在双曲线y=上,过A作AC⊥x轴于C,∴△AOC的面积=|k|=3;设点A的坐标为(x,y).∵点A在第一象限,∴x>0,y>0.∵OA的垂直平分线交OC于B,∴AB=OB,∴△ABC的周长=AB+BC+AC=OB+BC+AC=OC+AC=x+y.∵点A在双曲线y=上,且OA=4,∴由①得,xy=6③,③×2+②,得x2+2xy+y2=28,∴(x+y)2=28,∵x>0,y>0,∴x+y=2.∴△ABC的周长=2.故答案为:3,2.点评:此题综合考查了反比例函数的性质,线段垂直平分线的性质,完全平方公式等多个知识点.此题难度稍大,综合性比较强,注意对各个知识点的灵活应用.三、解答题(共46分).19.小英和小丽用两个转盘做“配紫色”游戏,配成紫色小英得1分,否则小丽得1分,这个游戏对双方公平吗?(红色+蓝色=紫色,配成紫色者胜)考点:游戏公平性.分析:游戏是否公平,关键要看游戏双方取胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.解答:解:红色和蓝色的组合能配成紫色.配成紫色的概率=P1(红)•P2(蓝)+P1(蓝)•P2(红)=,即小英得分的概率是,小丽得分的概率为1﹣.二者概率不相等,故这个游戏对双方不公平.点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个人取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:两步完成的事件的概率=第一步事件的概率与第二步事件的概率的积.20.某池塘里养了鱼苗1万条,根据这几年的经验,鱼苗成活率为95%,一段时间后准备打捞出售,第一网捞出40条,称得平均每条鱼重2.5千克,第二网捞出25条,称得平均每条鱼重2.2千克,第三网捞出35条,称得平均每条鱼重2.8千克,试估计这池塘中鱼的质量.考点:用样本估计总体.分析:由于第一次网出40条,称得平均每条鱼重2.5kg.第二次网出25条,称得平均每条鱼重2.2kg.第三次网出35条,称得平均每条鱼重2.8kg,利用这些条件可以求出样本平均数,然后利用鱼苗10万条和鱼苗成活率为95%,即可取出鱼塘中的鱼总重量.解答:解:由题意可知三次共捕鱼40+25+35=100(条),捕得鱼的总质量为40×2.5+25×2.2+35×2.8=253(千克),所以可以估计每条鱼的质量约为253÷100=2.53(千克),池塘中鱼的总质量为10 000×95%×2.53=24 035(千克).点评:本题主要考查了利用样本估计总体的思想,解题时首先求出样本平均数,然后利用样本平均数估计总体平均数即可解决问题,难度适中.21.如图,为测得峰顶A到河面B的高度h,当游船行至C处时测得峰顶A的仰角为α,前进m米至D处时测得峰顶A的仰角为β(此时C、D、B三点在同一直线上).当α=44°,β=61°,m=50米时,求h的值.(精确到1米)考点:解直角三角形的应用-仰角俯角问题.分析:可分别在Rt△ABC和Rt△ABD中,用AB表示出BC、BD的长,进而由CD=BC﹣BD=m得到AB即h的表达式,进而代入数据求出即可.解答:解:用含α、β和m的式子表示h:在Rt△ABC中,∵tanα=,∴BC=,在Rt△ABD中,∵tanβ=,∴BD=,∵m=BC﹣BD,∴m=﹣=﹣=50,∴h=114米.答:h的值是114m.点评:本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.22.如图,已知反比例函数y=与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4)(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标.考点:反比例函数与一次函数的交点问题.分析:(1)把A点坐标代入反比例函数解析式可求得k的值,可求得反比例函数解析式和A点坐标,把A点坐标代入一次函数可求得b的值,可求得一次函数表达式;(2)联立两函数解析式,求方程的解可求得B点坐标.解答:解:(1)把A点坐标代入反比例函数解析式可得﹣k+4=k,解得k=2,∴反比例函数解析式为y=,且A点坐标为(1,2),∵A点在一次函数图象上,∴2=1+b,解得b=1,∴一次函数解析式为y=x+1,(2)联立两函数解析式可得,解得或,∴B点坐标为(﹣2,﹣1).点评:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足两函数解析式是解题的关键.23.如图,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x 轴上找一点P,使PA+PB最小.求P点坐标?考点:反比例函数综合题.专题:综合题;压轴题.分析:(1)根据反比例函数图象上的点的横纵坐标的乘积为函数的系数和△OAM的面积为1可得k=2,即反比例函数的解析式为 y=.(2)由正比例函数 y=x的图象与反比例函数 y=(k≠0)在第一象限的图象交于A点求得A为(2,1).要使PA+PB最小,需作出A点关于x轴的对称点C,并连接BC,交x轴于点P,P为所求点.A 点关于x轴的对称点C(2,﹣1),而B为(1,2),故BC的解析式为y=﹣3x+5,即可求得P点的坐标.解答:解:(1)设A点的坐标为(a,b),则 b=∴ab=k∵ab=1,∴k=1∴k=2,∴反比例函数的解析式为 y=.(3分)(2)根据题意画出图形,如图所示:得=x,解得x=2或x=﹣2,∵点A在第一象限,∴x=2把x=2代入y=得y=1,∴A为(2,1)(4分)设A点关于x轴的对称点为C,则C点的坐标为(2,﹣1).令直线BC的解析式为y=mx+n∵B点的横坐标为1,B为反比例函数在第一象限图象上的点,∴xy=2,∴y=2,∴B为(1,2),将B和C的坐标代入得:,解得:∴BC的解析式为y=﹣3x+5(6分)当y=0时,x=,∴P点为(,0).(7分)点评:本题考查反比例函数和一次函数解析式的确定、图形的面积求法、轴对称等知识及综合应用知识、解决问题的能力.有点难度.24.如图,甲、乙两只捕捞船同时从A港出海捕鱼.甲船以每小时千米的速度沿西偏北30°方向前进,乙船以每小时15千米的速度沿东北方向前进.甲船航行2小时到达C处,此时甲船发现渔具丢在乙船上,于是甲船快速(匀速)沿北偏东75°的方向追赶,结果两船在B处相遇.(1)甲船从C处追赶上乙船用了多少时间?(2)甲船追赶乙船的速度是每小时多少千米?考点:解直角三角形的应用-方向角问题.分析:(1)根据方向角可以得到∠BCA=45°,∠B=30度,过A作AD⊥BC于点D,在直角△ACD 中,根据三角函数就可求得AD的长,再在直角△ABD中,根据三角函数即可求得AB的长,就可求得时间;(2)求出BC的长,根据(1)中的结果求得时间,即可求得速度.解答:解:(1)如图,过A作AD⊥BC于点D.作CG∥AE交AD于点G.∵乙船沿东北方向前进,∴∠HAB=45°,∵∠EAC=30°,∴∠CAH=90°﹣30°=60°∴∠CAB=60°+45°=105°.∵CG∥EA,∴∠GCA=∠EAC=30°.∵∠FCD=75°,∴∠BCG=15°,∠BCA=15°+30°=45°,∴∠B=180°﹣∠BCA﹣∠CAB=30°.在直角△ACD中,∠ACD=45°,AC=2×15=30.AD=AC•sin45°=30×=30千米.CD=AC•cos45°=30千米.在直角△ABD中,∠B=30°.则AB=2AD=60千米.则甲船从C处追赶上乙船的时间是:60÷15﹣2=2小时;(2)BC=CD+BD=30+30千米.则甲船追赶乙船的速度是每小时(30+30)÷2=15+15千米/小时.答:甲船从C处追赶上乙船用了2小时,甲船追赶乙船的速度是每小时15+15千米.点评:一般三角形的计算可以通过作高线转化为直角三角形的计算,正确作辅助线是解决本题的关键.。
北师大版2018-2019学年九年级(上)月考数学试卷(一)含答案解析
北师大版2018-2019学年九年级(上)月考数学试卷(一)含答案解析一.选择题(共12小题)1.已知点A(2,a)在反比例函数y=的图象上,则a的值是()A.2 B.﹣2 C.﹣4 D.2.已知a是锐角,若sin a=,则锐角a是()A.30°B.45°C.60°D.90°3.若△ABC的三个内角满足|tan A﹣1|+(cos B﹣)2=0,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形4.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°5.若锐角A满足tan a=,则sin a的值是()A.B.C.D.6.二次函数y=m在其图象对称轴右侧,y随x值的增大而增大,则m的值为()A.m≠0 B.m=±1 C.m=1 D.m=﹣17.当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.8.已知直线AB与反比例函数y=﹣和y=交于A、B两点与y轴交于C,若AC=BC,则S△AOB=()A.6 B.7 C.4 D.39.如图,在等腰Rt△ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为()A.2 B.C.D.110.如图所示,老张利用国庆假日在某钓鱼场钓鱼,风平浪静时,鱼漂露出水面部分AB=6m,微风吹来时,假设铅锤P不动,鱼漂移动了一段距离BC,且项場恰好与水面平齐(即PAPC,水平线1与OC夹角a=8°(点A在OC上,则铅锤P处的水深h为()(参考数据:sin8°=,cos8°=,tan8°=)A.150cm B.144cm C.111cm D.105cm11.如图,点E是矩形ABCD中CD边上一点,△BCE沿BE折叠为△BFE,点F落在AD上.若sin∠DFE=,则tan∠EBC的值为()A.B.C.D.12.如图,直线y1=x与双曲线y2=(x>0)交于点A,将直线y1=x向下平移4个单位后称该直线为y3,若y3与双曲线交于B,与x轴交于C,与y轴交于D,AO=2BC,连接AB,则以下结论错误的有()①点C坐标为(3,0);②k=;③S四边形OCBA=;④当2<x<4时,有y1>y2>y3;⑤S四边形ABDO=2S△COD.A.1个B.2个C.3个D.4个二.填空题(共8小题)13.计算tan60°﹣sin60°+cos245°=.14.已知a<﹣2,点(a﹣2,y1),(a,y2),(a+2,y3)都在函数y=﹣3x2+5的图象上,则y1,y2,y3的大小关系是.15.如图,过O的直线交反比例函数y=于A、B两点,分别过A、B两点作y轴,x轴的平行线交于C,则S△ABC=.16.设函数y=与y=x﹣1的图象的交点坐标为(a,b),则﹣的值为.17.在平面直角坐标系xOy中,已知一次函数y=kx+b(k≠0)的图象过点P(1,1),与x 轴交于点A,与y轴交于点B,且tan∠ABO=3,那么点A的坐标是.18.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E =45°,∠A=60°,AC=10,则CD=.19.如图,在坡度i=1:的斜坡AB上立有一电线杆EF,工程师在点A处测得E的仰角为60°,沿斜坡前进20米到达B,此时测得点E的仰角为15°,现要在斜坡AB上找一点P,在P处安装一根拉绳PE来固定电线杆,以使EF保持竖直,为使拉绳PE最短,则FP的长度约为.(参考数据:=1.414,=1.732)20.如图所示,已知双曲线y=(x<0)和y=(x>0),直线OA与双曲线y=交于点A,将直线OA向下平移与双曲线y=交于点B,与y轴交于点P,与双曲线y=交于点C,S△ABC=6,=,则k=.三.解答题(共7小题)21.(1)3tan30°﹣tan45°+2cos30°+4sin60°(2)(3)tan60°•tan30°﹣+22.已知:在Rt△ABC中,AB⊥BC,点O是AC的中点,连接OB,过C点作CD⊥OB,交BO 的延长线于垂足D,BC=8,sinα=.求:(1)线段OC的长;(2)cos∠DOC的值.23.如图,等腰直角△ABC,OC=2,抛物线y=ax2+c过A,B,C三点,D为抛物线上一点,连接BD且tan∠DBC=.(1)求直线BD和抛物线所表示的函数解析式.(2)如果在抛物线上有一点E,使得S△EBC=S△ABD,求这时E点坐标.24.如图,直线11:y1=kx+b与反比例函数y2=相交于A(﹣1,4)和B(﹣4,a),直线12:y3=﹣x+e与反比例函数y2=相交于B、C两点,交y轴于点D,连接OB,OC,OA.(1)求反比例函数的解析式和c的值;(2)求△BOC的面积;(3)直接写出当kx+b≥时x的取值范围.25.图中线段AB表示某工程的部分隧道,无人勘测飞机从隧道的一侧点A出发,沿着坡度为1:1.5的路线AE飞行,飞行至分界点C的正上方点D时,测得隧道另一侧点B的俯角为23°,继续飞行至点E,测得点B的俯角为45°,此时点E离地面的高度EF=800米.(1)分别求隧道AC和BC段的长度;(2)建工集团安排甲、乙两个金牌施工队分别从隧道两头向中间施工,甲队负责AC段施工,乙队负责BC段施工,乙每天的工作量是甲的2倍,两队同时开工5天后,甲队将速度提高25%,乙队将速度提高了150%,从而两队同时完成,求原计划甲、乙两队每天各施工多少米.(参考数据:tan23°≈0.4,cos23°≈0.9)26.阅读材料,解决问题:材料1:在研究数的整除时发现:能被5、25、125、625整除的数的特征是:分别看这个数的末一位、末两位、末三位、末四位即可,推广成一条结论;末n位能被5n整除的数,本身必能被5n整除,反过来,末n位不能被5n整除的数,本身也不可能被5n整除,例如判断992250能否被25、625整除时,可按下列步骤计算:∵25=52,50÷25=2为整数,∴992250能被25整除∵625=54,2250÷625=3.6不为整数,∴992250不能被625整除材料2:用奇偶位差法判断一个数能否被11这个数整除时,可把这个数的奇位上的数字与偶位上的数字分别加起来,再求它们的差,看差能否被11整除,若差能被11整除,则原数能被11整除,反之则不能(1)若这个三位数能被11整除,则m=;在该三位数末尾加上和为8的两个数字,让其成为一个五位数,该五位数仍能被11整除,求这个五位数(2)若这个六位数,千位数字是个位数字的2倍,且这个数既能被125整除,又能被11整除,求这个数.27.如图,在平面直角坐标系xOy中,双曲线y=(k≠0)与直线y=ax+b(a≠0)交于A,B两点,直线AB分别交x轴,y轴于C、D两点,若OA=OC,A点坐标为(4,3).(1)分别求出双曲线与直线的函数表达式;(2)若P为双曲线上一点,且横坐标为2,H为直线AB上一点,且PH+HC最小,延长PH交x轴于点E,将线段OE沿x轴平移得线段O'E',在平移过程中,是否存在某个位置使|BO'﹣AE'|的值最大值,求出最大值并求出此时E点坐标.(3)在(2)的情况下,将直线OA沿线段CE平移,平移过程中交y=(x>0)的图象于M(M与点A不重合)交x轴于点N,在平面内找一点G,使M、N,E,G为顶点的四边形为矩形?直接写出G的坐标.参考答案与试题解析一.选择题(共12小题)1.已知点A(2,a)在反比例函数y=的图象上,则a的值是()A.2 B.﹣2 C.﹣4 D.【分析】直接将点(2,a)代入y=即可求出a的值.【解答】解:由题意知,a=﹣,解得:a=﹣2.故选:B.2.已知a是锐角,若sin a=,则锐角a是()A.30°B.45°C.60°D.90°【分析】根据特殊角的三角函数值求解.【解答】解:∵sin a=,∴∠α=60°.故选:C.3.若△ABC的三个内角满足|tan A﹣1|+(cos B﹣)2=0,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形【分析】根据非负数的性质,求出∠A和∠B的度数,然后可判定△ABC的形状.【解答】解:由题意得,tan A﹣1=0,cos B﹣=0,则tan A=1,cos B=,∠A=45°,∠B=45°,则∠C=180°﹣45°﹣45°=90°,故△ABC为等腰直角三角形.故选:C.4.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°【分析】根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.【解答】解:根据勾股定理可以得到:AC=BC=,AB=.∵()2+()2=()2.∴AC2+BC2=AB2.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选:C.5.若锐角A满足tan a=,则sin a的值是()A.B.C.D.【分析】根据题意,由tan a=,易得sin a==.【解答】解:∵tan a=,∴sin a==,故选:B.6.二次函数y=m在其图象对称轴右侧,y随x值的增大而增大,则m的值为()A.m≠0 B.m=±1 C.m=1 D.m=﹣1【分析】根据二次函数y=m在其图象对称轴右侧,y随x值的增大而增大和二次函数的性质可以求得m的值.【解答】解:∵二次函数y=m在其图象对称轴右侧,y随x值的增大而增大,∴,解得,m=1,故选:C.7.当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.【分析】根据题意,ab>0,即a、b同号,分a>0与a<0两种情况讨论,分析选项可得答案.