微积分习题解答(第二章)

合集下载

微积分及其应用第二章习题解答

微积分及其应用第二章习题解答
则由介值定理可知至少存在 使得
(4)已知函数 连续,求参数a,b.
解(1)要使 在 处连续,则
又由于
从而
(2)由于 是个分段函数,要使 连续,只需证明 在 处连续,即
又由于

(3)由于 是个分段函数,要使 连续,只需证明 在 处连续,即
又由于

(4)由于 是个分段函数,要使 连续,只需证明 在 处连续,即
又由于

2寻找下列函数的可去间断点,并修改或补充间断点处函数值使其连续.
证明,令 易见 在区间 上连续,且
则由根值存在定理可知存在 使得 即证方程 有非零根
5证明方程 至少有一个正根.
证明令 易见 在区间 上连续,且
则由根值存在定理可知存在 使得 即证方程 至少有一个正根.
复习题二
1已知 ,证明 .
证明:由于 ,即对任给的 当 时,有
则对上面给定的 当 时,有
即证 .
2设 ,在极限过程 下,当a,b为何值时 为无穷小?a,b为何值时 为无穷大?
(3)由于 ,函数仅在 处没有定义,且
故只需令 即可使函数在 处连续.
(4)由于 ,函数仅在 处没有定义,且
故只需令 即可使函数在 处连续.
3计算下列极限:
(1) ;(2) ;
(3) ;(4) ;
(5) ;(6) ;
(7) ;
解(1)
(2)令 则 则
(3)
(4)
(5)
(6)
(7)
4证明方程 有非零根.
(3)
解:(1)易见 故 或 时,函数为无穷小.
故 时,函数为无穷大.
(2)易见 故 , 时函数为无穷小.
(3) 故 时函数为无穷小.

《微积分》课后答案(复旦大学出版社(曹定华 李建平 毛志强 著))第二章

《微积分》课后答案(复旦大学出版社(曹定华 李建平 毛志强 著))第二章

ne
所以,由夹逼定理得
t
(2)因为 0
2n 2 2 2 2 2 4 4 ,而且 lim 0 , n n n! 1 2 3 n 1 n n
此文档由天天learn()为您收集整理。
又 所以
xn 1 xn xn ( 2 xn ) ,而 xn 0 , xn 2 , xn 1 xn 0
此文档由天天learn()为您收集整理。
第二章
习题 2-1 1. 证明:若 lim xn=a,则对任何自然数 k,有 lim xn+k=a.
n n
证:由 lim xn a ,知 0 , N1 ,当 n N1 时,有
n
xn a
lim xn 0
n
n.
即 xn 0
2. 证明:若 lim xn=a,则 lim ∣xn∣=|a|.考察数列 xn=(-1)n,说明上述结论反之不成立.
ne
由数列极限的定义得
lim xn k a .
t
1
xn k a
天天learn()为您提供大学各个学科的课后答案、视频教程在线浏览及下载。
n
由 xn yn M 及 yn 1 得, xn yn M y1 M ,
于是,数列 xn 是单调递增有上界的数列, yn 是单调递减有下界的数列,所以它
习题 2-2
x x0
1. 证明: lim f(x)=a 的充要条件是 f(x)在 x0 处的左、右极限均存在且都等于 a.
取 N N1 k ,有 0 , N ,设 n N 时(此时 n k N1 )有
x
n
n

