2019届中考数学专题复习讲义方程(组)与不等式(组).docx
2019版中考数学复习 第二章 方程(组)与不等式(组)讲义
![2019版中考数学复习 第二章 方程(组)与不等式(组)讲义](https://img.taocdn.com/s3/m/3ab571f1b4daa58da1114a71.png)
2019版中考数学复习 第二章 方程(组)与不等式(组)讲义【考点1】一元一次方程定义:只含有 未知数,并且未知数的次数都是 。
(系数不为0)的整式方程。
形式:一般形式ax+b=0 ; 最简形式 ax=b (a ≠0) 解 :abx(a ≠0) 【提示】判断一个方程是否为一元一次方程,一定要先把方程化简以后再用定义进行判别。
解一元一次方程的一般步骤:去分母;去括号;移项(移项要变号);合并同类项;化系数为1【考点2】二元一次方程组 1.二元一次方程定义:含有 个未知数,并且含有未知数的项的次数都是 的整式方程。
一般形式: ax+by=c ,有无数组解。
2. 二元一次方程组的解法⑴代入消元法:多适用于方程组中有一个未知数的系数是 或 的情形。
⑵ :多适用于方程组的两个方程中相同未知数的系数 或互为 的情形。
【考点3】一次方程(组)的应用 1.列方程组解应用题的一般步骤:⑴审:即审清题意,分清题中的已知量、未知量; ⑵设:即设关键未知数;⑶列:即找出适当等量关系,列出方程(组); ⑷解:即解方程(组);⑸验:即检验所解答案是否正确或是否符合题意; ⑹答:即规范作答,注意单位名称。
2.列一元一次方程常见的应用题类型及关系式 ⑴ 利润率问题:利润=售价-进价 ;利润率=进价利润×100﹪ (先确定售价、进价、再计算利润率,其中打折、降价的词义应清楚)⑵ 利息问题:利息=本金×利率×期数 ;本息和=本金+利息 ;利息税=利息×税率 ; 贷款利息=贷款数额×利率×期数⑶ 工程问题:工作量=工作效率× (把全部工作量看作单位1,各部分工作量之和=1)⑷ 浓度问题:浓度=溶液质量溶质质量×100﹪⑸ 行程问题:路程=速度×时间 ① 追击问题(追击过程时间相等)② 相遇问题 (甲走的路程 乙走的路程=A 、B 两地间的路程) ③ 航行问题:顺水(风)速度= +静水(风);逆水(风)速度=船速-【中考试题精编】1.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好花去14元,如果设水性笔的单价为x 元,那么下列方程正确的是( )A. 5(x-2)+3x=14B. 5(x+2)+3x=14C. 5x+3(x+2)=14D. 5x+3(x-2)=142.某班在学校组织的某场篮球比赛中,小杨和小方一共投进篮球21个,小杨比小方多投进5个。
河南省2019年中考数学总复习第二章方程(组)与不等式(组)课件
![河南省2019年中考数学总复习第二章方程(组)与不等式(组)课件](https://img.taocdn.com/s3/m/af283aab6529647d27285240.png)
1.设元的方法 . (1)直接设元法 :直接设要求的量为未知数; (2)间接设元法 :当问题较复杂时,有时设与要求的未知量相关的一些量为未知数 , 即为间接设元. 无论怎样设元, 设几个未知数,就要列几个方程. 2.用一次方程 (组)求解的应用题, 一般有两个相等关系,若列一元一次方程求解 ,则这两个相等关 系一个用来设出未知数后表示另一个未知数, 另一个相等关系用来列方程;若列二元一次方程组, 则这两个相等关系均用来列方程 .在选择是列一元一次方程 ,还是方程组解题时 ,若题中两个未知 数有比较简单的关系, 比如倍数关系、差一定或和一定时, 可以很方便地用一个未知数表示另一个 未知数, 则用一元一次方程求解比较合适; 反之, 若两个未知数比较独立, 关系比较复杂,难以用一 个未知数表示另一个未知数时, 则设两个未知数列方程组求解比较合适 .
方法帮
方法帮
命题角度 1
例1
一次方程(组)的解法
提分技法
x + y = 10, 的解是( A ) (培养运算能力)[2018 天津 ]方程组 2x + y = 16 x = 6, x = 5, A. B. y =4 y =6 x = 3, x = 2, C. D. y =6 y =8
思路分析 观察可知,方程组中的两个方程中y的系数相等,故可利用加减消元法求 解.
方法帮
命题角度 1
例1
一次方程(组)的解法
提分技法
二元一次方程组的一般解法 当二元一次方程组的两个方程中同一未知数的系数既不是相反数也不相等时,可通过找系数的最 小公倍数将系数变成相等或相反数,再用加减消元法求解. 注意 :若涉及求方程组两个未知数的代数式的值时 ,可以先考虑将方程组的两个方程相加或相减, 再比较所得式子与所求代数式的异同, 从而求解.
人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第二节 一元二次方程及其应用
![人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第二节 一元二次方程及其应用](https://img.taocdn.com/s3/m/d966074b9a6648d7c1c708a1284ac850ad0204b4.png)
解:设参加交流会的茶叶制作商有 m 人.依题意得 m(m-1)=380,解得 m1=20,m2=-19(舍去). 答:参加交流会的茶叶制作商有 20 人.
4.(2022·荆州第 7 题 3 分)关于 x 的方程 x2-3kx-2=0 实数根的情况,
下列判断中正确的是
(B)
A.有两个相等实数根
B.有两个不等实数根
C.没有实数根
D.有一个实数根
5.(2020·荆州第 9 题 3 分)定义新运算“a*b”:对于任意实数 a,b,都
有 a*b=(a+b)(a-b)-1,其中等式右边是通常的加法、减法、乘法运
解:设小路宽为 x m, 由题意,得(16-2x)(9-x)=112. 整理,得 x2-17x+16=0. 解得 x1=1,x2=16>9(不合题意,舍去).∴x=1. 答:小路的宽应为 1m.
17.(数学文化)《田亩比类乘除捷法》是我国古代数学家杨辉的著作, 其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长 多阔几何?”意思是:一块矩形田地的面积为 864 平方步,只知道它的 长与宽共 60 步,问它的长比宽多多少步?根据题意,长比宽多__112__步.
100.8
解:设后两次采购价格的平均增长率为 x,依题意得 480(1+x)2=480+100.8,解得 x1=0.1,x2=-2.1(舍). 答:后两次采购价格的平均增长率为 10%.
解:设售价为 y 元/袋时,每周的销售额为 32 400 元.依题意可列方程
y-260
为 y100-
10
=32 400,解得 y1=360,y2=900.
第二节 一元二次方程及 其应用
【考情分析】湖北近 3 年主要考查:1.选择合适的方法解一元二次方程, 常在压轴题中涉及考查;2.用一元二次方程根的判别式判断方程根的情 况或者根据根的情况求字母系数的取值范围,根与系数的关系的应用; 3.一元二次方程的应用主要以选择题的形式考查列方程,常在解答题中 与不等式、函数的实际应用结合考查,难度较大,分值一般 3-10 分.