【解答】解:根据题意,ab>0,即a、b同号,当a>0时,b>0,y=ax2与开口向上,过原点,y=ax+b过一、二、三象限;此时,没有选项符合,当a<0时,b<0,y=ax2与开口向下,过原点,y=ax+b过二、三、四象限;此时,D选项符合,故选:D.8.已知直线AB与反比例函数y=﹣和y=交于A、B两点与y轴交于C,若AC=BC,则S△AOB=()A.6 B.7 C.4 D.3【分析】作AD⊥y轴于D,BE⊥y轴于E,如图,先证明△ACD≌△BCE得到S△ACD=S△BCE,再利用面积代换得到S△AOB=S△AOD+S△BOE,然后根据反比例函数比例系数k的几何意义进行计算.【解答】解:作AD⊥y轴于D,BE⊥y轴于E,如图,在△ACD和△BCE中,,∴△ACD≌△BCE,∴S△ACD=S△BCE,∴S△AOB=S△AOC+S△BOC=S△AOD+S△ACD+S△BOC=S△AOD+S△BCE+S△BOC=S△AOD+S△BOE=•|﹣2|+•|4|=3.故选:D.9.如图,在等腰Rt△ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为()A.2 B.C.D.1【分析】作DE⊥AB于E,先根据腰直角三角形的性质得到AB=AC=6,∠A=45°,设AE=x,则DE=x,AD=x,在Rt△BED中,利用∠DBE的正切得到BE=5x,然后由AE+BE=AB可计算出x=,再利用AD=x进行计算.【解答】解:作DE⊥AB于E,如图,∵∠C=90°,AC=BC=6,∴△ACB为等腰直角三角形,AB=AC=6,∴∠A=45°,在Rt△ADE中,设AE=x,则DE=x,AD=x,在Rt△BED中,tan∠DBE==,∴BE=5x,∴x+5x=6,解得x=,∴AD=×=2.故选:A.10.如图所示,老张利用国庆假日在某钓鱼场钓鱼,风平浪静时,鱼漂露出水面部分AB=6m,微风吹来时,假设铅锤P不动,鱼漂移动了一段距离BC,且项場恰好与水面平齐(即PAPC,水平线1与OC夹角a=8°(点A在OC上,则铅锤P处的水深h为()(参考数据:sin8°=,cos8°=,tan8°=)A.150cm B.144cm C.111cm D.105cm【分析】在Rt△ABC中,已知∠ACB=α=8°,AB=6,根据三角函数就可以求出BC的长;在直角△ABC中,根据已知条件,利用勾股定理就可以求出水深h.【解答】解:∵l∥BC,∴∠ACB=α=8°,在Rt△ABC中,∵tanα=,∴BC==42(cm),根据题意,得h2+422=(h+6)2,∴h=144(cm).故选:B.11.如图,点E是矩形ABCD中CD边上一点,△BCE沿BE折叠为△BFE,点F落在AD上.若sin∠DFE=,则tan∠EBC的值为()A.B.C.D.【分析】首先证得△ABF∽△DFE,sin∠DFE=,设DE=a,EF=3a,DF==2a,可得出CE=EF=3a,CD=DE+CE=4a,AB=4a,∠EBC=∠EBF,由△ABF∽△DFE,可得tan∠EBC=tan∠EBF==.【解答】解:∵四边形ABCD是矩形,∴∠A=∠D=∠C=90°,∵△BCE沿BE折叠为△BFE,∴∠BFE=∠C=90°,∴∠AFB+∠DFE=180°﹣∠BFE=90°,又∵∠AFB+∠ABF=90°,∴∠ABF=∠DFE,∴△ABF∽△DFE,在Rt△DEF中,sin∠DFE==,∴设DE=a,EF=3a,DF==2a,∵△BCE沿BE折叠为△BFE,∴CE=EF=3a,CD=DE+CE=4a,AB=4a,∠EBC=∠EBF,∵△ABF∽△DFE,∴=,∴tan∠EBF==,tan∠EBC=tan∠EBF=.故选:A.12.如图,直线y1=x与双曲线y2=(x>0)交于点A,将直线y1=x向下平移4个单位后称该直线为y3,若y3与双曲线交于B,与x轴交于C,与y轴交于D,AO=2BC,连接AB,则以下结论错误的有()①点C坐标为(3,0);②k=;③S四边形OCBA=;④当2<x<4时,有y1>y2>y3;⑤S四边形ABDO=2S△COD.A.1个B.2个C.3个D.4个【分析】根据一次函数图象的平移规律,由y1=x向下平移4个单位得到直线BC的解析式为y3=x﹣4,然后把y=0代入确定C点坐标,即可判断①;作AE⊥x轴于E点,BF⊥x轴于F点,易证得Rt△OAE∽△RtCBF,则===2,若设A点坐标为(a,a),则CF=a,BF=a,得到B点坐标(3+a,a),然后根据反比例函数上点的坐标特征得a•a=(3+a)•a,解得a=2,于是可确定点A点坐标为(2,),再将A点坐标代入y2=,求出k的值,即可判断②;根据S四边形OCBA=S△OAE+S梯形AEFB﹣S△BCF,求出S四边形OCBA,即可判断③;根据图象得出当2<x<4时,直线y1在双曲线y2的上方,双曲线y2又在直线y3的上方,即可判断④;先根据三角形面积公式求出S△COD=×3×4=6,再由S四边形ABDO=S四边形OCBA+S△OCD,得出S四边形ABDO=12,即可判断⑤.【解答】解:①∵将直线y1=x向下平移4个单位后称该直线为y3,y3与双曲线交于B,与x轴交于C,∴直线BC的解析式为y3=x﹣4,把y=0代入得x﹣4=0,解得x=3,∴C点坐标为(3,0),故本结论正确;②作AE⊥x轴于E点,BF⊥x轴于F点,如图,∵OA∥BC,∴∠AOC=∠BCF,∴Rt△OAE∽Rt△CBF,∴===2,设A点坐标为(a,a),则OE=a,AE=a,∴CF=a,BF=a,∴OF=OC+CF=3+a,∴B点坐标为(3+a,a),∵点A与点B都在y2=(x>0)的图象上,∴a•a=(3+a)•a,解得a=2,∴点A的坐标为(2,),把A(2,)代入y=,得k=2×=,故本结论正确;③∵A(2,),B(4,),CF=a=1,∴S四边形OCBA=S△OAE+S梯形AEFB﹣S△BCF=×2×+×(+)×2﹣×1×=+4﹣=6,故本结论错误;④由图象可知,当2<x<4时,有y1>y2>y3,故本结论正确;⑤∵S△COD=×3×4=6,S四边形ABDO=S四边形OCBA+S△OCD=6+6=12,∴S四边形ABDO=2S△COD,故本结论正确.故选:A.二.填空题(共8小题)13.计算tan60°﹣sin60°+cos245°=.【分析】将特殊角的三角函数值代入求解.【解答】解:原式=﹣+=.故答案为:.14.已知a<﹣2,点(a﹣2,y1),(a,y2),(a+2,y3)都在函数y=﹣3x2+5的图象上,则y1,y2,y3的大小关系是y1<y2<y3.【分析】函数y=﹣3x2+5的对称轴为y轴,即直线x=0,图象开口向下,当a<﹣2时,a﹣2<a<a+2<0,在对称轴左边,y随x的增大而增大,由此可判断y1,y2,y3的大小关系.【解答】解:∵当a<﹣2时,a﹣2<a<a+2<0,而抛物线y=﹣3x2+5的对称轴为直线x=0,开口向下,∴三点都在对称轴的左边,y随x的增大而增大,∴y1<y2<y3.故本题答案为:y1<y2<y3.15.如图,过O的直线交反比例函数y=于A、B两点,分别过A、B两点作y轴,x轴的平行线交于C,则S△ABC=8 .【分析】设点A(x,y),则xy=﹣4,根据交点关于原点对称可得出B(﹣x,﹣y),再根据三角形面积的公式进行计算即可.【解答】解:设点A(x,y),则B(﹣x,﹣y),所以xy=﹣4,S△ABC=•(﹣x﹣x)(y+y)=﹣2xy=8,故答案为8.16.设函数y=与y=x﹣1的图象的交点坐标为(a,b),则﹣的值为﹣.【分析】把交点坐标代入2个函数后,得到ab=2,b﹣a=﹣1,再利用整体代入法求﹣的值即可.【解答】解:∵函数y=与y=x﹣1的图象的交点坐标为(a,b),∴b=,b=a﹣1,∴ab=2,b﹣a=﹣1,∴﹣==﹣.故答案为:﹣.17.在平面直角坐标系xOy中,已知一次函数y=kx+b(k≠0)的图象过点P(1,1),与x 轴交于点A,与y轴交于点B,且tan∠ABO=3,那么点A的坐标是(﹣2,0)或(4,0).【分析】已知tan∠ABO=3就是已知一次函数的一次项系数是或﹣.根据函数经过点P,利用待定系数法即可求得函数解析式,进而可得到A的坐标.【解答】解:在Rt△AOB中,由tan∠ABO=3,可得OA=3OB,则一次函数y=kx+b中k =±.∵一次函数y=kx+b(k≠0)的图象过点P(1,1),∴当k=时,求可得b=;k=﹣时,求可得b=.即一次函数的解析式为y=x+或y=﹣x+.令y=0,则x=﹣2或4,∴点A的坐标是(﹣2,0)或(4,0).故答案为:(﹣2,0)或(4,0).18.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E =45°,∠A=60°,AC=10,则CD=.【分析】过点B作BM⊥FD于点M,根据题意可求出BC的长度,然后在△EFD中可求出∠EDF=45°,进而可得出答案.【解答】解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=10×tan60°=10,∵AB∥CF,∴BM=BC×sin30°=10×=5,CM=BC×cos30°=15,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM﹣MD=15﹣5.故答案是:15﹣5.19.如图,在坡度i=1:的斜坡AB上立有一电线杆EF,工程师在点A处测得E的仰角为60°,沿斜坡前进20米到达B,此时测得点E的仰角为15°,现要在斜坡AB上找一点P,在P处安装一根拉绳PE来固定电线杆,以使EF保持竖直,为使拉绳PE最短,则FP的长度约为 4.2米.(参考数据:=1.414,=1.732)【分析】要使点E到AB的距离最短,则EP⊥AB,根据题目中的信息可以求得FP的长度,本题得以解决.【解答】解:作BD∥AC,如右图所示,∵斜坡AB的坡度i=1:,∴tan∠BAC=,∴∠BAC=30°,∵∠EAC=60°,∴∠EAF=30°,∵要使点E到AB的距离最短,∴EP⊥AB于点P,∴tan∠EAP=,∴AP=,∵∠EBD=15°,BD∥AC,∴∠DBA=∠BAC=30°,∴∠EBP=45°,∴EP=PB,∵AP+PB=AB=20米,∴,+EP=20,解得,EP=10﹣10,又∵EF∥BC,∠B=90°﹣∠BAC=60°,∴∠EFP=60°,∵tan∠EFP=,即tan60°=,解得,PF≈4.2米,故答案为:4.220.如图所示,已知双曲线y=(x<0)和y=(x>0),直线OA与双曲线y=交于点A,将直线OA向下平移与双曲线y=交于点B,与y轴交于点P,与双曲线y=交于点C,S△ABC=6,=,则k=﹣4 .【分析】,连接OB,OC,作BE⊥OP于E,CF⊥OP于F,先证得S△OBC=S△ABC=6,由=,得出S△OPB=2,S△OPC=4,根据反比例函数系数k的几何意义得出S△OBE=,进一步得出S△PBE=,通过证得△BEP∽△CFP,得出S△CFP=2,然后根据S△OCF=S△OBC﹣S△OPB﹣S求得△OCF的面积为2,从而求得k的值.△CFP【解答】解:如图,连接OB,OC,作BE⊥OP于E,CF⊥OP于F.∵OA∥BC,∴S△OBC=S△ABC=6,∵PB:PC=1:2,∴S△OPB=2,S△OPC=4,∵S△OBE=,∴S△PBE=,∵△BEP∽△CFP,∴=()2∴S△CFP=4×=2,∴S△OCF=S△OBC﹣S△OPB﹣S△CFP=6﹣2﹣2=2,∴k=﹣4.故答案为﹣4.三.解答题(共7小题)21.(1)3tan30°﹣tan45°+2cos30°+4sin60°(2)(3)tan60°•tan30°﹣+【分析】(1)利用特殊锐角的三角函数值,转化为实数的运算,然后根据实数的运算法则求得计算结果.(2)利用特殊角的三角函数值,把三角函数值代入计算即可.(3)把tan60°=.tan30°=,sin45°=cos45°=,代入,在完成二次根式的化简计算即可【解答】解:(1)3tan30°﹣tan45°+2cos30°+4sin60°=3×﹣1+2×+4×=﹣1++2=4﹣1;(2)===+1;(3)tan60°•tan30°﹣+=×﹣+3=1﹣(1﹣)+3=1﹣1++3=.22.已知:在Rt△ABC中,AB⊥BC,点O是AC的中点,连接OB,过C点作CD⊥OB,交BO的延长线于垂足D,BC=8,sinα=.求:(1)线段OC的长;(2)cos∠DOC的值.【分析】(1)由sinα==,设AB=3x,则AC=5x,由勾股定理得出方程(3x)2+82=(5x)2,解方程得出AC=10,即可求出OC=AC=×10=5;(2)由直角三角形斜边上的中线性质得出OB=OC=OA=AC=5,设OD=y,则BD=OB+OD =5+y,由勾股定理得出方程82﹣(5+y)2=52﹣y2,得出y=,由三角函数定义即可得出答案.【解答】解:(1)∵在Rt△ABC中,AB⊥BC,∴sinα==,设AB=3x,则AC=5x,∵AB2+BC2=AC2,即(3x)2+82=(5x)2,解得:x1=2,x2=﹣2(不合题意舍去),∴AC=10,∵点O是AC的中点,∴OC=AC=×10=5;(2)∵在Rt△ABC中,AB⊥BC,点O是AC的中点,∴OB=OC=OA=AC=5,设OD=y,则BD=OB+OD=5+y,∵CD⊥OB,∴CD2=BC2﹣BD2=OC2﹣OD2,∴82﹣(5+y)2=52﹣y2,解得:y=,∴cos∠DOC===.23.如图,等腰直角△ABC,OC=2,抛物线y=ax2+c过A,B,C三点,D为抛物线上一点,连接BD且tan∠DBC=.(1)求直线BD和抛物线所表示的函数解析式.(2)如果在抛物线上有一点E,使得S△EBC=S△ABD,求这时E点坐标.【分析】(1)根据题意得到A(0,2),B(﹣2,0),C(2,0),根据待定系数法即可求得抛物线的解析式,设BD与y轴的交点为M,由tan∠DBC=,求得M的坐标为(0,1),根据待定系数法即可求得直线BD的解析式;(2)解析式联立求得D的坐标,然后根据S△ABD=S△ABM+S△ADM求得△EBC面积,根据面积公式求得E的纵坐标,把纵坐标代入抛物线解析式即可求得横坐标,得到E的坐标.【解答】解:(1)等腰直角△ABC,OC=2,∴OA=OB=OC=2,∴A(0,2),B(﹣2,0),C(2,0),∵抛物线y=ax2+c过A,B,C三点,∴,解得,∴抛物线的解析式为y=﹣+2;∵tan∠DBC=,设BD与y轴的交点为M,∴=,∴OM=2×=1,∴M(0,1),设直线BD的解析式为y=kx+b,把B(﹣2,0),M(0,1)代入得,解得,∴直线BD的解析式为y=+1;(2)解得或,∴D(1,),∴S△ABD=S△ABM+S△ADM=×(2﹣1)×2+(2﹣1)×=,∵S△EBC=S△ABD,∴BC•|y E|=,即|y E|=,∴|y E|=,∴E的纵坐标为±,把y=代入y=﹣+2得,=﹣+2,解得x=±,把y=﹣代入y=﹣+2得,﹣=﹣+2,解得x=±,∴E点的坐标为(,)或(﹣,)或(,﹣)或(﹣,﹣).24.如图,直线11:y1=kx+b与反比例函数y2=相交于A(﹣1,4)和B(﹣4,a),直线12:y3=﹣x+e与反比例函数y2=相交于B、C两点,交y轴于点D,连接OB,OC,OA.(1)求反比例函数的解析式和c的值;(2)求△BOC的面积;(3)直接写出当kx+b≥时x的取值范围.【分析】(1)利用待定系数法可求出k的值,即可求出点B的坐标,把点B代入直线l2即可得出c的值.(2)联立解出点C,D的坐标,利用S△BOC=S△BOD+S△COD求解即可.(3)由图象可得,﹣4≤x≤﹣1或x>0.【解答】解:(1)∵A(﹣1,4)在反比例函数y2=图象上,∴k=﹣1×4=﹣4,∴反比例函数的解析式为:y2=﹣,把B(﹣4,a)代入y2=﹣得,a=﹣=1,∴B(﹣4,1),把B(﹣4,1),代入y3=﹣x+c得1=4+c,∴c=﹣3;(2)∵直线l2与反比例函数,相交于B、C两点,∴反比例函数与直线l2联立得,解得或,∴C(1,﹣4),B(﹣4,1).∵直线l2交y轴于点D,∴y3=﹣3,∴D(0,﹣3).∵OD=3,△BOD中OD边上的高为|﹣4|,△COD中OD边上的高为1,∴S△BOC=S△BOD+S△COD=×3×4+×3×1=,(3)由图象可得,﹣4≤x≤﹣1或x>0时,有kx+b≥,25.图中线段AB表示某工程的部分隧道,无人勘测飞机从隧道的一侧点A出发,沿着坡度为1:1.5的路线AE飞行,飞行至分界点C的正上方点D时,测得隧道另一侧点B的俯角为23°,继续飞行至点E,测得点B的俯角为45°,此时点E离地面的高度EF=800米.(1)分别求隧道AC和BC段的长度;(2)建工集团安排甲、乙两个金牌施工队分别从隧道两头向中间施工,甲队负责AC段施工,乙队负责BC段施工,乙每天的工作量是甲的2倍,两队同时开工5天后,甲队将速度提高25%,乙队将速度提高了150%,从而两队同时完成,求原计划甲、乙两队每天各施工多少米.(参考数据:tan23°≈0.4,cos23°≈0.9)【分析】(1)要求AC和BC的长度,只要求出AB的长度,根据坡度为1:1.5,EF的长度为800米,可以求得AF的长度,AC与CD的关系,根据点B的俯角为45°,可以求得BF的长度,从而可以求得AB的长度,进而求得隧道AC和BC段的长度;(2)根据题意可以知道原计划甲、乙两队工作效率的关系,然后根据两队同时开工5天后,甲队将速度提高25%,乙队将速度提高了150%,从而两队同时完成,可以列出相应的方程组,从而可以解答本题.