物理光学第3章习题解答

合集下载

物理光学习题答案

物理光学习题答案

物理光学习题答案选择题:1.A2.D3.B4.A5.D6.A7.A8.B9.A 10.D 11.C 12.C 13.C 14.C 15.D 16.B 17.B 18.C 19.B 20.A 21.A 22.D 23. (1)(4) 24.(1)(2)(3) 25. (1)(2)(3) 26.(2)(4) 27. (1)(2)(3) 28. (2)(3) 29. (1)(2)(3) 30. (1)(4) 31. (1)(3) 32.(2)(4)作业:1. 解:根据杨氏双缝干涉明纹计算公式可得:()())(2.2104007601042.1294mm dkD x =⨯-⨯⨯⨯=-=∆--紫红λλ2. 解:某波长的光的第三级明纹和红光的第二级明纹相重合,说明它们的衍射角相等 。

根据明纹条件sin (21)2a k λϕ=±+对红光第二级明纹有5sin 2a ϕλ= 对某波长的光第三级明纹有7sin 2a ϕλ''=ϕϕ=/ /2725λλ=∴nm 4506307575/=⨯==λλ3. 解:(1)9sin (21)4sin 22a k k aλλϕϕ=±+==4429tan sin 46729x a x f f fnm afλϕϕλ=====(2)4k =∴ 从P 处来看,可分为21)9k +=(个半波带 4. (1)2400()sin 21.61sin 302k a b k k a b m λϕλμ⨯+=±=+===︒(2)紫光71410m λ-=⨯ 红光727.610m λ-=⨯1212sin sin ddλλϕϕ==第一级光谱线宽度7121212163.610(tan tan )(sin sin )0.225m 1.610f x f f d ϕϕϕϕλλ--⨯∆=-=-==⨯(-)=计算题:1. 解:(1) sin b k θλ= (1)k = 1/t g x fθ= 11()f x m m bλ== (2)sin (21)(2)2b k k λθ=+=225/(2)2.5()2f tg x fk x m m bλθ====2. .解: 由条纹间距公式D x dλ∆=中央明纹两侧的第3级明纹中心的距离为7300666 5.461107.34m m 0.134D S x dλ-=∆==⨯⨯⨯=3解:(1)()sin 21,2a k λϕ=+当1k =时,3sin 2aλϕ=()2121330.2722f f x x x cm aa λλ⎛⎫∆=-=-=⎪⎝⎭(2)由sin ,d k ϕλ= 当1k =时,sin aλϕ=()///21211.8f f x x x cm aa λλ⎛⎫∆=-=-=⎪⎝⎭4. 解:(1)中央明纹宽度7422161012mm 10f x aλ--⨯⨯⨯∆===(2)由暗纹条件2sin 2k=2sin 2a k aλλϕϕ==()则2sin tan ,sin 12mm x ftg f ϕϕϕϕϕ∴≈=≈=由很小,简述题1.用什么方法可以由普通光源获得相干光?试举出实例。

(完整版)物理光学各章典型习题及部分习题解答1

(完整版)物理光学各章典型习题及部分习题解答1


3 2

kz

cos1200
π
ky 0
E
E0
cos
2πc
t
3
x
π
z
0
由于

k
因此,为空间周期为:
x
2π kx
2 3
3

z
2π kz
2

y
不存在
空间频率为:
fx
1
x
3
2

1
fz z
1
2

fy 0
例题1-2 一束光强为Ii 的自然光在某界面上反射,其 s光和p光的反射系数分别为rs=0.2和rp=0.1,求反射光 的偏振度。 解:s光和p光的反射率分别为
(900
1 )
tg1
n介 n水
tg1
n水
900
14.710
例题 例题1-3 折射、反射两光束互相垂直,入射、折射
媒质的折射率分别为n1、n2。证明此时=B=arctg
(n2/n1),并分别求出n1=1.0,n2=1.5和n1=1.5,
n2=1.0两种情况的B 。i r
n1
/2
n2
由于 可得
t
i t π-π/2 n1 sini n2 sint
n1 sini
Rs rs2 0.04 Rp rp2 0.01
反射光中s分量和p分量的光强分别为
Is
Rs Iis
1 2
Rs Ii
Ip
Rp Iip
1 2
Rp Ii
由偏振光的定义,反射光的偏振度为
P=
Is
Ip
1 2

光学教程第三版(姚启钧著)课后题答案下载

光学教程第三版(姚启钧著)课后题答案下载

光学教程第三版(姚启钧著)课后题答案下载《光学教程》以物理光学和应用光学为主体内容。

以下是为大家的光学教程第三版(姚启钧著),仅供大家参考!点击此处下载???光学教程第三版(姚启钧著)课后题答案???本教程以物理光学和应用光学为主体内容。

第1章到第3章为应用光学部分,介绍了几何光学基础知识和光在光学系统中的传播和成像特性,注意介绍了激光系统和红外系统;第4~8章为物理光学部分,讨论了光在各向同性介质、各向异性介质中的传播规律,光的干涉、衍射、偏振特性及光与物质的相互作用,并结合介绍了DWDM、双光子吸收、Raman放大、光学孤子等相关领域的应用和进展。