人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用
![人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用](https://img.taocdn.com/s3/m/e5e817c1f9c75fbfc77da26925c52cc58ad69075.png)
∴原方程组的解为y=1,将y=1 代入 2kx-3y<5 得 2×k×2-3<5,解得 k<2.
命题点 2:一次方程(组)的应用(近 3 年考查 15 次)
7.(数学文化)(2021·武汉第 7 题 3 分)我国古代数学名著《九章算术》
中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价
32 人.2 艘大船与 1 艘小船一次共可以满载游客 46 人.则 1 艘大船与 1
艘小船一次共可以满载游客的人数为
( B)
A.30
B.26
C.24
D.22
11.★(2022·武汉第 10 题 3 分)幻方是古老的数学问题,我国古代的《洛 书》中记载了最早的幻方——九宫格.将 9 个数填入幻方的空格中,要 求每一横行、 每一竖列以及两条对角线上的 3 个数之和相等,例如图① 就是一个幻方.图②是一个未完成的幻方,则 x 与 y 的和是 ( D ) A.9 B.10 C.11 D.12
14.(2020·仙桃第 12 题 3 分)篮球联赛中,每场比赛都要分出胜负,每 队胜 1 场得 2 分,负 1 场得 1 分.某队 14 场比赛得到 23 分,则该队胜 了__99__场.
15.(2020·黄冈第 19 题 6 分)为推广黄冈各县市名优农产品,市政府组 织创办了“黄冈地标馆”,一顾客在“黄冈地标馆”发现,如果购买 6 盒 羊角春牌绿茶和 4 盒九孔牌藕粉,共需 960 元,如果购买 1 盒羊角春牌 绿茶和 3 盒九孔牌藕粉共需 300 元,请问每盒羊角春牌绿茶和每盒九孔 牌藕粉分别需要多少元?
【分层分析】设购进创意文具袋 x 个,由题干信息①得购进笔记本为
((2x2+x+10)个,由题干信息②可列方程为 xx++(2(x2+x1+0)1=0)190.
人教版九年级数学第二单元《方程(组)与不等式(组)》中考知识点梳理
![人教版九年级数学第二单元《方程(组)与不等式(组)》中考知识点梳理](https://img.taocdn.com/s3/m/39d36ae55a8102d277a22f8e.png)
第二单元《方程(组)与不等式(组)》中考知识点梳理第5讲一次方程(组)第6讲一元二次方程第7讲分式方程三、知识清单梳理第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.。
中考数学专题复习四--分式方程和不等式
![中考数学专题复习四--分式方程和不等式](https://img.taocdn.com/s3/m/11071688a98271fe910ef9eb.png)
中考数学专题复习四--分式方程和不等式(组)(总6页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除中考数学专题复习(四)分式方程和不等式(组)【知识梳理】1.分式方程:分母中含有的方程叫分式方程.2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以,约去分母,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3. 用换元法解分式方程的一般步骤:①设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;②解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③把辅助未知数的值代入原设中,求出原未知数的值;④检验作答.4.分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解是否是所列;(2)检验所求的解是否 . 5.易错知识辨析:(1)去分母时,不要漏乘没有分母的项.(2)解分式方程的重要步骤是检验,检验的方法是可代入最简公分母, 使最简公分母为0的值是原分式方程的增根,应舍去,也可直接代入原方程验根.(3)如何由增根求参数的值:①将原方程化为整式方程;②将增根代入变形后的整式方程,求出参数的值.6.不等式的有关概念:用连接起来的式子叫不等式;使不等式成立的的值叫做不等式的解;一个含有的不等式的解的叫做不等式的解集.求一个不等式的的过程或证明不等式无解的过程叫做解不等式.7.不等式的基本性质:(1)若a <b ,则a +c c b +; (2)若a >b ,c >0则ac bc (或ca cb ); (3)若a >b ,c <0则ac bc (或c a cb ). 8.一元一次不等式:只含有 未知数,且未知数的次数是 且系数 的不等式,称为一元一次不等式;一元一次不等式的一般形式为 或ax b <;解一元一次不等式的一般步骤:去分母、 、移项、 、系数化为1.9.一元一次不等式组:几个 合在一起就组成一个一元一次不等式组.一般地,几个不等式的解集的 ,叫做由它们组成的不等式组的解集.10.由两个一元一次不等式组成的不等式组的解集有四种情况:(已知a b <)x a x b <⎧⎨<⎩的解集是x a <,即“小小取小”; x a x b >⎧⎨>⎩的解集是x b >,即“大大取大”;x a x b >⎧⎨<⎩的解集是a x b <<,即“大小小大中间找”; x a x b <⎧⎨>⎩的解集是空集,即“大大小小取不了”.11.易错知识辨析:(1)不等式的解集用数轴来表示时,注意“空心圆圈”和“实心点”的不同含义.(2)解字母系数的不等式时要讨论字母系数的正、负情况.如不等式ax b >(或ax b <)(0a ≠)的形式的解集: 当0a >时,b x a >(或b x a <); 当0a <时,b x a <(或b x a>); 当0a <时,b x a <(或b x a>). 12.求不等式(组)的特殊解:不等式(组)的解往往有无数多个,但其特殊解在某些范围内是有限的,如整数解,非负整数解,求这些特殊解应先确定不等式(组)的解集,然后再找到相应答案.13.列不等式(组)解应用题的一般步骤:①审:审题,分析题中已知什么、求什么,明确各数量之间的关系;②设:设未知数(一般求什么,就设什么为x );③找:找出能够表示应用题全部含义的一个不等关系;④列:根据这个不等关系列出需要的代数式,从而列出不等式(组);⑤解:解所列出的不等式(组),写出未知数的值或范围;⑥验:检验所求解是否符合题意;⑦答:写出答案(包括单位).14.易错知识辨析:判断不等式是否成立,关键是分析不等号的变化,其根据是不等式的性质.【真题回顾】一、选择题1.(2010年山东菏泽全真模拟1)下列运算中,错误..的是( ) A.(0)a ac c b bc =≠ B.1a b a b--=-+2(4)4-= D.x y y x x y y x --=++ 2.(2010年江西省统一考试样卷)若分式21x x +有意义,则x 的取值范围是( )A .x >1B .x >-1C .x ≠0D .x ≠-13.(2009年孝感)关于x 的方程211x a x +=- 的解是正数,则a 的取值范围是( ) A .a >-1 B .a >-1且a≠0 C .a <-1 D .a <-1且a≠-24.(2011.鸡西)分式方程)2)(1(11+-=--x x m x x 产生增根,则m 的值是( ) A. 0和3 B. 1 C. 1和-2 D. 35.(2009年安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( )A .8 B.7 C .6 D .5二、填空题1.(2010年西湖区月考)若分式22221x x x x --++的值为0,则x 的值等于 2.(2010年江苏省泰州市中考模拟题)使代数式43--x x 有意义的x 的取值范围是 . 3.(2009年滨州)解方程2223321x x x x --=-时,若设21x y x =-,则方程可化为 . 4.(2011襄阳)已知关于x 的分式方程1131=-+-xx m 的解是正数,则m 的取值范围为 5.(2010新疆乌鲁木齐)在数轴上,点A 、B 对应的数分别为2 ,15+-x x ,且A 、B 两点关于原点对称,则x 的值为 。