【解答】解:(1)由题意可得,tan∠A=,∠DBC=23°,∠EBF=45°,∵,EF=800,∠EFB=90°,∠EBF=45°,∴AF=1200,设CD=2x,则AC=3x,BF=800,∴AB=AF+BF=1200+800=2000,∵,∠DBC=23°,解得,x=250∴3x=750,BC=2000﹣750=1250,即隧道AC的长度是750米,BC段的长度是1250米;(2)设原计划甲队每天施工x米,乙队每天施工y米,解得,即原计划甲队每天施工175米,乙队每天施工350米.26.阅读材料,解决问题:材料1:在研究数的整除时发现:能被5、25、125、625整除的数的特征是:分别看这个数的末一位、末两位、末三位、末四位即可,推广成一条结论;末n位能被5n整除的数,本身必能被5n整除,反过来,末n位不能被5n整除的数,本身也不可能被5n整除,例如判断992250能否被25、625整除时,可按下列步骤计算:∵25=52,50÷25=2为整数,∴992250能被25整除∵625=54,2250÷625=3.6不为整数,∴992250不能被625整除材料2:用奇偶位差法判断一个数能否被11这个数整除时,可把这个数的奇位上的数字与偶位上的数字分别加起来,再求它们的差,看差能否被11整除,若差能被11整除,则原数能被11整除,反之则不能(1)若这个三位数能被11整除,则m=8 ;在该三位数末尾加上和为8的两个数字,让其成为一个五位数,该五位数仍能被11整除,求这个五位数(2)若这个六位数,千位数字是个位数字的2倍,且这个数既能被125整除,又能被11整除,求这个数.【分析】(1)奇数位分别是6和2,偶数为是m,根据题意可知6+2﹣m能被11整除,且m为0至9的数,从而可求出m的值.设该五位数为,由题意可知a+b=8,且设b﹣a=11n,从而求出a、b的值.(2)根据题意可知:b=2e,所以e只能取0或1或2或3或4,由材料一可知:能被125整除,可知=250或500或750,然后分情况求出a、b、c、d、e的值.【解答】解:(1)奇数位分别是6和2,偶数为是m,∴由材料可知:6+2﹣m能被11整除,∵0≤m≤9,且m是正整数,∴m=8,设该五位数为,∴偶数位之和为:2+6+b奇数位之和为:8+a,∴根据题意可知:8+b﹣8﹣a=b﹣a能被11整除,∴设b﹣a=11n,n为整数,∵a+b=8,∴,∴解得:∵0≤a≤9,0≤b≤9,∴∴﹣≤n≤,∴n=0,∴a=4,b=4,∴该数为68244,(2)由题意可知:b=2e,∵0≤b≤9,∴0≤e≤4.5,∴e=0或1或2或3或4,∴由材料一可知:能被125整除,∴=125n,n为正整数,∴1≤n≤7,∵e=0或1或2或3或4,∴n=2或4或6,∴=250或500或750或000∵偶数位之和为:5+b+d=5+2e+d奇数位之和为:a+c+e=a+c+e,∴|(5+2e+d)﹣(a+c+e)|=|5+e+d﹣a﹣c|能被11整除,当=250时,∴c=2,d=5,e=0,b=0,∴|5+e+d﹣a﹣c|=|8﹣a|,设|8﹣a|=11m,m为正整数,∴a=8±11m,∵0≤a≤9,∴﹣≤m≤或﹣≤m≤∴m=0∴a=8,∴该数为580250,同理:当=500时,该数为500500,当=750时该数为530750,当=000,该数为550000综上所述,该数为580250或500500或530750或550000另解:2)解:由题b=2e,则0≤e≤4又由材料1可知100c+10d+e=125k(k为整数)则b=e=0,∴100c+10d=125k,则20c+2d=25k∵0≤c≤9,0≤d≤9∴0≤20c+2d≤198∴0≤25k≤198∴0≤k≤7由20c+2d必为偶数可知k=0,2,4,6又由材料2可知5+d﹣a﹣c=11n(n为整数)∴①当k=0时,20c+2d=0,c=d=0,5﹣a=11n,n=0,a=5这个数为550000②当k=2时,10c+d=25,c=2,d=5,8﹣a=11n,n=0,a=8这个数为580250③当k=4时,10c+d=50,c=5,d=0,0﹣a=11n,n=0,a=0这个数为500500④当k=6时,10c+d=75,c=7,d=5,3﹣a=11n,n=0,a=3这个数为530750综上这个数为550000,580250,500500,530750故答案为:(1)8;27.如图,在平面直角坐标系xOy中,双曲线y=(k≠0)与直线y=ax+b(a≠0)交于A,B两点,直线AB分别交x轴,y轴于C、D两点,若OA=OC,A点坐标为(4,3).(1)分别求出双曲线与直线的函数表达式;(2)若P为双曲线上一点,且横坐标为2,H为直线AB上一点,且PH+HC最小,延长PH交x轴于点E,将线段OE沿x轴平移得线段O'E',在平移过程中,是否存在某个位置使|BO'﹣AE'|的值最大值,求出最大值并求出此时E点坐标.(3)在(2)的情况下,将直线OA沿线段CE平移,平移过程中交y=(x>0)的图象于M(M与点A不重合)交x轴于点N,在平面内找一点G,使M、N,E,G为顶点的四边形为矩形?直接写出G的坐标.【分析】(1)由A点坐标求出OA的长,继而可得点C坐标(﹣5,0),即可利用待定系数法解决问题.(2)作PK⊥x轴于K,交AC于H,则HK=CH,则PH+CH=PH+HK=PK为最小,可得E(2,0),作B关于x轴的对称点B',B'N∥OE,B'N=OE,连接AN交x轴于E',截取E'O'=OE,则B'N∥E'O',B'N=E'O',构造四边形B'O'E'N是平行四边形,则|BO'﹣AE'|=|E'N'﹣AE'|=AE'﹣E'N=AN为最大.(3)由题意平移后的解析式为y=x+b,当直线经过点P(2,6)时,可得矩形MEGN,求出点N的坐标即可解决问题.【解答】解:(1)∵OA=OC,A点坐标为(4,3),∴OC=5,∴C(﹣5,0),将点A(4,3)代入y=可得k=12,∴y=,将点A(4,3)和C(﹣5,0)代入y=ax+b,可得a=,b=,∴y=x+;(2)由已知可得,P(2,6),D(0,),作PK⊥x轴于K,交AC于H,∵HK∥OD,∴=,∴CD===,∴=,∴HK=,∴PH+CH=PH+HK=PK,此时PH+HC为最小,∴E与K重合,∴E(2,0),如图1中,作B关于x轴的对称点B',B'N∥OE,B'N=OE,连接AN交x轴于E',截取E'O'=OE,则B'N∥E'O',B'N=E'O',∴四边形B'O'E'N是平行四边形,∴NE'=O'B'=O'B,∴|BO'﹣AE'|=|E'N'﹣AE'|=AE'﹣E'N=AN为最大;∵B(﹣9,﹣),∴B'(﹣9,),∴N(﹣7,),∴AN==,∴|BO'﹣AE'|的最大值为,点E(2,0).(3)如图3中,∵直线OA的解析式为y=x,∴平移后的解析式为y=x+b,当直线经过点P(2,6)时,可得矩形MEGN,∴6=+b,∴b=,∴平移后的直线的解析式为y=x+,令y=0,可得x=﹣6,∴G(﹣6,6).。
2024-2025学年初中九年级上学期数学第一次月考卷及答案(北师大版)
2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第1章~第3章(北师版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.单项选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列方程中,是一元二次方程的是()A.xx2−3xx−5=−5B.2xx2−yy−1=0C.xx2−xx(xx+2.5)=0D.aaxx2+bbxx+cc=02.下列命题为真命题的是()A.有两边相等的平行四边形是菱形B.有一个角是直角的平行四边形是菱形C.对角线互相垂直的平行四边形是矩形D.有三个角是直角的四边形是矩形3.若关于xx的方程xx2+mmxx−6=2.则mm为()A.−2B.1 C.4 D.−34.a是方程xx2+2xx−1=0的一个根,则代数式aa2+2aa+2020的值是()A.2018 B.2019 C.2020 D.20215.如图,在正方形AAAAAAAA中,EE为AAAA上一点,连接AAEE,AAEE交对角线AAAA于点FF,连接AAFF,若∠AAAAEE=35°,则∠AAFFAA的度数为()A.80°B.70°C.75°D.45°6.有一块长40m,宽32m的矩形种植地,修如图等宽的小路,使种植面积为1140m2,求小路的宽.设小路的宽为x,则可列方程为()A.(40﹣2x)(32﹣x)=1140 B.(40﹣x)(32﹣x)=1140C.(40﹣x)(32﹣2x)=1140 D.(40﹣2x)(32﹣2x)=11407.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2 B.12 C.18 D.248.如图,在菱形AAAAAAAA中,对角线AAAA,AAAA相交于点OO,EE是AAAA的中点,若菱形的周长为20,则OOEE的长为()A.10 B.5 C.2.5D.19.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为xx人,则根据题意可列方程为()A.xx(xx−1)=110B.xx(xx+1)=110C.(xx+1)2=110D.(xx−1)2=11010.关于xx的一元二次方程kkxx2−2xx−1=0有两个不相等的实数根,则kk的取值范围是()A.kk>−1B.kk>−1且kk≠0C.kk<1D.kk<1且kk≠011.如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为()A.74B.95C.1910D.76�312.如图,在正方形AAAAAAAA中,AAAA=4,E为对角线AAAA上与点A,C不重合的一个动点,过点E作EEFF⊥AAAA于点F,EEEE⊥AAAA与点G,连接AAEE,FFEE,有下列结论:①AAEE=FFEE.②AAEE⊥FFEE.③∠AAFFEE=∠AAAAEE.④FFEE的最小值为3,其中正确结论的序号为()A.①②B.②③C.①②③D.①③④第Ⅱ卷二.填空题(本题共6小题,每小题3分,共18分.)13.一元二次方程5xx2+2xx−1=0的一次项系数二次项系数常数项.14.xx1,xx2为一元二次方程xx2−2xx−10=0的两根,则1xx1+1xx2=.15.如图,矩形ABCD中,对角线AC、BD相交于点O,若OB=2,∠ACB=30°,则AB的长度为.16.如图所示,菱形AAAAAAAA的对角线AAAA、AAAA相交于点OO.若AAAA=6,AAAA=8,AAEE⊥AAAA,垂足为EE,则AAEE的长为.17.如图,将一张长方形纸片AAAAAAAA沿AAAA折起,重叠部分为ΔΔAAAAEE,若AAAA=6,AAAA=4,则重叠部分ΔΔAAAAEE的面积为.18.如图,在正方形AAAAAAAA中,AAAA=6,点E,F分别在边AAAA,AAAA上,AAEE=AAFF=2,点M在对角线AAAA上运动,连接EEEE和EEFF,则EEEE+EEFF的最小值等于.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)解下列方程:(1)3xx2−4xx−1=0;(2)2�xx−3�2=xx2−920.(8分)已知方程xx2+�kk+1−6=0是关于xx的一元二次方程.(1)求证:对于任意实数kk方程中有两个不相等的实数根.(2)若xx1,xx2是方程的两根,kk=6,求1xx1+1xx2的值.21.(8分)如图,在菱形AAAAAAAA中,对角线AAAA,AAAA交于点OO,AAEE⊥AAAA交AAAA延长线于EE,AAFF∥AAEE交AAAA延长线于点FF.(1)求证:四边形AAEEAAFF是矩形;(2)若AAEE=4,AAAA=5,求AAAA的长.22.(10分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品公司为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图.请根据以上信息回答:(1)参加本次调查的有______人,若该居民区有8000人,估计整个居民区爱吃D粽的有______人.(2)请将条形统计图补充完整;(3)食品公司推出一种端午礼盒,内有外形完全相同的A、B、C、D粽各一个,小王购买了一个礼盒,并从中任意取出两个食用,请用列表或画树状图的方法,求他恰好能吃到C粽的概率.23.(8分)阅读材料,回答问题.材料1:为了解方程�xx2�2−13xx2+36=0,如果我们把xx2看作一个整体,然后设yy=xx2,则原方程可化为yy2−13yy+36=0,经过运算,原方程的解为xx1,2=±2,xx3,4=±3,我们把以上这种解决问题的方法通常叫做换元法.材料2:已知实数mm,nn满足mm2−mm−1=0,nn2−nn−1=0,且mm≠nn,显然mm,nn是方程xx2−xx−1=0的两个不相等的实数根,由韦达定理可知mm+nn=1,mmnn=−1.根据上述材料,解决以下问题:(1)为解方程xx4−xx2−6=0,可设yy=____,原方程可化为____.经过运算,原方程的解是____.(2)应用:若实数aa,bb满足:2aa4−7aa2+1=0,2bb4−7bb2+1=0且aa≠bb,求aa4+bb4的值;24.(10分)中秋期间,某商场以每盒140元的价格购进一批月饼,当每盒月饼售价为180元时,每天可售出60盒.为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每盒月饼降价2元,那么商场每天就可以多售出5盒.(1)设售价每盒下降xx元,则每天能售出______盒(用含xx的代数式表示);(2)当月饼每盒售价为多少元时,每天的销售利润恰好能达到2550元;(3)该商场每天所获得的利润是否能达到2700元?请说明理由.25.(12分)在数学实验课上,老师让学生以“折叠筝形”为主题开展数学实践探究活动.定义:两组邻边分别相等的四边形叫做“筝形”.(1)概念理解:如图1,将一张纸对折压平,以折痕为边折出一个三角形,然后把纸展平,折痕为四边形AAAAAAAA.判断四边形AAAAAAAA的形状:筝形(填“是”或“不是”);(2)性质探究:如图2,已知四边形AAAAAAAA纸片是筝形,请用测量、折叠等方法猜想筝形的角、对角线有什么几何特征,然后写出一条性质并进行证明;(3)拓展应用:如图3,AAAA是锐角△AAAAAA的高,将△AAAAAA沿边AAAA翻折后得到△AAAAEE,将△AAAAAA沿边AAAA翻折后得到△AAAAFF,延长EEAA,FFAA交于点G.①若∠AAAAAA=50°,当△AAAAEE是等腰三角形时,请直接写出∠AAAAAA的度数;②若∠AAAAAA=45°,AAAA=2,AAAA=5,AAEE=EEEE=FFEE,求AAAA的长.26.(12分)探究式学习是新课程倡导的重要学习方式,某兴趣小组学习正方形以后做了以下探究:在正方形AAAAAAAA中,E,F为平面内两点.【初步感知】(1)如图1,当点E在边AAAA上时,AAEE⊥AAFF,且B,C,F三点共线.请写出AAEE与FFAA的数量关系______;【深入探究】(2)如图2,当点E在正方形AAAAAAAA外部时,AAEE⊥AAFF,AAEE⊥EEFF,E,C,F三点共线.若AAEE=2,AAEE=4,求AAEE的长;【拓展运用】(3)如图3,当点E在正方形AAAAAAAA外部时,AAEE⊥EEAA,AAEE⊥AAFF,AAEE⊥AAEE,且D,F,E三点共线,猜想并证明AAEE,AAEE,AAFF之间的数量关系.2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
【参考借鉴】北师大版九年级上学期数学12月月考考试试卷和答案.doc