微积分2参考答案

微积分2参考答案

参考答案及提示第一章 函数习题一1、(1)-1、2、-3. (2)-4、23、.86443222-+--x x x x 、(3)有界. 2、略.3、解:∵362)(2-+=x x f x∴3623)(6)(2)(22--=--+-=-x x x x x f ∴64)]()([21)(2-=-+=x x f x f x ϕxx f x f x 12)]()([21)(=--=φ又∵)(646)(4)(22x x x x ϕϕ=-=--=-,即)(z ϕ是偶函数;)(6)(6)(x x x x ψψ-=-=-=-,即)(x ψ是奇函数.4、(1)解:由题知,设c bx ax x R ++=2)(且满足方程组:⎪⎪⎩⎪⎪⎨⎧==-=⇒⎪⎩⎪⎨⎧++=++==0421*******0c b a cb ac b a c∴.4212x Rx +-=(2)解:由题列方程组:⎪⎩⎪⎨⎧===⇒⎪⎩⎪⎨⎧⋅+=⋅+=⋅+=2510905030432c b a c b a c b a c b a即2510p Q ⋅+=.(3) 解:由题意有:⎩⎨⎧≤<⨯⨯-+⨯≤≤=10007009.0130)700(1307007000130x x x x R5、(1)解:∵Z k k x ∈≠+,+21ππ∴⎭⎬⎫⎩⎨⎧±±=-+≠ ,2,1,0,12|k k x x ππ.(2)∵131≤-≤-x ,∴]4,2[∈x .(3)∵⎩⎨⎧≠≥-03x x ,∴]3,0()0,(⋃-∞.(4)∵,0ln ≥x ∴1≥x ,∴),1(+∞∈x .*6、解:由题有x e x f x -==1))(()(2ϕϕ,∴).1,(,)1ln()(-∞∈-=x x x ϕ7、(1)uy =u = 3x-1. (2)2u y = u = lgv v = arccosw 2x w =(3)y=au 3v u = v=1+x. * (4)ua y =u=sinv wv =12+=x w8、(1)47-=x y . (2)1)1(2-+=x x y . (3)2arcsin31x y =. (4)21-=-e x y*9、略.第一章 单元测验题1、(1),8)2(,6)1(,4)0(πππ===g g g .2)2(,125)3(ππ=-=-g g2、解:由题知)3,2(]2,7[04913032⋃-∈⇒⎪⎩⎪⎨⎧≥-≠->-x x x x ,且342lg 1))7((+=-f f .3、解:令t x =ln ,即te x =,则ttee tf )1ln()(+=,∴ee xx x f )1ln()(+=.4、解:11)()(9333+=+=x x x f , 12)1()]([36232++=+=x x x x f .5、证明:∵)(loglogloglog)()1()1(1)1()1)(1()1)((222222x f x f x x ax x ax x x x x x ax x a-=-====-++++++++-++-+-∴)(x f 为奇函数.6、解:由题知:⎪⎩⎪⎨⎧>-=<=⎪⎪⎩⎪⎪⎨⎧>-=<=⎪⎩⎪⎨⎧>-=<=0100011110111)(11)(01)(1)]([x x x ee e x g x g x g x gf xx x , ⎪⎩⎪⎨⎧>=<=⎪⎩⎪⎨⎧>=<==--1||1||11||1||1||1||)]([1101)(x e x x e x e x e x e ex f g x f .第二章 极限与连续习题二1、(1)3231,1615,87,43,21 (2)⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛564534235432,,,,2(3)5sin 51,82,63,21,0π(4),!3)2)(1(,!2)1(,---m m m m m m !4)3)(2)(1(---m m m m ,!5)4)(3)(2)(1(----m m m m m2、(1)收敛 (2)收敛 (3)发散 (4)收敛3、(1)证明:对0>∀ε,]1[ε=∃N ,当Nn >时,ε<+=-+1111n n n ,则11lim =+∞→n n n ;(2)证明:对0>∀ε,]11[2+=∃εN ,当N n >时,ε<=-nn111,则01l i m=∞→nn .4、(1)2 (2)∞+ (3)∞- (4)∞ (5)∞+ (6)0 (7)∞ (8)0(9)不存在 (10)∞- (11)不存在 (12)不存在 (13)0 (14)∞ 5、提示:用左右极限来证. 证明:∵1lim lim==++→→x x x xx x ,1lim lim 0-=-=--→→xx x x x x∴xx xxx x -+→→≠0lim lim,即xx x 0lim →不存在.6、解: 1lim )(lim ,3)2(lim )(lim 1111-===-=++---→-→-→-→x x f x x f x x x x ,,3)(lim ,1)(lim 11==+-→→x f x f x x∵)(lim )(lim 11x f x f x x +-→→≠,∴)(lim 1x f x →不存在.7、(1)证明:对0>∀ε,01>=∃εM ,当M x >时,ε<=-xx101,则01lim=∞→xx ;(2)证明:对0>∀ε,0>=∃εδ,当δ<--)2(x 时,ε<+=--+-2)4(242x x x 成立则424lim22-=+--→x x x .8、(1)(2)(4)是无穷小. 9、(1)xsinx 是无穷小,x25是无穷大 (2)10,52x x-是无穷小,xex ),2lg(+是无穷大.10、当∞→→x x 或0时,f(x)是无穷大量,当21→x 时,f(x)是无穷小量.11、(1)∵1sin ≤n 为有界变量,且011lim =+∞→n n ,∴01sin lim=+∞→n n n .(2)∵2arctan π≤x 为有界变量,且01lim2=∞→xx ,∴0arctan lim2=∞→xx x .(3)∵当0→x 时,11cos ≤x为有界变量,且0lim 0=→x x ,∴01coslim 0=→x x x .(4)∵011lim1=+-→x x x ,∴∞=-+→11lim1x x x .12、(1)原式75342452=+⨯-⨯=; (2)原式213)1(4)1(212=--⨯+---=;(3)∵0123lim23=+-+-→x x x x ,∴原式∞=; (4)原式1lim 1)1(lim1221==--=→→t t t t t t ;(5)原式42221lim)22(lim)22()22)(22(lim-=+--=+--=+-+---=→→→t t t t t t t t t t t ;(6)原式=0; (7)原式=21;(8)原式=)23)(4(23lim)23)(4()23)(23(lim22222-+-+-=-+--+--→→x x x x x x x x x x x x x x161)23)(2()1(lim)23)(2)(2()1)(2(lim22=-++-=-++---=→→x x x x x x x x x x x x ;(9)原式323)131(lim)131)(131()131(lim=++=++-+++=→→x x x x x x x x x ;*(10)原式21)11(11lim)11(1)11)(11(lim-=+++-=++++++-=→→t t t t t t t t t .13、解:∵+∞==--→→21lim)(lim xx f x x ,0)2(lim )(lim 20=-=++→→x x x f x x∴0→x 时,f(x)极限不存在.又∵0)2(lim )(lim 222=-=--→→x x x f x x ,0)63(lim )(lim 22=-=++→→x x f x x∴2→x 时极限存在. 由题知,01lim)(lim 2==-∞→-∞→xx f x x ,)(lim x f x +∞→不存在.14、解:由题知,当3→x 时,→+-k x x 22k= -3.*15、解:∵左边011)()1(lim11lim222=+-++--=+----+=∞→∞→x bx b a x a x bax bx axx x x ,∴⎩⎨⎧-==⇒⎩⎨⎧=+=-11001b a b a a . 16、(1)原式2211211lim=--=∞→nn ;(2)原式21)221(lim =-+=∞→n n n .*17、证明:(1)∵1)22(lim 21=++-→x x x ,11lim 1=-→x ,∴由夹逼定理有1)(lim 1=-→x f x .(2)∵2222212111nn nnn n nnn<++⋅⋅⋅++++<+且1lim2=+∞→nn nn ,1lim2=∞→nn n ,∴由夹逼定理有,原式=1,得证.18、(1)原式1cos lim sin limcos sin lim===→→→x xx x xx x x x ;(2)原式2sin lim2sin sin 2lim2===→→xx xx xx x ;(3)原式xx xx n nn =⋅=∞→22sinlim; (4)原式353551sin513131sinlim=⋅⋅=∞→x x x x xxx .19、(1)原式222101)21(lim )21(lim ex x xx xx =+=+=⋅→→++; (2)原式22)11(lim e xx x =+=⋅∞→;(3)原式e x x x =++=-+∞→21212)1221(lim .20、(1)原式31111arccoslim arccoslim 2π=++=++=+∞→+∞→x xx x x x x ;(2)原式3ln 3113lnlim 313lnlim 2222=++=++=∞→∞→xxx x x x .21、(1)∵1lim )(lim 211==--→→x x f x x ,1)2(lim )(lim 11=-=++→→x x f x x ,∴1)(lim 1=→x f x .且==1)1(f )(lim 1x f x →,∴)(x f 在1=x 处连续.又∵)(x f 在其定义区间上均为初等函数,即)(x f 在 ]1,0[和]2,1(上连续,及)(x f 在]2,0[上连续.(2)∵1lim )(lim 1)(lim 111-==≠=++--→-→-→x x f x f x x x ,∴-1为)(x f 的其间断点.又∵)(lim 1lim )(lim 111x f x x f x x x +--→→→===,且1)1(=f ,∴)(x f 在1=x 处连续.又∵)(x f 在其定义区间上均为初等函数∴)(x f 在)1,(--∞与),1(+∞-内连续.22、解:∵22lim )(lim 11==--→→x x f x x ,d c d cx x f x x +=+=++→→)(lim )(lim 211且d c f +=)1(;dc d cxx f x x +=+=--→→4)(lim )(lim 222,84lim )(lim 22==++→→x x f x x 且d c f +=4)2(,又∵)(x f 在),(+∞-∞上连续,则⎩⎨⎧==⇒⎩⎨⎧=+=+02842d c d c d c .23、(1)∵)(x f 在1-=x 处无定义,∴1-=x 为)(x f 的间断点.(2)∵2)1(lim 11lim)(lim 1211-=-=+-=-→-→-→x x x x f x x x ,且)(lim 6)1(1x f f x -→≠=∴1-=x 是)(x f 的间断点. (3)∵-∞=--=→→))1(1lim()(lim 211x x f x x ,即极限不存在,∴1=x 为)(x f 的间断点.(4)∵1)1(lim )(lim 22-=-=--→→x x f x x ,0)2(lim )(lim 222=-=++→→x x x f x x ,∴)(lim 2x f x →不存在,即2=x 为)(x f 的间断点.24、(1)证明:令32)(45---=x x x x f . ∵075)3(,05)2(>=<-=f f ,∴由介值定理的推论,)(x f 在)3,2(中至少存在一个根. (2)证明:令1)(2+-=x x x f . ∵034)2(,021)1(>-=<-=f f∴. 由介值定理的推论,)(x f 在)2,1(中至少存在一个根.第二章 单元测验题1、(1)原式0cos 1sinlim lim sin lim 21cos sin 21sinlim0000=⋅⋅=⋅⋅=→→→→x xx x x x x x x x x x x x ;(2)原式211lim 2=++=+∞→xx x x ;(3)原式2121lim 1134322321lim=+=+⋅-⋅⋅⋅⋅⋅=∞→∞→n n n n n n n n . 2、解:∵55lim )(lim ,0lim )(lim 01a x a x f e x f x x x x x =+===++--→→→→∴由题知,要使)(x f 在整个数轴上连续,必须满足005=⇒=a a .3、解:∵01sin lim )(lim ,1ln )1ln(lim )(lim 01)1(1=-=-==-=++--→→--⋅-→→x x x f ex x f x x xx x∴)(lim 0x f x →不存在,0=x 是)(x f 的间断点.又∵∞=-=→→1sin lim)(lim 11x x x f x x ,即极限不存在,∴1=x 是)(x f 间断点.因此,)(x f 的连续区间为),1()1,0()0,(+∞⋃⋃-∞.4、解:∵111sinlim22=-+→axxx , ∴左边=aaxxx aaxaxx x x x 2)11(lim )sin (lim 1)11(sin lim220222=++⋅=++→→→,∴2=a .。

微积分课后题答案习题详解

微积分课后题答案习题详解

微积分课后题答案习题详解IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】第二章习题2-11. 试利用本节定义5后面的注(3)证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有 由数列极限的定义得 lim n k x x a +→∞=.2. 试利用不等式A B A B -≤-说明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立.证:而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。

3. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭=0; (2) lim n →∞2!n n =0.证:(1)因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+ 而且 21lim0n n →∞=,2lim 0n n→∞=, 所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭. (2)因为22222240!1231n n n n n<=<-,而且4lim 0n n →∞=,所以,由夹逼定理得4. 利用单调有界数列收敛准则证明下列数列的极限存在.(1) x n =11n e +,n =1,2,…;(2) x 1x n +1,n =1,2,…. 证:(1)略。