河南省2019年中考数学总复习第二章方程(组)与不等式(组)数学文化拓展素材
![河南省2019年中考数学总复习第二章方程(组)与不等式(组)数学文化拓展素材](https://img.taocdn.com/s3/m/88afcb96a8114431b80dd835.png)
《九章算术》(涉及方程)《九章算术》是我国古代第一部数学专著,全书总结了战国、秦、汉时期的数学成就.《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,“方程”章还在世界数学史上首次正式引入负数及其加减法运算法则.《九章算术》的出现标志着中国古代数学形成了完整的体系.1.我国古代数学名著《九章算术》记载了利用算筹表示方程组和解方程组的问题.算筹图表示的是方程组则算筹图表示的方程组的解是 ( )A. B.C. D.2.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元,问这个物品的价格是多少元.”该物品的价格是元.3.《九章算术》中的方程问题:今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也能为50.则甲的钱数是,乙的钱数是.《算法统宗》(涉及方程)在中国古代数学的整个发展过程中,《算法统宗》是一部十分重要的著作.其作者程大位(1533—1606),字汝思,号宾渠,安徽休宁人.从二十多岁起他便在长江中下游一带经商,对数学产生了浓厚的兴趣.四十岁时,倦于外游,便弃商归故里,认真钻研古籍,撷取名家之长,历经二十年,于明万历壬辰年(1592)写就巨著《算法统宗》十七卷.在《算法统宗》这部著作中,许多数学问题都是以歌诀形式呈现的:(1)浮屠增级远看巍巍塔七层, 红光点点倍加倍.共灯三百八十一, 请问尖头几盏灯.这首歌诀的大意:远处有一座雄伟的佛塔,塔上挂了许多红灯,下一层灯数是上一层灯数的2倍,全塔共有381盏,试问顶层有几盏灯.(2)以碗知僧巍巍古寺在山中,不知寺内几多僧.三百六十四只碗,恰合用尽不差争.三人共食一碗饭,四人共尝一碗羹.请问先生能算者,都来寺内几多僧.这首歌诀的大意:山上有一座古寺叫都来寺,在这座寺庙里,3个和尚合吃一碗饭,4个和尚合分一碗汤,一共用了364只碗.请问都来寺里有多少个和尚.(3)和尚分馒头一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?这首歌诀的大意:有100个和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人.1.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为尺,竿子长为尺.2.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:吾问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.则该店有客房间,房客人.3.《算法统宗》这部书里有这样一题,大意:甲牵一只肥羊走过来问牧羊人:“你赶的这群羊大概有100只吧?”牧羊人答:“如果这群羊加上一倍,再加上原来这群羊的一半,又加上原来这群羊的,连你牵着的这只肥羊也算进去,才刚好凑满一百只.”则这位牧羊人赶的这群羊共有只.《孙子算经》(涉及方程)《孙子算经》是我国古代重要的数学著作.传本的《孙子算经》共三卷,卷上叙述算筹记数的纵横相间制度和筹算乘除法,卷中举例说明筹算分数算法和筹算开平方法, 卷下对后世的影响最为深远.卷下的第31题,可谓是后世“鸡兔同笼”题的始祖,后来传到日本,变成“鹤龟算”.书中是这样叙述的:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?下卷第26题“物不知数”为后来的“大衍求一术”的起源,被看作是中国数学史上最有创造性的成就之一,称为中国余数定理:今有物,不知其数.三三数之,剩二;五五数之,剩三;七七数之,剩二.问物几何?显然,这相当于求不定方程组的正整数解n,《孙子算经》所给答案是n=23.1.《孙子算经》中有首歌谣,大意为:如图,有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )A.五丈B.四丈五尺C.一丈D.五尺2.《孙子算经》中有一道题,原文是“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.问木长几何?”意思是“用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺.”设木长为x尺,绳子长为y尺,则下列符合题意的方程组是( )A. B.C. D.3.我国古代数学名著《孙子算经》中有“鸡兔同笼”数学名题,小敏将该题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?此时的答案是.4.《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽.问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完.则城中有户人家.一元二次方程的几何解法你知道吗,对于一元二次方程,我国及其他一些国家的古代数学家还研究过其几何解法呢!下面我们以方程x2+2x-35=0为例加以说明.(方程可转化为x2+2x=35,x(x+2)=35两种形式)图(1)三国时期的数学家赵爽(约公元3世纪)在其所著的《勾股圆方图注》中记载的方法是:如图(1),构造边长为(x+x+2)的正方形,则大正方形的面积(x+x+2)2,另一方面,大正方形是由四个长和宽分别为x+2,x的矩形和一个边长为2的小正方形组成的,所以大正方形的面积等于四个矩形加上中间小正方形的面积,即大正方形的面积为4×35+22,故(x+x+2)2=144,x>0,解得x=5.说明:赵爽的解法是把x2+2x=x(x+2)看作矩形的面积,然后用四个这样的矩形及一个边长为2的小正方形组成一个边长为(x+x+2)的正方形,再由面积公式求出x.图(2)公元9世纪,阿拉伯数学家阿尔·花拉子密采用的方法是:构造图(2),阿尔·花拉子密的方法直接从“形”上反映了配方法,一方面,正方形的面积为(x+1)2,即(x2+2x)+1;另一方面,它又等于36,即35+1,据此同样可得x=5.其实赵爽的方法和阿尔·花拉子密的方法本质上是一致的.利用几何法解一元二次方程,巧妙之处在于不用过多的语言和运算即可解决求方程的解的问题.赋予代数式的几何意义是解决这类问题的关键.需要指出的是,一元二次方程的几何解法,反映了古代数学家在探索一元二次方程的求解过程中留下的足迹,如果遇到负根,就无法求解,这也说明了这种方法的局限性.