2.1同步发电机数学模型及运行特性
同步发电机基本工作原理及运行特性
![同步发电机基本工作原理及运行特性](https://img.taocdn.com/s3/m/3ed5f98de53a580216fcfed0.png)
同步发电机基本工作原理及运行特性一、基本工作原理及结构同步发电机是利用电磁感应原理,将机械能转变为电能的装置。
所谓电磁感应就是导体切割磁力线的能产生感应电势,将导体连接成闭合回路,就有电流通过的现象。
导体镶嵌在铁芯的槽里,铁芯是固定不动的称为定于(静子)。
磁极是转动的,称为转子。
它是由励磁绕组和铁芯组成的。
励磁绕组通过滑环与外部励磁回路相连,定子和转子是发电机的基本组成部分。
那么,三相交流电是如何产生的呢?直流电通入转子绕组后,就产生了稳恒的磁场,沿定于铁芯内圆,每相隔120度,分别安放三相绕组A-X、B-Y、C-Z。
当转子被汽轮机拖动以3000r/min旋转时,定子绕组便切割磁力线,产生感应电势,感应电势的方向可由右手定则来确定。
由于转子产生的磁场是旋转磁场,所以定子绕组切割磁力线的方向不断变化,在其中感应的电势方向就不断变化,因而形成交变电势即交流电势。
交流电势的额定频率为f,它决定于发电机的极对数P和转速n,其计算公式为:f=np/60HZ,我国规定交流电的频率为50HZ。
即:p=1,n=3000r/min交流电势的相位关系:转子以3000r/min的转速不停地旋转A、B、C三相绕组先后切割转子磁场的磁力线,所以三相绕组中电势的相位是不同的,因为定子绕组在安放时,空间角度相差120°相序为A-B-C。
何为同步呢?当发电机并列带负荷后,三相绕组中的定子电流(电枢电流)将合成一个旋转磁场,交流磁场与转子同速度,同方向旋转,这就是同步。
二、同步发电机的运行特性同步发电机的运行特性,一般是指发电机的空载特性、短路特性、负载特性、外特性和调整特性等五种。
其中,外特性和调整特性是主要的运行特性,根据这些特性,运行人员可以判断发电机的运行状态是否正常,以便及时调整,保证高质量安全发电。
而空载特性、短路特性、负载特性则是检验发电机基本性能的特性,用于测量,计算发电机的各项基本参数。
1、外特性所谓外特性,就是励磁电流、转速、功率因数为常数的条件下,负荷变化时发电机端电压U的变化曲线。
同步发电机建模
![同步发电机建模](https://img.taocdn.com/s3/m/a00a632b1fb91a37f111f18583d049649b660ede.png)
研究先进的控制策略和优化算法,以提高同步发电机的运行效率和稳定性。例如,采用滑模控制、自适应控制和强化学习等算法,实现发电机的快速响应、稳定运行和智能控制。
并网与分布式发电系统
研究同步发电机在并网和分布式发电系统中的应用,实现与可再生能源的高效集成。探讨分布式发电系统中的协同控制策略,以及在微电网和智能电网中发挥同步发电机的关键作用。
多物理场耦合建模
深入研究同步发电机的多物理场耦合建模,包括电气、机械、热和流体等多个方面。通过建立精确的数学模型,模拟发电机的动态行为和相互作用,为优化设计和控制提供理论支持。
同步发电机研究展望
THANKS
容量匹配
根据电力系统的需求和规模,合理配置同步发电机的容量,以满足电力系统的供电需求。
布局优化
根据电力系统的地理分布和负荷分布,优化同步发电机的布局,以提高电力系统的运行效率和可靠性。
技术升级
对老旧的同步发电机进行技术升级和改造,提高其运行效率和性能,降低对环境的影响。
在电力系统中的优化配置
延时符
Байду номын сангаас
励磁控制策略
总结词
并网控制是同步发电机并入电网的关键环节,需要确保发电机的频率、相位和电压幅值与电网一致。
详细描述
并网控制策略通过调节发电机的转速和励磁电流,使发电机的输出频率和相位与电网一致。在并网过程中,通常采用准同期并网方法,通过调节发电机的频率和相位来实现与电网的同步。
并网控制策略
VS
无功功率控制是同步发电机中用于平衡无功功率和维持电网电压稳定的重要手段。
稳态方程
02
稳态模型的核心是建立同步发电机的电压、电流和功率平衡方程。这些方程通常包括电机的电压方程、磁链方程、功率方程等,用于计算发电机的运行参数。
2.1发电机组的运行特性和数学模型
![2.1发电机组的运行特性和数学模型](https://img.taocdn.com/s3/m/cd76db65a1c7aa00b52acbb1.png)
引言 复功率的基本概念
•
•*
S 3U I 3UIej(u i ) 3UI(u i )
3UI S(cos j sin) P jQ
U 3IZ
P S cos 3UI cos
•
•
U 3IZ
•
S 复功率
Q S sin 3UI sin
•
U 电压相量
U 电压的有效值
*
I 电流相量的共轭
I 电流的有效值
功率因数角
Z为阻抗
S、P、Q 视在功率、有功功率、无功功率。
2-1发电机参数及数学模型
一、发电机的稳态等值电路
当发电机d、q轴相等(或可以认为相等)时,等值电 路如图a),还可以用它发出的有功功率和无功功率表示, 如图b)或有功功率和机端电压表示,如图c)jX GFra bibliotekP jQ
P
EG U&
U&
a)
b)
c)
2-1发电机参数及数学模型
二、发电机的电抗
制造厂一般给出以发电机额定参数为基准的发电机 电抗的百分值
X
G
%
X Z
G N
×100
XGS U
N
2 N
×100
因此
X G X G % U2N
100 S N
X G %发电机以其额定电抗Z N为基准的电抗百分值
3
隐极式发电机运行限额
发电机组运行限额有: 定子绕组温升约束:取决于额定视在功率;
励磁绕组温升约束:取决于励磁绕组电流, 而后者取决于空载电势;
原动机功率约束:取决于它所配套的发电 机额定有功功率;
以超前功率因数运行时的其他约束:取决 于定子端部温升和并列运行稳定性约束。
同步发电机的运行特性