《微积分》上册部分课后习题答案

《微积分》上册部分课后习题答案

微积分上册 一元函数微积分与无穷级数第2章 极限与连续2.1 数列的极限1.对于数列n x ,若a x k →2(∞→k ),a x k →+12(∞→k ),证明:a x n → (∞→n ). 证. 0>∀ε, a x k →2 (∞→k ), Z K ∈∃∴1, 只要122K k >, 就有ε<-a x k 2; 又因a x k →+12(∞→k ), Z K ∈∃∴2, 只要12122+>+K k , 就有ε<-+a x k 12. 取{}12,2m ax 21+=K K N , 只要N n >, 就有ε<-a x n , 因此有a x n → (∞→n ). 2.若a x n n =∞→lim ,证明||||lim a x n n =∞→,并举反例说明反之不一定成立.证明: a x n n =∞→lim ,由定义有:N ∃>∀,0ε,当N n >时恒有ε<-||a x n又 ε<-≤-||||||a x a x n n对上述同样的ε和N ,当N n >时,都有ε<-||||a x n 成立 ∴ ||||lim a x n n =∞→反之,不一定成立.如取 ,2,1,)1(=-=n x nn显然 1||lim =∞→n n x ,但n n x ∞→lim 不存在.2.2 函数的极限1. 用极限定义证明:函数()x f 当0x x →时极限存在的充要条件是左、右极限各自存在且相等.证: 必要性. 若()A x f x x =→0lim , 0>∀ε, 0>∃δ, 当δ<-<00x x 时, 就有()ε<-A x f . 因而, 当δ<-<00x x 时, 有()ε<-A x f , 所以()A x f x x =+→0lim ; 同时当δ<-<x x 00时, 有()ε<-A x f , 所以()A x f x x =-→0lim .充分性. 若()A x f x x =+→0lim ,()A x f x x =-→0lim . 0>∀ε, 01>∃δ, 当100δ<-<x x 时, 就有()ε<-A x f , 也02>∃δ, 当200δ<-<x x 时, 有()ε<-A x f . 取{}21,m in δδδ=,则当δ<-<00x x 时, 就有()ε<-A x f . 所以()A x f x x =→0lim .2.写出下列极限的精确定义:(1)A x f x x =+→)(lim 0,(2)A x f x =-∞→)(lim ,(3)+∞=+→)(lim 0x f x x ,(4)-∞=+∞→)(lim x f x ,(5)A x f x =+∞→)(lim .解:(1)设R x U f →)(:0是一个函数,如果存在一个常数R A ∈,满足关系:0,0>∃>∀δε,使得当δ<-<00x x 时,恒有ε<-|)(|A x f ,则称A 是)(x f 当+→0x x 时的极限,记作A x f x x =+→)(lim 0或 )()(0+→=x x A x f . (2)设R f D f →)(:是一函数,其中0,),,()(>>--∞⊃αααR f D .若存在常数R A ∈,满足关系:0)(,0>∈∃>∀R X ε,使得当X x -<时,恒有ε<-|)(|A x f 成立,则称A 是)(x f 当-∞→x 时的极限,记作:A x f x =-∞→)(lim 或 A x f =)()(-∞→x .(3)设R x U f →)(:0是任一函数,若0>∀M ,0>∃δ,使得当δ<-<00x x 时,恒有M x f >)(,则称当+→0x x 时)(x f 的极限为正无穷大,记作+∞=+→)(lim 0x f x x 或 +∞=)(x f )(0+→x x . (4)设R f D f →)(:是一函数,其中R f D ∈>+∞⊃ααα,0),,()(,若存在常数R A ∈,满足关系:0>∀M ,0)(>∈∃R X ,使得当X x >时,恒有M x f -<)(则称当+∞→x 时)(x f 的极限为负无穷大,记作:-∞=+∞→)(lim x f x 或 -∞=)(x f )(+∞→x .(5)设R f D f →)(:是一函数,其中R f D ∈>+∞⊃ααα,0),,()(,若存在常数R A ∈,满足关系:0,0>∃>∀X ε,使得当X x >时,恒有ε<-|)(|A x f 成立,则称A是)(x f 当+∞→x 时的极限,记作:A x f x =+∞→)(lim 或 A x f =)()(+∞→x .2.3 极限的运算法则1.求∑=∞→+⋯++Nn N n 1211lim. 解. ()()⎪⎭⎫ ⎝⎛+-=+=+=+⋯++111212211211n n n n n n n⎪⎭⎫ ⎝⎛+-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+⋯++∑=1112111312121122111N N N n Nn 21112lim 211lim1=⎪⎭⎫ ⎝⎛+-=+⋯++∴∞→=∞→∑N nN Nn N 2.求xe e xxx 1arctan11lim110-+→. 解. +∞=+→x x e 10lim , 0lim 10=-→xx e,,21arctan lim 11lim 1arctan11lim 0110110π=-+=-++++→--→→x ee x e e x xxx xxx ,21arctan lim 11lim 1arctan11lim 0110110π=-+=-+---→→→x e e x e e x x xx x x x 21arctan 11lim 110π=-+∴→x e e x xx3.设)(lim 1x f x →存在,)(lim 2)(12x f x x x f x →+=,求)(x f . 解:设 )(lim 1x f x →=A ,则A x x x f ⋅+=2)(2再求极限:A A A x x x f x x =+=⋅+=→→21)2(lim )(lim 211⇒ 1-=A∴ x x xA x x f 22)(22-=+=.4.确定a ,b ,c ,使 0)1(3)1()1(lim 2221=-+-+-+-→x x c x b x a x 成立.解:依题意,所给函数极限存在且 0)1(lim 21=-→x x∴ 0]3)1()1([lim 221=+-+-+-→x c x b x a x ⇒ 2=c∴ 上式左边=])32)(1(11[lim ))1(321(lim 21221++-+--+=-+-+-+→→x x x x b a x x x b a x x])32)(1(1)32([lim 221++---+++=→x x x x b a x同理有 0]1)32([lim 21=--++→x x b x ⇒ 21=b ∴ 163)23)(1(8)1(3lim )32)(1(1)32(21lim221221=++---=++---++-=→→x x x x x x xx a x x 故 2,21,163===c b a 为所求.2.4 极限存在准则1. 设1x =10,n n x x +=+61,( ,2,1=n ).试证数列{n x }的极限存在,并求此极限. 证: 由101=x , 4612=+=x x , 知21x x >. 假设1+>k k x x , 则有21166+++=+>+=k k k k x x x x . 由数学归纳法知, 对一切正整数n , 有1+>n n x x ,即数列{n x }单调减少. 又显然, () ,2,10=>n x n , 即{n x }有界. 故n n x ∞→lim 存在.令a x n n =∞→lim , 对n n x x +=+61两边取极限得a a +=6, 从而有062=--a a ,,3=∴a 或2-=a , 但0,0≥∴>a x n , 故3lim =∞→n n x2.证明数列 nn n x x x x ++=<<+3)1(3,3011收敛,并求其极限.证明:利用准则II ,单调有界必有极限来证明.∴301<<x ,由递推公式33312131213213)1(30111112=++<++=++=++=<x x x x x x∴ 302<<x 同理可证:30<<n x 有界又 03)3)(3(333)1(311112111112>++-=+-=-++=-x x x x x x x x x x∴ 12x x > 同理 23x x > ,… ,1->n n x x ∴数列 }{n x 单调递增,由准则II n n x ∞→lim 存在,设为A ,由递推公式有:AA A ++=3)1(3 ⇒ 3±=A (舍去负数)∴ 3lim =∞→n n x .3.设}{n x 为一单调增加的数列,若它有一个子列收敛于a ,证明a x n n =∞→lim .证明:设}{k n x 为}{n x 的一子列,则}{k n x 也为一单调增加的数列,且a x k k n n =∞→lim对于1=ε,N ∃,当N n >时有1||<-a x k n 从而||1||||||||a a a x a a x x k k k n n n +<+-≤+-=取|}|1|,|,|,max {|1a x x M N n n += ,对一切k n 都有 M x k n ≤|| 有界.由子列有界,且原数列}{n x 又为一单调增加的数列,所以,对一切n 有M x n ≤||有界,由准则II ,数列}{n x 极限存在且a x n n =∞→lim .2.5 两个重要极限1. 求]cos 1[cos lim n n n -++∞→.解: 原式 =21sin 21sin2lim nn n n n -+++-+∞→⎪⎪⎭⎫⎝⎛++=-+=-+-+-+++-=+∞→n n n n n n nn nn nn n 1110212121sin21sin2lim 2. 求)1sin(lim 2++∞→n n π.解. 原式=()()n nn n n nn n -+-=-+++∞→+∞→1sin 1lim )1sin(lim 22ππππ()()()()0111sin 1lim 222=-+⋅-+-+-=+∞→n nn n nnnn πππ3. 求x x xx )1cos 1(sinlim +∞→. 解. 原式=()[]()e t t t tttt tt xt =⎥⎦⎤⎢⎣⎡+=+=→→=22sin 2sin 10212012sin 1lim cos sin lim 令4. 设 ⎩⎨⎧+-=32)cos 1(2)(x x x x f 00≥<x x 求 20)(lim x x f x →. 解: 1lim )(lim 232020=+=++→→x x x x x f x x ,1)cos 1(2lim )(lim 2020=-=--→→x x x x f x x ∴ 1)(lim2=→xx f x .2.6 函数的连续性1. 研究函数()[]x x x g -=的连续性,并指出间断点类型. 解. n x =,Z n ∈ (整数集)为第一类 (跳跃) 间断点.2. 证明方程)0(03>=++p q px x 有且只有一个实根.证. 令()()()0,0,3>∞+<∞-++=f f q px x x f , 由零点定理, 至少存在一点ξ使得()0=ξf , 其唯一性, 易由()x f 的严格单调性可得.3.设⎪⎩⎪⎨⎧≤<-+>=-01),1ln(0 ,)(11x x x e x f x ,求)(x f 的间断点,并说明间断点的所属类型. 解. )(x f 在()()()+∞-,1,1,0,0,1内连续, ∞=-→+111lim x x e,0lim 111=-→-x x e, ()00=f , 因此,1=x 是)(x f 的第二类无穷间断点; (),lim lim 1110--→→==++e ex f x x x()()01ln lim lim 00=+=--→→x x f x x , 因此0=x 是)(x f 的第一类跳跃间断点.4.讨论nx nxn e e x x x f ++=∞→1lim )(2的连续性.解. ⎪⎩⎪⎨⎧<=>=++=∞→0,0,00,1lim)(22x x x x x e e x x x f nxnxn , 因此)(x f 在()()+∞∞-,0,0,内连续, 又()()00lim 0==→f x f x , ()x f ∴在()+∞∞-,上连续.5.设函数),()(+∞-∞在x f 内连续,且0)(lim=∞→xx f x ,证明至少存在一点ξ,使得0)(=+ξξf .证:令x x f x F +=)()(,则01]1)([lim )(lim>=+=∞→∞→x x f x x F x x ,从而0)(>xx F .由极限保号性定理可得,存在01>x 使0)(1>x F ;存在02<x 使0)(2<x F .)(x F 在],[12x x 上满足零点定理的条件,所以至少存在一点ξ使得0)(=ξF ,即0)(=+ξξf .6.讨论函数nnx x x x f 2211lim )(+-=∞→的连续性,若有间断点,判别其类型.解: ⎪⎩⎪⎨⎧-=101)(x f 1||1||1||>=<x x x ,显然 1±=x 是第一类跳跃间断点,除此之外均为连续区间.7.