后来人们发现的一元二次方程ax2+bx+c=0(a≠0)的求根公式x=,克服了这种局限性.参考答案《九章算术》(涉及方程)1.C 由题意知,算筹图表示的方程组是解得故选C.2.53 设有x个人共同购买这个物品,根据题意得8x-3=7x+4,解得x=7.则8x-3=8×7-3=53(元),故该物品的价格是53元.3.37.5 25 设甲持钱为x,乙持钱为y,依题意列方程组为解得故甲的钱数为37.5,乙的钱数为25.《算法统宗》(涉及方程)1.20 15 设索长为x尺,竿子长为y尺,根据题意,得解得2.8 63 设该店有客房x间,根据题意得,7x+7=9(x-1),解得x=8,7×8+7=63.故该店有客房8间,房客63人.3.36 设这位牧羊人赶的这群羊共有x只,依题意,得x+x+x+x+1=100,解得x=36,故这位牧羊人赶的这群羊共有36只.《孙子算经》(涉及方程)1.B 设竹竿的长为x尺,根据题意得,竹竿的影长为一丈五尺,即15尺,标杆的长为一尺五寸,即1.5尺,标杆的影长为五寸,即0.5尺,则=,解得x=45.故选B.2.B 根据“用一根绳子去量一根长木,绳子还剩余4.5尺”可列方程y=x+4.5;根据“将绳子对折再量长木,长木还剩余1尺”可列方程y=x-1.故选B.3.鸡22只,兔11只设鸡有x只,兔有y只.依题意得方程组解得故鸡有22只,兔有11只.4.75 设城中有x户人家,根据题意,得x+=100,解得x=75.故城中有75户人家.。
2019届中考数学复习第二章方程组与不等式组2.1一次方程组课件
![2019届中考数学复习第二章方程组与不等式组2.1一次方程组课件](https://img.taocdn.com/s3/m/af209fce0242a8956bece440.png)
陕西考点解读
2(1.二)概元念一:次方方程程组aa12组x中x有bb12两yy个cc未1,2。知数,含有每个未知数的项的次数都是1,并且一共有
⑦两个方程,像这样的方程组叫作二元一次方程组。
(2)一般形式:
(a1,a2,b1,b2均不为0,a1,b1,c1,a2,b2,c2
都为常数) (3)二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫作二 元一次方程组的解。
陕西考点 解读
2. 列方程(组)常用的相等关系
陕西考点 解读
【特别提示】
1.设未知数时可以直接设未知数,也可间接设未知数。 2.一般来说,设几个未知数,就应列出几个方程并组成方程 组。 3.要根据应用题的实际意义检查求得的结果是否合理,不符 合题意的解应该舍去。 4.在列方程组时,要注意等号左、右两边的单位统一。
20x 10y 110, B.30x 5y 85
5x 20y 110, D.10x 30y 85
重难突破强化
重难点1 一元一次方程的应用(重点)
例1 一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈 利20%,另一件亏损20%,在这次买卖中,这家商店( C) A.不盈不亏 B.盈利20元 C.亏损10元 D.亏损30元
陕西考点解读
3.二元一次方程组的解法 解二元一次方程组的基本思想是⑧消元,即化二元一次方程组为一元一次方程, 主要方法有⑨代入消元法和 ⑩加减消元法。 (1)代入消元法:将其中一个方程中的某个未知数用含有另一个未知数的代数式表 示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元 一次方程。 (2)加减消元法:将方程组中的两个方程通过适当变形后相加(或相减)消去其中一 个未知数,化二元一次方程组为一元一次方程。
中考数学 精讲篇 考点系统复习 第二章 方程(组)与不等式(组) 第三节 分式方程及其应用
![中考数学 精讲篇 考点系统复习 第二章 方程(组)与不等式(组) 第三节 分式方程及其应用](https://img.taocdn.com/s3/m/ff417340f56527d3240c844769eae009581ba2b2.png)
确的是
( A)
800 600 A.x+50= x
800 600 800 600 B.x-50= x C. x =x+50
800 600 D. x =x-50
6.(2013·天水第 15 题 4 分)有两块面积相同的小麦试验田,分别收获
小麦 9 000 kg 和 15 000 kg,已知第一块试验田每公顷的产量比第二块
3.(RJ 八上 P155 习题 T4 改编)甲、乙两个机器人检测零件,甲比乙每小 时多检测 20 个,甲检测 300 个比乙检测 200 个所用的时间少 10%.若设甲 每小时检测 x 个,则根据题意,可列出方程为__3x00=x2-=0200××((11--1100%%))__.
4.(RJ 八上 P151 例 2 改编)解方程:
第三节 分式方程及其应 用
1.已知关于 x 的分式方程mx--31=1. (1)若此分式方程的解为 x=2,则 m 的值为 4 4; (2)若此分式方程有增根,则 m 的值是 3 3 ; (3)若此分式方程的解是正数,则 m 的取值范围是 m>m2>且2且m ≠3.
m≠3
2.(RJ 八上 P153 例 4 改编)甲、乙两地相距 1 000 km,如果乘高铁列车 从甲地到乙地比乘特快列车少用 3 h,已知高铁列车的平均速度是特快列 车的 1.6 倍.若设特快列车的平均速度为 x km/h,则根据题意,可列方 程为 -1 3x0=00-3=11.060x0 .
命题点 2:由分式方程解的情况求字母的取值范围(省卷近 5 年未考查,
兰州近 5 年考查 1 次)
2x+a 3.(2018·兰州第 10 题 4 分)关于 x 的分式方程 x+1 =1 的解为负数,
则 a 的取值范围为
中考数学专题复习课件 --- 第十讲方程(组)与不等式(组)的实际应用
![中考数学专题复习课件 --- 第十讲方程(组)与不等式(组)的实际应用](https://img.taocdn.com/s3/m/11156f01eff9aef8941e062c.png)
【思路点拨】
【自主解答】设原来每天加固x米,根据题意,得
600 4 800 600 9. x 2x
去分母,得1 200+4 200=18x(或18x=5 400).
解得x=300. 检验:当x=300时,2x≠0(或分母不等于0) ∴x=300是原方程的解. 答:该地驻军原来每天加固300米.
液晶显示器25台或电脑机箱26台、液晶显示器24台,共三种 进货方案; 24×10+160×26=4 400(元), 25×10+160×25=4 250(元), 26×10+160×24=4 100(元), ∴购买电脑机箱24台、液晶显示器26台时利润最大,最大利 润是4 400元.
1.(2010·西宁中考)西宁市天然气公司在一些居民小区安装
【解析】设原计划每天生产x吨纯净水,则依据题意,得
1 800 1 800 3, x 1.5x
整理得:4.5x=900, 解之得:x=200,
把x代入原方程,成立.
∴x=200是原方程的解.
答:原计划每天生产200吨纯净水.
11.(2010·济宁中考)某市在道路改造过程中,需要铺设一条
长为1 000米的管道,决定由甲、乙两个工程队来完成这一工
2.相遇问题:
两个物体同时从不同地点出发,相向而行最后相遇的行程问题 等量关系:甲路程+乙路程=总路程;甲速度×相遇时间+乙速 度×相遇时间=总路程. 3.一般行程问题的等量关系:速度×时间=路程. 4.航行问题的等量关系:顺水速度=静水速度+水流速度,逆水 速度=静水速度-水流速度.
