北师大版九年级专题二:代数式变形与求值

合集下载

九年及数学中考专题数与代数第二十七讲专题讲座北师大版公开课一等奖优质课大赛微课获奖课件

九年及数学中考专题数与代数第二十七讲专题讲座北师大版公开课一等奖优质课大赛微课获奖课件
能用有理数预计一个无理数大体范 围;
能用非负数性质解题,会利用数轴 比较大小并进行绝对值化简;
能在运算中灵活利用运算率简化运 算.
第8页
三.考点透视 2.应用方法: 代数式部分:
列代数式求值更多是整体代入求 值求法;能灵活地运用运算率与乘法 公式简化计算过程,如幂运算性质和 乘法公式逆向应用;
分式中字母取值变化,使分式本 身有没故意义或值为零等;对于分式 化简求值一般是先化简后求值,分式 运算结过要化成最简分式.
1.考点要求: 代数式部分:
掌握代数式、整式;会求代数式值;会 进行整式加、减、乘、除、乘方等简朴运算. 其中包括整式合并同类项、幂运算、乘法公 式、单项式与单项式相乘、单项式与多项式 相乘、多项式与多项式相乘及整式除法.
分式意义和基本概念是中考必考内容; 分式运算和分式混合运算也是中考一个热点, 因此掌握分式基本性质及其化简求值.
解:B.
第21页
四.例题精讲 例6(·湖南)将连续自然数1至36 按图2方式排成一个正方形阵列,用 一个小 正方形任意圈出其中9个数,设圈出9 个 数中心数为a,用含a代数式表示这9 个数和为 .
第22页
四.例题精讲
思绪分析:观测正方形阵列,能够发觉其中
规律.能够用中心数a表示其它八个数, 依次为, a 7,a 6,a 5,a 1, 那么这九个a 数1,和a为 5,a. 6,a 7
136515亿元,136515亿元(用科学 计数法表
示,且保留四个有效数字)为( )
A.1.365×1012元 B.1.3652×1013 元
C.13.652×1012元 D.1.365×1013元
第17页
四.例题精讲
例4 (·四川广安)计算:

北师大版九年级专题二:代数式变形与求值

北师大版九年级专题二:代数式变形与求值

专题:代数式的变形与代数式的求值1、已知x 3y 0-=,求222x y (x y)x 2xy y +--+的值.2、 已知2x 5x 14-=,求()()()2x 12x 1x 11---++的值3、已知22a 2ab b =0++,求代数式()()()a a 4b a 2b a 2b +-+-的值.4、已知a b =023≠,求代数式5a 2b (a 2)(a+2b)(a 2b)b ⋅---的值.5、先化简,再求值:262393m m m m -÷+--,其中2m =-.6、已知230x -=,求代数式22()(5)9x x x x x -+--的值.7、已知240x -=,求代数式22(1)()7x x x x x x +-+--的值.8、已知32,3a c b a ==,求代数式c b a c b a -+++的值。

9、若543z y x ==,且10254=+-z y x ,求z y x +-52的值。

10、若不论x 取什么值,代数式83++bx ax 的值都相同,试求a 与b 的关系。

11、设()0122334455512a x a x a x a x a x a x +++++=-,求:(1)543210a a a a a a +++++;(2)543210a a a a a a -+-+-;(3)420a a a ++12、代数式c bx ax ++5,当3-=x 时值为8,当0=x 时值为1,求当3=x 时,该代数式的值。

13、若32z y x ==,且12=++z y x ,试求z y x 432++的值。

14、15、已知:210x x --=,则3222002x x -++的值为多少16、已知1817=a ,181=b ,91=c ,求代数式ac ab a +-23的值。

17、已知19951996+=x a ,19961996+=x b ,19971996+=x c ,求222c b a ++ca bc ab ---的值。

专题02 代数式(解析版)

专题02 代数式(解析版)