证明:方程)0,0(sin >>+=b a b x a x 至少有一个正根,且不超过b a +. 证明:设b x a x x f --=sin )(,考虑区间],0[b a +0)0(<-=b f ,0))sin(1()(≥+-=+b a a b a f ,当0))sin(1()(=+-=+b a a b a f 时,b a x +=是方程的根;当0))sin(1()(>+-=+b a a b a f 时,由零点定理,至少),0(b a +∈∃ξ使0)(=ξf ,即 0sin =--b a ξξ成立,故原方程至少有一个正根且不超过b a +.2.7 无穷小与无穷大、无穷小的比较1. 当0→x 时,下面等式成立吗?(1))()(32x o x o x =⋅;(2))()(2x o xx o =;(3) )()(2x o x o =. 解. (1)()()()002232→→=⋅x xx o x x o x , ()()()032→=⋅∴x x o x o x (2) ()()()0)(,00)()(2222→=∴→→=x x o x x o x x x o xxx o(3) ()2xx o不一定趋于零, )()(2x o x o =∴不一定成立(当0→x 时) 2. 当∞→x 时,若)11(12+=++x o c bx ax ,则求常数c b a ,,.解. 因为当∞→x 时,若)11(12+=++x o c bx ax , 所以01lim 111lim 22=+++=++++∞→+∞→c bx ax x x c bx ax x x , 故c b a ,,0≠任意.3.写出0→x 时,无穷小量3x x +的等价无穷小量.解: 11lim 1lim lim303630=+=+=+→→→x xx xxx x x x∴ 当0→x ,3x x +~6x第3章 导数与微分3.1 导数概念1. 设函数)(x f 在0x 处可导,求下列极限值. (1)hh x f h x f h )3()2(lim000--+→;(2)000)()(lim 0x x x xf x f x x x --→.解.(1) 原式()()()000000533)3(22)2(lim x f h x f h x f h x f h x f h '=⎥⎦⎤⎢⎣⎡⋅---+⋅-+=→(2) 原式()[]()()()()00000000)(limx f x f x x x x x x f x f x f x x x -'=----=→2.设函数R f →+∞),0(:在1=x 处可导,且),0(,+∞∈∀y x 有)()()(y xf x yf xy f += 试证:函数f 在),0(+∞内可导,且)1()()(f xx f x f '+='. 解:令1==y x ,由()()()y xf x yf xy f +=有()()121f f =得()01=f .()+∞∈∀,0x ,()()()()()()()()()()xx f f x x f xx f x x f x x f x f x x x x xf x x f x x x f x x f x x f x f x x x x +'=+∆-⎪⎭⎫⎝⎛∆+=∆-⎪⎭⎫ ⎝⎛∆++⎪⎭⎫ ⎝⎛∆+=∆-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∆+=∆-∆+='→∆→∆→∆→∆111lim 11lim 1lim lim 0000 故()x f 在()+∞,0内处处可导,且()()()xx f f x f +'='1. 3.设()f x 在(,)-∞+∞内有意义,且(0)0f =,(0)1f '=, 又121221()()()()()f x x f x x f x x ϕϕ+=+,其中22()cos xx x x e ϕ-=+, 求()f x '.解: ()()()()()()()()x x f x x f x x f x x f x x f x f x x ∆-∆+∆=∆-∆+='→∆→∆ϕϕ00lim lim()()()()()()()()()001lim 0lim 00ϕϕϕϕ'+'=∆-∆+∆-∆=→∆→∆x f x f xx x f x x f x f x x ()x e x x x 22cos -+==ϕ4.设函数0)(=x x f 在处可导,且21arctan lim )(0=-→x f x e x,求)0(f '.解:由已知,必有0]1[lim )(0=-→x f x e,从而0)(lim 0=→x f x ,而0)(=x x f 在连续,故0)0(=f .于是)0(1)0()(1lim )(lim 1arctan lim200)(0f xf x f x f x e x x x x f x '=-==-=→→→. 故21)0(='f .5.设)(x f 具有二阶导数,)(,sin )()2(lim )(2x dF t xx f t x f t x F t 求⎥⎦⎤⎢⎣⎡-+=∞→.解: 令t h 1=,则)(2 sin )()2(lim)(0x f x hhxh x f h x f x F t '=⋅-+=→.从而)(2)(2)(x f x x f x F ''+'=',dx x f x x f dx x F x dF )]()([2)()(''+'='=.6.设f 是对任意实数y x ,满足方程 22)()()(xy y x y f x f x f +++= 的函数,又假设1)(lim=→xx f x ,求:(1))0(f ;(2))0(f '; (3))(x f '. 解:(1)依题意 R y x ∈∀,,等式 22)()()(xy y x y f x f y x f +++=+ 成立令0==y x 有 )0(2)0(f f = ⇒ 0)0(=f(2)又 1)(lim=→x x f x ,即 )0(10)0()(lim 0f x f x f x '==--→,∴ 1)0(='f(3)xx f x x f x f x ∆-∆+='→∆)()(lim )(0x x f x x x x x f x f x ∆-∆⋅+∆⋅+∆+=→∆)()()()(lim 220 x x x x x x f x ∆∆⋅+∆⋅+∆=→∆220)()(lim ])([lim 20x x x xx f x ∆⋅++∆∆=→∆ ]1)0(22x x f +=+'=∴ 21)(x x f +='.7.设曲线)(x f y =在原点与x y sin =相切,试求极限 )2(lim 21nf nn ∞→. 解:依题意有 1)0()0(='='f y 且0)0(=f∴ 222)0()2(lim )2(lim 2121=⋅-⋅=⋅∞→∞→n nf n f n nf n n n .8.设函数)(x f 在0=x 处可导且0)0(,0)0(='≠f f ,证明1])0()1([lim =∞→nn f n f .证:n n n n f f n f f n f ])0()0()1(1[lim ])0()1([lim -+=∞→∞→.=10)0(11)0()01(lim )0()0()1(lim ===⋅-+-∞→∞→e ee f nf n f f f n f n n n .1.计算函数baxax xb ab y )()()(= (0,0>>b a )的导数.解. a xb bx a b a x xb a b a a x b a x a b x b x b a a x x b a b a b y )(1)()()()(ln )(121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛+='-- ⎥⎦⎤⎢⎣⎡+-=x b x a a b a x x b a b b a x ln )()()( 2.引入中间变量,1)(2x x u +=计算1111ln 411arctan 21222-+++++=x x x y 的导数dx dy .解. 引入,1)(2x x u += 得11ln 41arctan 21-++=u u u y ,于是dxdudu dy dx dy ⋅=, 又 ()()4242422111111111141121x x x u u u u du dy +-=+-=-=⎪⎭⎫ ⎝⎛--+++=,21xx dx du +=, 则()22242121121xx x x x x x dx dy ++-=+⋅⎪⎭⎫⎝⎛+-= 3.设y y x +=2,232)(x x u +=,求dudy. 解. dudxdx dy du dy ⋅= , 又()()1223,12212++=+=x x x dx du y dy dx ,得121+=y dx dy , ()x x x du dx ++=21232, 则得()()xx x y du dy +++=2121232 4.已知 2arctan )(),2323(x x f x x f y ='+-=,求=x dx dy .解:22)23(12)2323arctan()2323()2323(+⋅+-='+-⋅+-'='x x x x x x x f y π43)23(12)2323arctan(02200=+⋅+-='=∴===x x x x x x y dxdy .1. 计算下列各函数的n 阶导数. (1) 6512-+=x x y ; (2) x e y xcos =. 解 (1)⎪⎭⎫⎝⎛+--=611171x x y ,()()()()()()⎥⎦⎤⎢⎣⎡+---=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫⎝⎛-=∴++1161117!1611171n n nn n n x x n x x y (2) ()⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡-=-='4cos 2sin 21cos 212sin cos πx e x x e x x e y x x x()⎪⎭⎫ ⎝⎛⋅+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=''42cos 24sin 4cos 22πππx ex x e y xx由此推得 ()()⎪⎭⎫ ⎝⎛⋅+=4cos 2πn x eyxnn2. 设x x y 2sin 2=, 求()50y .解 ()()()()()()()()()()"+'+=248250249150250502sin 2sin 2sin x x C x x C x x y⎪⎭⎫ ⎝⎛⋅+⋅⨯+⎪⎭⎫ ⎝⎛⋅+⋅+⎪⎭⎫ ⎝⎛⋅+=2482sin 2249502492sin 2502502sin 24950250πππx x x x xx x x x x 2sin 212252cos 2502sin 24950250⋅+⋅+-= ()[]x x x x 2cos 1002sin 212252249+-=3. 试从y dy dx '=1, 0≠'y , 其中y 三阶可导, 导出()322y y dy x d '''-=, ()()52333y y y y dy x d '''''-''= 解 y dy dx '=1 ,()()322211y y y y y dy dx y dx d dyx d '''-='⋅'-''=⋅⎪⎪⎭⎫ ⎝⎛'=∴ ()()()()()()52623333313y y y y y y y y y y y dy dx y y dx d dy x d '''''-''='⋅'''⋅'⋅''+''''-=⋅⎪⎪⎭⎫ ⎝⎛'''-=∴ 4. 设()x f 满足()()0 312≠=⎪⎭⎫⎝⎛+x xx f x f , 求()()()()x f x f x f n ,,'.解 以x 1代x ,原方程为()x x f x f 321==⎪⎭⎫ ⎝⎛,由()()⎪⎪⎩⎪⎪⎨⎧=+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+x x f x f x x f x f 321 312,消去⎪⎭⎫⎝⎛x f 1,求得()x x x f 12-=,且得()212xx f +=',()()()()2!111≥-=++n x n x f n n n . 5.设()arcsin f x x =,试证明()f x 满足 (1)2(1)()()0x f x xf x '''--= (2) ,1,0,0)()()12()()1()(2)1()2(2==-+--++n x f n x xf n x f x n n n(3)求()(0)n f解 (1)()211x x f -=',()()()22221112211xx xx x x x f --=-⋅--='', ()()()012='-''-∴x f x x f x ,(2)上式两边对x 求n 阶导数得()()[]()()[]()()()()()()()()()()()()()()()[]x f n x xf x f n n x f x n x f x x f x x f x n n n n n nn⋅⋅+-⋅-⋅---+-='-''-=+++1221211021222即 ()()()()()()()()01212122=-+--++x f nx xf n x f xn n n 。