【例2】(2010·赤峰中考)从甲地到乙地的路有一段平路与一 段上坡路,如果骑自行车保持平路每小时行15 km,上坡每小 时行10 km,下坡每小时行18 km,那么从甲地到乙地需29分 钟,从乙地到甲地需25分钟,从甲地到乙地全程是多少km?
中考数学 精讲篇 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用
![中考数学 精讲篇 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用](https://img.taocdn.com/s3/m/7620ff76b207e87101f69e3143323968011cf465.png)
5.(数学文化)《九章算术》是中国古代数学著作之一,书中有这样的一 个问题:五只雀、六只燕共重一斤,雀重燕轻,互换一只,恰好一样重.问: 每只雀、燕的质量各为多少?设一只雀的质量为 x 斤,一只燕的质量为 y
5x+6y=1, 斤,则可列方程组为__4x+y=5y+__x.
【考情分析】广西近 6 年主要考查解一元一次方程或二元一次方程组, 应用一元一次方程或二元一次方程组解决简单的实际问题,难度小,分 值 3-10 分,常在解答题中与不等式、一次函数的实际应用结合考查.
x=1, 则方程组的解为y=-1.
x-3y=-2, 5.(2020·玉林第 20 题 6 分)解方程组:2x+y=3.
x-3y=-2①, 解:2x+y=3②. ①+②×3 得 x+6x=-2+3×3, 解得 x=1, 将 x=1 代入②得 2+y=3, 解得 y=1.
x=1, 则方程组的解为y=1.
根据题意可列方程组为
y=3x-2, A.y=2x+9
y=3x-2, C.y=2x-9
y=3(x-2), B.y=2x+9
y=3(x-2), D.y=2x-9
( B)
7.(2021·桂林第 24 题 8 分)为了美化环境,建设生态桂林,某社区需 要进行绿化改造,现有甲、乙两个绿化工程队可供选择,已知甲队每天 能完成的绿化改造面积比乙队多 200 m2,甲队与乙队合作一天能完成 800 m2 的绿化改造面积. (1)甲、乙两工程队每天各能完成多少 m2的绿化改造面积? (2)该社区需要进行绿化改造的区域共有 12 000 m2,甲队每天的施工费 用为 600 元,乙队每天的施工费用为 400 元,比较以下三种方案: ①甲队单独完成;②乙队单独完成;③甲、乙两队全程合作完成. 哪一种方案的施工费用最少?
中考数学复习讲义课件考点解读第二单元 方程(组)与不等式(组) 第9讲 一元二次方程及其应用 (2)
![中考数学复习讲义课件考点解读第二单元 方程(组)与不等式(组) 第9讲 一元二次方程及其应用 (2)](https://img.taocdn.com/s3/m/1b78b8cb7e192279168884868762caaedd33ba27.png)
一条口罩生产线生产口罩,开工第一天生产10万件,
第三天生产14.4万件,若每天增长的百分率相
同.试回答下列问题:
(1)求每天增长的百分率;
(2)经调查发现,1条生产线最大产能是20万件/天,
若每增加1条生产线,每条生产线的最大产能将减
口罩60万件,在增加产能同时又要节省投入的条件 下(生产线越多,投入越大),应该增加几条生产线? [分析] (1)设每天增长的百分率为x,根据开工第一 天及第三天的产量,即可得出关于x的一元二次方 程,解之取其正值即可得出结论; (2)设应该增加m条生产线,则每条生产线的最大产 能为(20-2m)万件/天,根据每天生产口罩60万件, 即可得出关于m的一元二次方程,解之取其较小值 即可得出结论.
[点评] 本题考查了一元二次方程的应用,找准等 量关系,正确列出一元二次方程是解题的关键.
20000个,1月底因突然爆发新 冠肺变炎式疫训情,市场对口罩需求
练
量大增,为满足市场需求,工
厂决定从2月份起扩大产能,3
月份平均日产量达到24200个.
(1)求口罩日产量的月平均增长
率;
解:(1)设口罩日产量的月平均增长率为x,根据题 意,得20000(1+x)2=24200, 解得x1=-2.1(舍去),x2=0.1=10%. 答:口罩日产量的月平均增长率为10%. (2)24200(1+0.1)=26620(个). 答:预计4月份平均日产量为26620个.来自有实数根A,则m的值可以为()
A.-1
1 4
B.-
C.0
D.1
命题点3一元二次方程根的判别
式(10年1考)
8.(20A15·衡阳)若关于x的方程x2
+3x+a=0有一个根为-1,则
中考数学复习:第二章:方程与不等式专题复习
![中考数学复习:第二章:方程与不等式专题复习](https://img.taocdn.com/s3/m/d0adb245360cba1aa911da68.png)
分式方程及其应用
•中考预知 •1、分式方程的解法; •2、分式方程实际的应用。
考点1:分式方程的解法
• 1.分式方程:分母中含有字母的方程叫分式方程. • 2.解分式方程的一般步骤: • (1)去分母,在方程的两边都乘以分母的最小公倍数,约去分母,
化成整式方程;
• (2)解这个整式方程; • (3)验根,把整式方程的根代入最简公分母,看结果是不是零,使
一次方程,它们的解就是原一元二次方程的解.
典例精讲
• 1、下列方程是一元二次方程的是( )
• A.ax2 bx c 0
• B.x2 2x x2 1
• C.x 1x 3 0
• D. 1 x 2 x2
• 2、分别用下列方法解方程
• (1)(2x 1) 2 9(直接开平方法)
(2)4x2–8x+1=0(配方法)
2cx+a=0,cx2+2ax+b=0,不可能都有两个相等的实数根.
• 七、判定三角形的形状 • 例7 设a、b、c是△ABC的三边长,且关于x的方程c(x2+n)+b(x2-n)
-2ax=0(n>0)有两个相等的实数根,试判断△ABC的形状.
• 八、讨论方程有理根的问题 • 例8 m为有理数,讨论后为何值时,方程x2+4(1-m)x+3m2-2m+4k=0
典例精讲
• 1、已知a,b,c均为实数,若a>b,c≠0,下列结论不一定正确的 是( )
• A.a+c>b+c
B.c-a<c-b
• C.
D.a2>ab>b2
• 2、若a>b,则下列不等关系一定成立的是( )
• A. ac bc
B. a b cc
C. c a c b D. a c b c
【精选推荐】中考数学复习第二单元方程(组)与 不等式(组)(分式方程的解法及应用)全新完整版
![【精选推荐】中考数学复习第二单元方程(组)与 不等式(组)(分式方程的解法及应用)全新完整版](https://img.taocdn.com/s3/m/0fa72d1eb42acfc789eb172ded630b1c59ee9b2e.png)
全新完整版
第二单元 方程(组)与 不等式(组)
(六)分式方程的解法及应用
知识梳理
目
知识过关
录
课堂检测
第1部分 第二单元 方程(组)与不等式(组)
知识梳理
一、分式方程的概念 分母中含未知数的方程叫做分式方程. 二、分式方程的解法
返回目录
第1部分 第二单元 方程(组)与不等式(组)
例 解方程:21x=x-2 3. 解:方程两边乘2x(x-3),得x-3=4x. 解得x=-1. 检验:当x=-1时,2x(x-3)≠0. ∴原分式方程的解为x=-1.