第9章则专门介绍航天光学遥感、自适应光学、红外与微光成像、瞬态光学、光学信息处理、微光学、单片光电集成等光学新技术。

绪论0.1光学的研究内容和方法0.2光学发展简史第1章光的干涉1.1波动的独立性、叠加性和相干性1.2由单色波叠加所形成的干涉图样1.3分波面双光束干涉1.4干涉条纹的可见度光波的时间相干性和空间相干性1.5菲涅耳公式1.6分振幅薄膜干涉(一)——等倾干涉1.7分振幅薄膜干涉(二)——等厚干涉视窗与链接昆虫翅膀上的彩色1.8迈克耳孙干涉仪1.9法布里一珀罗干涉仪多光束干涉1.10光的干涉应用举例牛顿环视窗与链接增透膜与高反射膜附录1.1振动叠加的三种计算方法附录1.2简谐波的表达式复振幅附录1.3菲涅耳公式的推导附录1.4额外光程差附录1.5有关法布里一珀罗干涉仪的(1-38)式的推导附录1.6有同一相位差的多光束叠加习题第2章光的衍射2.1惠更斯一菲涅耳原理2.2菲涅耳半波带菲涅耳衍射视窗与链接透镜与波带片的比较2.3夫琅禾费单缝衍射2.4夫琅禾费圆孔衍射2.5平面衍射光栅视窗与链接光碟是一种反射光栅2.6晶体对X射线的衍射视窗与链接与X射线衍射有关的诺贝尔奖附录2.1夫琅禾费单缝衍射公式的推导附录2.2夫琅禾费圆孔衍射公式的推导附录2.3平面光栅衍射公式的推导习题第3章几何光学的基本原理3.1几个基本概念和定律费马原理3.2光在平面界面上的反射和折射光导纤维视窗与链接光导纤维及其应用3.3光在球面上的反射和折射3.4光连续在几个球面界面上的折射虚物的概念3.5薄透镜3.6近轴物近轴光线成像的条件3.7共轴理想光具组的基点和基面视窗与链接集成光学简介附录3.1图3-6中P1和JP1点坐标的计算附录3.2棱镜最小偏向角的计算附录3.3近轴物在球面反射时物像之间光程的计算附录3.4空气中的厚透镜物像公式的推导习题第4章光学仪器的基本原理4.1人的眼睛4.2助视仪器的放大本领4.3目镜4.4显微镜的放大本领4.5望远镜的放大本领视窗与链接太空实验室——哈勃太空望远镜 4.6光阑光瞳4.7光度学概要——光能量的传播视窗与链接三原色原理4.8物镜的聚光本领视窗与链接数码相机4.9像差概述视窗与链接现代投影装置4.10助视仪器的像分辨本领视窗与链接扫描隧显微镜4.11分光仪器的色分辨本领习题第5章光的偏振5.1自然光与偏振光5.2线偏振光与部分偏振光视窗与链接人造偏振片与立体电影5.3光通过单轴晶体时的双折射现象5.4光在晶体中的波面5.5光在晶体中的传播方向5.6偏振器件5.7椭圆偏振光和圆偏振光5.8偏振态的实验检验5.9偏振光的干涉5.10场致双折射现象及其应用视窗与链接液晶的电光效应及其应用5.11旋光效应5.12偏振态的矩阵表述琼斯矢量和琼斯矩阵附录5.1从沃拉斯顿棱镜出射的两束线偏振光夹角公式(5-15)的推导习题第6章光的吸收、散射和色散6.1电偶极辐射对反射和折射现象的解释6.2光的吸收6.3光的散射视窗与链接光的散射与环境污染监测6.4光的色散6.5色散的经典理论习题第7章光的量子性7.1光速“米”的定义视窗与链接光频梳7.2经典辐射定律7.3普朗克辐射公式视窗与链接xx年诺贝尔物理学奖7.4光电效应7.5爱因斯坦的量子解释视窗与链接双激光束光捕获7.6康普顿效应7.7德布罗意波7.8波粒二象性附录7.1从普朗克公式推导斯忒藩一玻耳兹曼定律附录7.2从普朗克公式推导维恩位移定律习题第8章现代光学基础8.1光与物质相互作用8.2激光原理8.3激光的特性8.4激光器的种类视窗与链接激光产生106T强磁场8.5非线性光学8.6信息存储技术8.7激光在生物学中的应用视窗与链接王淦昌与惯性的束核聚变习题主要参考书目基本物理常量表习题答案1.阳光大学生网课后答案下载合集2.《光学》赵凯华钟锡华课后习题答案高等教育出版社3.光学郭永康课后答案高等教育出版社4.阳光大学生网课后答案下载求助合集。

物理光学各章典型习题及部分习题解答

物理光学各章典型习题及部分习题解答


60 180
15 0.00436(m)
由于 因此
0
1.22

D
D

1.22
0

1.22

589310-10 2.9 10-4
2.47(mm)
例3-10 在正常照度下,人眼瞳孔的直径为3mm,人眼 对绿光最敏感,其波长为550nm,人眼中玻璃液的折射 率为n=1.336。
(2m 1) 2
2

32
2
由于 sin 1 t 1 , 所以x1 两第一级明纹之g 间的距离为
tg1

tg

2

3f 1, 2a
x1 f x2 f
x2

3f 2
2a
x

x2

x2

3 f
2a

0.27(cm)
例题3-7 已知:一雷达位于路边d =15m处,射束与公 路成15°角,天线宽度a = 0.20m,射束波长=30mm。
3
3
例3-6 单缝夫琅和费衍射实验中,垂直入射的光有两
种波中波长 1=400nm ,2 =760nm。已知单缝宽度
a=1.0×10-2cm透镜焦距 f =50cm,求两种光第一级衍 射明纹中心之间的距离。
解(1)由单缝衍射明纹公式可知
a sin1

(2m 1) 1
2

31
2

a sin2
x f tg f sin k f
a
l0

x1
x1

2
f
a

2

0.5 500 109 0.1103

物理光学第三章 习题答案

物理光学第三章 习题答案

(2)
m 20 2 2 h 10 cos 2 40 20 4 h 16 20 2 0.707rad cos 2
3.24 牛顿环也可以在两个曲率半径很大的平凸透镜之间的空气层 中产生。如图所示,平凸透镜A和B的凸面的曲率半径分别为RA 和RB,在波长600nm的单色光垂直照射下,观察到它们之间空气 层产生的牛顿环第10个暗环的半径rAB=4mm。若有曲率半径为RC 的平凸透镜C,并且B、C组合和A、C组合产生的第10个暗环的 半径分别为rBC=4.5mm和rAC=5mm,试计算RA,RB和RC。
4.4 F-P标准具的间隔为2.5mm,问对于波长为500nm的光,条 纹系中心的干涉级是多少?如果照明光波包含波长500nm和稍 小与500nm得两种光波,它们的环条纹距离为1/100条纹间距, 求未知光波的波长。 解:条纹系中心的干涉级为:
2h m 2h m 104

e 2 0.0005(nm) 2he 499.9995(nm)
4.3 将一个波长稍小于600nm的光波与一个波长为600nm的光波 在F-P干涉仪上进行比较。当F-P干涉仪两镜面间距离改变 1.5mm时,两光波的条纹系就重合一次。试求未知光波的波长。 解: 2l n n 1
解得: n 5 103 n ' 599.88 109 (m) n 1
(3) 2nh cos 2 m 2nh sin 2 2 2 0.0022 2nh sin 2 由 sin 1 n sin 2 cos 1 1 n cos 2 2 n cos 2 2 1 0.0033 cos 条纹间距为:e f 1 6.7 10-4 m