经济数学基础 微积分 第二章习题解答

经济数学基础      微积分    第二章习题解答

1 ex x0 15.设有函数f ( x) a x x 0
解: e 0 lim
x 0 1 x x 0
问常数a为何值时, f ( x)存在? lim
x0
lim (a x) a
当a 0时, f ( x)存在. lim
x0
16.求下列极限: tan 2 x 2 arctan 5 x 3x sin 3 x (2) lim (3) lim 5 (1) lim lim 6 x 0 sin 5 x x 0 arcsin x x 0 x 0 x x 5 sin 2 2 1 x2 sin x2 (5) lim 1 lim 4 x 1 x 0 (4) lim x sin lim 2 x x 0 x 2 sin ( ) x ( ) x x 1 2 2 x tan 2 x sin x tan 2 x sin x 2 1 1 (6) lim lim lim x 0 x 0 x 0 x x x
e 4
x x x 1 2 3 lim (17 ) lim ln(1 x x x ) x 0 x 0 x x
2
3
1
1
1 n 2 n 3 n n n n n n (18) lim(1 2 3 4 ) lim 4 [1 ( ) ( ) ( ) ] 4 x x 4 4 4 17.求下列极限:
x 1 x 1
1 或 lim 2 0 n x
y
解:lim f ( x) lim f ( x) 2 f (1)
x 2是第一类可去间断点
0
x
若f (1) 2, 则为连续 .
(2) x 0第二类无穷间断点 (3) x 0第一类跳跃间断点 (4) x 0第一类可去间断点 x 1第二类无穷间断点 (5) x 0第一类跳跃间断点 (6) x 0第一类可去间断点

微积分课后题答案第二章习题详解

微积分课后题答案第二章习题详解
解:函数在其第二类间断点处的左、右极限不一定均不存在.
例如是其的一个第二类间断点,但即在处左极限存在,而,即在处右极限不存在.
4.求下列函数的间断点,并说明间断点的类型:
(1) f(x)= ;(2) f(x)=;
(3) f(x)= ;(4) f(x)= ;
(5) f(x)= .
解: (1)由得x=-1, x=-2
证:
,由极限的保号性知.
,使当时有,此时与同号,因为n为奇数,所以(2X)n与(-2X)n异号,于是与异号,以在上连续,由零点存在定理,至少存在一点,使,即至少有一实根.
(7)正确,见教材§2.3定理5;
(8)错误,只有非零的无穷小量的倒数才是无穷大量。零是无穷小量,但其倒数无意义。
3. 指出下列函数哪些是该极限过程中的无穷小量,哪些是该极限过程中的无穷大量.
(1) f(x)= ,x→2;(2) f(x)=lnx,x→0+,x→1,x→+∞;
(3) f(x)= ,x→0+,x→0-;(4) f(x)= -arctanx,x→+∞;
也即,所以当时,.
再证必要性:
若当时,,则,
所以==.
综上所述,当x→x0时,(x)~β(x)的充要条件是
=0.
2. 若β(x)≠0,β(x)=0且存在,证明(x)=0.
证:
即.
3. 证明: 若当x→0时,f(x)=o(xa),g(x)=o(xb),则f(x)·g(x)=o(),其中a,b都大于0,并由此判断当x→0时,tanx-sinx是x的几阶无穷小量.
解: ∵f(0)=a,
要f(x)在x=0处连续,必须.
即a=1.
6※.设f(x)= ,讨论f(x)的连续性.

微积分习题答案第二章极限与连续

微积分习题答案第二章极限与连续

练习2.11.写出下列数列的前五项.()12312+-=n n a n (n=1,2,3,…) ()23)1(1n nn a --= (n =1,2,3, …)()3n n na )11(+= n=1,2,3, …)()4)!12()1(121--=--n x n n n a (n=1,2,3, …),其中x 是固定的实数.解:()1由2312+-=n n a n (n=1,2,3, …)得数列的前五项为 51,83,115,147,179. ()2由3)1(1nnn a --= (n=1,2,3, …)得数列的前五项为 2,0,332,0,352. ()3由n n na )11(+= (n=1,2,3, …)得数列的前五项为2,2)23(,3)34(,4)45(,5)56(.()4由)!12()1(121--=--n x n n n a (n=1,2,3, …) 得数列的前五项为!1x,!33x -,!55x ,!77x -,!99x .2.做出下面各数列在数轴上的点,并说出哪些数列有极限?哪些没有极限?()1n n a 21=()2n nna )1(-= ()3n n n a 1)1(-= ()41+=n n a n ()5n n a n πsin 1= ()62sin πn n a n =. 解:作图略.()1有极限为0 ()2没有极限 ()3有极限为0 ()4有极限为1 ()5有极限为0 ()6没有极限.3*(略) 4*(略) 5*(略)6.设()⎩⎨⎧≥-<=1,131,x x x x x f ,作()x f 的图形,并讨论当1→x 时()x f 的左右极限,问)(lim 1x f x → 是否存在? 解:图略.因为 2)(lim 1=+→x f x ,1)(lim 1=-→x f x)(lim )(lim 11x f x f x x -+→→≠所以)(lim 1x f x →不存在.7.求下列函数在指定点的极限.()1xx x f ||)(=在0=x 处 ()2⎩⎨⎧-+=124)(x x x f 11≥<x x 在0=x ,1=x ,2=x 处. 解:()1⎩⎨⎧-==11||)(x x x f Θ00<>x x 11lim )(lim 00==++→→x x x f ,11lim )(lim 0-=-=--→→x x x f所以xx x f ||)(=在0=x 处极限不存在. ()24)4(lim )(lim 00=+=++→→x x f x x ,4)4(lim )(lim 0=+=--→→x x f x x所以⎩⎨⎧-+=124)(x x x f 11≥<x x 在0=x 处极限为4.1)12(lim )(lim 11=-=++→→x x f x x ,5)4(lim )(lim 11=+=--→→x x f x x所以⎩⎨⎧-+=124)(x x x f 11≥<x x 在1=x 处极限不存在.3)12(lim )(lim 22=-=++→→x x f x x ,3)12(lim )(lim 22=-=--→→x x f x x所以⎩⎨⎧-+=124)(x x x f 11≥<x x 在2=x 处极限为3.8.下列函数在什么情况下是无穷大量,什么情况下是无穷小量?()111-=x y ()2x y ln = ()32x y = ()4x e y =.解:()1当1→x 时11-=x y 是无穷大量,当∞→x 时11-=x y 是无穷小量.()2当+∞→x 时x y ln =是无穷大量,当+→0x 时x y ln =是无穷大量,当1→x 时x y ln =是无穷小量.()3当∞→x 时2x y =是无穷大量,当0→x 时2x y =是无穷小量.()4当+∞→x 时x e y =是无穷大量,当-∞→x 时x e y =是无穷小量.9.下列各题中哪些是无穷小,哪些是无穷大?()1221,0xx x +→ ()212,0-→-x x()3x x lg ,0+→ ()4θθθsec 1sin ,0+→.解:()1、()3是无穷大,()2、()4是无穷小. 10.下列说法是否正确?()1无穷大量是极限为无穷大的变量()2无穷大量是无界变量,无界变量也是无穷大量 ()3无极限的数列一定无界.解:()1不正确。