ABCDO九年级月考试题20KK 年12月一、选择题(本大题共15小题,每小题3分,共45分,在每小题给出的四个选项中,只有一项符合题目要求,请将正确答案填在后面的表格中...) 1.方程()()120x x -+=的两根分别为A. 1x =-1,2x = 2B. 1x =1,2x =2C. 1x =-1,2x =-2D. 1x =1,2x =-2 2.下列几何体中,主视图是三角形的是A .3. 把△ABC 三边的长度都扩大为原来的3A .不变 B .缩小为原来的C 3倍4.如图,在△ABC 中,∠C =90°,AD 是∠BAC 平分线,若 BC =5㎝,BD =3㎝,则点D 到AB 的距离为A. 2cmB. 2.5cmC. 3cmD. 3.2cm 5.如图,菱形ABCD 的两条对角线相交于O ,若AC = 6,BD = 4,则菱形的周长是 A. 24 B. 16 C. D. 32 6.不能判定一个四边形是平行四边形的条件是A. 两组对边分别平行B. 一组对边平行,另一组对边相等C. 一组对边平行且相等D. 两组对边分别相等 7.在Rt △ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边分别是a 、b 、c.当已知∠A 和a 时,求c ,应选择的关系式是 A .c=sin a A B .c=cos aAC .c=a·tanAD .c=a sinA 8.抛物线P =-2P 2+1的对称轴是A.直线P = 1 2B.直线P =- 12 C.直线P =2 D. P 轴9.如图,矩形ABCD 的对角线AC =8cm ,∠AOD =120º,则AB 的长为A .3cmB .2cmC .23cmD .4cm10.已知关于P 的一元二次方程P 2+2P ﹣a =0有两个相等的实数根,则a 的值是 A .1 B .-1 C .14 D. 14-11.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为289元的药品进行连续两次降价后为256元,设平均每次降价的百分率为P ,则下面所列方程正确的是A BC DO 第5题图BDC A 第4题图A BDCyxOA. 289(1-P )2 = 256B. 256(1-P )2=289C. 289(1-2P )= 256D. 256(1-2P )= 28912.等腰三角形的顶角是120︒,底边上的高为30,则三角形的周长是( ) A .120303+ B .120603+ C .150203+ D .15033+ 13.在同一平面内,下列函数的图象不可能由函数P =2P 2 + 1的图象通过平移得到的函数是A.1)1(22-+=x y ;B.322+=x y ;C.122--=x y ;D.222y x =-14.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图4,如果抛物线的最高点M 离墙1 m ,离地面340m ,则水流落地点B 离墙的距离OB 是 A 、2 m B 、3 m C 、4 m D 、5 m 15.如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数221k k y x++=的图象上.若点A 的坐标为(-2,-2),则k 的值为 A .1 B .-1或3 C .4 D .1或-3 题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 答案16.一个暗箱里放有a 个除颜色外完全相同的球,这a 个球中红球只有3个.若每次将球搅匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%附近,那么可以推算出a 的值大约是 . 17.已知反比例函数1m y x-=的图象如图所示,则实数m 的取值范 围是______________.18.在△ABC 中∠C =90°,AB =5,BC =4,则cos A =_________. 19.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是______视图. 20.如图,B ,C 是河岸边两点,A 是对岸边上的一点,测得30ABC ∠=︒,60ACB ∠=︒,BC 50=米,则A 到岸边BC 的距离是 米。
(北师大版)2018-2019学年九年级数学上册第一次月考试卷(有答案,word版)
山东省青岛2018-2019学年度第一学期北师大版九年级数学上册第一次月考试卷(九月第一二章)考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.若菱形的周长是40,则它的边长为()A.20B.10C.15D.252.若代数式x2−6x+5的值是12,则x的值为()A.7或−1B.1或−5C.−1或−5D.不能确定3.如图,下列条件之一能使平行四边形ABCD是菱形的为()①AC⊥BD;②∠BAD=90∘;③AB=BC;④AC=BD.A.①③B.②③C.③④D.①②③4.方程3x2−2√6x+2=0的根的情况是()A.无实根B.有两个等根C.有两个不等根D.有分数根5.已知x=1是方程x2+ax+2=0的一个根,则a的值是()A.−2B.−3C.2D.36.如图,小华剪了两条宽为1的纸条,交叉叠放在一起,且它们较小的交角为60∘,则它们重叠部分的面积为()A.1B.2C.√3D.2√337.方程x2+3x−4=0的根的情况是()A.有两个相等的实数根B.有两个不相等的正根C.无实数根D.负根的绝对值大于正根的绝对值8.如图,在矩形ABCD中,E,F分别是CD,BC上的点,若∠AEF=90∘,则一定有()A.△ADE∽△ECFB.△ECF∽△AEFC.△ADE∽△AEFD.△AEF∽△ABF9.一元二次方程x2−2x=0的解是()A.x=2B.x1=2,x2=0C.x=0D.x1=2,x2=110.将方程2x2−4x+1=0化成(x+m)2=n的形式的是()A.(x−1)2=12B.(2x−1)2=12C.(x−1)2=0D.(x−2)2=3二、填空题(共 10 小题,每小题 3 分,共 30 分)11.在平行四边形ABCD中,∠A=90∘,AB=7cm,AD=6cm,则S▫ABCD=________.12.某种药品的价格经过两次连续降价后,由每盒100元下调至64元.假设每次降价的百分率是x,列出方程________.13.如图,正方形ABCD的边长为6,点E在边AB上,且AE=2BE,过点A作直线CE的垂线AF交CB的延长线于点G,连接BF,则BF的长为________.14.某校图书馆去年底有图书5万册,预计到明年年底增加到7.2万册,则这两年的年平均增长率为________.15.已知菱形ABCD的周长为20cm,∠A:∠ABC=2:1,则对角线AC=________ cm.16.如图,在四边形ABCD中,∠BAD=∠BCD=90∘,AB=AD,如果AC=2√3cm,则四边形ABCD的面积为________cm2.17.已知关于x的方程x2−2x−k=0有两个相等的实数根,则k的值是________.18.若一元二次方程(m−1)x2+m2x−m=0有一根为1,则m=________.19.一个菱形的两条对角线长分别是6cm和8cm,则菱形的边长等于________cm,面积等于________cm2.20.如图,在四边形ABCD中,对角线AC,BD交于点O,AC与BD互相垂直且平分,BD=6,AC=8,则四边形周长为________,面积为________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.(1)用配方法解3x2−2x−1=0;21.(2)用因式分解法解4x2−(x−1)2=0.22.如图,一农户要建一个矩形鸡舍,为了节省材料鸡舍的一边利用长为12米的墙,另外三边用长为25米的建筑材料围成,为方便进出,在垂直墙的一边留下一个宽1米的门,所围成矩形鸡舍的长、宽分别是多少时,鸡舍面积为80平方米?23.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN // BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?为什么?(3)△ABC进行怎样的变化才能使AC边上存在点O,使四边形AECF是正方形?为什么?24.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售量,增加利润,尽快减少库存,商场决定采取适当的降价措施,经市场调查发现,如果每件衬衫降价1元,那么商场平均每天可多售出2件,若商场想平均每天盈利达1200元,那么买件衬衫应降价多少元?25.我市南湖生态城某楼盘准备以每平方米4800元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米3888元的均价开盘销售.(1)求平均每次下调的百分率;(2)王先生准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案:①打9.5折销售;②不打折,一次性送装修费每平方米188元,试问那种方案更优惠?26.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图1,求证:矩形DEFG是正方形;(2)若AB=2,CE=√2,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是30∘时,直接写出∠EFC的度数.答案1.B2.A3.A4.B5.B6.D7.D8.A9.B10.A11.42cm 212.100(1−x)2=6413.65√514.20%15.516.617.−118.−119.52420.202421.解:(1)3x 2−2x −1=03x 2−2x =1x 2−23x =13(x −13)2=13+19(x −13)2=49∴x−13=±23,解得,x1=−13,x2=1;(2)4x2−(x−1)2=0(2x−x+1)(2x+x−1)=0(x+1)(3x−1)=0∴x+1=0,或3x−1=0,解得,x1=−1,x2=13.22.若矩形猪舍的面积为80平方米,长和宽分别为10米和8米;23.(1)证明:∵MN // BC,∴∠OEC=∠BCE,∠OFC=∠GCF,又已知CE平分∠BCO,CF平分∠GCO,∴∠OCE=∠BCE,∠OCF=∠GCF,∴∠OCE=∠OEC,∠OCF=∠OFC,∴EO=CO,FO=CO,∴EO=FO;(2)解:当点O运动到AC的中点时,四边形AECF是矩形.∵当点O运动到AC的中点时,AO=CO,又EO=FO,∴四边形AECF为平行四边形,又CE为∠ACB的平分线,CF为∠ACG的平分线,∴∠BCE=∠ACE,∠ACF=∠GCF,∴∠BCE+∠ACE+∠ACF+∠GCF=2(∠ACE+∠ACF)=180∘,即∠ECF=90∘,∴四边形AECF是矩形;(3)解:当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,已知MN // BC,当∠ACB=90∘,则∠AOF=∠COE=∠COF=∠AOE=90∘,∴AC⊥EF,∴四边形AECF是正方形.24.解:设买件衬衫应降价x元,由题意得:(40−x)(20+2x)=1200,即2x2−60x+400=0,∴x2−30x+200=0,∴(x−10)(x−20)=0,解得:x=10或x=20为了减少库存,所以x=20.故买件衬衫应应降价20元.25.解:(1)设平均每次下调的百分率为x,则4800(1−x)2=3888,解得:x1=0.1=10%,x2=1.9(舍去),故平均每次下调的百分率为10%;(2)方案①购房优惠:3888×100×(1−0.95)=19440(元);方案②可优惠:188×100=18800��元).故选择方案①更优惠.26.(1)证明:作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA,∴EQ=EP,∵∠QEF+∠FEC=45∘,∠PED+∠FEC=45∘,∴∠QEF=∠PED,在Rt△EQF和Rt△EPD中,{∠QEF=∠PED EQ=EP∠EQF=∠EPD,∴Rt△EQF≅Rt△EPD,∴EF=ED,∴矩形DEFG是正方形;(2)如图2中,在Rt△ABC中.AC=√2AB=2√2,∵EC=√2,∴AE=CE,∴点F与C重合,此时△DCG是等腰直角三角形,易知CG=√2.(3)①当DE与AD的夹角为30∘时,∠EFC=120∘,②当DE与DC的夹角为30∘时,∠EFC=30∘综上所述,∠EFC=120∘或30∘.。
最新北师大版九年级数学上册月考试卷及答案【完整版】
最新北师大版九年级数学上册月考试卷及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.4的算术平方根为( )A .2±B .2C .2±D .22.下列说法中正确的是 ( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01±3.如果a 与1互为相反数,则|a+2|等于( )A .2B .-2C .1D .-1 4.若函数y =(3﹣m )27mx -﹣x+1是二次函数,则m 的值为( ) A .3 B .﹣3C .±3D .9 5.将二次函数y=x 2﹣2x+3化为y=(x ﹣h )2+k 的形式,结果为( )A .y=(x+1)2+4B .y=(x ﹣1)2+4C .y=(x+1)2+2D .y=(x ﹣1)2+26.已知1x =是一元二次方程22(2)40m x x m -+-=的一个根,则m 的值为( )A .-1或2B .-1C .2D .07.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则下面所列方程正确的是( )A .(32﹣2x )(20﹣x )=570B .32x+2×20x=32×20﹣570C .(32﹣x )(20﹣x )=32×20﹣570D .32x+2×20x ﹣2x 2=5708.如图,在平面直角坐标系中,矩形ABCD 的顶点A 点,D 点分别在x 轴、y 轴上,对角线BD ∥x 轴,反比例函数(0,0)k y k x x=>>的图象经过矩形对角线的交点E ,若点A(2,0),D(0,4),则k 的值为( ) A .16 B .20 C .32 D .409.如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A .122°B .151°C .116°D .97°10.如图,抛物线y =ax 2+bx +c(a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx +c =0的两个根是x 1=-1,x 2=3;③3a +c >0;④当y >0时,x 的取值范围是-1≤x <3;⑤当x <0时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个二、填空题(本大题共6小题,每小题3分,共18分)112的结果是__________.2.分解因式:x 2﹣9x =________.3.若代数式1﹣8x 与9x ﹣3的值互为相反数,则x =__________.4.如图,ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点,若AC+BD=24厘米,△OAB 的周长是18厘米,则EF=__________厘米.5.如图,在平面直角坐标系xOy 中,已知直线y =kx (k >0)分别交反比例函数1y x =和9y x =在第一象限的图象于点A ,B ,过点B 作 BD ⊥x 轴于点D ,交1y x=的图象于点C ,连结AC .若△ABC 是等腰三角形,则k 的值是_________.6.如图,已知反比例函数y=(k 为常数,k ≠0)的图象经过点A ,过A 点作AB ⊥x 轴,垂足为B ,若△AOB 的面积为1,则K=_______.三、解答题(本大题共6小题,共72分)1.解方程:242111x x x++=---2.已知A -B =7a 2-7ab ,且B =-4a 2+6ab +7.(1)求A 等于多少?(2)若|a+1|+(b-2)2=0,求A的值.3.如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m或n的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.4.如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF和AD.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为2,∠EAC=60°,求AD的长.5.八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有多少名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.5.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、B5、D6、B7、A8、B9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2、x(x-9)3、24、35、k=7或5.6、-2三、解答题(本大题共6小题,共72分)1、13 x2、(1)3a2-ab+7;(2)12.3、(1)矩形的周长为4m;(2)矩形的面积为33.4、(1)略;(2)AD=.5、(1)参与问卷调查的学生人数为100人;(2)补全图形见解析;(3)估计该校学生一个月阅读2本课外书的人数约为570人.6、(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.。
最新北师大版九年级数学上册月考考试卷及参考答案