![同步发电机的运行特性](https://img.taocdn.com/s3/m/7d083e856bec0975f465e25e.png)
同步发电机的运行特性同步发电机的运行特性有(空载特性、短路特性、负载特性)合称电机基本特性、(外特性和调整特性)主要是运行特性等五种。
外特性和调整特性是主要的运行特性,根据这些特性,可以判断发电机的运行状态是否正常,以便及时调整,保证高质量安全发电。
空载特性、短路特性和负载特性是检验发电机基本性能的特性,用于测量、计算发电机的各项基本参数一、发电机的空载特性(Eo与IL关系)所谓发电机空载运行是指发电机以额定转速运转,定子不带负荷时的运行。
此时,空载电势Eo与励磁电流IL之间的关系叫做空载特性。
当发电机处于空载运行状态,其端电压U就等于电势Eo,因此,端电压U与励磁电流的关系曲线就是空载特性。
如图所示空载特性曲线E0=f(I),做空载特性试验时,应维持发电机转速不变,逐渐增加励磁电流,直至端电压等于额定电压的130%时为止。
在增加励磁电流的过程中,读取励磁电流值及与其对应的端电压值,便可以得到空载特性的上升分支。
接着减小励磁电流,按上面方法读取数值;便得到下降分支,如图2-1-2(a)所示。
由于两曲线的平均,如图中虚线所示。
空载特性曲线是发电机的一条最基本的特曲线。
可用来求发电机的电压变化率、不饱和的同步电抗值等参数。
二、发电机的短路特性(定子绕组的稳态电流I与励磁电流Ii的关系曲线)所谓发电机的短路特性,系指发电机在额定转速下,定子绕组短路时,定子绕组的稳态电流I与励磁电流Ii的关系曲线。
如图2-1-3所示。
短路试验测得的短路特性曲线,不但可以用来求取同步发电机的重要参数饱和的同步电抗与短路比外,在发电厂中,常用它来判断励磁绕组有无匝间短路等故障。
显然,励磁绕组存在匝间短路时,因安匝数的减少,短路特性曲线是会降低的。
三、发电机的外特性(负荷与端电压)所谓发电机的外特性,就是指励磁电流、转速、功率因数为常数的条件下,变更定子负荷电流时,端电压U的变化曲线,即U=f(I)曲线。
在滞后的功率因数情况下cos(θ),当定子电流增加时,电压降落较大,就是由于此时电枢反应是去磁的。
电分课设
![电分课设](https://img.taocdn.com/s3/m/52c6980c227916888486d730.png)
银川能源学院课程设计课程名称:电力系统分析设计题目:电力系统各元件数学模型的建立学院:电力学院专业:电气工程及其自动化班级:1302班_______________________ 姓名:王俊霞学号:1310240050 成绩:指导教师:李莉、张彦迪日期:2015年12月7日——2015年12月18日摘要 (3)第1章.同步发电机数学模型及运行特性 (4)第1节同步发电机的基本概念 (4)第2节同步发电机稳态数学模型 (5)第3节同步发电机的运行范围 (11)第2章.电力线路的参数及数学模型 (14)第1节电力线路的基本结构 (14)第2节电力线路的参数 (15)第3节电力线路的数学模型 (22)第3章.电力变压器的参数与数学模型 (25)第1节理想变压器 (25)第2节实际双绕组变压器 (28)第4章电力系统负荷 (30)心得体会 (32)致谢 (33)参考文献 (34)课程设计的考核表 (35)建立了同步发电机系统的数学模型,提出了考虑多种因素影响的电机参数计算方法。
对具有P绕组的凸极同步发电机进行了实验和仿真研究,证明了数学模型的正确性;对具有P棒的隐极同步发电机系统进行了仿真研究,指出了这种系统运行性能的优越性.关键词:同步发电机数学模型运行特性等效电路功率方程Machine is established, a mathematical model of excitation synchronous generator system is put forward considering various factors influence the motor parameter calculation method. Salient pole synchronous machine with P windings, has carried on the experiment and simulation prove the validity of the mathematical model; For the non salient pole synchronous generator system with P bars has carried on the simulation research, points out the superiority of the system operation performance.Keywords: synchronous generator mathematical model running characteristic equivalent circuit power equation第1章.同步发电机数学模型及运行特性第1节同步发电机的基本概念同步电机是一种交流电机,主要用做发电机使用,也可以做电动机用,一般用于功率较大、转速不要求调节的生产机械,如大型水泵、空压机和矿井通风机等。
同步发电机运行特性及应用
![同步发电机运行特性及应用](https://img.taocdn.com/s3/m/bc02fdb30b4c2e3f572763a7.png)
Ik∝If,短路特性是直线。
Ik
小
E x
17-2 同步发电机的零功率因数负载特性
1、定义:同步发电机在n=nN下,带纯电感负载,
保持负载电流I为常量,测得的U=f(If)关系曲线称为
零功率因数负载特性。
E' 0
E0 U I Ra j I xt U j I xt j I xL j I xt
1、由空载和短路特性求的xd不饱和值
短路时磁路不饱和,且U=0,Ik =Id ,电动势方程为
.