微积分第二版习题二答案

微积分第二版习题二答案

微积分第二版习题二答案微积分是数学中的一门重要学科,它研究的是变化的规律和量的计算方法。

而微积分的学习过程中,习题是非常重要的一环。

本文将为大家提供《微积分第二版》习题二的详细答案,希望能帮助大家更好地掌握微积分的知识。

第一题:计算函数 f(x) = 3x^2 - 2x + 1 在 x = 2 处的导数。

解答:首先,我们需要求函数 f(x) 的导数。

对于多项式函数,我们可以使用求导法则来计算导数。

根据求导法则,我们有:f'(x) = d/dx (3x^2) - d/dx (2x) + d/dx (1)= 6x - 2将 x = 2 代入上式,我们得到:f'(2) = 6(2) - 2= 12 - 2= 10所以,函数 f(x) 在 x = 2 处的导数为 10。

第二题:计算函数 g(x) = e^x - x 在 x = 1 处的导数。

解答:函数 g(x) 包含了指数函数和多项式函数的运算。

对于指数函数 e^x,它的导数仍然是 e^x。

而对于多项式函数 -x,它的导数是 -1。

因此,我们可以得到函数 g(x) 的导数为:g'(x) = d/dx (e^x) - d/dx (x)= e^x - 1将 x = 1 代入上式,我们得到:g'(1) = e^1 - 1= e - 1所以,函数 g(x) 在 x = 1 处的导数为 e - 1。

第三题:计算函数 h(x) = ln(x^2 + 1) 在 x = 0 处的导数。

解答:函数 h(x) 是一个复合函数,它包含了对数函数和多项式函数的运算。

对于对数函数 ln(x),它的导数是 1/x。

而对于多项式函数 x^2 + 1,它的导数是 2x。

因此,我们可以得到函数 h(x) 的导数为:h'(x) = d/dx (ln(x^2 + 1))= 1/(x^2 + 1) * d/dx (x^2 + 1)= 2x/(x^2 + 1)将 x = 0 代入上式,我们得到:h'(0) = 2(0)/(0^2 + 1)= 0所以,函数 h(x) 在 x = 0 处的导数为 0。

《微积分(下)》第2章多元函数微分学练习题--参考答案

《微积分(下)》第2章多元函数微分学练习题--参考答案

第2章 多元函数微分学一、二元函数的极限专题练习:1.求下列二元函数的极限: (1)()11(,)2,2lim2;y xy x y xy +⎛⎫→- ⎪⎝⎭+ (2)()()2222(,),3limsin;x y x y x y →∞∞++(3) ()(,)0,1sin lim;x y xyx →(4)((,)0,0limx y →解: (1) 当1(,)2,2x y ⎛⎫→- ⎪⎝⎭时,10xy +→,因此()[]1112(1)11(,)2,(,)2,22lim2lim1(1)e yxy y xy x y x y xy xy -++⎛⎫⎛⎫→-→- ⎪⎪⎝⎭⎝⎭⎧⎫+=++=⎨⎬⎩⎭。

(2) 当()(,),x y →-∞+∞时,2230x y →+,因此222233sin ~x y x y++, ()()()()22222222(,),(,),33limsinlim 3x y x y x y x y x y x y →∞∞→∞∞+=+⋅=++。

(3) 当()(,)0,1x y →时,0xy →,因此sin ~xy xy ,()()(,)0,1(,)0,1sin limlim 1x y x y xy xyx x →→==。

(4) 当()(,)0,0x y →10,0xy →→,因此,(())())(,)0,0(,)0,0(,)0,01limlimlim12x y x y x y xy xy→→→===。

2.证明:当()(,)0,0x y →时,()44344(,)x y f x y xy=+的极限不存在。

证明: 取2(0)y kx k =≠,则()()()()()()()444484433334444444(,)0,0(,)0,0(,)0,0limlimlim11x y x y x y x y k x x k k xyxk xk k →→→===++++显然此极限值与k 的取值相关,因此当()(,)0,0x y →时,()44344(,)x y f x y xy=+的极限不存在。

微积分第二章习题参考答案

微积分第二章习题参考答案

,
y
3 2(1)3 (t 2)4
3 2(1)3 (t 1)4
,
y(n)
n!(1)n (t 2)n1
n!(1)n (t 1)n1
n!(1)n ( (t
1 2)n1
(t
1 1)n1
).
四.求下列函数所指定阶的导娄数.
1. y sh , y(100) . y sh ch , y 2ch sh , y 3sh ch , y(4) 4ch sh,
五.(1)
1 dy dx d arctan y dx 1 y2 dy,
x0
x0
x
x
2时,f ( x)在x 0处连续.
六.
设f
(
x
)存在,
求下列函数y的二阶时数
d2y dx 2
.
(1) y f (e x ).
y e x f (e x ),
y e x f (e x ) e2x f (e x ),
(2) f ( x) 0, y ln f ( x).
y f ( x) . f (x)
2.当 1时,函数在x 0处可导,
当 1时,函数在x 0处不可导.
三.解. f (1) f (1 0) 1, f (1 0) a b,
b 1 a;

f(1)
lim
x10
x2 1 x1
2,
f
(1)
lim
x 1 0
(ax b) x1
1
(ax 1 a) 1
lim
a,
2. tan t ;
3. 2 ln(1 x) dx; 1 x
4. 8tan(1 2 x2 )sec2(1 2 x2 ) xdx;
(t )(1 t ) (t )

第二章微分学答案

第二章微分学答案
f ( x)
(e x ) f (e x ) f ( x )) (e f
x
§2.3隐函数的导数
e y 一.1. y ; y 1 xe ye xy 2 xy cos( x 2 y ) 2. y ; xy 2 2 2 y xe x cos( x y ) y ( x ln y y ) 3. y x ( y ln x x ) 3 4. y t; 2 x x 5. y y (ln 1); 1 x 1 x


切线方程为:y ( x e 2 ) x e 2 法线方程为:y ( x e 2 )

二.3.解: 两边同时取对数, 1 则有 ln y ln x ln( x 1) 2ln( x 2) 2 方程两边同时对x求导 : y 1 1 2 y x 2( x 1) x 2 1 1 2 y y ( ) x 2( x 1) x 2
§2.2求导法则
一.1.B; 2. y 2. B 1 1 x2 1 . x 二 .1. y tan 2 x . y y x 3( x 1) 1 2 1 4. y y x 1 3x 1 3(2 x ) 5. 1
1 1 三.3.解: y , x 2 x 1 ( 1)n n ! ( 1)n n ! y(n) n1 ( x 2) ( x 1)n1
dy dy dt 2sin t cos t 三.4.解: 2cos t , dx dx sin t dt dy d 2 y d ( dx ) 2sin t 2. 2 dx dx sin t
1 三. 1.(1)解:y 3sec (ln x ) sec(ln x ) tan(ln x ) x 1 sin 2 1 1 1 1 2 sin2 1 v v (2)解:y e ( 2sin cos )( 2 ) 2 (sin )( e ) v v v v v 1 2 (3)解:y (sec t tan t sec t ) sec t sec t tan t 1 x 1 ( x 1) 1 (4)解:y 2 2 2 ( x 1) x 1 x 1 1 x 1 (5)解:y 2 xe x cos x x 2e x cos x x 2e x sin x

(完整版)《微积分》各章习题及详细答案

(完整版)《微积分》各章习题及详细答案

第一章 函数极限与连续一、填空题1、已知x xf cos 1)2(sin +=,则=)(cos x f 。

2、=-+→∞)1()34(lim22x x x x . 3、0→x 时,x x sin tan -是x 的 阶无穷小。

4、01sin lim 0=→xx k x 成立的k 为 .5、=-∞→x e x x arctan lim .6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b .7、=+→xx x 6)13ln(lim 0 。

8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________. 9、函数)2ln(1++=x y 的反函数为_________。

10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a .12、函数x xx f +=13arcsin )(的定义域是__________。

13、lim ____________x →+∞=.14、设8)2(lim =-+∞→xx ax a x ,则=a ________。

15、)2)(1(lim n n n n n -++++∞→=____________。

二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。

(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。

2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。

(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~.3、函数⎪⎩⎪⎨⎧=-≥≠-+-+=0)1(0,1111)(3x k x x x x x f 在0=x 处连续,则=k 。

微积分中国商业出版社_课后习题答案详解二

微积分中国商业出版社_课后习题答案详解二
x→∞
解:1) lim (x + h)3 − h3 = lim x3 + 3x2h + 3xh2 + h3 − x3 = lim (3x2 + 3xh + h2) = 3x2
h→0
h
h→0
h
h→0
2) lim xn −1 = n
x→1 x −1
3)
⎛ xl→im+∞⎜⎜⎜ arctan
x
+
1
2x
⎞ ⎟ ⎟⎟
(7) lim
2x +1 − 3 ;
x→4 x − 2 − 2
(2) lim xn −1 ;
x→1 x −1
(4)
⎛ xli→m1⎜⎜⎝
x
x −1