新概念物理光学习题答案

新概念物理光学习题答案

新概念物理光学习题答案新概念物理光学习题答案光学作为物理学的一个重要分支,研究光的传播、反射、折射和干涉等现象。

在学习光学的过程中,我们常常会遇到一些习题,通过解答这些习题可以更好地理解光学的原理和应用。

本文将为大家提供一些新概念物理光学习题的答案,希望能够帮助大家更好地掌握光学知识。

1. 一束光从空气射入玻璃介质,发生折射现象。

如果入射角为30°,折射角为20°,求玻璃的折射率。

解答:根据折射定律,光线从空气射入玻璃介质时,入射角i和折射角r之间的关系为:n1*sin(i) = n2*sin(r)。

其中,n1为空气的折射率,近似为1;n2为玻璃的折射率,待求。

代入已知条件,得到:1*sin(30°) = n2*sin(20°)。

解方程可得,n2 ≈ 1.5。

所以,玻璃的折射率约为1.5。

2. 一束光从空气射入水中,发生折射现象。

已知水的折射率为1.33,求光线从水中射入空气时的折射角。

解答:同样利用折射定律,光线从水中射入空气时,入射角i和折射角r之间的关系为:n1*sin(i) = n2*sin(r)。

其中,n1为水的折射率,n2为空气的折射率。

代入已知条件,得到:1.33*sin(i) = 1*sin(r)。

由于光线从水中射入空气,空气的折射率近似为1。

解方程可得,sin(r) ≈ 1.33*sin(i)。

再利用反正弦函数,可求得折射角r的近似值。

所以,光线从水中射入空气时的折射角约为反正弦(1.33*sin(i))。

3. 一束光从空气射入玻璃球,球的折射率为1.5。

已知入射角为60°,求光线在球内的传播路径。

解答:当光线从空气射入玻璃球时,由于两种介质的折射率不同,光线会发生折射现象。

根据折射定律,入射角i和折射角r之间的关系为:n1*sin(i) =n2*sin(r)。

其中,n1为空气的折射率,n2为玻璃球的折射率。

代入已知条件,得到:1*sin(60°) = 1.5*sin(r)。

《大学物理教程》郭振平主编第三章光的干涉知识点及课后习题答案

《大学物理教程》郭振平主编第三章光的干涉知识点及课后习题答案

图3-2
如图3-2所示,设薄膜的厚度为 e ,折射率是 n ,薄膜周围介质的折射率是 n1 ,光射入
薄膜时的入射角是 i ,在薄膜中的折射角是 ,透镜 L 将a、b两束平行光会聚到位于透镜焦
平面的观察屏P上使它们相互叠加形成干涉。
当 n n1 时在反射光中要考虑半波损失,反射光中亮条纹和暗条纹分别对应
杨氏双缝干涉:
图3-1
杨氏双缝干涉实验装置如图 3-1 所示,亮条纹和暗条纹中心分别为
x k D , k 0,1, 2,... :亮条纹中心 a
x 2k 1 D , k 1, 2, :暗条纹中心
2a 式中, a 为双缝间距; D 为双缝到观察屏之间的距离; 为光波的波长。
杨氏双缝干涉条件: a ≈ ; x << D 。
2e
n2
n12
sin 2
i
k
1 2
:亮条纹
2e n2 n12 sin2 i k :暗条纹 k 1, 2,3, 。
由此可以看出,对厚度均匀的薄膜,在 n 、 n1 、 n2 和 e 都确定的情况下,对于某一波长 而言,两反射光的光程差只取决于入射角。因此,以同一倾角入射的一切光线,其反射相干 光有相同的光程差,并产生同一干涉条纹。换句话说,同一条纹都是由来自同一倾角的入射 光形成的。这样的条纹称为等倾干涉条纹。
中央明纹相位差 0 ,光强 I0 4I1
P 点相位差 ,该点的光强度和中央明纹的光强度之比 4
I cos2 cos2 0.8536
I0
2
8
3-2 在杨氏实验装置中,两小孔的间距为 0.5 mm,光屏离小孔的距离为 50 cm。当
以折射率为 1.60 的透明薄片贴住小孔 S2 时,如图 3-5 所示,发现屏上的条纹移动了 1cm, 试确定该薄片的厚度。

物理光学各章典型习题及部分习题解答2

物理光学各章典型习题及部分习题解答2
20 5893 10-8 n 1.000276 1.0008653 2.0
例题2-10 在杨氏双缝实验中,采用蓝绿光源,波长 分别为 1=440和2=540 ,试计算条纹从第几级发生 完全重叠。
解:杨氏干涉条纹中明纹的位置为
D xm d
条纹发生重叠
m 0, 1 2, , ...
2ne (2m 1)

2
设1=500nm的第m级干涉极小, 2=700nm的第m-1 级干涉极小,则
(2m 1)
1
2
2(m 1) 1
2
2
1 2 m 2(2 1 )
12 e 673nm 2n(2 1 )
例题2-15 光线以 =300入射到折射率n2=1.25的空 气中的薄膜上。当波长1=6400Å时,反射最大;而 当波长2=4000Å时,反射最小。求薄膜的最小厚度。 解: 由于是空气中的薄膜,一定有半波损失,故
e
(零级)
现在,两光线到达中央处的光 程差:
5 -5 e =10 (m) n2 n1
=5 =(n2 -n1)e
例2-13 有一单色光垂直照射在杨氏双缝实验装置上, 已知双缝间距为a=1.1297mm,在缝后放置一接收屏, 测得相邻明条纹的间距为0.5362mm,然后将屏向后 移动50cm,测得相邻明条纹的间距为0.8043mm,确 定该单色光波长。
零级条纹出现条件是
m 0
即 考虑到
S2Q2 (n n)l 0 S 2Q2 (n n)l
n n S2Q2 0
于是,零级条纹(因而所有条纹)应当上移。 (2) 考察屏幕上的一个固定点移动一个条纹,表明光 程差相差一个波长 由

2023年大学_光学教程第三版(姚启钧著)课后题答案下载

2023年大学_光学教程第三版(姚启钧著)课后题答案下载

2023年光学教程第三版(姚启钧著)课后题答案下载2023年光学教程第三版(姚启钧著)课后题答案下载本教程以物理光学和应用光学为主体内容。

第1章到第3章为应用光学部分,介绍了几何光学基础知识和光在光学系统中的传播和成像特性,注意介绍了激光系统和红外系统;第4~8章为物理光学部分,讨论了光在各向同性介质、各向异性介质中的传播规律,光的干涉、衍射、偏振特性及光与物质的相互作用,并结合介绍了DWDM、双光子吸收、Raman放大、光学孤子等相关领域的应用和进展。