.
.
E' k xd
.
xd
E
' 0
Ik
对于某一磁路电流If,从空载特性的气隙线上查
E
' 0
,从短路
特性上查Ik ,两者的比值即xd不饱和值。
2、同步发电机的短路比
短路比是指在空载产生额定电压的励磁电流If0下发生三相稳态
1
C' O'B' O"B"
2
A
INxσ B
O
CD K
I=IN
C" UN
If
(b)
图17-2b零功率因数负载特性分析
U=0,I=IN 时:
Fδ=Ff1-Fa
Ifa:空载时Fa=0,Ifa=0,带负载 后,电枢反应直轴去磁,If增大, 增大的数值即是Ifa。
特性三角形ΔABC:两个直角边AB和BC分别代表漏抗压降和电枢 反应去磁磁动势对应的励磁电流,其长度均正比于电枢电流。
(2)主磁极的漏磁通也要大些,主磁极铁心的饱
C"
和程度比空载时高,因而磁路的磁阻有所加大,
UN 因此,实际上在负载时的气隙合成磁动势与空
同步发电机的运行特性
![同步发电机的运行特性](https://img.taocdn.com/s3/m/a008c9cee518964bce847c6b.png)
.
.
E0
Ead
图6.31凸极机稳
Fad '
F '
.
E
态短路时-空矢量
.
Ff
Fad '
I
E U IRa jIX jIK X
.
U 0
E E0 Ead Eaq U IRa jIX
4、特性三角形(短路三角形)
E
E0 =f (If ) E
C
E
Ff ( If )
三角形ABC为同步 发电机的特性三角 形。
-AB =Fad‘ -AC=INX
O
A F'
Fad‘
B 数值小,对应的磁通也,电机磁路不饱和
图6.32 特性三角形
E E0 Ead Eaq U IRa jIX
思考: 同步发电机定子绕组的出线端短路后,电枢
电流 IK随励磁电流 If 变化,两者为什么成正比 关系?
三、零功率因数特性
1、定义
发电机的负载特性是指当负载电流=常数, 功率因数cosj=常数的条件下,端电压U与励 磁电流的关系 。其中当cosj=0时一条负载特 性称为零功率因数特性。
2、相量图
cosj=0 的负载为纯电感负载, Ra远小于 回路电抗,故=900,零功率因数负载时的电枢 磁动势也是纯去磁作用的直轴磁动势。
E U IRa jIX U jI X
五种基本特性:
1、 空载特性:当I=0时,E0 (U0) =f(if)
2、 短路特性:当U=0时, Ik=f(if) 3、 负载特性:当I=const,cosΦ=const时,
U=f(if) 4、 外 特 性:if= const,cosΦ=const时,
U=f(I) 5、 调整特性:U= const,cosΦ= const时,
同步发电机的基本方程
![同步发电机的基本方程](https://img.taocdn.com/s3/m/0bd2c0624a35eefdc8d376eeaeaad1f34693111b.png)
VS
详细描述
同步发电机的电压方程是描述发电机端电 压与内部电势、电流和阻抗之间关系的数 学表达式。这个方程通常采用三相坐标系 或同步坐标系来表示。在三相坐标系中, 电压方程可以表示为三个一阶微分方程, 而在同步坐标系中,电压方程可以简化为 一个二阶微分方程。
同步发电机的电流方程
总结词
描述同步发电机内部电流与电压、磁链和阻 抗之间的关系。
工业领域
在工业领域中,同步发电机可用于驱动各种电动 机、压缩机、泵等设备。
交通领域
在交通领域中,同步发电机可用于驱动列车、地 铁、船舶和飞机等交通工具。
02
同步发电机的基本原理
同步发电机的电磁原理
总结词
描述同步发电机如何通过磁场和电流相互作用产生电力的过程。
详细描述
同步发电机的基本原理是利用磁场和电流的相互作用产生电能。在发电机中,磁场由励磁系统产生,而转子上的 导线则会在旋转过程中切割磁力线,从而产生感应电动势。这个电动势的大小与磁场强度、导线切割磁力线的速 度以及导线与磁场的相对角度有关。
详细描述
功率控制的主要目标是确保发电机输出的有功功率和 无功功率满足电网的需求,同时保持电网的稳定运行 。为实现这一目标,功率控制器需要监测电网的有功 功率和无功功率需求,以及发电机的输出功率,通过 调节发电机的励磁电流和气门开度等参数,实现有功 功率和无功功率的解耦控制。常用的功率控制策略包 括恒功率控制、恒压控制和下垂控制等。
详细描述