最新北师大版九年级数学上册月考考试卷及参考答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若a ab+有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣53.下列结论中,矩形具有而菱形不一定具有的性质是( )A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直4.把函数y x =向上平移3个单位,下列在该平移后的直线上的点是( )A .()2,2B .()2,3C .()2,4D .(2,5)5.等腰三角形的一个角是80°,则它的顶角的度数是( )A .80°B .80°或20°C .80°或50°D .20°6.定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根7.如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的图象可能是( )A .B .C .D .8.如图,下列条件不能判定△ADB ∽△ABC 的是( )A .∠ABD=∠ACBB .∠ADB=∠ABC C .AB 2=AD •AC D . AD AB AB BC= 9.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17°10.如图,四边形ABCD 内接于⊙O ,若四边形ABCO 是平行四边形,则∠ADC 的大小为( )A .45︒B .50︒C .60︒D .75︒二、填空题(本大题共6小题,每小题3分,共18分)19=__________.2.分解因式:244m m ++=___________.3.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.4.如图,已知菱形ABCD 的周长为16,面积为83,E 为AB 的中点,若P 为对角线BD 上一动点,则EP +AP 的最小值为__________.5.如图,矩形ABCD 中,4BC =,2CD =,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为__________.(结果保留)π6.如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为___________cm .三、解答题(本大题共6小题,共72分)1.解分式方程:21124x x x -=--2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =.3.如图,抛物线212y x bx c =-++过点(3,2)A ,且与直线72y x =-+交于B 、C 两点,点B 的坐标为(4,)m .(1)求抛物线的解析式;(2)点D 为抛物线上位于直线BC 上方的一点,过点D 作DE x ⊥轴交直线BC 于点E ,点P 为对称轴上一动点,当线段DE 的长度最大时,求PD PA +的最小值;(3)设点M 为抛物线的顶点,在y 轴上是否存在点Q ,使45AQM ︒∠=?若存在,求点Q 的坐标;若不存在,请说明理由.4.如图,已知反比例函数y =k x的图象与一次函数y =x +b 的图象交于点A (1,4),点B (﹣4,n ).(1)求n 和b 的值;(2)求△OAB 的面积;(3)直接写出一次函数值大于反比例函数值的自变量x 的取值范围.5.某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请将条形统计图补全;(2)获得一等奖的同学中有14来自七年级,有14来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.6.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)直接写出y与x的函数关系式;(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、C4、D5、B6、A7、B8、D9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、32、()22m +3、-124、5、π.6、15. 三、解答题(本大题共6小题,共72分)1、32x =-.23、(1)抛物线的解析式21722y x x =-++;(2)PD PA +(3)点Q 的坐标:1(0,2Q 、2(0,2Q .4、(1)-1;(2)7.5;(3)x >1或﹣4<x <0.5、(1)答案见解析;(2)13. 6、(1)5500y x =-+;(2)当降价10元时,每月获得最大利润为4500元;(3)当销售单价定为66元时,即符合网店要求,又能让顾客得到最大实惠.。
北师大版九年级上册数学月考考试及答案【完美版】
北师大版九年级上册数学月考考试及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是()A.2-B.2 C.12D.12-2.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是()A.0 B.1 C.2 D.33.下列结论成立的是()A.若|a|=a,则a>0 B.若|a|=|b|,则a=±bC.若|a|>a,则a≤0 D.若|a|>|b|,则a>b.4.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.45.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C.若CO=BO,则a的值为()A.-3 B.-2 C.-1 D.16.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是( )A.c<﹣3 B.c<﹣2 C.c<14D.c<17.如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是()A .15B .16C .17 D .188.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17°10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)123. 2.分解因式:34x x -=________.3.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是_____. 4.如图,直线AB ,CD 相交于点O ,EO ⊥AB 于点O ,∠EOD=50°,则∠BOC 的度数为__________.5.如图,AB 为△ADC 的外接圆⊙O 的直径,若∠BAD=50°,则∠ACD=_____°.6.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+2.先化简,再求值:22122()121x x x xx x x x ----÷+++,其中x 满足x 2-2x -2=0.3.如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.4.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE ⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=33,DF=3,求图中阴影部分的面积.485的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、B4、C5、A6、B7、C8、D9、C 10、C二、填空题(本大题共6小题,每小题3分,共18分)1.2、x (x +2)(x ﹣2).3、0或14、140°5、406、2.5×10-6三、解答题(本大题共6小题,共72分)1、4x =2、123、(1)y=x 2-4x+3.(2)当m=52时,四边形AOPE 面积最大,最大值为758.(3)P 点的坐标为 :P 112-),P 2(352,2),P 3(2,2),P 412-).4、(1)DE 与⊙O 相切,理由略;(2)阴影部分的面积为25、(1)50、30%.(2)补图见解析;(3)35.6、(1)120件;(2)150元.。
北师大版九年级上册数学月考测试卷【参考答案】
北师大版九年级上册数学月考测试卷【参考答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2019-=( )A .2019B .-2019C .12019D .12019- 2.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .33.下列结论成立的是( )A .若|a|=a ,则a >0B .若|a|=|b|,则a =±bC .若|a|>a ,则a ≤0D .若|a|>|b|,则a >b .4.若实数a 、b 满足a 2﹣8a+5=0,b 2﹣8b+5=0,则1111b a a b --+--的值是( ) A .﹣20 B .2 C .2或﹣20 D .125.下列说法正确的是( )A .负数没有倒数B .﹣1的倒数是﹣1C .任何有理数都有倒数D .正数的倒数比自身小6.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为( )A .()11362x x -=B .()11362x x += C .()136x x -= D .()136x x +=7.如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是( )A .15B .16C .17D .188.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是( )A .B .C .D .9.图甲和图乙中所有的正方形都全等,将图甲的正方形放在图乙中的①②③④某一位置,所组成的图形不能围成正方体的位置是( )A .①B .②C .③D .④10.如图,DE ∥FG ∥BC ,若DB=4FB ,则EG 与GC 的关系是( )A .EG=4GCB .EG=3GC C .EG=52GCD .EG=2GC二、填空题(本大题共6小题,每小题3分,共18分)13816-=_____.2.分解因式:2242a a ++=___________.3.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.4.如图1是一个由1~28的连续整数排成的“数阵”.如图2,用2×2的方框围住了其中的四个数,如果围住的这四个数中的某三个数的和是27,那么这三个数是a ,b ,c ,d 中的__________.5.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是__________.6.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--2.已知关于x 的一元二次方程(a+c )x 2+2bx+(a ﹣c )=0,其中a 、b 、c 分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;(3)如果△ABC 是等边三角形,试求这个一元二次方程的根.3.如图,Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O ,点D 为⊙O 上一点,且CD=CB、连接DO并延长交CB的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.4.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.5.甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.6.某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B 种书包各有几个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、C5、B6、A7、C8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、22、22(1)a +3、24、a ,b ,d 或a ,c ,d5、x=26、2.5×10-6三、解答题(本大题共6小题,共72分)1、2x =2、(1) △ABC 是等腰三角形;(2)△ABC 是直角三角形;(3) x 1=0,x 2=﹣1.3、(1)相切,略;(2)4、(1)略;(2)四边形BECD 是菱形,理由略;(3)当∠A =45°时,四边形BECD 是正方形,理由略5、(1)215;(2)39件;仅从工资收入的角度考虑,小明应到乙公司应聘.6、(1)A ,B 两种书包每个进价各是70元和90元;(2)共有3种方案,详见解析;(3)赠送的书包中,A 种书包有1个,B 种书包有个,样品中A 种书包有2个,B 种书包有2个.。
最新北师大版九年级数学上册月考考试卷及答案【完美版】
最新北师大版九年级数学上册月考考试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.13-的绝对值是( ) A .3 B .3- C .13 D .13- 2.已知25523y x x =-+--,则2xy 的值为( )A .15-B .15C .152-D .1523.下列结论成立的是( )A .若|a|=a ,则a >0B .若|a|=|b|,则a =±bC .若|a|>a ,则a ≤0D .若|a|>|b|,则a >b .4.关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根12,x x ,()1212122(2)2x x x x x x -+--+3=-,则k 的值() A .0或2 B .-2或2 C .-2 D .25.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( )A .k<4B .k ≤4C .k<4且k ≠3D .k ≤4且k ≠36.已知:等腰直角三角形ABC 的腰长为4,点M 在斜边AB 上,点P 为该平面内一动点,且满足PC =2,则PM 的最小值为( )A .2B .22﹣2C .22+2D .227.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100°8.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是()A.1 B.2 C.3 D.49.如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB ∶S四边形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正确结论的个数是()A.1个B.2个C.3个D.4个10.如图,四边形ABCD内接于⊙O,F是CD上一点,且DF BC=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45°B.50°C.55°D.60°二、填空题(本大题共6小题,每小题3分,共18分)1.8的立方根为___________.2.分解因式:a2﹣4b2=_______.3.已知a、b为两个连续的整数,且28a b<<,则+a b=________.4.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是__________.5.如图,菱形ABCD 的对角线AC,BD 相交于点O ,过点A 作AH ⊥BC 于点H ,连接OH.若OB=4,S 菱形ABCD =24,则OH 的长为___________.6.菱形的两条对角线长分别是方程214480x x -+=的两实根,则菱形的面积为__________.三、解答题(本大题共6小题,共72分)1.解方程:24111x x x =+--2.已知A -B =7a 2-7ab ,且B =-4a 2+6ab +7.(1)求A 等于多少?(2)若|a +1|+(b -2)2=0,求A 的值.3.如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE 的度数;(2)过点D 作DF ∥BE ,交AC 的延长线于点F ,求∠F 的度数.4.如图,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,3A 、()2,0B -、()2,0C ,BD 平分ABC ∠交AC 于点D ,点E 、F 分别是线段BD 、BC 上的动点,求CE EF +的最小值.5.为了提高学生阅读能力,我区某校倡议八年级学生利用双休日加强课外阅读,为了解同学们阅读的情况,学校随机抽查了部分同学周末阅读时间,并且得到数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;被调查的学生周末阅读时间众数是 小时,中位数是 小时;(2)计算被调查学生阅读时间的平均数;(3)该校八年级共有500人,试估计周末阅读时间不低于1.5小时的人数.6.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、B4、D5、B6、B7、D8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、(a+2b)(a﹣2b)3、114、15°5、36、24三、解答题(本大题共6小题,共72分)1、x=3.2、(1)3a2-ab+7;(2)12.3、(1) 65°;(2) 25°.4、5、(1)补全的条形统计图如图所示,见解析,被调查的学生周末阅读时间的众数是1.5小时,中位数是1.5小时;(2)所有被调查学生阅读时间的平均数为1.32小时;(3)估计周末阅读时间不低于1.5小时的人数为290人.6、(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.。
新北师大版九年级数学上册月考考试及答案【全面】