第9章则专门介绍航天光学遥感、自适应光学、红外与微光成像、瞬态光学、光学信息处理、微光学、单片光电集成等光学新技术。

光学教程第三版(姚启钧著):内容简介绪论0.1 光学的研究内容和方法0.2 光学发展简史第1章光的干涉1.1 波动的独立性、叠加性和相干性1.2 由单色波叠加所形成的干涉图样1.3 分波面双光束干涉1.4 干涉条纹的可见度光波的时间相干性和空间相干性 1.5 菲涅耳公式1.6 分振幅薄膜干涉(一)——等倾干涉1.7 分振幅薄膜干涉(二)——等厚干涉视窗与链接昆虫翅膀上的彩色1.8 迈克耳孙干涉仪1.9 法布里一珀罗干涉仪多光束干涉1.10 光的干涉应用举例牛顿环视窗与链接增透膜与高反射膜附录1.1 振动叠加的三种计算方法附录1.2 简谐波的表达式复振幅附录1.3 菲涅耳公式的推导附录1.4 额外光程差附录1.5 有关法布里一珀罗干涉仪的(1-38)式的推导附录1.6 有同一相位差的多光束叠加习题第2章光的衍射2.1 惠更斯一菲涅耳原理2.2 菲涅耳半波带菲涅耳衍射视窗与链接透镜与波带片的比较2.3 夫琅禾费单缝衍射2.4 夫琅禾费圆孔衍射2.5 平面衍射光栅视窗与链接光碟是一种反射光栅2.6 晶体对X射线的'衍射视窗与链接与X射线衍射有关的诺贝尔奖附录2.1 夫琅禾费单缝衍射公式的推导附录2.2 夫琅禾费圆孔衍射公式的推导附录2.3 平面光栅衍射公式的推导习题第3章几何光学的基本原理3.1 几个基本概念和定律费马原理3.2 光在平面界面上的反射和折射光导纤维视窗与链接光导纤维及其应用3.3 光在球面上的反射和折射3.4 光连续在几个球面界面上的折射虚物的概念 3.5 薄透镜3.6 近轴物近轴光线成像的条件3.7 共轴理想光具组的基点和基面视窗与链接集成光学简介附录3.1 图3-6中P1和JP1点坐标的计算附录3.2 棱镜最小偏向角的计算附录3.3 近轴物在球面反射时物像之间光程的计算附录3.4 空气中的厚透镜物像公式的推导习题第4章光学仪器的基本原理4.1 人的眼睛4.2 助视仪器的放大本领4.3 目镜4.4 显微镜的放大本领4.5 望远镜的放大本领视窗与链接太空实验室——哈勃太空望远镜4.6 光阑光瞳4.7 光度学概要——光能量的传播视窗与链接三原色原理4.8 物镜的聚光本领视窗与链接数码相机4.9 像差概述视窗与链接现代投影装置4.10 助视仪器的像分辨本领视窗与链接扫描隧显微镜4.11 分光仪器的色分辨本领习题第5章光的偏振5.1 自然光与偏振光5.2 线偏振光与部分偏振光视窗与链接人造偏振片与立体电影 5.3 光通过单轴晶体时的双折射现象 5.4 光在晶体中的波面5.5 光在晶体中的传播方向5.6 偏振器件5.7 椭圆偏振光和圆偏振光5.8 偏振态的实验检验5.9 偏振光的干涉5.10 场致双折射现象及其应用视窗与链接液晶的电光效应及其应用5.11 旋光效应5.12 偏振态的矩阵表述琼斯矢量和琼斯矩阵附录5.1 从沃拉斯顿棱镜出射的两束线偏振光夹角公式(5-15)的推导习题第6章光的吸收、散射和色散6.1 电偶极辐射对反射和折射现象的解释6.2 光的吸收6.3 光的散射视窗与链接光的散射与环境污染监测6.4 光的色散6.5 色散的经典理论习题第7章光的量子性7.1 光速“米”的定义视窗与链接光频梳7.2 经典辐射定律7.3 普朗克辐射公式视窗与链接诺贝尔物理学奖7.4 光电效应7.5 爱因斯坦的量子解释视窗与链接双激光束光捕获7.6 康普顿效应7.7 德布罗意波7.8 波粒二象性附录7.1 从普朗克公式推导斯忒藩一玻耳兹曼定律附录7.2 从普朗克公式推导维恩位移定律习题第8章现代光学基础8.1 光与物质相互作用8.2 激光原理8.3 激光的特性8.4 激光器的种类视窗与链接激光产生106T强磁场8.5 非线性光学8.6 信息存储技术8.7 激光在生物学中的应用视窗与链接王淦昌与惯性的束核聚变习题主要参考书目基本物理常量表光学教程第三版(姚启钧著):目录点击此处下载光学教程第三版(姚启钧著)课后题答案。

物理光学第三章习题解答

物理光学第三章习题解答

多少?
解:S1和S2的像的强度分布式
I
I0
2
J1(Z Z
)
2
*
S1的像的中央对应于 Z 0
S2的像的第一强度零点对应于 Z 1.22 3.833rad
两像之间中点对应于 Z 1.22 0.61 1.9rad
2 将Z值代入*式,得中间点单独强度 I1 I0 因此,中间点合强度与像中央强度之比
解:加玻璃片后,双缝至P点程差为
d sin (n 1)h d sin (1.5 1) 0.001 m
又 a sin n(n=0对应衍射极大,n=±1,±2…为极小)
d m 0.0005 1 (m 1) 又 d 3 m 3n 1处缺级
a
n
n
a
故未加时,dsinθ=0为中央零级,m=3n处缺级
t1[
(
f
f0) (
f
f0 )]
1 2
i
t1e
2
[
(
f
f0) (
f
f0 )]
因此,有三个衍射斑(第一项为0级)
由于 f0 处各有相差
i
e2
的两
项,其合成振幅应为
2 2
t1
2
I f0
I0
2 2
t1
t0
2
1 2
t1 t0
11. 在不透明细丝的夫琅和费衍射图样中,测得暗条纹 间距为1.5mm,所用透镜的焦距为30mm,光波波长为 632.8nm。问细丝直径是多少?
加玻璃后,dsinθ=0.0005为零级,m=(3n+1)处缺级
即整体条纹平移一级
28. 设光栅的振幅透射系数为
t(x)
t0

光学部分作业解答

光学部分作业解答

第一章 习题11、物点A 经平面镜成像像点A ',A 和A '是一对共轭等光程点吗? 答:A 和A '是一对共轭等光程点2、在什么条件下附图中的折射球面起会聚作用,在什么条件下起发散作用?(a) (b)解: r nn n f -''='(a ) ∵ r > 0 ,∴ 当 n' > n 时,0>'f ,会聚;当 n' < n 时,0<'f ,发散。

(b )∵ r < 0 ,∴ 当 n' > n 时,0<'f ,发散; 当 n' < n 时,0>'f ,会聚。

3、顶角α很小的棱镜,常称为光楔;n 是光楔的折射率。

证明光楔使垂直入射的光线产生偏向角δ = (n −1) α,δ是指入射光经两折射面折射后,出射光线与入射光线之间的夹角。

证法一: 由折射定律n sin i 1=n 0sin i 2 , i 1、 i 2 很小,则 11sin i i ≈ , 22sin i i ≈ 由几何关系:α=1i ,即2i n =α ∴αααδ)1(12-=-=-=n n i i证法二:由几何关系:α=1iδαδ+=+=12i i由折射定律 n sin i 1=n 0sin i 2∵ i 1、 i 2 很小,α=≈11sin i i , 22sin i i ≈, 且 10≈n1则有 δαα+=n ,∴ αααδ)1(-=-=n n4、若空气中一均匀球形透明体能将平行光束会聚于其背面顶点上,此透明体的折射率应等于多少?解:设球形透明体的半径为r ,其折射率为n ′已知r p p n 2 , , 1='-∞== 根据单球面折射成像公式r nn p n p n -'=-'' 得:rn r n 12-'=' ∴ 2='n 5、试证明:一束平行光相继经过几个平行分界面的多层介质折射时,出射光线的方向只与入射光的方向及入射空间和出射空间介质的折射率有关,与中间各层介质无关。

物理光学教程答案

物理光学教程答案

Vϕ = −3 × 10 8 m / s
沿-z 方向传播
1.7
⎡ 2π ⎤ E ob = a1 cos ⎢ (z − V1t )⎥ ⎣λ ⎦ ⎡ 2πV1 ⎤ (z − 3) − 2π V1t + 6π ⎥ Ebc = a 2 cos ⎢ λ1 λ1 ⎦ ⎣ λ1V2
1.8
E 0 = a1
Eb − = a1 cos
3
第三章
3.1.
⎡ ⎛ π ⎞⎤ E = 6 sin (kz ) exp ⎢− j ⎜ ωt + ⎟⎥ 2 ⎠⎦ ⎣ ⎝
这是振幅为 6 的驻波,波腹位置: kz = mπ + π
2
;波节位置: kz = mπ
3.2 (1) 因 p 处是磁场的波腹位置,或电场的波节位置,说明光化学作用是由电场 E 产生. (2)
2
4.6 提示: 导出衍射强度分布 I (x ) = I (0 )sin c ⎢a⎜ ⎜ 4.7 入射光倾斜角 β 反射衍射发散角 ∆θ r (单位:rad) 折射衍射发散角 ∆θ t (单位:rad) (1) 提示: I ( x ) 的极值条件为 tan⎜ ⎜ (2) 4.9 4.10 (略) 提示:
n = 1.5385
1.24
π⎞ ⎛ E x = 20 cos⎜ 2 × 10 3 πz − 6 × 1011 πt + ⎟ 2⎠ ⎝ By =
2 π⎞ ⎛ × 10 −7 cos⎜ 2 × 10 3 π z − 6 × 1011 π t + ⎟ 3 2⎠ ⎝
1.25 1.26
E = 951 V / m N = 167 w
αe > α g
左暗右亮,
(2) α e = 3.08 × 10