同步发电机的磁链方程是描述发电机内部磁链与电压、电流和极对数之间关系的数学表 达式。这个方程通常采用三相坐标系或同步坐标系来表示。在三相坐标系中,磁链方程 可以表示为三个一阶微分方程,而在同步坐标系中,磁链方程可以简化为一个二阶微分
电力系统各元件的特性和数学模型
![电力系统各元件的特性和数学模型](https://img.taocdn.com/s3/m/94792dcd0b1c59eef9c7b406.png)
电力系统各元件的 特性和数学模型
复功率的规定
•
• 国际电工委员会(IEC)的规定 S U I
j U
•
S U I Ue ju Ie ji UIe j(u i ) UIe j
UI cos j sin
I
u
i
S cos j sin
P jQ
“滞后功率因数 运行”的含义
符号 S φ P Q
电力系统各元件的特性和数学模型
18
双绕组变压器和三绕组变压器
• 双绕组变压器:每相两个绕组,联络两个电压等级
2020/9/7
电力系统各元件的特性和数学模型
6
2.1节要回答的主要问题
• 功角的概念是什么?与功率因数角的区别? • 隐极机的稳态功角特性描述的是什么关系?(由此可
以引申出高压输电网的什么功率传输特性?) • 发电机的功率极限由哪些因素决定?对于隐极机,这
些因素如何体现在机组的运行极限图中?发电机的额 定功率与最大功率有什么关系?发电机能否吸收无功 功率? • 稳态分析中所采用的发电机的数学模型是怎样的?
• 负荷以超前功率因数运行时所吸收的无功功率为 负。——容性无功负荷(负)
• 发电机以滞后功率因数运行时所发出的无功功率为 正。——感性无功电源(正)
• 发电机以超前功率因数运行时所发出的无功功率为 负。——容性无功电源(负)
2020/9/7
ห้องสมุดไป่ตู้
电力系统各元件的特性和数学模型
3
目录
2.1 发电机组的运行特性和数学模型 2.2 变压器的参数和数学模型 2.3 电力线路的参数和数学模型 2.4 负荷的运行特性和数学模型 2.5 电力网络的数学模型 本章小结 习题
第二章电力网各元件的参数和等值电路精品文档
![第二章电力网各元件的参数和等值电路精品文档](https://img.taocdn.com/s3/m/a7a46e523968011ca30091f0.png)
变压器短路试验数据表(未经归算)
短路电压百分数Us% 短路损耗Ps(kW)
高—中 12.20 343.0
高—低 6.00
251.5
中—低 8.93
285.0
第2章 电力网各元件参数和数学模型
14 发电机组的运行特性和数学模型
φ ——功率因数角,u i ;
S、P、Q——分别为视在功率、有功功率、无功功率。
2.1 发电机组的运行特性和数学模型
一、发电机稳态运行时的相量图和功角特性
1. 隐极式发电机的相量图和功角特性
S ~ ( U d j q ) U I d j q I U d I d U q I q j U q I d U d I q P jQ
Uq EqIdxd EQIdxq Ud Iqxq
jQ E ( U d jq U ) jq x I d jq I
即, EQUjxqI 可以运用作图法求得交轴正方向,从而 E q 确定的正方向。
2.1 发电机组的运行特性和数学模型
P EqUd UdUq UdUq
1 双绕组变压器
电阻
RT
PkU
2 N
1000SN2
RT——变压器高低压绕组的总电阻(Ω ); Pk——变压器的短路损耗(kW); SN——变压器的额定容量(MVA); UN——变压器的额定电压(kV)。
2.2 变压器的参数和数学模型(续1)
1 双绕组变压器
电抗
XT
UN Uk%Uk% UN 2 3IN 100 10SN 0
2.2 变压器的参数和数学模型(续3)
同步电机功率的及运行特性(34页)
![同步电机功率的及运行特性(34页)](https://img.taocdn.com/s3/m/eca86901b207e87101f69e3143323968011cf49f.png)
-E′-E₀
-E₀” d
( 3)V形曲线 同步电动机的V形曲线I=fI):同步电动机在有功功率恒定、
励磁电流变化时,电枢电流随励磁电流变 化 的 曲线
V形曲线的几个特点 1.每一功率(负载)对应一条V形曲线 2.从欠励到正常励磁到过励I有最小值 3.每条曲线的最低点:cosφ=1,
连线向右倾斜。
Pm>P=>Pm Pm=Pm Pm=Pm Pm=Pm Pm=0
功角θ是转子磁极轴 线和定子合成磁极轴 线的空间夹角
忽略同步电动机定子电阻R。上的损耗
Pm≈P=3UIcosφ