1 x2 −
x
⎞ ⎟⎟ ; ⎠
(6) lim
1− x −3 ;
x→∞ 2 + 3 x
(8) lim ( x2 + x + 1 − x2 − x − 3) .
n→∞ 5 + 9( 3)n
=
1 5
5
9.下列数列{xn} ,当 n → ∞ 时是否是无穷小量?
(1)
xn
=
1050 3n
;
[ ] (2) xn = 1+ (−1)n 1 ; n
(3) xn = n n .
解:1)是无穷小量 因为 lim xn = 0
n→∞
2)是,因为 lim xn = 0 ( n 为奇数或者偶数)
x → −1+
(4) lim 10x = 0 .
x → −∞
解:1)对于任意给定的 ξ ,要使 δψξ 成立,只要使 4 n > 1 即

大一微积分二至四章课后习题答案

大一微积分二至四章课后习题答案

第二章习题解答 习 题 2—11. 用定义求函数2y x =在1x =处的导数。

解:(1)22(1)(1)(1)12()y f x f x x x ∆=+∆-=+∆-=∆+∆;(2)22()2y x x x x x∆∆+∆==+∆∆∆; (3)00limlim(2)2x x yx x ∆→∆→∆=+∆=∆.2. 已知一物体的运动方程为38s t =+ ()m ,求该物体在2()t s =时的瞬时速度。

解:(1)323(2)(2)(2)816126()()s s t s t t x t ∆=+∆-=+∆+-=∆+∆+∆;(2)230[126()()](2)lim12t s t x t v t t∆→∆∆+∆+∆===∆∆。

3. 求在抛物线22y x =+上点1x =处的切线方程与法线方程. 解:因为2(2)2y x x ''=+=,12,x y ='= 故所求的切线方程为 32(1)y x -=- 即 210x y -+-=所求的法线方程为 13(1)2y x -=--即 15022x y +-=。

4. 设0()f x '存在,试利用导数的定义求下列极限:(1)000()()limx f x x f x x ∆→-∆-∆; (2)000()()lim h f x h f x h h →+--;(3)000()(2)lim 2x f x x f x x x∆→+∆--∆∆.解:(1) 0000000()()[()]()lim lim ()x x f x x f x f x x f x f x x x∆→∆→-∆-+-∆-'=-=-∆-∆;(2)原式0000000()()()()lim lim 2()h h f x h f x f x h f x f x h h→→+---'=+=-;(3)原式0000000()()(2)()3lim lim ()222x x f x x f x f x x f x f x x x ∆→∆→+∆--∆-'=+=∆-∆。

《经济数学--微积分》第二章练习题参考答案

《经济数学--微积分》第二章练习题参考答案

第二章 极限与连续 练习题参考答案一、判断题1-5:××√√√ 6-10:××××√ 11-15:×××√√ 16-20:×××√√二、单项选择题1-5:DABCD 6-10:DDDCB 11-15:ADDAB 16-20:CCDAC 21-25:BBADB 26-30:BBBCC三、填空题 1.x21 ; 2. 7 ; 3.53; 4. 0 ; 5. 1 ; 6. 0 ; 7.31 ; 8. 2-e ; 9. 2 ; 10. 1 ; 11. 4 ; 12. 高 ; 13. 2 ; 14. 同阶 ; 15. 3±=x ; 16. 是 ; 17. 2 ; 18. 0 ; 19. 4 ; 20. 0 .四、解答题 1. (1) 11lim 22-++∞→n n n n 2211111lim n n n -++=∞→.21=(2).5432lim )3)(2()2)(2(lim 64lim 22222=++=+-+-=-+-→→→x x x x x x x x x x x x (3).41)1)(1(1lim )1)(1)(1(1lim 11lim 1121=++=++--=--→→→x x x x x x x x x x x (4) .22sin 24)2(lim 2sin 2lim cos 1lim cos 1sin lim cos 1sin lim 22022020200=∙==-=-⋅=-→→→→→x x x x xx x x x x x x x x x x x x (5).051121lim 512lim 44343=-+-=-+-∞→∞→xx x x x x x x x(6).211111lim1lim22=++=+++∞→+∞→xxx x x x (7) )1)(1)(1(12lim ])1)(1(3)1)(1(2lim[)1312(lim 22121321+++---=++--+-=---→→→x x x x x x x x x x x x x x x x.21)1)(1(12lim )1)(1)(1()12)(1(lim2121=++++=+++-+-=→→x x x x x x x x x x x x(8) .1])121(lim [)121(lim )121(lim )11(lim 0lim 2112211222==-+=-+=-+=-+-∞→-∞→-∙-∞→∞→∞→e xxxx x x x x x x x x xx xx x x x x x x x2、1x → )13)(1)(1()1(2lim )13)(1)(1()13)(13(lim 11x x x x x x x x x x x x x x x ++-+--=++-+-++-+--=→→ .221)13)(1(2lim1-=++-+-=→x x x x3、)312)(4()22)(4(2lim)312)(22)(22()22)(312)(312(lim22312lim444++-+--=+++---+-++-+=---+→→→x x x x x x x x x x x x x x x.322312)22(2lim4=+++-=→x x x 4、2121lim()11x x x →---.2111lim )1)(1(1lim 11-=+-=+--=→→x x x x x x5.lim x →-)31)(8()24)(8(lim )31)(24)(2()24)(31)(31(lim 323832333238+-++-+-=+-+-++-+---=-→-→x x x x x x x x x x x x x x x.26)444(31)24(lim3238-=++-=+-+--=-→x x x x注意:第5题应用了公式:.8)(2)24)(2(),)((33332332233x x x x x b ab a b a b a +=+=+-+--+=+所以6.2111lim()222n n →∞+++ .121121=-= 注意:首项为.-1,11q a S q a =公式的无穷项等比数列求和公比为7、20cos 1lim2x x x→-.414)2(2sin lim 2sin lim 22sin 2lim 220220220-=∙-=-=-=→→→x xx x x x x x x8、0sin(sin )limx x x →.1]sin sin )sin(sin [lim 0=∙=→xxx x x 注意:此题只要将x sin 看成一个整体就可以了。

微积分习题解答(第二章)

微积分习题解答(第二章)

微积分习题解答(第二章)1写出下列数列的一般项,并通过观察指出其中收敛数列的极限值。

()()11120,,0,,0,,2461112nn u n ⎡⎤=+-⎣⎦解:一般项该数列收敛,其极限为零。

()()11113,,,,26122011n u n n =+ 解:一般项该数列收敛,其极限为零。

()2510172642,,,,,23451n n u n+=解:一般项该数列发散。

3.利用定义证明下列极限;()nnnnn -11lim 060-110661ln ln 61ln 1,ln 6-106-1lim 06n n n N n N εεεεε→∞→∞⎛⎫= ⎪⎝⎭>⎛⎫⎛⎫-=< ⎪ ⎪⎝⎭⎝⎭>⎡⎤⎢⎥=+>⎢⎥⎢⎥⎣⎦⎛⎫-< ⎪⎝⎭⎛⎫∴= ⎪⎝⎭证明:对于任给,要使只要取正整数当时总有不等式成立()223lim010111,0limn n n N n N εεεεε→∞→∞=>-=<>⎡⎤=+>⎢⎥⎣⎦-<∴=证明:对于任给,要使只要取正整数当时总有不等式成立4.试判断下列论点断是否正确。

()()()1,,lim 11111lim01n n n n n u A u A nnn n→∞→∞-=⨯--=+=≠-如果越大越接近零则有 错误 例如随着越大,而越加接近零,但()(){}1130lim 0N =N n >N 10lim n n n n n n n u A u Au u u Aεεεε→∞→∞>-=∠>-=<∴=如果对于任给,在数列中除有限项外,都满足不等式<,则有 正确设N 为题中的‘有限项’中的最大下标,由题意 对于任给,只要取正整数+1,当时, 总有不等式满足()(){}5s in s in n n n u nu n u ⨯==≤有界数列必定收敛错误 例如显然1,但发散6.利用定义证明下列极限:()()()()()()111lim 3120312311,3312lim 312x x x x x x x x εεεδδε→→-=>--=-<=<-<--<-=证明:对于任意给定的,要使只需取,则当0时总有 成立,于是,由极限定义可知()3lim ln 0ln 0,ln lim ln x MMx x M x M x eex x Mx δδ++→--→=-∞>∴<-⇒<<=<<<-=-∞证明:对于任意给定的,y =l n x 单调增加,要使只需取,则当0时总有成立,于是,由极限定义可知()14lim2120111212211,12121lim212x x x x x x x x X x xx x x εεεε→∞→∞=+>-=<<++=-<+=+证明:对于任意给定的,要使只需取,则当>X 时总有成立,于是,由极限定义可知()()()5lim 00010ln 01,ln 0,lim 0xx xxxxxx ee ee x x X eeεεεεεεεε→-∞→-∞=><<-==<=<<∴<<-<= 证明:对于任意给定的不妨设,要使只需取,取正数X =-l n ,则当>X 时总有成立,于是,由极限定义可知7。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微积分习题解答(第二章)1写出下列数列的一般项,并通过观察指出其中收敛数列的极限值。