2022-2023学年七年级数学上册章节同步实验班培优题型变式训练(北师大版)专题02 代数式【题型1】代数式表示数、图形的规律1.(2022·河北廊坊·七年级期末)如图.用棋子按规律摆出下列一组图形,据此规律,第2022个,图形棋子的枚数为( )A.6065B.6068C.6069D.6071【答案】B【分析】由所给的图形不难看出第n个图形所棋子枚数是:3n+2,从而可求解.【详解】解:∵第1个图形棋子枚数为:5=3×1+2,第2个图形棋子枚数为:5+3=3×2+2,第3个图形棋子枚数为:5+3+3=3×3+2,∴第n 个图形棋子枚数为:3n +2,∴第2022个图形棋子枚数为:3×2022+2=6068,故B 正确.故选:B .【点睛】此题考查图形的变化规律,找出图形之间的联系,得出规律是解题的关键.【变式1-1】2.(2022·黑龙江大庆·期中)观察下面一系列等式:23181-=´,22531682-==´,22752483-==´,22973284,-==´…分析其规律,并用含有a 的字母表示这个规律__________.【答案】()()2221218a a a+--=【分析】根据题意观察式子,发现等式的左边为连续的两个奇数的平方差,右边为8与从1开始的自然数的乘积,据此用代数式表示即可求解.【详解】解:23181-=´,22531682-==´,22752483-==´,22973284,-==´…分析其规律,可得()()2221218a a a +--=.故答案为:()()2221218a a a +--=.【点睛】本题考查了用代数式表示式子的规律,发现规律是解题的关键.【题型2】代数式的书写方法1.(2021·福建·晋江市磁灶中学七年级期中)下列代数式书写规范的是( )A .2m n ´B .526abC .a b ¸D .3xD、该选项正确.故选D.【点睛】本题考查了代数式的书写要求,解决本题的关键是掌握代数式的书写要求.要求:(1)数与字母,字母与字母相乘,乘号可以省略,也可写成“.”;(2)数字要写在前面;(3)带分数一定要写成假分数;(4)在含有字母的除法中,一般不用“÷”号,而写成分数的形式.【变式2-1】2.(2022·全国·七年级课时练习)将下列各式按照列代数式的规范要求重新书写:(1)a×5,应写成_______ ;(2)S÷t应写成_________;(3)123a a b´´-´,应写成______;(4)413x, 应写成______.【题型3】代数式表示的实际意义1.(2022·内蒙古通辽·七年级期末)下列赋予4m实际意义的叙述中不正确的是()A.若一个两位数中的十位数字和个位数字分别为4和m,则4m表示这个两位数B.若正方形的边长为m厘米,则4m表示这个正方形的周长(单位:厘米)C.若葡萄的价格是4元/千克,则4m表示买m千克葡萄的金额(单位:元)D.若一辆汽车行驶的速度是m千米/小时,则4m表示该汽车4小时行驶的路程(单位:千米)【答案】A【分析】根据两位数的表示=十位数字×10+个位数字;正方形周长=边长×4;金额=单价×重量;路程=速度×时间进行分析即可.【详解】解:A、若一个两位数中的十位数字和个位数字分别为4和m,则(4×10+m)表示这个两位数,原说法不正确,故此选项符合题意;B、若正方形的边长为m厘米,则4m表示这个正方形的周长,原说法正确,故此选项不符合题意;C、若葡萄的价格是4元/千克,则4m表示买m千克葡萄的金额,原说法正确,故此选项不符合题意;D、若一辆汽车行驶的速度是m千米/小时,则4m表示该汽车4小时行驶的路程,原说法正确,故此选项不符合题意;故选:A.【点睛】本题主要考查代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.【变式3-1】2.(2022·江苏·七年级)某超市的苹果价格如图,试说明代数式100﹣9.8x的实际意义__.【答案】用100元买每斤9.8元的苹果x斤余下的钱【分析】根据题意结合图片得出代数式100﹣9.8x的实际意义.【详解】解:代数式100﹣9.8x 的实际意义为:用100元买每斤9.8元的苹果x 斤余下的钱.故答案为:用100元买每斤9.8元的苹果x 斤余下的钱.【点睛】此题主要考查了代数式,结合题意利用图片得出是解题关键.【题型4】求代数式的值1.(2021·湖北·公安县教学研究中心七年级阶段练习)已知|2|a =-,则a -5=( )A .3-B .3C .7-D .7【答案】A【分析】由绝对值的意义求出a 的值,再代入a -5中计算即可.【详解】∵|2|a =-,∴2a =,∴a -5=2-5=-3.故选A .【点睛】本题考查求一个数的绝对值,代数式求值.掌握正数和0的绝对值是它本身,负数的绝对值是它的相反数是解题关键.【变式4-1】2.(2021·江西·宜春九中七年级阶段练习)已知150y x -++--=,则x y +=__________.一.选择题1.(2022·全国·七年级专题练习)某商店促销的方法是将原价x 元的衣服以(0.8x ﹣10)元出售,意思是( )A .