从相量图中可知,
φ=y-θ
y为E₀与I之间的夹角,0为U与E₀之间的夹角
P=3UIcosφ=3UIcos(y-θ)
E₀
=3UI cos y cosθ+3UI siny sinθ
ji.X
I₄=1siny I₄=Icosy
Pm= ” k , sinO= mU1 cowp= 常 数 X,≈C
Esinθ=常数=Icosφ=常数
rco sp= 常数c
E₀sinθ=常数!B
jix
(
U
L
jI"X
E
j jmd I
E
D
0
|A
(2)特点
同步电动机输出有功功率P2恒定, 改变励磁电流可以调节其无功功率
E₀ sinθ=常数 B
jiX t
①正常励磁 当I=1m时,i₁ 与U₁同相,λ=1,电机呈电阻性。
②欠励磁 当I₁<Im时,i₁ ( i₁ )滞后于U,电 机 呈 电 感 性 。
I↓→ φ个,感性程度个。 ③过励磁
当I>Im时,I₁ (₁ ”)超前于U₁,
同步发电机的数学模型
![同步发电机的数学模型](https://img.taocdn.com/s3/m/57d72019172ded630a1cb606.png)
• 二、dq0系统的电势方程
派克变换只是对定子各量实施变换。 定子的电势方程为
v a b c ψ a b c r S ia b c
全式左乘 P 可得
v d q 0 P ψ a b c r S id q 0
由于 ψdq0P,ψ两abc边分别对时间求导,可得
由于定子三相绕组对称,同理可得
Lbbl0l2cos2(120) Lcc l0l2cos2(120)
⒉ 定子绕组间的互感系数
由定子a相电流产生的磁通交链到b相绕组的 部分也是由气隙磁通和漏磁通两部分组成。 若假定漏磁通路径的磁导为λmσ,则a、 b 相绕组间的漏磁通为
ba m F a
• 转子侧:励磁绕组f、 纵轴阻尼绕组D和横轴 阻尼绕组Q。
位置角
说明:
水轮发电机:阻尼绕组模 拟阻尼条阻尼作用;
汽轮发电机:模拟实心转 子涡流所起的阻尼作用。 除了 D 、 Q 绕组外, 有时在交轴上再增加一 个等值阻尼绕组,记为 g 绕组。 g 绕组和 Q 绕组分别用于反映阻尼 作用较强和较弱的涡流 效应。
ψ ψfaD bQ cL LR SSS
LSRiabc LRRifDQ
• 转子旋转时,定、转子绕组的相对位置不断变化,电机的许多 自感、互感系数也随之变化,因而也是转子位置的函数。
二、电感系数
⒈ 定子各相绕组的自感系数
以a相为例分析如下:
a相绕组电流 i a
正弦分布的磁势F a
Fa waia
Fa cos (d轴分量) Fa sin (q轴分量)
• “-”号是因为两相绕组轴线互差120°,a相正 电流产生的磁通将从反方向穿入b相绕组。
• 取b相绕组的等效匝数为wb,则由a相电流 产生交链于b相绕组的磁链为
同步电机的运行特性
![同步电机的运行特性](https://img.taocdn.com/s3/m/651da8056c85ec3a87c2c531.png)
同步发电机的运行特性同步发电机对称稳态运行时,保持转速为额定转速,端电压、电枢电流和励磁电流的变化关系。
一、空载特性1. 定义电枢绕组开路(空载),保持转子转速为额定转速,电枢端电压U0(空载时即激磁电动势E0)随励磁电流If的变化曲线。
.2. 空载特性曲线见图6-113. 原因:交流绕组电动势公式。
4. 作用:判断同步发电机定子铁心的性能与故障。
二、短路特性1.定义:电枢绕组三相短接(短路,端电压U=0),保持转子转速为额定转速,电枢电流I随励磁电流If的变化曲线。
2.短路特性曲线:见图6-243.原因:忽略电枢绕组的电阻Ra ,可认为短路电流为纯感性,即,则即此时,电枢反应的性质为直轴去磁的电枢反应,使气隙磁场不饱和,即。
所以,。
4.作用:配合空载特性求xd见图6-25,求xd 不饱和值,见图6-26,求xd 的饱和值,三、外特性及电压变化率1.定义保持转子转速为额定转速,且励磁电流 If 和负载功率因数cosφ不变,发电机端电压U随负载电流I的变化曲线,即U=f (I ) 。
2.外特性曲线见图6-30,负载功率因数不同,外特性曲线不同3.原因感性负载(cosφ =0.8滞后)和纯电阻负载时,外特性曲线是下降的。
这是由于电枢反应去磁作用和漏阻抗压降所引起的。
容性负载(cosφ=0.8超前)时,外特性曲线可能上升。
这是由于电枢反应助磁作用抵消漏阻抗压降使端电压下降的影响使端电压上升。