()()11120,,0,,0,,2461112nn u n ⎡⎤=+-⎣⎦解:一般项该数列收敛,其极限为零。

()()11113,,,,26122011n u n n =+ 解:一般项该数列收敛,其极限为零。

()2510172642,,,,,23451n n u n+=解:一般项该数列发散。

3.利用定义证明下列极限;()nnnnn -11lim 060-110661ln ln 61ln 1,ln 6-106-1lim 06n n n N n N εεεεε→∞→∞⎛⎫= ⎪⎝⎭>⎛⎫⎛⎫-=< ⎪ ⎪⎝⎭⎝⎭>⎡⎤⎢⎥=+>⎢⎥⎢⎥⎣⎦⎛⎫-< ⎪⎝⎭⎛⎫∴= ⎪⎝⎭证明:对于任给,要使只要取正整数当时总有不等式成立()223lim010111,0limn n n N n N εεεεε→∞→∞=>-=<>⎡⎤=+>⎢⎥⎣⎦-<∴=证明:对于任给,要使只要取正整数当时总有不等式成立4.试判断下列论点断是否正确。

()()()1,,lim 11111lim01n n n n n u A u A nnn n→∞→∞-=⨯--=+=≠-如果越大越接近零则有 错误 例如随着越大,而越加接近零,但()(){}1130lim 0N =N n >N 10lim n n n n n n n u A u Au u u Aεεεε→∞→∞>-=∠>-=<∴=如果对于任给,在数列中除有限项外,都满足不等式<,则有 正确设N 为题中的‘有限项’中的最大下标,由题意 对于任给,只要取正整数+1,当时, 总有不等式满足()(){}5s in s in n n n u nu n u ⨯==≤有界数列必定收敛错误 例如显然1,但发散6.利用定义证明下列极限:()()()()()()111lim 3120312311,3312lim 312x x x x x x x x εεεδδε→→-=>--=-<=<-<--<-=证明:对于任意给定的,要使只需取,则当0时总有 成立,于是,由极限定义可知()3lim ln 0ln 0,ln lim ln x MMx x M x M x eex x Mx δδ++→--→=-∞>∴<-⇒<<=<<<-=-∞证明:对于任意给定的,y =l n x 单调增加,要使只需取,则当0时总有成立,于是,由极限定义可知()14lim2120111212211,12121lim212x x x x x x x x X x xx x x εεεε→∞→∞=+>-=<<++=-<+=+证明:对于任意给定的,要使只需取,则当>X 时总有成立,于是,由极限定义可知()()()5lim 00010ln 01,ln 0,lim 0xx xxxxxx ee ee x x X eeεεεεεεεε→-∞→-∞=><<-==<=<<∴<<-<= 证明:对于任意给定的不妨设,要使只需取,取正数X =-l n ,则当>X 时总有成立,于是,由极限定义可知7。

指出下列变量当?x →时,是无穷小量:()2221211111lim0,lim1111,1x x x x x x x x x x x x →→∞-+--==++-∴→→∞+ 解:变量当或时是无穷小量。

()111111131lim,lim 0,111,xxx x xeex x e+++--→→-=-∞⇒=-∴→ 解:变量当时是无穷小量。

()()()()()315ln 311lim0,limln 3ln 313,ln 3x x x x x x x x -→-∞→--==--∴→→-∞- 解:变量当或时是无穷小量。

8指出下列变量当?x →时,是无穷大量:()222211111,02211,1x x x x x x x x x x +--→→-→++∴→→-- 解:当或变量当或为无穷大量。

()110131lim,lim 0,xx x x x e e xx e ++→→+=+∞=+∞∴→ 解:当为无穷大量。

9.当0x →时,比较下面无穷小量的阶。

()330312,2lim22x xx xx x xx x x →++=∴+ 解是的同阶无穷小量()()()()()()113ln 1,ln 1limlim ln 1ln lim 1ln 1ln 1x x x x x x xx x x e xx x →→→++=+=+==∴+ 解是的等价无穷小量()()005a rc ta n,a rc ta n a rc ta n limlim 110a rc ta n x x x x xx xxx xx x x x x →→--⎛⎫=-=-= ⎪⎝⎭∴- 解是的高阶无穷小量10.判别正误。

()()1⨯无穷小量是非常小的正数 错。

无穷小量是以零为极限的变量()()2⨯无穷小量是零 错。

零是无穷小量,但是无穷小量不一定是零。

()()1311x x 11x xx⨯→→≠→∞→是无穷小量 错。

如当x 1时,10,不是无穷小量,但是当x 时,0,是无穷小量。

()()(((x x 4x 1lim lim 0x →+∞→+∞⨯→+∞⎤-==⎦→+∞两个无穷大量之和仍为无穷大量错。

例如,当时均为无穷大量,但即,当时不是无穷大量,而是无穷小量。

()()()()()()()()()()(){}()()01201021205lim lim lim0,,,x x x x x x x x x x x x x x x x x x fx c gx x x fx g x δδδδδδδδ→→→∠∞∞∞→>-->>- 两个无穷大量之积仍为无穷大量对。

证明:设f =,g =均为无穷大量,要证f g =对于任给的M >0,因为当时f 与g 均为无穷大量,所有,存在>0,使得当 0<<,0<<时,总有取=m a x ,则当0<<时()()()()()0limx x fx g x Mx x →=>=∞即f g =()()x 0x 061x 0x x s inx1x s in1xlimlim s inxx1x x s inx→→⨯→= 任意两个无穷小量都可以比较阶的高低错。

例如,当时,与均为无穷小量,但不存在所以,不能比较与阶的高低。

()()71x x s inx⨯→∞ 无界变量一定为无穷大量错。

例如,当时,变量为无界变量,但不是无穷大量。

12.求下列极限:()231lim3223limlim2n n n n n →∞→∞→∞+++==解:原式=()231333lim2133021x x x →-+-=+解:原式=()()()()()()()22t 72234225lim137427210071t t t →+--⋅+⋅-=-解:原式=()137lim1-5311-514x x →⎛⎫ ⎪-⎝⎭⎛⎫= ⎪-⎝⎭解:原式=()9limlim x x x →+∞→+∞-⎛=+∞⎝解:原式=()29lim2limx x x x →+∞→+∞---==+∞解:原式()34444342111lim3121lim311x x x x x x xx x x x →∞→∞+++⎛⎫+ ⎪⎝⎭=⎛⎫++ ⎪⎝⎭解:原式=()()()()146201466202032113lim3131122lim313x x x x x x x x →∞→∞-+-⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭=⎛⎫- ⎪⎝⎭解:原式=()((215limlim1limx x x x x x →∞→∞→∞+⎛+- ===解:原式()()17lim01a 1lim0x x a a →+∞→+∞>≠⎧==⎨⎩且,讨论的各种可能情况,当0<a <1时解:原式,当1<a 时15.求下列极限:()0s in 1lim2s in 1s in 1limlim222x x x x x x x xx→→→==解:()()()2222222s in 3lim2s in 1s in limlim22x x x x x xx x x x x xx→→→-⎛⎫- ⎪-⎝⎭== 解:()0s in 35lims in 2s in 32s in 333limlims in 23s in 222x x x x x x x x xx x →→→==解:()0ta n 47lims in 2ta n 44limlim2s in 22x x x a r c x a r c x a r c x x a r c xx→→→== 解:()19lim s in1s in1lim s inlim11x x x x x x x xx→∞→∞→∞== 解:()005s in 311limta n 25s in 325s in 353limlim 1ta n 2ta n 22ta n 222x x x x x x x x xx xx x →→→--⎛⎫=-=-= ⎪⎝⎭ 解:()333313lim 133lim 1lim 1xx xxx x x ex x →∞---→∞→∞⎛⎫- ⎪⎝⎭⎡⎤⎛⎫⎛⎫⎢⎥-=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦解:()()()()()11s in 0,ln 1s in ~s in 1ln 1s in 115lim 1s in lim 1s in lim lim xx x x x xx xxx x x x x x e ee→-→----→→→--============ 解:()3-23322217lim 1222lim 1lim 11x x xx x x x ex x x -→∞----→∞→∞⎛⎫- ⎪⎝⎭⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥-=--= ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦解:18.指出下列函数的间断点类型;()()()()()()()()()22111211,1110,1101lim limlim 1201111021,112,1x x x xx f x xx fxfx x fxx f x fx xxx f x xx →-→-→-⎧-≠⎪=+⎨⎪=-⎩-=-==-=≠=-+∴=-=-⎧-≠⎪=+⎨⎪=-⎩解:,而是函数的可去间断点只要将在处定义由改为,所得函数即为连续函数()()()()()()()()()()()()313131311131111311011lim lim3101,013,0,1lim lim11x x x x x x x x x efx x x efx x x x efx x x x e x x x f x x x f x efx x x x ---→→--→→-=--==--==--∴=⎧-≠⎪-=⎨⎪-=⎩=-==∞-∴= 解:在处无定义,而是该函数的一个可去间断点。

相关文档
最新文档