原价减去10元后再打8折B .原价打8折后再减去10元C .原价减去10元后再打2折D .原价打2折后再减去10元【答案】B【分析】根据先算乘法可知先打折,再减价.【详解】解:将原价x 元的衣服以(0.8x ﹣10)元出售,意思是原价打8折后再减去10元,故选:B .【点睛】本题考查代数式的实际意义.理解运算中乘为打折,减是减价是解题关键.2.(2021·湖南·宁远县教研室七年级期中)下列式子中不是代数式的是( )A .32a b +B .52+C .1a b +=D .1b a +【答案】C【分析】根据代数式的定义:用基本运算符号(基本运算包括加减乘除、乘方和开方)把数或表示数的字母连接起来的式子,由此可排除选项.【详解】解:A 、是代数式,故不符合题意;B 、是代数式,故不符合题意;C 、中含有“=”,不是代数式,故符合题意;D 、是代数式,故不符合题意;故选C .【点睛】本题主要考查代数式的定义,熟练掌握代数式的定义是解题的关键.3.(2022·全国·七年级专题练习)下列各式中,符合整式书写规则的是( )A .5x ´B .72xyC .124xyD .1x y-¸【答案】B【分析】利用代数式的书写要求分别判断得出答案.【详解】解:A 、5x ´不符合代数式的书写要求,应为5x ,故此选项不符合题意;4.(2022.湖北.利川市思源实验学校七年级阶段练习)小王利用计算机设计了一个程序,输入和输出的数据如下表:输入 (1)2345…输出…1225310417526…那么,当输入数据8时,输出的数据是( )A .861B .863C .865D .8675.(2021·全国·七年级单元测试)已知3257x y -+=,那么多项式15102x y -+的值为( )A .8B .10C .12D .35【答案】C【分析】由多项式3257x y -+=,可求出322x y -=,从而求得1510x y -的值,继而可求得答案.【详解】解:∵3257x y -+=∴322x y -=∴151010x y -=∴1510+2x y -10+212==故选C .【点睛】本题考查了求多项式的值,关键在于利用“整体代入法”求代数式的值.6.(2019·海南·中考真题)当m =-1时,代数式2m+3的值是( )A .-1B .0C .1D .2【答案】C【分析】将=1m -代入代数式即可求值;【详解】解:将=1m -代入232(1)31m +=´-+=;故选C .【点睛】本题考查代数式求值;熟练掌握代入法求代数式的值是解题的关键.二、填空题7.(2018·上海·中考真题)某商品原价为a 元,如果按原价的八折销售,那么售价是_____元.(用含字母a 的代数式表示).【点睛】本题考查了销售问题、列代数式,弄清题意,列出符合题意的代数式是解题的关键.8.(2020·河北·模拟预测)若4x y +=,a ,b 互为倒数,则1()52x y ab ++的值是_________9.(2019·广东·中考真题)已知23x y =+,则代数式489x y -+的值是_____.【答案】21【分析】由已知可得x-2y=3,继而对所求的式子进行变形后,利用整体代入思想即可求得答案.【详解】∵x=2y+3,∴x-2y=3,∴4x-8y+9=4(x-2y)+9=4×3+9=21,故答案为21.【点睛】本题考查了代数式求值,正确的进行变形是解题的关键.10.(2022·全国·七年级课时练习)某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、5元/本.现购进m 本甲种书和n 本乙种书,共付款Q 元.(1)用含m ,n 的代数式表示Q =______;(2)若共购进3510´本甲种书及3310´本乙种书,Q =______(用科学记数法表示).【答案】 4m +5n 43.510´【分析】(1)根据题意列代数式即可;(2)根据题意列出算式进行化简即可.【详解】解:(1)由题意,得Q =4m +5n ;(2)Q =4×3510´+5×3310´=20×310+15×310=35×310=43.510´.故答案为:4m +5n ,43.510´.【点睛】本题考查了整式中的列代数式,科学记数法的运算,正确地理解能力和计算能力是解决问题的关键.三、解答题11.(2021·全国·七年级单元测试)如图所示,有长为l 的篱笆,利用它和一面墙围城长方形园子,在园子的长边上开了1米的门,园子的宽为t .(1)用关于l ,t 的代数式表示园子的面积.(2)当l =100m ,t =30m 时,求园子的面积.【答案】(1)()12S l t t =+-;(2)21230m 【分析】(1)表示出长,利用长方形的面积列出算式即可;(2)把l =100m ,t =30m 代入(1)求得答案即可;【详解】解:(1)宽为t,长为:l +1-2t 面积为:()12S l t t =+-(2)当l =100m ,t =30m 时S=()()12100123030l t t +-=+-´´=1230故园子的面积为21230m 【点睛】本题考查根据实际,列出代数式,再代入求值,关键在于找到等量关系.12.