4.电压调整率调节发电机的励磁电流,使电枢电流为额定电流、功率因数为额定功率因数,端电压为额定电压,此时的励磁电流为额定励磁电流IfN。
保持励磁电流为IfN,转子转速为额定转速,卸去负载(即I=0),此时端电压的升高的百分值即为电压调整率,用Δu表示,即Δu= 100%同步电机的电压调整率较大,汽轮发电机通常在(30~48)%,水轮发电机通常在(18~30)%;而变压器的仅有(5~8)%。
四、整特性1.定义保持转子转速为额定转速,发电机端电压为额定电压和负载功率因数cosφ不变,励磁电流If随负载电流I的变化曲线,即If = f(I)。
最新2.1同步发电机数学模型及运行特性
![最新2.1同步发电机数学模型及运行特性](https://img.taocdn.com/s3/m/d6e71878fe4733687f21aa35.png)
2.1同步发电机数学模型及运行特性本节主要阐述同步发电机稳态数学模型及运行特性:包括向量图、等值电路与功率方程以及功角特性。
2.1.1 同步发电机稳态数学模型理想电机假设:1)电机铁心部分的导磁系数为常数;2)电机定子三相绕组完全对称,在空间上互差120度,转子在结构上对本身的直轴和交轴完全对称;3)定子电流在空气隙中产生正弦分布的磁势,转子绕组和定子绕组间的互感磁通也在空气隙中按正弦规率分布;4)定子及转子的槽和通风沟不影响定子及转子的电感,即认为电机的定子及转子具有光滑的表面。
同步电动机是一种交流电机,主要做发电机用,也可做电动机用,一般用于功率较大,转速不要求调节的生产机械,例如大型水泵,空压机和矿井通风机等。
近年由于永磁材料和电子技术的发展,微型同步电机得到越来越广泛的应用。
同步电动机的特点之一是稳定运行时的转速n与定子电流的频率f1之间有严格不变的关系,即同步电动机的转速n与旋转磁场的转速n0相同。
“同步”之名由此而来。
同步发电机是电力系统中的电源,它的稳态特性与暂态行为在电力系统中具有支配地位。
虽然在电机学中已经学过同步电机,但那时侧重于基本电磁关系,而现在则从系统运行的角度审视发电机组。
1.同步发电机的相量图设发电机以滞后功率因数运行,三相同步发电机正常运行时,定子某一相空载电势Eq,输出电压或端电压U和输出电流I间的相位关系如图2-1所示。
δ是Eq领先U的角度,称为功角,是功率因数角,即U与I的相位差, Eq与q轴(横轴或交轴)重合,d为纵轴或直轴。
U和I的d、q分量为:图 2-1电势电压相量图电机学课程中已经讨论过,端电压和电流的分量与Eq间的关系为:(2-3)式中,r为定子每相绕组的电阻,x d为定子纵轴同步电抗,x q为定子横轴同步电抗。
其中空载电势Eq与转子励磁绕组中的励磁电流成正比,其比例系数可从空载试验中得到。
为了便于绘制相量图,令d轴作正实轴,q轴作正虚轴,则各相量可表示为所以(2-7)对于隐极式同步发电机(汽轮发电机),因气隙均匀,直轴和交轴同步电抗相等(x d=x q),上式变为(2-8)此即表示隐极式同步发电机的方程,由此即可作出它的等值电路和相量图,如图2-2所示(a)等值电路(b)矢量图图2-2 隐极式同步发电机等值电路和矢量图凸极式同步发电机(水轮发电机),把电枢反应磁势分解为d轴及q轴两个分量,d轴电枢反应磁势的位置固定在转子d轴上,q轴电枢反应磁势的位置固定在转子q轴上,从而解决了合成磁势遇到的不同气隙宽度的困难。
同步发电机的运行原理及运行特性
![同步发电机的运行原理及运行特性](https://img.taocdn.com/s3/m/15054f35aa00b52acec7cab8.png)
11
A
点 到 点通 信 B
B
A
C
D 点 到 多点 通 信
A
D
B
E
C
F
多 点 到多 点 通 信
(a)
甲方发 甲方发 甲方收 甲方发 甲方收
第8章 同步发电机的运行原理及运行特性
1.3通信的基本方式
14
1.3.3 按通信终端之间的连接方式
通信方式可划分为两点间直通方式和交换方式。直通方式是通信双方直接用专线连接;而交换 式的通信双方必须经过一个称为交换机的设备才能连接起来,如电话系统。
用原动机拖动同步发电机到同步转速,励磁绕组通入直流励
磁电流,电枢绕组开路(或电枢电流为零)的运行状态,称为同步
发电机的空载运行。
空载运行时,同步发电机内仅有由励磁电流所建立的主极磁
场。图8-1表示一台四极发电机空载时的磁通示意图。从图可见,
0
fs
隙并与定子绕组相交链, 后者不通过气隙,仅与励磁绕组相交链。
第1章 通信的基础知识