用3
700元购进第二批仙桃,所购件数是第一批的
3 2
倍,但进价比第一批每件多了5元.
(1)第一批仙桃每件进价是多少元?
返回目录
第1部分 第二单元 方程(组)与不等式(组)
(2)原定以每件225元的价格销售第二批仙桃,但为 了 尽 快 售 完 , 决 定 打 折 促 销 . 要 使 得 销 售 利 润 为 350 元,则第二批仙桃每件应打几折出售?(利润=售价- 进价)
返回目录
第1部分 第二单元 方程(组)与不等式(组)
3.解分式方程: (1)x+1 2=x-3 1; (2)xx+ -22-2-4 x=2. 解:(1)方程两边乘(x+2)(x-1),得x-1=3(x +2). 解得x=-72. 检验:当x=-72时,(x+2)(x-1)≠0. ∴x=-27是原分式方程的解.
(2)工程问题
基本数量关系:工作时间=工工作作效总率量 常量见关等系注则原甲甲工工意工的的作作:作工工总1时题效作作量间干率总效=中量率-未工-改告作乙乙善工诉效的的后作工率工工工总作作作作量总总效效量量率率时==工提时作前间总完差量成可的以时看间作整体“1”,
中考数学专题复习——方程与不等式
![中考数学专题复习——方程与不等式](https://img.taocdn.com/s3/m/9a02f3f19e3143323968937e.png)
中考数学专题复习——方程与不等式本专题主要讲解方程和不等式两部分,其内容包括一元一次方程、一元二次方程、可化为一元一次方程(一元二次方程)的分式方程、二元一次方程组、一元一次不等式和一元一次不等式组的概念、解法及其应用。
在概念方面,一元一次方程中一次项系数不为零;一元二次方程中二次项系数也不为零。
方程的解法上,一元一次方程按其一般步骤求解;二元一次方程组中,解题的基本思想是“消元”,即代入消元法和加减消元法;一元二次方程的求解,直接开平方法、配方法、公式法、因式分解法是解一元二次方程的基本方法。
而因式分解法它体现方程“降次求解”的基本思想,公式法更具有一般性。
同学们在求解方程时应灵活选用,值得注意的是分式方程求解,要验根。
对于一元一次不等式(组)的求解,要熟练地掌握不等式的基本性质,它是不等式求解的基础,在解不等式(组)时,若不等式两边同时乘以或除以同一个负数时不等号方向要改变。
而不等式组的解是每个不等式解的公共部分,它常通过数轴这一步骤来得到不等式解的。
本专题的内容在初中知识结构上占较重要的位置,是各地市中考题中重要的考查内容。
一、典型例题导析例1、若关于x 的一元一次方程23132x k x k---=的解是x =-1,则k 的值是( )A 、27B 、1C 、1311- D 、0例2、方程242x x +=的正根为( )A.2B.2 C.2- D.2-+例3、解不等式组:302(1)33x x x+>⎧⎨-+≥⎩,并判断x =例4、若关于x 的不等式组3,3 1.x m x m >+⎧⎨<-⎩无解,试判断方程21(3)04m x x --+= 的根的情况。
例5、为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.若某户居民月份用水8m3,则应收水费:2×6+4×(8-6)=20元.(1)若该户居民月份用水12.5m3,则应收水费______元;(2)若该户居民3、4月份共用水15m3(4月份用水量超过3月份),共交水费44元,则该户居民,3、4月份各用水多少立方米?二、选讲题,两地分别库存挖掘机16台和12台,现在运往甲、乙两地支援※例6、某公司在A B建设,其中甲地需要15台,乙地需要13台.从A地运一台到甲、乙两地的费用分别是500元和400元;从B地运一台到甲、乙两地的费用分别是300元和600元.设从A地运往甲地x台挖掘机,运这批挖掘机的总费用为y元.(1)请填写下表,并写出y与x之间的函数关系式;(2)公司应设计怎样的方案,能使运这批挖掘机的总费用最省?※例7、青青商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.(1)若该商场同时购进甲、乙两种商品共100件恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价 进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案;(3)在“五·一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品一共多少件?(通过计算求出所有符合要求的结果)。
中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用
![中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用](https://img.taocdn.com/s3/m/ff01eb3bf02d2af90242a8956bec0975f565a464.png)
4.(2021·荆门第 15 题 3 分)关于 x 的不等式组1+32x≥x-1 恰有 2 个
整数解,则 a 的取值范围是 5≤5a≤<a<6. 6
2x≥x-1, ① 5.(2021·武汉第 17 题 8 分)解不等式组4x+10>x+1 ②请按下列步骤 完成解答. (1)解不等式①,得 x≥x≥--11; (2)解不等式②,得 x>x>--33;
3x-2≥1, (2021·通辽)若关于 x 的不等式组2x-a<5 有且只有 2 个整数 解,则 a 的取值范围是-1-<a1<a≤≤11..
【思路点拨】先求出不等式组的解集(用含字母 a 的代数式表示),再根 据不等式组有且只有 2 个整数解,可推出 a 的取值范围.
解含参不等式(组)的 8 个“母题”: (1)若不等式 ax>a 的解集是 x>1,则 a>0; (2)若不等式 x>a 的解集是 x>2,则 a=2;
第四节 一元一次不等式(组) 及其应用
命题点 1:一元一次不等式组的解法及解集表示(近 3 年考查 18 次)
x-1<-3, 1.(2020·黄石第 6 题 3 分)不等式组2x+9≥3 的解集是
(
C)
A.-3≤x<3
B.x≥-2
C.-3≤x<-2
D.x≤-3
x-4≤2(x-1),
某中学以体育为突破口,准备从体育用品商场一次性购买若干个足球和 篮球,用于学校球类比赛活动,每个足球的价格都相同,每个篮球的价 格也相同,已知篮球的单价比足球单价的 2 倍少 30 元,用 1 200 元购买 足球的数量是用 900 元购买篮球数量的 2 倍.
(1)足球和篮球的单价各是多少元? (2)根据学校实际情况,需一次性购买足球和篮球共 200 个,但要求足球 和篮球的总费用不超过 15 500 元,学校最多可以购买多少个篮球?