(2022·全国·七年级专题练习)(1)观察下面的点阵图与等式的关系,并填空:第1个点阵2213112++=+第2个点阵13531++++=______+______第3个点阵++++++=______+______.1357531(2)通过猜想,写出第n个点阵相对应的等式.【答案】(1)22,32,32,42(2)1+3+5+…+(2n﹣1)+(2n+1)+(2n﹣1)+…+5+3+1=n2+(n+1)2【分析】(1)根据点阵图即可求解;(2)根据(1)中的3个等式得出规律,进而写出第n个点阵相对应的等式.【详解】(1)第1个点阵1+3+1=12+22,第2个点阵1+3+5+3+1=22+32,第3个点阵1+3+5+7+5+3+1=32+42.故答案为22,32,32,42;(2)根据(1)中的3个等式,可以发现,第n个点阵的对角点最多有2n+1个,而且等号右侧是22++,n n(1)∴第n个点阵相对应的等式为:1+3+5+…+(2n﹣1)+(2n+1)+(2n﹣1)+…+5+3+1=n2+(n+1)2.【点睛】本题考查了规律型:图形的变化类,要求学生通过观察,分析、归纳发现其中的规律.13.(2022·全国·七年级专题练习)用同样大小的两种不同颜色(白色.灰色)的正方形纸片,按如图方式拼成长方形.[观察思考]第(1)个图形中有212=´张正方形纸片;´+==´张正方形纸片;第(2)个图形中有2(12)623´++==´张正方形纸片;第(3)个图形中有2(123)1234第(4)个图形中有2(1234)2045´+++==´张正方形纸片;……以此类推(1)[规律总结]第(5)个图形中有__________张正方形纸片(直接写出结果).(2)根据上面的发现我们可以猜想:123n ++++=L __________.(用含n 的代数式表示)(3)[问题解决]根据你的发现计算:101102103200++++L .14.(2022·全国·七年级专题练习)特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:432432106a x a x a x a x a x ++++=,则:①取0x =时,直接可以得到00a =;②取1x =时,可以得到432106a a a a a ++++=;③取1x =-时,可以得到432106a a a a a -+-+=-;④把②,③的结论相加,就可以得到4222a a +020+=a ,结合①00a =的结论,从而得出420a a +=.请类比上例,解决下面的问题:已知654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=.求:(1)0a 的值;(2)6543210++++++a a a a a a a 的值;(3)642a a a ++的值.【答案】(1)4(2)8(3)0【分析】(1)观察等式可发现只要令x =1即可求出a 0;(2)观察等式可发现只要令x =2即可求出a 6+a 5+a 4+a 3+a 2+a 1+a 0的值;(3)令x =2即可求出等式①,令x =0即可求出等式②,两个式子相加即可求出来.(1)解:当1x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴0414a =´=;(2)解:当2x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴65432108a a a a a a a +++++=+;(3)解:当2x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴65432108a a a a a a a +++++=+①;当0x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴65432100+-++=--a a a a a a a ②;用①+②得:406282222++=+a a a a ,∴642040a a a a ++=-=.【点睛】本题主要考查代数式求值问题,合理理解题意,整体思想求解是解题的关键.15.(2019·贵州贵阳·中考真题)如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a ,b 的代数式表示矩形中空白部分的面积;(2)当a =3,b =2时,求矩形中空白部分的面积.【答案】(1)S =ab ﹣a ﹣b +1;(2)矩形中空白部分的面积为2;【分析】(1)空白区域面积=矩形面积-两个阴影平行四边形面积+中间重叠平行四边形面积;(2)将a=3,b=2代入(1)中即可;【详解】(1)S =ab ﹣a ﹣b +1;(2)当a=3,b=2时,S=6﹣3﹣2+1=2;【点睛】本题考查阴影部分面积,平行四边形面积,代数式求值;能够准确求出阴影部分面积是解题的关键.。