物理光学梁铨廷版习题答案

物理光学梁铨廷版习题答案

物理光学梁铨廷版习题答案第⼀章光的电磁理论1.1在真空中传播的平⾯电磁波,其电场表⽰为Ex=0,Ey=0,Ez=,(各量均⽤国际单位),求电磁波的频率、波长、周期和初相位。

解:由Ex=0,Ey=0,Ez=,则频率υ===0.5×1014Hz,周期T=1/υ=2×10-14s,初相位φ0=+π/2(z=0,t=0),振幅A=100V/m,波长λ=cT=3×108×2×10-14=6×10-6m。

1.2.⼀个平⾯电磁波可以表⽰为Ex=0,Ey=,Ez=0,求:(1)该电磁波的振幅,频率,波长和原点的初相位是多少?(2)波的传播和电⽮量的振动取哪个⽅向?(3)与电场相联系的磁场B的表达式如何写?解:(1)振幅A=2V/m,频率υ=Hz ,波长λ==,原点的初相位φ0=+π/2;(2)传播沿z轴,振动⽅向沿y轴;(3)由B =,可得By=Bz=0,Bx=1.3.⼀个线偏振光在玻璃中传播时可以表⽰为Ey=0,Ez=0,Ex=,试求:(1)光的频率;(2)波长;(3)玻璃的折射率。

解:(1)υ===5×1014Hz;(2)λ=;(3)相速度v=0.65c,所以折射率n=1.4写出:(1)在yoz平⾯内沿与y 轴成θ⾓的⽅向传播的平⾯波的复振幅;(2)发散球⾯波和汇聚球⾯波的复振幅。

解:(1)由,可得;(2)同理:发散球⾯波,汇聚球⾯波。

1.5⼀平⾯简谐电磁波在真空中沿正x⽅向传播。

其频率为Hz,电场振幅为14.14V/m,如果该电磁波的振动⾯与xy 平⾯呈45o,试写出E,B 表达式。

解:,其中===,同理:。

,其中=。

1.6⼀个沿k⽅向传播的平⾯波表⽰为E=,试求k ⽅向的单位⽮。

解:,⼜,∴=。

1.9证明当⼊射⾓=45o时,光波在任何两种介质分界⾯上的反射都有。

证明:====1.10证明光束在布儒斯特⾓下⼊射到平⾏平⾯玻璃⽚的上表⾯时,下表⾯的⼊射⾓也是布儒斯特⾓。

应用光学【第三章】习题第四部分答案

应用光学【第三章】习题第四部分答案

33.33 0.26664 150 25
由于 tgw3 最小,所以光阑 3 是视场光阑
2.解:1)由于透镜 1 的前面没有任何光组,所以它本身就是在物空间的像。
2)先求透镜 2 被透镜 1 所成的像。也就是已知像求物 利用高斯公式:
1 1 1 1 1 1 ;可得: l1 ' l1 f1 ' 20 l1 100
15 y ' l1 ' 20 0.8 ; y 18.75mm y l1 25 0.8
应用光学第三章习题第四部分答案应用光学课后习题答案应用光学习题应用光学例题与习题集应用光学第四版答案应用光学李林答案数据库第三章习题答案应用光学西安应用光学研究所物理光学与应用光学
1.限制进入光学系统的成像光束口径的光阑叫空径光阑。把孔径光阑在物空间的共轭 像称为入瞳,空径 光阑在系统像空间所成的像称为出瞳,入瞳和出瞳是物和像的对应关系。 2.限制成像范围的光阑叫视场光阑。视场光阑在物空间的像称为入射窗,在像空间所成 的像称为出射窗。 3.主要有七种:球差、彗差(正弦差)、像散、场曲、畸变、位置色差、倍率色差。 4. 光密到光疏。 5.F 数指的是物镜的相对孔径的倒数 五、计算题(共 35 分)
33.33 0.0952 可见 u2 为最小,说明光阑像 D2' 限制了物点的 350
孔径角,故透镜 2 为孔径光阑。 5)像高(D’/2)对入瞳中心的张角最小的为视场光阑 D’1 对入瞳中心的张角: tgw1
20 0.8 D’2 本身是入瞳中心 D’3 对入瞳中心的张角: 25
tgw3
求得: l1 25mm ;
3)求光阑 3 被前面光组所成的像。 a. 先求光阑 3 被透镜 2 所成的像 因为 l 2’ = 30mm,利用高斯公式得:

大学物理-游璞-于国萍-光学-课后习题-答案

大学物理-游璞-于国萍-光学-课后习题-答案
《光学》(游璞、于国萍主编教材)课 后习题答案及解析
第一章 习题
1.2 解:从图中可以看出: i2=i1+q
激光器
i2+q=i1+a
∴a=2q

tana = 5
50
a=5.71o ∴ q=2.86o
i2 q
q
i1 i1
i2
O
a
50cm
A 5cm
B
用途:平面镜微小的角度改变,转化为屏幕上可测量的长度改 变。力学中钢丝杨氏模量的测量、液体表面张力的测量等。
)2
=
( n1 n1
− +
n2 n2
)2
=
0.04
Rp
=
rp 2
=
( n1 cos i1 n1 cos i1
− n2 + n2
cos i2 cos i2
)2
=
( n2 n2
− n1 )2 + n1
=
0.03
3.4 解:(1)不加树脂胶时,两个透镜之间有空气,所以当自然光正入射
时,在第一个透镜与空气的分界面I上,
R2 + f 2 = nz + x2 + y2 + ( f − z)2 (n2 −1)z2 − z(n R2 + f 2 − f )z − (x2 + y2 ) = −R2
1.11 证明 n' − n = n' − n p' p r
1 +1 =2 p' p r
f = f= r 2
1.13 解:
f '=
Ey
=
A cos[ (t

z) c

物理光学与应用光学第二版课件及课后习题答案

物理光学与应用光学第二版课件及课后习题答案
干涉条件
相干光波、有相同的频率、有恒 定的相位差、有相同的振动方向 。
双缝干涉与多缝干涉
双缝干涉
两束相干光波分别通过两个平行狭缝 后,在屏幕上产生的明暗交替的干涉 条纹。
多缝干涉
多个狭缝产生的相干光波在屏幕上产 生的明暗交替的干涉条纹。
薄膜干涉与干涉滤光片
薄膜干涉
光波在薄膜表面反射和透射时产生的干涉现象,常用于增反 膜和增透膜的设计。
摄像机的原理
摄像机通过镜头将光线聚焦在电荷耦合器件(CCD)或互补金属氧化物半导体( CMOS)传感器上,记录下动态影像。
照相机与摄像机的比较
照相机和摄像机在结构和工作原理上存在差异,但它们都是用于记录影像的光学仪器。
光学信息处理系统
1 2
光学信息处理系统的原理
光学信息处理系统利用光的干涉、衍射、全息等 原理对信息进行处理。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
04
光学仪器及应用
透镜与成像原理
透镜的分类
01
根据透镜的形状和焦距,可以将透镜分为凸透镜、凹透镜和凹
凸透镜等。
成像原理
02
透镜通过改变光线的传播路径,使光线会聚或发散,从而形成
实像或虚像。
像距与物距
03
透镜成像时,像距与物距之间的关系遵循“1/f = 1/u + 1/v”
干涉滤光片
利用薄膜干涉原理设计的滤光片,具有特定波长范围的透过 或反射特性。
干涉系统的应用
光学干涉仪
干涉光谱技术
利用光的干涉原理测量长度、角度、表面 粗糙度等物理量。
通过干涉原理分析物质吸收、发射和散射 光谱,用于物质成分分析和光谱测量。