第8章 同步发电机的运行原理及运行特性
目录
02
目
ONTENT S
录
第8章 同步发电机的运行原理及运行特性
1.1 通信的基本概念
04
通信:指的是信息的传输与交换。
通信系统:用于进行通信的设备硬件、软件和传输介质的集合。
第8章 同步发电机的运行原理及运行特性
1.1 通信的基本概念
主磁通所经过的主磁路包括空气隙、电枢齿、电枢轭、磁极极身
和转子轭等五部分。
第8章 同步发电机的运行原理及运行特性
图8-1 发电机空载时的磁通示意图
第8章 同步发电机的运行原理及运行特性
定子三相绕组切割主磁通而感应出频率为f的一组对称三相 交流电动势,其基波分量的有效值为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1同步发电机数学模型及运行特性
本节主要阐述同步发电机稳态数学模型及运行特性:包括向量图、等值电路与功率方程以及功角特性。
2.1.1 同步发电机稳态数学模型
理想电机假设:
1)电机铁心部分的导磁系数为常数;
2)电机定子三相绕组完全对称,在空间上互差120度,转子在结构上对本身的直轴和交轴完全对称;
3)定子电流在空气隙中产生正弦分布的磁势,转子绕组和定子绕组间的互感磁通也在空气隙中按正弦规率分布;
4)定子及转子的槽和通风沟不影响定子及转子的电感,即认为电机的定子及转子具有光滑的表面。
同步电动机是一种交流电机,主要做发电机用,也可做电动机用,一般用于功率较大,转速不要求调节的生产机械,例如大型水泵,空压机和矿井通风机等。
近年由于永磁材料和电子技术的发展,微型同步电机得到越来越广泛的应用。
同步电动机的特点之一是稳定运行时的转速n与定子电流的频率f1之间有严格不变的关系,即同步电动机的转速n与旋转磁场的转速n0相同。
“同步”之名由此而来。
同步发电机是电力系统中的电源,它的稳态特性与暂态行为在电力系统中具有支配地位。
虽然在电机学中已经学过同步电机,但那时侧重于基本电磁关系,而现在则从系统运行的角度审视发电机组。
1.同步发电机的相量图
设发电机以滞后功率因数运行,三相同步发电机正常运行时,定子某一相空载电势Eq,输出电压或端电压U和输出电流I间的相位关系如图2-1所示。
δ是Eq领先U的角度,称为功角,是功率因数角,即U与I的相位差, Eq与q轴(横轴或交轴)重合,d为纵轴或直轴。
U和I的d、q分量为:
图 2-1电势电压相量图
电机学课程中已经讨论过,端电压和电流的分量与Eq间的关系为:
(2-3)
式中,r为定子每相绕组的电阻,x d为定子纵轴同步电抗,x q为定子横轴同步电抗。
其中空载电势Eq与转子励磁绕组中的励磁电流成正比,其比例系数可从空载试验中得到。
为了便于绘制相量图,令d轴作正实轴,q轴作正虚轴,则各相量可表示为
所以
(2-7)
对于隐极式同步发电机(汽轮发电机),因气隙均匀,直轴和交轴同步电抗相等(x d=x q),上式变为
(2-8)
此即表示隐极式同步发电机的方程,由此即可作出它的等值电路和相量图,如图2-2所示
(a)等值电路(b)矢量图
图2-2 隐极式同步发电机等值电路和矢量图
凸极式同步发电机(水轮发电机),把电枢反应磁势分解为d轴及q轴两个分量,d轴电枢反应磁势的位置固定在转子d轴上,q轴电枢反应磁势的位置固定在转子q轴上,从而解决了合成磁势遇到的不同气隙宽度的困难。
D轴及q轴电枢反应磁势所产生的气隙磁通密度虽不是正弦形(气隙不均匀),但由于磁路的对称性,其基波轴线仍分别处在d轴及q轴线上,从而可以用叠加定理求取合成电势。
因气隙不均匀,直轴和交轴同步电抗不相等,只能用式(2-7)表示,为便于计算,定义了一个与Eq同相的虚构电势EQ,发电机电压方程为
(2-9)
定义,
则有
(2-10)
式中相量由和两个相量组成,均在q轴上,而由及求得。
凸极式发电机正常运行时的相量图如图2-3(b)所示,在图中利用决定q轴及d轴,即可求得,在求得,其等值电路如图2-3(a)所示。
(a)等值电路(b)矢量图
图2-3凸极式同步发电机等值电路和矢量图
2. 同步发电机的功率特性
若取为参考向量,领先的角度设为,则有
(2-11)
隐极式同步发电机输出的电磁功率为
(2-12)
其中
(2-13)
(2-14)
式(2-14)就是隐极式发电机的功率与功率角的关系式。
其中同步电抗,以为单位,其中为电枢漏抗,为电枢反应电抗。
电势与电压取线电势及线电压的有效值,则功率表示为三相功率的有效值。
凸极式同步发电机输出的电磁功率为:
(2-15)
其中:
(2-16)
(2-17)
式中,其中直轴同步电抗x d=x s+x ad,交轴同步电抗x q=x s+x aq,以为单位,其中x s为电枢漏抗,x ad为直轴电枢反应电抗,其中x aq为交轴电枢反应电抗。
以上各定子回路方程和功率方程就是同步发电机正常运行状态的数学模型。
2.1.2 原动机调节效应
对于一隐极发电机,若在发电机机端连接一非常大容量的电力系统,设系统不会引起发电机端电压和频率的变化,把这一发电机母线称为无穷大母线,当空载电势Eq和端电压U为定值时,
(2-18)
其中,
这时发电机输出的有功功率仅是功角的函数,称为功角特性,如图2-4所示。
该图a为发电机运行的初始
平衡状态。
它是原动机季节输入功率特性曲线(pm-)与发电机的电磁输出功率特性曲线(p-)的交点,相应的输出功率为P,功角为。
此时原动机的机械转矩与轴负荷(发电机的电磁功率)相平衡。
功角为
领先的角度,并体现了发电机转子的位置。
图 2-4发电机的功角特性
2.1.3 同步发电机的运行范围
同步发电机组按其设计的最佳运行状态称为额定运行状态,额定参数包括电压、定子电流、容量、功率因数、转子电流、长期容许温度和冷却介质温度等。
同步发电机在额定运行状态下,损耗小,效率高,转矩均匀,一般应使电机接近额定运行状态下运行,但在运行中时常要根据实际情况调整各参数,但不应超过允许范围。
在稳定运行条件下,发电机组的容许运行范围由下述条件决定:
定子绕组温升约束。
定子绕组温升由定子绕组电流决定,在额定电压下,由发电机的额定视在功率所决定。
发电机的三相绕组导体的截面积、发电机的冷却系统都是按照额定电流设计的,运行中的定子电流不可大于额定值。
励磁绕组温升约束。
励磁绕组温升由励磁电流所决定,即由发电机的空载电势决定。
发电机的励磁绕组截面积、冷却系统、励磁系统等是按照发电机额定运行条件下所需要的励磁电流-额定励磁电流而设计的,所以运行中的励磁电流不可大于它的额定值。
原动机输出功率约束。
原动机的额定功率通常等于发电机的额定有功功率。
原动机出力和发电机的电磁负荷及机械强度都是根据额定有功功率设计的,虽有一些裕度(过载能力),但运行中不宜超出P N。
另外,还有最小功率P min的限制,运行时也不能小于此值。
P min的限制是由于原动机和锅炉(火电厂)的限制。
汽轮机的最小允许功率约为额定值的10-20%,与汽轮机的类型和容量有关。
水轮机的最小允许功率比汽轮机小一些。
进相运行时的静态稳定条件及定子端部温升的约束。
一般发电机在进相运行时容易发生不稳定情况,这时就要限制输出的有功功率或吸收的无功功率。
现以汽轮发电机(隐极)为例,具体说明其允许的运行范围。
额定运行条件下的相量图(不计定子电阻r)如图2-10所示,各相量均乘以相同的比例系数K。
相量AO为额定电压UN的K倍,AM为额定电流的K倍,滞后UN的角度即为额定功率因数角,AN为额定空载电势E qN的K倍,与额定励磁电流成正比。
以O为原点作P-Q直角坐标系,使纵轴(P轴)垂直与AO。
系数K=3U N/x d,则ON的长度为(3U N/x d)I N x d=S N,即发电机额定视在功率。
ON在P及Q轴的投影,即为发电机的额定有功和无功功率。
因此在P-Q坐标平面上,N为额定运行点。
发电机的功率因数不等于额定值下运行时,以定子电流(即视在功率)不超过额定值作为条件,运行点应限制在以O为圆心,以ON为半径的圆弧LNJ以内;以励磁电流不超过额定值作为条件,则运行点应限制在
以A点为圆心,以AN为半径的圆弧NB之内;以不超过额定功率为条件,运行点应在水平线GFB以上。
同时考虑上述四个条件,并在滞后功率因数负载情况下,P和Q的允许运行范围为FB-BN-NC-CF所包围的面积。
同步发电机进相运行时,定子和励磁绕组的额定电流不是限制因素,主要受定子端部发热的限制和受额定有功功率和最小允许有功功率的限制。
进相运行的另一个限制因素是系统的运行稳定性。
发电机带一定的有功功率时,吸收的无功功率愈大,励磁电流与其成正比的空载电势愈小。
由式(2-17)可知,有功功率一定时,空载电势愈小,功率角愈大,因而系统稳定性愈差。
但是稳定性不仅与发电机运行状态有关,还与整个系统的结构、参数、其他各台发电机运行状态以及发电机自动电压调节器的性能等相关,很难做出一般性结论。
所以发电机进相运行的允许范围不像相位滞后运行那样具有确定性,图(2-10)中的进相运行范围CH-HG-GF是一个大致情况。
图2-10 同步发电机允许运行范围。