新北师大版九年级数学上册月考考试及答案【全面】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.估计101+的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .33.关于x 的方程32211x m x x -=+++无解,则m 的值为( ) A .﹣5 B .﹣8 C .﹣2 D .54.若实数a 、b 满足a 2﹣8a+5=0,b 2﹣8b+5=0,则1111b a a b --+--的值是( ) A .﹣20 B .2 C .2或﹣20 D .125.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( )A .0B .±1C .1D .1-6.正十边形的外角和为( )A .180°B .360°C .720°D .1440°7.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则下面所列方程正确的是( )A .(32﹣2x )(20﹣x )=570B .32x+2×20x=32×20﹣570C .(32﹣x )(20﹣x )=32×20﹣570D .32x+2×20x ﹣2x 2=5708.如图,已知BD 是ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .33 9.如图,四边形ABCD 内接于⊙O ,点I 是△ABC 的内心,∠AIC=124°,点E 在AD 的延长线上,则∠CDE 的度数为( )A .56°B .62°C .68°D .78°10.如图,点A ,B 在双曲线y=3x (x >0)上,点C 在双曲线y=1x(x >0)上,若AC ∥y 轴,BC ∥x 轴,且AC=BC ,则AB 等于( )A 2B .2C .4D .2二、填空题(本大题共6小题,每小题3分,共18分)13816-=_____.2.分解因式:2218x -=______.3.已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式m ²-m+2019的值为__________.41.如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角∠ACB=120°,则此圆锥高 OC 的长度是__________.5.如图,反比例函数y=kx的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k=_________.6.如图,菱形ABCD顶点A在例函数y=3x(x>0)的图象上,函数y=kx(k>3,x>0)的图象关于直线AC对称,且经过点B、D两点,若AB=2,∠DAB=30°,则k 的值为______.三、解答题(本大题共6小题,共72分)1.解方程:23121 x x=+-2.已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1,x2满足x12+x22=11,求k的值.3.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D 竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?61.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、A4、C5、D6、B7、A8、D9、C10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、22、2(3)(3)x x +-3、20204、5、-36、三、解答题(本大题共6小题,共72分)1、x =52、(1)k ≤58;(2)k=﹣1.3、(1)相切,略;(2)4、河宽为17米5、(1)30;(2)①补图见解析;②120;③70人.6、(1)y=﹣5x 2+800x ﹣27500(50≤x ≤100);(2)当x=80时,y 最大值=4500;(3)70≤x ≤90.。
最新北师大版九年级数学上册月考试卷及完整答案
最新北师大版九年级数学上册月考试卷及完整答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分) 1.下列二次根式中,最简二次根式的是( )A .15B .0.5C .5D .502.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .0k <3.若正多边形的一个外角是60︒,则该正多边形的内角和为( )A .360︒B .540︒C .720︒D .900︒4.已知32x y =⎧⎨=-⎩是方程组23ax by bx ay +=⎧⎨+=-⎩的解,则+a b 的值是( ) A .﹣1 B .1 C .﹣5 D .55.已知平行四边形ABCD ,AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A .∠BAC=∠DCAB .∠BAC=∠DAC C .∠BAC=∠ABD D .∠BAC=∠ADB6.不等式组26,x x x m -+<-⎧⎨>⎩的解集是4x >,那么m 的取值范围( ) A .4m ≤ B .4m ≥ C .4m < D .4m =7.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .8.如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A 处沿圆柱表面爬到对角C 处捕食,则它爬行的最短距离是( )A.31π+B.32C.2342π+D.231π+9.如图, BD 是△ABC 的角平分线, AE⊥ BD ,垂足为 F ,若∠ABC=35°,∠ C=50°,则∠CDE 的度数为()A.35°B.40°C.45°D.50°10.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)112763的结果是__________.2.因式分解:2218x-=_______.33x- x 的取值范围是__________.4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB=2,则CD=__________.5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是__________.6.如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,∠ABC=60°,AB=2,分别以点A 、点C 为圆心,以AO 的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为__________.(结果保留π)三、解答题(本大题共6小题,共72分)1.解分式方程:33122x x x-+=--2.计算:()011342604sin π-----+().3.如图,直线y 1=﹣x +4,y 2=34x +b 都与双曲线y =k x交于点A (1,m ),这两条直线分别与x 轴交于B ,C 两点.(1)求y 与x 之间的函数关系式; (2)直接写出当x >0时,不等式34x +b >k x的解集; (3)若点P 在x 轴上,连接AP 把△ABC 的面积分成1:3两部分,求此时点P 的坐标.4.如图,在平面直角坐标系中,一次函数1y ax b =+的图象与反比例函数2k y x=的图象交于点()A 1,2和()B 2,m -. (1)求一次函数和反比例函数的表达式;(2)请直接写出12y y >时,x 的取值范围;(3)过点B 作BE //x 轴,AD BE ⊥于点D ,点C 是直线BE 上一点,若AC 2CD =,求点C 的坐标.5.某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg ),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)图①中m的值为;(2)求统计的这组数据的平均数、众数和中位数;(3)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?6.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w 元最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、C4、A5、C6、A7、A8、C9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)12、2(x +3)(x ﹣3).3、x ≥3415、40°6、23π 三、解答题(本大题共6小题,共72分)1、x=12、33、(1)3y x =;(2)x >1;(3)P (﹣54,0)或(94,0) 4、(1)反比例函数的解析式为22y x=,一次函数解析式为:1y x 1=+;(2)当2x 0-<<或x 1>时,12y y >;(3)当点C 的坐标为()11-或)1,1-时,AC 2CD =.5、(1)28. (2)平均数是1.52. 众数为1.8. 中位数为1.5. (3)200只.6、(1)y=﹣10x+740(44≤x ≤52);(2)当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.。
新北师大版九年级数学上册月考考试及参考答案
新北师大版九年级数学上册月考考试及参考答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =2.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .23.若正多边形的一个外角是60︒,则该正多边形的内角和为( )A .360︒B .540︒C .720︒D .900︒4.对于反比例函数2y x=-,下列说法不正确的是( ) A .图象分布在第二、四象限B .当0x >时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点()11,A x y ,()22,B x y 都在图象上,且12x x <,则12y y <5.下列四个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x 2>0,那么x >0.A .1个B .2个C .3个D .4个6.正十边形的外角和为( )A .180°B .360°C .720°D .1440°7.抛物线()2y ax bx c a 0=++≠的部分图象如图所示,与x 轴的一个交点坐标为()4,0,抛物线的对称轴是x 1.=下列结论中:abc 0>①;2a b 0+=②;③方程2ax bx c 3++=有两个不相等的实数根;④抛物线与x 轴的另一个交点坐标为()2,0-;⑤若点()A m,n 在该抛物线上,则2am bm c a b c ++≤++.其中正确的有( )A .5个B .4个C .3个D .2个8.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°,则∠ECD 等于( )A .40°B .45°C .50°D .55°9.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( ).A .45°B .60°C .75°D .85°10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是__________. 2.因式分解:2()4()a a b a b ---=_______.3.若a 、b 为实数,且b =22117a a a -+-++4,则a+b =__________. 4.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C 平移的距离CC '=_________.5.如图,C 为半圆内一点,O 为圆心,直径AB 长为2 cm ,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O 逆时针旋转至△B ′OC ′,点C ′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为_________cm 2.6.已知抛物线()20y ax bx c a =++≠的对称轴是直线1x =,其部分图象如图所示,下列说法中:①0abc <;②0a b c -+<;③30a c +=;④当13x 时,0y >,正确的是__________(填写序号).三、解答题(本大题共6小题,共72分)1.解方程:21 133x xx x=+ ++2.已知关于x的一元二次方程220x x k+-=有两个不相等的实数根.(1)求k的取值范围;(2)若方程的两个不相等实数根是a,b,求111aa b-++的值.3.已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=mx图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式kx+b﹣mx>0的解集.4.如图,在平面直角坐标系中,直线l1:y=﹣12x与反比例函数y=kx的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2;(1)求反比例函数的表达式;(2)根据图象直接写出﹣12x>kx的解集;(3)将直线l1:y=﹣12x沿y向上平移后的直线l2与反比例函数y=kx在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.5.某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)该商场服装营业员的人数为,图①中m的值为;(2)求统计的这组销售额数据的平均数、众数和中位数.6.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、C4、D5、A6、B7、B8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、()()()22 a b a a-+-3、5或34、55、4π6、①③④.三、解答题(本大题共6小题,共72分)1、32 x=-2、(1)k>-1;(2)13、(1)反比例函数解析式为y=﹣8x,一次函数的解析式为y=﹣x﹣2;(2)6;(3)x<﹣4或0<x<2.4、(1)y= 8x;(2)y=﹣12x+152;5、(1)25;28;(2)平均数:18.6;众数:21;中位数:18.6、(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.。
最新北师大版九年级数学上册月考试卷及答案【汇总】