2019届中考数学专题复习讲义方程(组)与不等式(组)
![2019届中考数学专题复习讲义方程(组)与不等式(组)](https://img.taocdn.com/s3/m/b7c4f134aa00b52acfc7cafa.png)
2019 届中考数学专题复习讲义方程(组)与不等式(组)方程(组)与不等式(组)是解决应用题、实质问题和很多方面的数学识题的重要基础知识,应用范围特别宽泛。
好多半学识题,特别是有未知数的几何问题,就需要用方程(组)与不等式(组)的知识来解决,在解决问题时,把某个未知量设为未知数,依据相关的性质、定理或公式,成立起未知数和已知数间的等量关系或不等关系,列出方程(组)与不等式(组)来解决,这对解决和计算相关的数学识题,特别是综合题,是特别需要的。
近几年中考着重对学生“知识联系实质”的观察,实质问题中常常包含着方程与不等式,分析问题中的等量关系和不等关系,成立方程(组)模型和不等式(组)模型,进而把实质问题转变为数学模型,而后用数学知识来解决。
方程(组)与不等式(组)是代数中的重要内容,有的已知方程(组)的解求方程(组)、应用题的条件编制、也有依据方程进行数学建模等等.解决相关方程(组)与不等式(组)的试题,第一弄清题目的要求;其次,充足考虑结果的多样性,使答案简洁、正确.种类之一依据图表信息列方程 ( 组 ) 或不等式解决问题在详细的生活中依据图示获得方程或不等式,由此解决实质问题,根本在于获得数目之间的关系。
1.以下图的两架天平保持均衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是g.2.教师节到临之际,群群所在的班级准备向每位勤劳工作的教师献一束鲜花,每束由 4 支鲜花包装而成,此中有象征母爱的康乃馨和象征敬爱的水仙花两种鲜花,同一种鲜花每支的价钱同样.请你依据第一、二束鲜花供给的信息,求出第三束鲜花的价钱.3.某厂工人小王某月工作的部分信息以下:信息一:工作时间:每日上午8∶ 20~12∶ 00,下午 14∶ 00~16∶ 00,每个月25 元;信息二:生产甲、乙两种产品,而且按规定每个月生产甲产品的件数许多于60 件.生产产品件数与所用时间之间的关系见下表:生产甲产品件数 ( 件 )所用总时间生产乙产品件数 ( 件 )( 分 )10103503020850信息三:按件计酬,每生产一件甲产品可得 1.50 元,每生产一件乙产品可得 2.80 元.依据以上信息,回答以下问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分?(2)小王该月最多能得多少元?此时生产甲、乙两种产品分别多少件?种类之二借助方程组合或不等式(组)解决方案问题借助二元一次方程组和一元一次不等式(组)求解方案问题是中考一种新题型,观察了同学们综合运用方程组和不等式深入的剖析、比较、概括和说理的能力.4. 某校准备组织290 名学生进行野外观察活动,行李共有100 件.学校计划租用甲、乙两种型号的汽车共8 辆,经认识,甲种汽车每辆最多能载40 人和 10 件行李,乙种汽车每辆最多能载 30 人和 20 件行李.(1)设租用甲种汽车x 辆,请你帮助学校设计所有可能的租车方案;(2)假如甲、乙两种汽车每辆的租车花费分别为2000 元、 1800 元,请你选择最省钱的一种租车方案.5. 暑期时期 , 小明到父亲经营的小商场参加社会实践活动 . 一天小明随父亲从银行换回来 58 张, 合计200 元的零钞用于顾客付款时找零 . 仔细的小时清理了一下 , 发现此中面值为 1 元的有 20 张 , 面值为10 元的有 7 张 , 剩下的均为 2 元和 5 元的钞票 . 你可否用所学的数学方法算出 2 元和 5 元的钞票的各有多少张吗 ?请写出演算过程 .6. 为支持四川抗震救灾,重庆市A、B、C 三地此刻分别有赈灾物质100 吨,、100 吨、 80 吨,需要所有运往四川重灾地域的D、 E 两县。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019 届中考数学专题复习讲义方程(组)与不等式(组)方程(组)与不等式(组)是解决应用题、实际问题和许多方面的数学问题的重要基础知识,应用范围非常广泛。
很多数学问题,特别是有未知数的几何问题,就需要用方程(组)与不等式(组)的知识来解决,在解决问题时,把某个未知量设为未知数,根据有关的性质、定理或公式,建立起未知数和已知数间的等量关系或不等关系,列出方程(组)与不等式(组)来解决,这对解决和计算有关的数学问题,特别是综合题,是非常需要的。
近几年中考注重对学生“知识联系实际”的考查,实际问题中往往蕴含着方程与不等式,分析问题中的等量关系和不等关系,建立方程(组)模型和不等式(组)模型,从而把实际问题转化为数学模型,然后用数学知识来解决。
方程(组)与不等式(组)是代数中的重要内容,有的已知方程(组)的解求方程(组)、应用题的条件编制、也有根据方程进行数学建模等等.解决有关方程(组)与不等式(组)的试题,首先弄清题目的要求;其次,充分考虑结果的多样性,使答案简明、准确.类型之一根据图表信息列方程 ( 组 ) 或不等式解决问题在具体的生活中根据图示得到方程或不等式,由此解决实际问题,根本在于得到数量之间的关系。
1.如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是g.2.教师节来临之际,群群所在的班级准备向每位辛勤工作的教师献一束鲜花,每束由 4 支鲜花包装而成,其中有象征母爱的康乃馨和象征尊敬的水仙花两种鲜花,同一种鲜花每支的价格相同.请你根据第一、二束鲜花提供的信息,求出第三束鲜花的价格.3.某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8∶ 20~12∶ 00,下午 14∶ 00~16∶ 00,每月25 元;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60 件.生产产品件数与所用时间之间的关系见下表:生产甲产品件数 ( 件 )所用总时间生产乙产品件数 ( 件 )( 分 )10103503020850信息三:按件计酬,每生产一件甲产品可得 1.50 元,每生产一件乙产品可得 2.80 元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分?(2)小王该月最多能得多少元?此时生产甲、乙两种产品分别多少件?类型之二借助方程组合或不等式(组)解决方案问题借助二元一次方程组和一元一次不等式(组)求解方案问题是中考一种新题型,考察了同学们综合运用方程组和不等式深入的分析、比较、归纳和说理的能力.4. 某校准备组织290 名学生进行野外考察活动,行李共有100 件.学校计划租用甲、乙两种型号的汽车共8 辆,经了解,甲种汽车每辆最多能载40 人和 10 件行李,乙种汽车每辆最多能载 30 人和 20 件行李.(1)设租用甲种汽车x 辆,请你帮助学校设计所有可能的租车方案;(2)如果甲、乙两种汽车每辆的租车费用分别为2000 元、 1800 元,请你选择最省钱的一种租车方案.5. 暑假期间 , 小明到父亲经营的小超市参加社会实践活动 . 一天小明随父亲从银行换回来 58 张, 共计200 元的零钞用于顾客付款时找零 . 细心的小时清理了一下 , 发现其中面值为 1 元的有 20 张 , 面值为10 元的有 7 张 , 剩下的均为 2 元和 5 元的钞票 . 你能否用所学的数学方法算出 2 元和 5 元的钞票的各有多少张吗 ?请写出演算过程 .6. 为支持四川抗震救灾,重庆市A、B、C 三地现在分别有赈灾物资100 吨,、100 吨、 80 吨,需要全部运往四川重灾地区的D、 E 两县。