物理光学梁铨廷版习题答案

物理光学梁铨廷版习题答案

物理光学梁铨廷版习题答案1. 题目一问题:一束单色的平行光通过一个缝隙后射到屏上,发现屏上成等距的亮暗相间的条纹,称为夫琅禾费衍射条纹。

试证明这些条纹是由新波和直达波叠加所形成的。

解答:根据亮暗相间的条纹形态,可以推测夫琅禾费衍射条纹是由几个波源发出的波叠加产生的。

在夫琅禾费衍射中,主要涉及到两个波源:新波和直达波。

新波是由物体缝隙处的光线经过衍射后形成的波,其波前波面可以近似看做是缝隙的切线。

新波阻碍了直达波的前进,因此在屏上会出现一系列的亮暗相间的条纹。

直达波是指除了经过缝隙发生衍射的光线外,其他未经过缝隙的光线直接射到屏上。

直达波形成的波前波面是平整的,没有变化。

直达波在屏上形成均匀的衬底。

当新波和直达波在屏上相遇时,它们会发生叠加作用。

根据光的叠加原理,当两个波叠加时,亮度的增强处叠加相位基本一致,而亮度的减弱处叠加相位相差180度。

因此,在屏上就会出现一系列亮暗相间的条纹。

2. 题目二问题:证明菲涅耳双缝衍射现象仅发生在接收屏上有明显观察的区域内。

解答:菲涅耳双缝衍射现象是指当一束平行光通过两个相距较远的狭缝后,光在远离狭缝较远处的接收屏上形成明暗相间的衍射条纹。

根据菲涅耳衍射的理论,当两个狭缝之间的距离越小,衍射角的范围越宽,衍射条纹间距越大。

而当两个狭缝之间的距离越大,衍射角的范围越小,衍射条纹间距越小。

在接收屏上观察到的明暗相间的衍射条纹是由不同角度的衍射光叠加形成的。

如果接收屏较远处的区域(即远离狭缝较远处)未能观察到衍射条纹,则说明在这些位置上,衍射光的干涉叠加效应相对较弱,无法在接收屏上产生明显的衍射条纹。

因此,菲涅耳双缝衍射现象仅发生在接收屏上有明显观察的区域内,而远离狭缝较远处的区域则未能观察到衍射条纹。

3. 题目三问题:利用斯托克斯定理证明高斯定律。

解答:斯托克斯定理描述了一个连续流体通过闭合曲面流出的速度等于穿过这个曲面边界的偏转速度的通量。

而高斯定律描述了闭合曲面内电场的总通量等于该闭合曲面内的电荷量。

大学物理光学习题和解答

大学物理光学习题和解答

⼤学物理光学习题和解答光学习题和解答习题⼗六16.1 从⼀狭缝透出的单⾊光经过两个平⾏狭缝⽽照射到120cm 远的幕上,若此两狭缝相距为0.20mm ,幕上所产⽣⼲涉条纹中两相邻亮线间距离为3.60mm ,则此单⾊光的波长以mm 为单位,其数值为(A) 41050.5-?; (B) 41000.6-?; (C) 41020.6-?; (D) 41085.4-?。

答案:(B)16.2 ⽤波长为650nm 之红⾊光作杨⽒双缝⼲涉实验,已知狭缝相距410-m ,从屏幕上量得相邻亮条纹间距为1cm ,如狭缝到屏幕间距以m 为单位,则其⼤⼩为(A) 2; (B) 1.5; (C) 3.2; (D) 1.8。

答案:(B)16.3 波长λ为4106-?mm 单⾊光垂直地照到尖⾓α很⼩、折射率n 为1.5的玻璃尖劈上。

在长度l 为1cm 内可观察到10条⼲涉条纹,则玻璃尖劈的尖⾓α为(A) 24''; (B) 4.42''; (C) 3.40''; (D) 2.41''。

答案:(D)16.4 在⼀个折射率为1.50的厚玻璃板上,覆盖着⼀层折射率为1.25的丙酮薄膜。

当波长可变的平⾯光波垂直⼊射到薄膜上时,发现波长为6000nm 的光产⽣相消⼲涉。

⽽700nm 波长的光产⽣相长⼲涉,若此丙酮薄膜厚度是⽤nm 为计量单位,则为(A) 840; (B) 900; (C) 800; (D) 720。

答案:(A)16.5 当⽜顿环装置中的透镜与玻璃之间充以液体时,则第⼗个亮环的直径由1.40cm 变为1.27cm ,故这种液体的折射率为(A) 1.32; (B) 1.10; (C) 1.21; (D) 1.43。

参考答案:(C)16.6 借助于玻璃表⾯上所涂的折射率为n=1.38的2MgF 透明薄膜,可以减少折射率为60.1='n 的玻璃表⾯的反射,若波长为50000A 的单⾊光垂直⼊射时,为了实现最⼩的反射,问此透明薄膜的厚度⾄少为多少0A ?(A) 50; (B) 300; (C) 906; (D)2500; (E) 10500。

华中科技大学 竺子明 物理光学习题解答

华中科技大学 竺子明 物理光学习题解答

⎪∇ ⨯ E = -μ ∂t ⎪⎪∇ ⨯ H = J + ε ∂E ⎪∇ ⋅ E = J + ε ∂  ⎪ = -μ ⎝ ⎭ = -μ∇ (∇ ⋅ E ) = ∇  ⎪由 ∇ ⨯ ∇ ⨯ E = ∇ (∇⋅ E ) - ∇ E 可得:∂t⎛ ∂H ⎫= ∇ ⨯ J + ε ⎝ ⎭ = ∇ ⨯ J - εμ由 ∇ ⨯ ∇ ⨯ H = ∇ (∇⋅ H ) - ∇ H 可得:物理光学习题解答说明:本资料是 2010~2011 学年度第一学期光电学院中法 0801~0803 班的物理光学作业题, 配套书籍为竺子民主编、华中科技大学出版社 2009 年出版的《物理光学》。