最新北师大版九年级数学上册月考试卷及答案【汇总】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2019-的倒数是( )A .2019-B .12019-C .12019D .20192.已知两个有理数a ,b ,如果ab <0且a+b >0,那么( )A .a >0,b >0B .a <0,b >0C .a 、b 同号D .a 、b 异号,且正数的绝对值较大3.已知⊙O 的半径为10,圆心O 到弦AB 的距离为5,则弦AB 所对的圆周角的度数是( )A .30°B .60°C .30°或150°D .60°或120°4.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10115.如图,二次函数2y ax bx c =++的图象经过点1,0A ,()5,0B ,下列说法正确的是( )A .0c <B .240b ac -<C .0a b c -+<D .图象的对称轴是直线3x = 6.抛物线267y x x =++可由抛物线2y x 如何平移得到的( )A .先向左平移3个单位,再向下平移2个单位B .先向左平移6个单位,再向上平移7个单位C .先向上平移2个单位,再向左平移3个单位D.先回右平移3个单位,再向上平移2个单位7.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570 C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=5708.如图,A,B是反比例函数y=4x在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.19.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A 2B.14C.13D.2310.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为()A .6B .12C .18D .24二、填空题(本大题共6小题,每小题3分,共18分)1.64的立方根是____________.2.分解因式:a 2b+4ab+4b=_______.3.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是__________.4.如图,在直角△ABC 中,∠C=90°,AC=6,BC=8,P 、Q 分别为边BC 、AB 上的两个动点,若要使△APQ 是等腰三角形且△BPQ 是直角三角形,则AQ =________.5.如图,抛物线y=﹣x 2+2x+3与y 轴交于点C ,点D (0,1),点P 是抛物线上的动点.若△PCD 是以CD 为底的等腰三角形,则点P 的坐标为__________.6.如图,平面直角坐标系中,矩形OABC 的顶点A (﹣6,0),C (0,23).将矩形OABC 绕点O 顺时针方向旋转,使点A 恰好落在OB 上的点A 1处,则点B 的对应点B 1的坐标为__________.三、解答题(本大题共6小题,共72分)1.(1)计算:38+(23)-1﹣3×cos30°(2)解方程:32xx--+1=32x-2.关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.3.如图,在ABC中,ACB90∠=,AC BC=,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90得到线段CE,连结DE交BC于点F,连接BE.1()求证:ACD≌BCE;2()当AD BF=时,求BEF∠的度数.4.如图,在平面直角坐标系中,直线l1:y=﹣12x与反比例函数y=kx的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2;(1)求反比例函数的表达式;(2)根据图象直接写出﹣12x>kx的解集;(3)将直线l1:y=﹣12x沿y向上平移后的直线l2与反比例函数y=kx在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.105阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有______人,在扇形统计图中,“乒乓球”的百分比为______%,如果学校有800名学生,估计全校学生中有______人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.6.某超市销售一款“免洗洗手液”,这款“免洗洗手液”的成本价为每瓶16元,当销售单价定为20元时,每天可售出80瓶.根据市场行情,现决定降价销售.市场调查反映:销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),若设这款“免洗洗手液”的销售单价为x(元),每天的销售量为y(瓶).(1)求每天的销售量y(瓶)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、C5、D6、A7、A8、B9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、22、b (a+2)23、13k <<4、154或3075、(2)或(12).6、(6)三、解答题(本大题共6小题,共72分)1、(1)2;(2)x =12、(1)方程有两个不相等的实数根;(2)b=-2,a=1时,x 1=x 2=﹣1.3、()1略;()2BEF 67.5∠=.4、(1)y= 8x ;(2)y=﹣12x+152; 5、(1)5,20,80;(2)图见解析;(3)35.6、(1)y =﹣40x +880;(2)当销售单价为19元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为880元。
北师大版九年级数学上册月考试卷及答案【真题】
北师大版九年级数学上册月考试卷及答案【真题】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若a ab+有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( ) A .0B .1C .2D .33.下列说法正确的是( )A .一个数的绝对值一定比0大B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数D .最小的正整数是14.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( ) A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)5.如图,数轴上两点A,B 表示的数互为相反数,则点B 表示的( )A .-6B .6C .0D .无法确定6.已知二次函数224y x x =-++,则下列关于这个函数图象和性质的说法,正确的是( ) A .图象的开口向上B .图象的顶点坐标是()1,3C .当1x <时,y 随x 的增大而增大D .图象与x 轴有唯一交点7.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( ) A .只有乙B .甲和丁C .乙和丙D .乙和丁8.如图,已知二次函数()2y ax bx c a 0=++≠的图象如图所示,有下列5个结论 abc 0>①;b a c ->②;4a 2b c 0++>③;3a c >-④;()a b m am b (m 1+>+≠⑤的实数).其中正确结论的有( )A .①②③B .②③⑤C .②③④D .③④⑤9.如图,扇形OAB 中,∠AOB=100°,OA=12,C 是OB 的中点,CD ⊥OB 交AB 于点D ,以OC 为半径的CE 交OA 于点E ,则图中阴影部分的面积是( )A .12π+183B .12π+363C .6π+183D .6π+36310.直线y =23x +4与x 轴、y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,PC +PD 值最小时点P 的坐标为( )A .(-3,0)B .(-6,0)C .(-52,0) D .(-32,0) 二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是__________. 2.分解因式:2x +xy =_______.3.抛物线23(1)8y x =-+的顶点坐标为____________.4.如图,ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点,若AC+BD=24厘米,△OAB 的周长是18厘米,则EF=__________厘米.5.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是__________.6.如图是一张矩形纸片,点E 在AB 边上,把BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =_____,BE =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:214111x x x ++=--2.先化简,再求值(32m ++m ﹣2)÷2212m m m -++;其中m =2+1.3.某市推出电脑上网包月制,每月收取费用y (元)与上网时间x (小时)的函数关系如图所示,其中BA 是线段,且BA ∥x 轴,AC 是射线. (1)当x ≥30,求y 与x 之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?4.在平面直角坐标系中,直线1y 22x =-与x 轴交于点B ,与y 轴交于点C ,二次函数21y bx 2x c =++的图象经过点B,C 两点,且与x 轴的负半轴交于点A ,动点D 在直线BC 下方的二次函数图象上. (1)求二次函数的表达式;(2)如图1,连接DC,DB,设△BCD 的面积为S,求S 的最大值;(3)如图2,过点D 作DM ⊥BC 于点M ,是否存在点D ,使得△CDM 中的某个角恰好等于∠ABC 的2倍?若存在,直接写出点D 的横坐标;若不存在,请说明理由.5.某学校为了增强学生体质,决定开设以下体育课外活动项目:A:篮球 B:乒乓球C:羽毛球 D:足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)甲乙丙丁甲﹣﹣﹣(乙,甲)(丙,甲)(丁,甲)6.去年在我县创建“国家文明县城”行动中,某社区计划将面积为23600m的一块空地进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的1.8倍,如果两队各自独立完成面积为2450m区域的绿化时,甲队比乙队少用4天.甲队每天绿化费用是1.05万元,乙队每天绿化费用为0.5万元.(1)求甲、乙两工程队每天各能完成多少面积(单位:2m)的绿化;(2)由于场地原因,两个工程队不能同时进场绿化施工,现在先由甲工程队绿化若干天,剩下的绿化工程由乙工程队完成,要求总工期不超过48天,问应如何安排甲、乙两个工程队的绿化天数才能使总绿化费用最少,最少费用是多少万元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、D4、C5、B6、C7、D8、B9、C 10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、()x x+y .3、(1,8)4、35、x=26、 1三、解答题(本大题共6小题,共72分)1、3x =-2、11m m +-,原式=.3、(1)y=3x ﹣30;(2)4月份上网20小时,应付上网费60元;(3)5月份上网35个小时.4、(1)二次函数的表达式为:213222y x x =--;(2)4;(3)2或2911.5、解:(1)200. (2)补全图形,如图所示:(3)列表如下:∵所有等可能的结果为12种,其中符合要求的只有2种,∴恰好选中甲、乙两位同学的概率为21P126==.6、(1)甲、乙两工程队每天各完成绿化的面积分别是90m2、50m2;(2)甲队先做30天,乙队再做18天,总绿化费用最少,最少费用是40.5万元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级(上)月考数学试卷(12月份)一、选择题(每小题3分,共30分)1.从1到9这9个自然数中任取一个,既是2的倍数,又是3的倍数的概率是()A.B.C.D.2.在RtABC中,∠C=90°,AB=13,AC=12,BC=5,则下列各式中正确的是()A.B.C.D.3.反比例函数y=的图象,当x>0时,y随x的增大而增大,则k的取值范围是()A.k<3 B.k≤3C.k>3 D.k≥34.某商店举办有奖储蓄活动,购货满100元者发兑奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个.若某人购物满100元,那么他中一等奖的概率是()A.B.C.D.5.已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,2)B.y随x的增大而增大C.图象在第二、四象限内D.若x>1,则y>﹣26.在△ABC中,sinB=cos(90°﹣C)=,那么△ABC是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形7.反比例函数y=图象上有三个点(x1,y1),(x2,y2),(x3,y3),其中x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y18.函数y=ax﹣a与(a≠0)在同一直角坐标系中的图象可能是()A. B.C.D.9.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,D为垂足,若AC=4,BC=3,则sin∠ACD的值为()A.B.C.D.10.如图,在高为2m,坡角为30°的楼梯表面铺地毯,地毯的长度至少需要()A.2(+1)m B.4m C.(+2)m D.2(+3)m二.填空题(每题3分,共24分).11.函数中,自变量x的取值范围是.12.小红、小芳、小明在一起做游戏时需要确定作游戏的先后顺序,他们约定用“锤子、剪刀、布”的方式确定,请问在一个回合中三个都出“布”的概率是.13.如图,P是∠AOx的边OA上的一点,且点P的坐标为(1,),则∠AOx=度.14.如图,有一斜坡AB长40m,此斜坡的坡角为60°,则坡顶离地面的高度为.(答案可以带根号)15.学校校园内有一块如图所示的三角形空地,计划将这块空地建成一个花园,以美化校园环境.预计花园每平方米造价为30元,学校建这个花园需要投资元.(精确到1元)16.在一个不透明的袋中装有除颜色外其余都相同的3个小球,其中一个红球、两个黄球.如果第一次先从袋中摸出一个球后不再放回,第二次再从袋中摸出一个,那么两次都摸到黄球的概率是.17.如图,正比例函数y1=kx和反比例函数y2=的图象交于A(﹣1,2)、(1,﹣2)两点,若y1<y2,则x的取值范围是.18.如图,已知点A在双曲线y=上,且OA=4,过A作AC⊥x轴于C,OA的垂直平分线交OC 于B,则△AOC的面积= ;△ABC的周长为.三、解答题(共46分).19.小英和小丽用两个转盘做“配紫色”游戏,配成紫色小英得1分,否则小丽得1分,这个游戏对双方公平吗?(红色+蓝色=紫色,配成紫色者胜)20.某池塘里养了鱼苗1万条,根据这几年的经验,鱼苗成活率为95%,一段时间后准备打捞出售,第一网捞出40条,称得平均每条鱼重2.5千克,第二网捞出25条,称得平均每条鱼重2.2千克,第三网捞出35条,称得平均每条鱼重2.8千克,试估计这池塘中鱼的质量.21.如图,为测得峰顶A到河面B的高度h,当游船行至C处时测得峰顶A的仰角为α,前进m 米至D处时测得峰顶A的仰角为β(此时C、D、B三点在同一直线上).当α=44°,β=61°,m=50米时,求h的值.(精确到1米)22.如图,已知反比例函数y=与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4)(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标.23.如图,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上找一点P,使PA+PB最小.求P点坐标?24.如图,甲、乙两只捕捞船同时从A港出海捕鱼.甲船以每小时千米的速度沿西偏北30°方向前进,乙船以每小时15千米的速度沿东北方向前进.甲船航行2小时到达C处,此时甲船发现渔具丢在乙船上,于是甲船快速(匀速)沿北偏东75°的方向追赶,结果两船在B处相遇.(1)甲船从C处追赶上乙船用了多少时间?(2)甲船追赶乙船的速度是每小时多少千米?参考答案与试题解析一、选择题(每小题3分,共30分)1.从1到9这9个自然数中任取一个,既是2的倍数,又是3的倍数的概率是()A.B.C.D.考点:概率公式.分析:从1到9这9个自然数中,既是2的倍数,又是3的倍数只有6一个,所以既是2的倍数,又是3的倍数的概率是九分之一.解答:解:P(既是2的倍数,又是3的倍数)=.故选A.点评:本题考查了统计与概率中概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.2.在RtABC中,∠C=90°,AB=13,AC=12,BC=5,则下列各式中正确的是()A.B.C.D.考点:锐角三角函数的定义.分析:作出图形,然后根据锐角三角函数的定义对各选项分析判断后利用排除法求解.解答:解:如图,∵∠C=90°,AB=13,AC=12,BC=5,∴A、sinA==,故本选项错误;B、cosA==,故本选项正确;C、tanA==,故本选项错误;D、tanA==,故本选项错误.故选B.点评:本题考查锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.反比例函数y=的图象,当x>0时,y随x的增大而增大,则k的取值范围是()A.k<3 B.k≤3C.k>3 D.k≥3考点:反比例函数的性质.分析:根据反比例函数的性质解题.解答:解:∵当x>0时,y随x的增大而增大,∴函数图象必在第四象限,∴k﹣3<0,∴k<3.故选A.点评:对于反比例函数(k≠0),(1)k>0,反比例函数图象在一、三象限,在每一个象限内,y随x的增大而减小;(2)k<0,反比例函数图象在第二、四象限内,在每一个象限内,y随x的增大而增大.4.某商店举办有奖储蓄活动,购货满100元者发兑奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个.若某人购物满100元,那么他中一等奖的概率是()A.B.C.D.考点:概率公式.分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数;二者的比值就是其发生的概率的大小.解答:解:中一等奖的概率是=,故选B.点评:本题主要考查了概率的求法,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,2)B.y随x的增大而增大C.图象在第二、四象限内D.若x>1,则y>﹣2考点:反比例函数的性质.分析:根据反比例函数的性质:当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x的增大而增大进行分析即可.