根据灾区的情况,这批赈灾物资运往 D 县的数量比运往 E 县的数量的 2 倍少 20 吨。
(1)求这批赈灾物资运往D、E 两县的数量各是多少?(2)若要求 C 地运往 D 县的赈灾物资为60 吨, A 地运往 D 的赈灾物资为x 吨( x 为整数),B 地运往 D县的赈灾物资数量小于 A 地运往 D 县的赈灾物资数量的 2 倍。
其余的赈灾物资全部运往 E 县,且 B 地运往 E 县的赈灾物资数量不超过25 吨。
则 A、B 两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知 A、 B、 C三地的赈灾物资运往D、 E 两县的费用如下表:A 地B 地C 地运往 D 县的费用(元 / 吨)220200200运往 E 县的费用(元 / 吨)250220210为即使将这批赈灾物资运往D、E 两县,某公司主动承担运送这批赈灾物资的总费用,在( 2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?7. 5 月 1 日,目前世界上最长的跨海大桥——杭州湾跨海大桥通车了.通车后,苏南 A 地到宁波港的路程比原来缩短了 120 千米.已知运输车速度不变时,行驶时间将从原来的3时 20 分缩短到 2 时.(1)求 A 地经杭州湾跨海大桥到宁波港的路程.(2)若货物运输费用包括运输成本和时间成本,已知某车货物从 A 地到宁波港的运输成本是每千米 1.8 元,时间成本是每时 28 元,那么该车货物从 A 地经杭州湾跨海大桥到宁波港的运输费用是多少元?(3) A 地准备开辟宁波方向的外运路线,即货物从 A 地经杭州湾跨海大桥到宁波港,再从宁波港运到 B 地.若有一批货物(不超过 10 车)从 A 地按外运路线运到 B 地的运费需 8320元,其中从 A 地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B地的海上运费对一批不超过10 车的货物计费方式是:一车800 元,当货物每增加 1 车时,每车的海上运费就减少 20 元,问这批货物有几车?类型之三 借助方程、不等式或函数求极值问题“在生活中学数学, 到生活中用数学” ,是新课标所倡导的一个主旨之一, 我们可以利用数学知识求解生活中的实际问题, 有些问题可以借助于方程、 不等式和函数知识来求一些问题 的极值问题,这就要求我们建立恰当的数学模式来解决.8. “ 5·12”汶川大地震震惊全世界,面对人类特大灾害,在党中央国务院的领导下,全国人民万众一心,众志成城,抗震救灾.现在 A ,B两市各有赈灾物资 500 吨和 300 吨,急需运往汶川 400 吨,运往北川 400 吨,从A ,B两市运往汶川、北川的耗油量如下表:汶川(升 / 吨) 北川(升 / 吨)A 市 0.5 0.8B 市1.00.4(1)若从 A 市运往汶川的赈灾物资为 x吨,求完成以上运输所需总耗油量y (升)与 x (吨)的函数关系式.( 2)请你设计一种最佳运输方案,使总耗油量最少,并求出完成以上方案至少需要多少升油?9. 某公司有 A 型产品 40 件, B 型产品 60 件,分配给下属甲、乙两个商店销售,其中 70 件给甲店, 30 件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A 型利润B 型利润甲店200170乙店160150(1)设分配给甲店 A 型产品于 x 的函数关系式,并求出x 件,这家公司卖出这100 件产品的总利润为W(元),求x 的取值范围;W关(2)若公司要求总利润不低于 17560 元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A 型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店 B 型产品的每件利润.甲店的 B 型产品以及乙店的 A, B 型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?10. 某校八年级举行英语演讲比赛,拍了两位老师去学校附近的超市购买笔记本作为奖品.过了解得知,该超市的A、B 两种笔记本的价格分别是12 元和 8 元,他们准备购买者两种笔记本共 30 本.经(1)如果他们计划用300 元购买奖品,那么能卖这两种笔记本各多少本?(2) 两位老师根据演讲比赛的设奖情况,决定所购买的 A 种笔记本的数量要少于B21种笔记本数量的3,但又不少于 B 种笔记本数量的3,如果设他们买 A 种笔记本n 本,买这两种笔记本共花费w 元.①请写出 w(元)关于n(本)的函数关系式,并求出自变量n 的取值范围;② 请你帮助他们计算,购买这两种笔记本各多少时,花费最少,此时的花费是多少元?参考答案1. 【解析】由天平的平衡得到巧克力和果冻重量之间的数量关系设每块巧克力的重量为x3x 2 y克,每块果冻的重量为y 克,由题意列方程组得:x y 50,解方程组即可。
【答案】 20y 元2. 【答案】解:设康乃馨每支x 元,水仙花每支3x y19x5由题意得:2x 2 y18解得:y4第三束花的价格为x 3 y53 4 17答:第三束花的价格是17 元.3.【解析】通过表格当中的信息,我们可以利用列方程组来求出生产甲、乙两种产品的时间,然后利用列函数关系式表示出小王得到的总钱数,然后利用一次函数的增减性求出钱数的最大值 .【答案】( 1)解:设生产一件甲种产品需x分,生产一件乙种产品需y分,由题意得:10x10y350x y3530x20y850即3x 2y85x15解这个方程组得:y20生产一件甲产品需要15 分,生产一件乙产品需要20 分.x分,则生产乙种产品用x(2)解:设生产甲种产品用(25 8 60 x)分,则生产甲种产品 15258 60x 件,生产乙种产品20件.w总额x2.825860x1.520150.1 x12000 x 2.8200.1x 1680 0.14x0.04x1680x≥ 60,得 x≥ 900又 15由一次函数的增减性,当x 900 时w取得最大值,此时w0.04 900 1680 1644(元)900此时甲有1560(件),2586090012000900 2020555乙有:(件)4.【答案】解:( 1)由租用甲种汽车 x 辆,则租用乙种汽车 (8-x) 辆40x30(8x) ≥ 290由题意得:10x20(8x) ≥ 100解得: 5 ≤ x ≤ 6即共有 2 种租车方案:第一种是租用甲种汽车 5 辆,乙种汽车 3 辆;第二种是租用甲种汽车 6 辆,乙种汽车 2 辆.(2)第一种租车方案的费用为520003 1800 15400元;第二种租车方案的费用为620002180015600元∴第一种租车方案更省费用.5. 【答案】解:设面值为 2 元的有 x 张,设面值为 2 元的有 y 张,依题意得2x 5y 200 1 20 7 10 x y58 20 7x 16解得 y 15经检验,符合题意答:面值为 2 元的有 16 张,设面值为 2 元的有 15 张 .6. 【解析】解应用题的一般步骤是:审、设、列、解、验、答。