助教刘昊在任课 老师王英的指导下从同学们的作业中选取优秀的解法,综合整理成为习题解答,因此这也是 各位同学的功劳。

本解答对于大部分的题目只做方向上的引导,列出公式,而略过具体计算。

如果同学们有任何疑问或发现解答错误,请发邮件至jy02760419@ (刘昊),在 此先行感谢。

1.2 写出存在电荷 ρ 和电流密度 J 的介质中的E 和 H 的波动方程。

解:麦克斯韦方程组可写为⎧ ∂H⎪⎨ ∂t ⎪ ρ ⎪⎪⎩∇ ⋅ H = 0根据上述麦克斯韦方程组,有∇ ⨯ ∇ ⨯ E = -μ∂ (∇ ⨯ H )∂t⎛ ρ ⎫⎝ ε ⎭2∇ 2 E - μ ∂J ∂t - εμ ∂2 E 2=∇ρε 根据麦克斯韦方程组有∇⨯∇⨯ H = ∇⨯ J + ε ∂ (∇ ⨯ E ) ∂t∂  -μ ⎪∂ ∂t∂ 2 H ∂t 22∇ 2 H + ∇ ⨯ J - εμ∂ 2 H∂t 2= 0∇ E - μ - εμ 2J 2E ⎪⎪ ∂∂⎪∇ 2 H + ∇ ⨯ J - εμ ∂ H = 0 ⎩ˆ ⎡ ⎛ (2)同时随时间和空间变化的场,如 E (t , z ) = xE 0 sin ⎢ω  t - c ⎭⎥⎦ 证:(1)无源空间中,若场满足麦克斯韦方程组,则满足波动方程 ∇ E - εμ 随时间变化的场无空间变量, ∇ E = 0 。

光学第三章习题 11级应用物理

光学第三章习题 11级应用物理

11级应用物理 曹江勇学号:20114052004第三章 习题一、选择题:2004. 2n = 1 的空气对于1n = 1.5 的玻璃而言,其临界角c i 约为 ( B )(A )40° (B ) 42° (C )55° (D )56°2005.将折射率为 n 的薄透镜置于折射率为 n ′(>n )的介质中,则 ( B )(A )凸透镜会聚、凹透镜发散 (B )凸透镜发散、凹透镜会聚(C )凸透镜发散、凹透镜发散 (D )凸透镜会聚、凹透镜会聚2012.使一条不平行主轴的光线,无偏折(即传播方向不变)的通过厚透镜,满足的条件是入射光线必须通过( A )(A )光心。