解答:解:A、图象必经过点(﹣1,2),说法正确,不合题意;B、k=﹣2<0,每个象限内,y随x的增大而增大,说法错误,符合题意;C、k=﹣2<0,图象在第二、四象限内,说法正确,不合题意;D、若x>1,则﹣2<y<0,说法正确,不合题意;故选:B.点评:此题主要考查了反比例函数的性质,关键是掌握反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.注意:反比例函数的图象与坐标轴没有交点.6.在△ABC中,sinB=cos(90°﹣C)=,那么△ABC是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形考点:特殊角的三角函数值;等腰三角形的判定.分析:由题意可证∠C=∠B=30°,即证△ABC是等腰三角形.解答:解:sinB=cos(90°﹣C)=,即sinB=,∴∠B=30°;cos(90°﹣C)=,∴90°﹣∠C=60°,∴∠C=30°,∴∠C=∠B.∴△ABC是等腰三角形.故选A.点评:熟记特殊角的三角函数值是解题的关键,还考查了等腰三角形的判断.7.反比例函数y=图象上有三个点(x1,y1),(x2,y2),(x3,y3),其中x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1考点:反比例函数图象上点的坐标特征.分析:先根据反比例函数y=判断出函数图象所在的象限,再根据x1<x2<0<x3,判断出三点所在的象限,再根据点在各象限坐标的特点及函数在每一象限的增减性解答.解答:解:∵反比例函数y=中,k=6>0,∴此反比例函数图象的两个分支在一、三象限;∵x3>0,∴点(x3,y3)在第一象限,y3>0;∵x1<x2<0,∴点(x1,y1),(x2,y2)在第三象限,y随x的增大而减小,故y2<y1,由于x1<0<x3,则(x3,y3)在第一象限,(x1,y1)在第三象限,所以y1<0,y2>0,y1<y2,于是y2<y1<y3.故选B.点评:本题考查了反比例函数图象上点的坐标特征:当k>0时,图象分别位于第一、三象限,横纵坐标同号;当k<0时,图象分别位于第二、四象限,横纵坐标异号.8.函数y=ax﹣a与(a≠0)在同一直角坐标系中的图象可能是()A. B.C.D.考点:反比例函数的图象;一次函数的图象.专题:压轴题;分类讨论.分析:分别根据一次函数和反比例函数图象的特点进行逐一分析即可,由于a的符号不确定,所以需分类讨论.解答:解:A、由一次函数y=a(x﹣1)的图象y轴的正半轴相交可知﹣a>0,即a<0,与y=(x≠0)的图象a>0相矛盾,故A选项错误;B、由一次函数y=a(x﹣1)的图象y轴的正半轴相交可知﹣a>0,即a<0,与y=(x≠0)的图象a>0相矛盾,故B选项错误;C、由一次函数y=a(x﹣1)的图象与y轴的负半轴相交可知﹣a<0,即a>0,与y=(x≠0)的图象a<0相矛盾,故C选项错误;D、由一次函数y=a(x﹣1)的图象可知a<0,与y=(x≠0)的图象a<0一致,故D选项正确.故选:D.点评:本题考查了一次函数的图象及反比例函数的图象,重点是注意y=k1x+b中k1、b及y=中k2的取值.9.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,D为垂足,若AC=4,BC=3,则sin∠ACD的值为()A.B.C.D.考点:锐角三角函数的定义;勾股定理;相似三角形的判定与性质.分析:先可证明∠ACD=∠B,再利用勾股定理求出AB的长度,代入就可以求解.解答:解:∵∠A=∠A,∠ADC=∠ACB=90°,∴△ACD∽△ABC.∴∠ACD=∠B.∵AC=4,BC=3,∴AB=5.∴sin∠ACD=sin∠B==.故选C.点评:此题主要考查了相似三角形的判断和性质,锐角三角形函数的定义及勾股定理的综合运用.10.如图,在高为2m,坡角为30°的楼梯表面铺地毯,地毯的长度至少需要()A.2(+1)m B.4m C.(+2)m D.2(+3)m考点:解直角三角形的应用-坡度坡角问题.分析:由题意得,地毯的总长度至少为(AC+BC).在△ABC中已知一边和一个锐角,满足解直角三角形的条件,可求出AC的长,进而求得地毯的长度.解答:解:由题意得:地毯的竖直的线段加起来等于BC,水平的线段相加正好等于AC,即地毯的总长度至少为(AC+BC),在Rt△ABC中,∠A=30°,BC=2m,∠C=90°.∵tanA=,∴AC=BC÷tan30°=2.∴AC+BC=2+2.故选A.点评:本题考查了解直角三角形的应用,解题的关键是明白每个台阶的两条直角边的和是直角△AB C的直角边的和.二.填空题(每题3分,共24分).11.函数中,自变量x的取值范围是x≠1.考点:函数自变量的取值范围;分式有意义的条件.专题:计算题.分析:根据分式有意义的条件是分母不为0;分析原函数式可得关系式x﹣1≠0,解可得答案.解答:解:根据题意可得x﹣1≠0;解得x≠1;故答案为:x≠1.点评:本题主要考查函数自变量的取值范围,当函数表达式是分式时,要注意考虑分式的分母不能为0.12.小红、小芳、小明在一起做游戏时需要确定作游戏的先后顺序,他们约定用“锤子、剪刀、布”的方式确定,请问在一个回合中三个都出“布”的概率是.考点:列表法与树状图法.分析:欲求出在一回合中三个人都出“布”的概率,可先列举出所有情况,看所求的情况占总情况的多少即可.解答:解:列表得:可以得出一共有27种情况,在一回合中三个人都出“布”的概率是.故答案为:.点评:此题主要考查了树状图法求概率,树状图法适用于两步或两步以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.13.如图,P是∠AOx的边OA上的一点,且点P的坐标为(1,),则∠AOx=60 度.考点:特殊角的三角函数值;坐标与图形性质.分析:过点P作PB⊥x轴与点B,根据点P坐标可得tan∠AOx,继而可得∠AOx的度数.解答:解:过点P作PB⊥x轴与点B,∵点P坐标为(1,),∴OB=1,PB=,∴tan∠AOx==,∴∠AOx=60°.故答案为:60.点评:本题考查了特殊角的三角函数值,一些特殊角的三角函数值需要我们熟练记忆.14.如图,有一斜坡AB长40m,此斜坡的坡角为60°,则坡顶离地面的高度为20m .(答案可以带根号)考点:解直角三角形的应用-坡度坡角问题.分析:由题意可得:∠ACB=90°,AB=40m,∠A=60°,然后在Rt△ABC中,利用三角函数即可求得答案.解答:解:∵∠ACB=90°,AB=40m,∠A=60°,∴在Rt△ABC中,BC=AB•sin60°=40×=20(m),即坡顶离地面的高度为:20m.故答案为:20m.点评:此题考查了坡度坡角问题.此题比较简单,注意利用解直角三角形的知识求解是关键.15.学校校园内有一块如图所示的三角形空地,计划将这块空地建成一个花园,以美化校园环境.预计花园每平方米造价为30元,学校建这个花园需要投资7794 元.(精确到1元)考点:解直角三角形的应用.专题:探究型.分析:延长BC,过A作AD⊥BC的延长线于点D,再根据补角的定义求出∠ACD的度数,由锐角三角函数的定义接可求出AD的长,再根据三角形的面积公式求出此三角形的面积,再根据每平方米造价为30元计算出所需投资即可.解答:解:延长BC,过A作AD⊥BC的延长线于点D,∵∠ACB=120°,∴∠ACD=180°﹣120°=60°,∵AC=20米,∴AD=AC•sin60°=20×=10(米),∴S△ABC=BC•AD=×30×10=150(平方米),∴所需投资=150×30≈7794(元).故答案为:7794.点评:本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.16.在一个不透明的袋中装有除颜色外其余都相同的3个小球,其中一个红球、两个黄球.如果第一次先从袋中摸出一个球后不再放回,第二次再从袋中摸出一个,那么两次都摸到黄球的概率是.考点:概率公式.专题:压轴题.分析:依据题意先分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.解答:解:共有3×2=6种可能,两次都摸到黄球的有2种,所以概率是.点评:用到的知识点为:概率=所求情况数与总情况数之比.17.如图,正比例函数y1=kx和反比例函数y2=的图象交于A(﹣1,2)、(1,﹣2)两点,若y1<y2,则x的取值范围是﹣1<x<0或x>1 .考点:反比例函数与一次函数的交点问题.分析:根据A、B的横坐标,结合图象即可得出当y1<y2时x的取值范围.解答:解:∵正比例函数y1=kx和反比例函数y2=的图象交于A(﹣1,2)、(1,﹣2)两点,y1<y2,∴∴此时x的取值范围是﹣1<x<0或x>1,故答案为:﹣1<x<0或x>1.点评:本题考查了一次函数与反比例函数的交点问题,主要考查学生的理解能力和观察图形的能力,题目具有一定的代表性,是一道比较好的题目,用了数形结合思想.18.如图,已知点A在双曲线y=上,且OA=4,过A作AC⊥x轴于C,OA的垂直平分线交OC 于B,则△AOC的面积= 3 ;△ABC的周长为2.考点:反比例函数综合题;三角形的面积;线段垂直平分线的性质.专题:综合题;压轴题.分析:首先由反比例函数比例系数k的几何意义,直接得出△AOC的面积=|k|=3;如果设A(x,y),那么由线段垂直平分线的性质可知AB=OB,则△ABC的周长=OC+AC=x+y.由点A在双曲线y=上,且OA=4,可列出方程组,运用完全平方公式将方程组变形,求出x+y的值,从而得出结果.解答:解:∵点A在双曲线y=上,过A作AC⊥x轴于C,∴△AOC的面积=|k|=3;设点A的坐标为(x,y).∵点A在第一象限,∴x>0,y>0.∵OA的垂直平分线交OC于B,∴AB=OB,∴△ABC的周长=AB+BC+AC=OB+BC+AC=OC+AC=x+y.∵点A在双曲线y=上,且OA=4,∴由①得,xy=6③,③×2+②,得x2+2xy+y2=28,∴(x+y)2=28,∵x>0,y>0,∴x+y=2.∴△ABC的周长=2.故答案为:3,2.点评:此题综合考查了反比例函数的性质,线段垂直平分线的性质,完全平方公式等多个知识点.此题难度稍大,综合性比较强,注意对各个知识点的灵活应用.三、解答题(共46分).19.小英和小丽用两个转盘做“配紫色”游戏,配成紫色小英得1分,否则小丽得1分,这个游戏对双方公平吗?(红色+蓝色=紫色,配成紫色者胜)考点:游戏公平性.分析:游戏是否公平,关键要看游戏双方取胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.解答:解:红色和蓝色的组合能配成紫色.配成紫色的概率=P1(红)•P2(蓝)+P1(蓝)•P2(红)=,即小英得分的概率是,小丽得分的概率为1﹣.二者概率不相等,故这个游戏对双方不公平.点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个人取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:两步完成的事件的概率=第一步事件的概率与第二步事件的概率的积.20.某池塘里养了鱼苗1万条,根据这几年的经验,鱼苗成活率为95%,一段时间后准备打捞出售,第一网捞出40条,称得平均每条鱼重2.5千克,第二网捞出25条,称得平均每条鱼重2.2千克,第三网捞出35条,称得平均每条鱼重2.8千克,试估计这池塘中鱼的质量.考点:用样本估计总体.分析:由于第一次网出40条,称得平均每条鱼重2.5kg.第二次网出25条,称得平均每条鱼重2.2kg.第三次网出35条,称得平均每条鱼重2.8kg,利用这些条件可以求出样本平均数,然后利用鱼苗10万条和鱼苗成活率为95%,即可取出鱼塘中的鱼总重量.解答:解:由题意可知三次共捕鱼40+25+35=100(条),捕得鱼的总质量为40×2.5+25×2.2+35×2.8=253(千克),所以可以估计每条鱼的质量约为253÷100=2.53(千克),池塘中鱼的总质量为10 000×95%×2.53=24 035(千克).点评:本题主要考查了利用样本估计总体的思想,解题时首先求出样本平均数,然后利用样本平均数估计总体平均数即可解决问题,难度适中.21.如图,为测得峰顶A到河面B的高度h,当游船行至C处时测得峰顶A的仰角为α,前进m 米至D处时测得峰顶A的仰角为β(此时C、D、B三点在同一直线上).当α=44°,β=61°,m=50米时,求h的值.(精确到1米)考点:解直角三角形的应用-仰角俯角问题.分析:可分别在Rt△ABC和Rt△ABD中,用AB表示出BC、BD的长,进而由CD=BC﹣BD=m 得到AB即h的表达式,进而代入数据求出即可.解答:解:用含α、β和m的式子表示h:在Rt△ABC中,∵tanα=,∴BC=,在Rt△ABD中,∵tanβ=,∴BD=,∵m=BC﹣BD,∴m=﹣=﹣=50,∴h=114米.答:h的值是114m.点评:本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.22.如图,已知反比例函数y=与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4)(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标.考点:反比例函数与一次函数的交点问题.分析:(1)把A点坐标代入反比例函数解析式可求得k的值,可求得反比例函数解析式和A点坐标,把A点坐标代入一次函数可求得b的值,可求得一次函数表达式;(2)联立两函数解析式,求方程的解可求得B点坐标.解答:解:(1)把A点坐标代入反比例函数解析式可得﹣k+4=k,解得k=2,∴反比例函数解析式为y=,且A点坐标为(1,2),∵A点在一次函数图象上,∴2=1+b,解得b=1,∴一次函数解析式为y=x+1,(2)联立两函数解析式可得,解得或,∴B点坐标为(﹣2,﹣1).点评:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足两函数解析式是解题的关键.23.如图,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上找一点P,使PA+PB最小.求P点坐标?考点:反比例函数综合题.专题:综合题;压轴题.分析:(1)根据反比例函数图象上的点的横纵坐标的乘积为函数的系数和△OAM的面积为1可得k=2,即反比例函数的解析式为y=.(2)由正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点求得A为(2,1).要使PA+PB最小,需作出A点关于x轴的对称点C,并连接BC,交x轴于点P,P 为所求点.A点关于x轴的对称点C(2,﹣1),而B为(1,2),故BC的解析式为y=﹣3x+5,即可求得P点的坐标.解答:解:(1)设A点的坐标为(a,b),则b=∴ab=k∵ab=1,∴k=1∴k=2,∴反比例函数的解析式为y=.(3分)(2)根据题意画出图形,如图所示:得=x,解得x=2或x=﹣2,∵点A在第一象限,∴x=2把x=2代入y=得y=1,∴A为(2,1)(4分)设A点关于x轴的对称点为C,则C点的坐标为(2,﹣1).令直线BC的解析式为y=mx+n∵B点的横坐标为1,B为反比例函数在第一象限图象上的点,∴xy=2,∴y=2,∴B为(1,2),将B和C的坐标代入得:,解得:∴BC的解析式为y=﹣3x+5(6分)当y=0时,x=,∴P点为(,0).(7分)点评:本题考查反比例函数和一次函数解析式的确定、图形的面积求法、轴对称等知识及综合应用知识、解决问题的能力.有点难度.24.如图,甲、乙两只捕捞船同时从A港出海捕鱼.甲船以每小时千米的速度沿西偏北30°方向前进,乙船以每小时15千米的速度沿东北方向前进.甲船航行2小时到达C处,此时甲船发现渔具丢在乙船上,于是甲船快速(匀速)沿北偏东75°的方向追赶,结果两船在B处相遇.(1)甲船从C处追赶上乙船用了多少时间?(2)甲船追赶乙船的速度是每小时多少千米?考点:解直角三角形的应用-方向角问题.分析:(1)根据方向角可以得到∠BCA=45°,∠B=30度,过A作AD⊥BC于点D,在直角△ACD 中,根据三角函数就可求得AD的长,再在直角△ABD中,根据三角函数即可求得AB的长,就可求得时间;(2)求出BC的长,根据(1)中的结果求得时间,即可求得速度.解答:解:(1)如图,过A作AD⊥BC于点D.作CG∥AE交AD于点G.∵乙船沿东北方向前进,∴∠HAB=45°,∵∠EAC=30°,∴∠CAH=90°﹣30°=60°∴∠CAB=60°+45°=105°.∵CG∥EA,∴∠GCA=∠EAC=30°.∵∠FCD=75°,∴∠BCG=15°,∠BCA=15°+30°=45°,∴∠B=180°﹣∠BCA﹣∠CAB=30°.在直角△ACD中,∠ACD=45°,AC=2×15=30.AD=AC•sin45°=30×=30千米.CD=AC•cos45°=30千米.在直角△ABD中,∠B=30°.则AB=2AD=60千米.则甲船从C处追赶上乙船的时间是:60÷15﹣2=2小时;(2)BC=CD+BD=30+30千米.则甲船追赶乙船的速度是每小时(30+30)÷2=15+15千米/小时.答:甲船从C处追赶上乙船用了2小时,甲船追赶乙船的速度是每小时15+15千米.点评:一般三角形的计算可以通过作高线转化为直角三角形的计算,正确作辅助线是解决本题的关键.。