(B )物方焦点。

(C )物方节点。

(D )象方焦点。

2016.由折射率为n=1.65 的玻璃制成的薄凸透镜,前后两球面的曲率半径均为40cm ,其焦距等于多少cm ?。

( D )(A )20 (B )21 (C )25 (D )312017.一双凸透镜的折射率为1.5,其两面曲率半径均为10cm ,若其一面涂以银,使其成为凹面镜,在距透镜20cm 处置一点光源,光自左向右射入,右为涂银面,则其所成像在多少cm 处? ( A )(A )20 (B )4 (C )3.33 (D )2.862022.一消色差透镜由两个胶合的薄透镜构成的,他们的光焦度分别为10和-6屈光度,试问组合透镜的焦距为多少cm ?(A )0.25 (B )25 (C )2.5 (D )4002049,光学系统的实物定义是( C )(A )发散入射同心光束的顶点(B )会聚入射同心光束的顶点(C )发散出射同心光束的顶点(D )会聚出射同心光束的顶点2050,光学系统的虚物定义是( B )(A )发散入射同心光束的顶点(B )会聚入射同心光束的顶点(C )发散出射同心光束的顶点(D )会聚出射同心光束的顶点2051,光学系统的实像定义是( B )(A )发散入射同心光束的顶点(B )会聚入射同心光束的顶点(C )发散出射同心光束的顶点(D)会聚出射同心光束的顶点2052,光学系统的虚像定义是( C )(A)发散入射同心光束的顶点(B)会聚入射同心光束的顶点(C)发散出射同心光束的顶点(D)会聚出射同心光束的顶点2053,身高为1.8m的人经过平面镜反射能看到自己全身的像,平面镜的高度至少需要多少米( A )(A)0.9m (B)1.8m (C)2.7m (D)3.6m2054,平面镜成像的性质为( B )(A)实物成实像(B)实物成虚像(C)虚物成虚像(D)虚物不能成像2055,平面镜成像的横向放大率为( A )(A)+1 (B)-1 (C)0 (D)∞2056,唯一能完善成像光学系统的是( B )(A)平面折射系统(B)平面反射系统(C)球面折社系统(D)球面反射系统2058,人在岸上看到水中的鱼是( D )(A)原深度的鱼(B)变深了的鱼的实像(C)变浅了的鱼的实像(D)变浅了的鱼的虚像2059,透过一块厚玻璃板观察一个发光点,看到发光点的位置是( A )(A)移近了(B)移远了(C)不变(D)不能确定2060,某水箱里注水深8cm,箱底有一硬币,则硬币的视深为多少厘米( C )(A)2 (B)4 (C)6 (D)202061,在厚15cm,折射率为1.5的玻璃板下表面上有一小颗粒,如果垂直观察,小颗粒的像位于玻璃板上表面下放多少厘米( B )(A)5 (B)10 (C)15 (D)202062,棱镜的折射率为n,当顶角a很小时,最小偏向角为( C )(A)a (B)na (C)(n-1)a (D)(n+i)a2063,棱镜的顶角为60°,当入射角为45°时,偏向角最小,那么该棱镜的折射率为( A )(A(B(C(D)22066,凹球面镜对实物成像的性质之一是( A )(A)实像都是倒立的(B)实像都是正立的(C)实像都是放大的(D)实像都是缩小的2067,凹球面镜对实物成像的性质之一是( A )(A)虚像都是正立方大的(B)虚像都是倒立方大的(C)虚像都是正立缩小的(D)虚像都是倒立缩小的2068,凸球面镜对实物成像的性质是( B )(A)虚像都是实的(B)虚像都是虚的(C)虚像都是放大的(D)虚像都是倒立的2069,凸球面镜对实物成像的性质( D )(A)实像都是正立方大的(B)实像都是倒立方大的(C)实像都是倒立缩小的(D)不可能产生实像2070,凸球面镜对实物成像的性质( C )(A)实像都是倒立缩小的(B)实像都是正立方大的(C)虚象都是正立缩小的(D)虚象都是倒立方大的2071,平行光通过置于空气中的透明介质球聚焦于球面上,则透明体的折射率为( D )(A)2 (B)1 (C)2 (D)1.52072,凸透镜的成像性质之一是( A )(A)实物始终成倒立实像(B)实物始终成正立虚像(C)虚物始终成正立实像(D)虚物始终成正立虚像2073,凸透镜对实物成像的性质之一是( A )(A)实像都是倒立的(B)实像都是正立的(C)实像都是放大的(D)实像都是缩小的2074,凸透镜对实物的成像性质之一是( D )(A)实像都是正立方大的(B)实像都是倒立方大的(C)实像都是倒立缩小的(D)实像可以放大,也可以缩小2075,凹透镜对实物成像的性质( B )(A)像都是实的(B)像都是虚的(C)像都是放大的(D)像都是倒立的2076,凹透镜对实物成像的性质( D )(A)实像都是正立方大的(B)实像都是倒立方大的(C)实像都是倒立缩小的(D)不能成实像2077,凹透镜对实物成像的性质( C )(A)实像都是倒立缩小的(B)实像都是正立方大的(C)虚象都是正立缩小的(D)虚象都是倒立方大的2078,共轴球面系统主焦点的定义是( D )(A)主轴上横向放大率等于1的一对共轭点(B)主轴上角放大率为1的一对共轭点(C)主轴上纵向放大率为1的一对共轭点(D)主轴上无限远点的共轭点2079,共轴球面系统主点的定义是( A )(A)主轴上横向放大率等于1的一对共轭点(B)主轴上角放大率为1的一对共轭点(C)主轴上纵向放大率为1的一对共轭点(D)主轴上无限远点的共轭点2080,共轴球面系统节点的定义是( B )(A)主轴上横向放大率等于1的一对共轭点(B)主轴上角放大率为1的一对共轭点(C)主轴上纵向放大率为1的一对共轭点(D)主轴上无限远点的共轭点二、填空题:1012.费马原理是指_光沿光程最大值、最小值、或恒定值的路程传播______________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【解】 (1) P点的亮暗取决于圆孔包含的波带数是奇数还是偶数
(假设波带数目不大)。当平行光入射时,波带数
j
2 r0
D / 22
r0
(1.3mm)2 (563.3106 mm)(103 mm)
3
故P点是亮点。
(2)当P点向前移近圆孔时,相应的波带数增加;波带数增大 为4时,P点变为暗点。
这时P点到圆孔的距离为
)
因为场中心振幅E0正比于圆孔的面积 a2。圆孔中的圆屏 使P点的振幅减小
Es
Cb2
2J1(kb ) kb
因此圆环在P点产生的振幅为
Er
Eh
Es
2C
a
2
J1 (ka ka
)
b
2
J1(kb kb
)
P点的强度为
Ir
4C 2
a
2
J1 (ka ka
)
b2
J1 (kb kb
)
2
4C
r0
2 j
(1.3mm)2 4 563.3106 mm
750mm
即P点移动的距离为
r0 r0 1000mm 750mm 250mm
当P点向后移远圆孔时,波带数减小,减小为2时,P点也变为暗点。
与此对应的P到圆孔的距离为
r0
2 j
(1.3mm)2 2 563.3106 mm
1500mm
因此P点移动的距离为
物理光学习题解答 第三章
3.如教材图13-58所示,单色点光源S(波长 500nm )安放在离光阑1m远的地 方,光阑上有一个内外半径分别为0.5mm和1mm的通光圆环。考察点P离光阑 1m(SP连线通过圆环中心并垂直于圆环平面), 问:在P点的光强和没有光阑时的光强之比是多少?
【解】
由于半径为1mm的圆孔包含的波带数为
287 1.7 168
(3) 为充分利用显微镜物镜的分辨本领,显微镜物镜应把最小分辨
距离 放大到眼睛的明视距离处能够分辨。
(3) 第一亮纹的强度
I
I0
sin
2
I0
sin1.43 1.43
2
I0 (0.213)2 0.047I0
第二亮纹的强度
I
I0
sin 2.46 2.46
2
(0.128)2 I0
0.016I0
13.利用第三节的结果导出外径和内径分别为a和b的圆环(见教材图13-61)的夫琅
j 2 (R r0 ) r0 R
(1mm)2 (1000mm 1000mm) (1000mm)(1000mm)(500106 mm) =4
半径为0.5mm的圆屏挡住的波带数为
j
(0.5mm)2 (1000mm 1000mm) (1000mm)(1000mm)(500106 mm)
1
因此通光圆环通过的波带数为3.由于相邻两波带在P点干涉的相消作用, 所以通光圆环在P点产生的振幅实际上等于1个波带在P点产生的振幅。 并且近似地等于第一个波带产生的振幅。
ka Z1 3.144
因此,第一个零点的角半径为
3.144 0.51
2 a
a
左图中,实线表示的是b a 的圆环的衍射强度曲线。 2
半径为a的圆孔的强度曲线如虚线所示。
18.一台显微镜的数值孔径为0.85,问: (1)它用于波长 400nm 时的最小分辨距离是多少? (2)若利用油浸物镜使数值孔径增大到1.45,分辨率提高了多少倍?
2
a4
J1 ( Z1 ) Z1
2
b4
J1(Z2 Z2
)
2
2a2b2[
J1 ( Z1 ) Z1
][
J1(Z2 Z2
)
]
式中Z1 ka,Z2 kb。对于衍射场中心,Z1 Z2 0,
相应的强度为
(Ir )0
4C 2
a4 4
b4 4
a2b2 2
C(a2
b2)2
当 b a / 2时
r0 r0 1500mm 1000mm 500mm
9.波长为 500nm 的平行光垂直照射在宽度为 0.025mm的单缝上,以焦
距为 50cm的会聚透镜将衍射光聚焦于焦面上进行观察,求: (1)衍射图样中央亮纹的半宽度; (2)第一亮纹和第二亮纹到中央亮纹的距离; (3)第一亮纹和第二亮纹相对于中央亮纹的强度。 【解】
0.0286
或者 0.0286rad,因此第一亮纹到场中心的距离
q1 f 0.0286 500mm 14.3mm
第二亮纹对应于 2.46,因而
sin 2.46 2.46 5104 mm
a
0.025mm
0.0492
它到场中心的距离
q2 f 0.0492 500mm 24.6mm
和费衍射强度公式,并求出当b=a/2时,
(1)圆环衍射与半径为a的圆孔衍射图样的中心强度之比;
(2)圆环衍射图样第一个暗环的角半径(超越方程
J1(Z
)
1 2
1 J1( 2
Z
)
解为Z 3.144 )。
【解】
半径为a的圆孔在衍射场P点产生的振幅为
Eh
E0
2J1(ka ka
)
Ca2
2J1(ka ka
(1) 单缝衍射中央亮纹的角半宽度为
= 500106 mm 0.02rad
a 0.025mm
因此亮纹的半宽度
q f 0.02 500mm 10mm
(2) 第一亮纹的位置对应于 1.43,即是
ka sin 1.43
2

sin 1.43 1.43 5104 mm
a
0.025mm
没有光阑时P点的振幅是第一个波带产生的振幅的 1 , 2
故通光圆环在P点产生的强度是没有光阑时的强度的4倍
4.波长 563.3nm的平行光正入射在直径D 2.6mm 的圆孔上,与孔相距 r0 1m 处放一 屏幕。问: (1)屏幕上正对圆孔中心的P点是亮点还是暗点? (2)要使P点变成与(1)相反的情况,至少要把屏幕向前(同时求出向后)移动 多少距离?
(1)
(Ir )0
C2
a2
Hale Waihona Puke a 222
9 16
C2a4
因此
(Ir )0 (Ih )0
9 C2a4 16
C2a4
9 16
(2) 圆环衍射强度的第一个零值满足
a2 J1(ka ) b2J1(kb ) 0
ka
kb

aJ1(ka )
bJ1(kb )
a 2
J1(ka )
利用贝塞尔函数表解上式,得到
(3)显微镜的放大率应设计成多大?(设人眼的最小分辨率为1 )
【解】
(1) 显微镜的最小分辨距离可由下式求出:
0.61 0.61 400109 m 287nm
NA
0.85
(2) 当 400nm, N A 1.45时,
0.61 400 109 1.45 103
m
168mm
分辨本领提高的倍数是
相关文档
最新文档