初二奥数精讲——第10讲代数式的变形与求值(二)

初二奥数精讲——第10讲代数式的变形与求值(二)

初二奥数精讲——第10讲代数式的变形与求值(二)一、知识点解析1. 基本知识代数式:由字母和运算符号组成的式子叫做代数式。

代数式的值:当代数式中所有字母都取一个确定的值时,代数式也得到一个相应的值,这个值称为代数式的值。

代数式的变形:将一个代数式变为一个与之等价的代数式称为代数式的变形。

2. 基本方法凑配法:从某种结构中凑配出另一种结构,这种变形称为凑配法。

它常采用如下一些技巧:(1)条件的简化:将条件进行恒等变形(移项、合并、去分母、因式分解等),得出更简单的条件(称为新条件)。

(2)条件的凑配:瞄准目标,对条件进行凑配,即在条件中凑配出目标中的有关结构。

凑配的关键,是发现条件与结论的差异,由此改造条件。

(3)各条件的综合:对于多个条件的问题,常常要将条件综合在一起,得出综合的结论。

(4)结论的凑配:瞄准条件,对目标进行凑配,即在目标中凑配出条件中的有关结构,从而利用条件。

凑配的关键,是发现条件与结论间的差异,由此改造目标。

(5)从条件与结论同时凑配:先从条件中凑出一个新的结构,再在结论中凑出这一新结构。

(6)从结论的一部分中凑配另一部分:发现结论(等式)各个部分之间的差异,从一个部分凑配另一个部分。

常见的是从等式的一边凑配另一边。

(7)凑配公式:通过配因式、配项等,凑配“平方差”,借以产生某种因式。

此外,凑配完全平方、完全立方(简称“配方”),以进一步利用公式或产生非负项是常用手段。

消元法:通过比较题目的条件与目标,发现最终结果中不含条件中出现的某个字母,从而设法消去这个字母,常常可找到解题途径,或者,通过消去一些字母,使所含的字母个数减少,问题就变得简单些。

它常常采用如下一些技巧:(1)选择主元:如果条件中含有k个等式r个字母(k < r),则可选择r-k个字母为主元,将其他字母用主元表示。

(2)设等式参数:假设条件中含有某种等式,则可将等式一边的值用一个参数表示,进而将有关字母也用这个参数表示。

专题02 代数式【考点精讲】(解析版)

专题02 代数式【考点精讲】(解析版)

考点1:代数式的概念与求值1.代数式:用运算符号把数或表示数的字母连接而成的式子叫做代数式.2.代数式的值:用具体数代替代数式中的字母,按运算顺序计算出的结果叫做代数式的值。

求代数式的值分两步:第一步,代数;第二步,计算.要充分利用“整体”思想求代数式的值。

【例1】(2021·四川乐山市·中考真题)某种商品m 千克的售价为n 元,那么这种商品8千克的售价为( )A .8n m (元)B .8n m (元)C .8m n (元)D .8m n(元)【答案】A【分析】先求出1千克售价,再计算8千克售价即可;【详解】∵m 千克的售价为n 元,∴1千克商品售价为n m,∴8千克商品的售价为8n m (元);故选A.专题02 代数式【例2】(2021·内蒙古中考真题)若1x =+,则代数式222x x -+的值为( )A .7B .4C .3D.3-【答案】C 【分析】先将代数式222x x -+变形为()211x -+,再代入即可求解.【详解】解:())22222=111113x x x -+-+=+-+=.故选:C【例3】(2021·贵州铜仁市·中考真题)观察下列各项:112,124,138,1416,…,则第n 项是______________.【答案】12nn +【分析】根据已知可得出规律:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+…即可得出结果.【详解】解:根据题意可知:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+,第四项:41144162=+,…则第n 项是12n n +;故答案为:12n n +.有关代数式的常见题型为用代数式表示数字或图形的变化规律. 数与图形的规律探索问题,关键要能够通过观察、分析、联想与归纳找出数或图形的变化规律,并用代数式表示出来.1.(2021·浙江金华市·中考真题)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是()A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30%D.先提价25%,再降价25%【答案】B【分析】设原件为x元,根据调价方案逐一计算后,比较大小判断即可.【详解】设原件为x元,∵先打九五折,再打九五折,∴调价后的价格为0.95x×0.95=0.9025x元,∵先提价50%,再打六折,∴调价后的价格为1.5x×0.6=0.90x元,∵先提价30%,再降价30%,∴调价后的价格为1.3x×0.7=0.91x元,∵先提价25%,再降价25%,∴调价后的价格为1.25x×0.75=0.9375x元,∵0.90x<0.9025x<0.91x<0.9375x故选B2.(2021·四川达州市·中考真题)如图是一个运算程序示意图,若开始输入x的值为3,则输出y值为___________.【答案】2【分析】根据运算程序的要求,将x=3代入计算可求解.【详解】解:∵x =3<4∴把x =3代入1(4)y x x =-£,解得:312y =-=,∴y 值为2,故答案为:2.3.(2021·湖南常德市·中考真题)如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有11´个正方形,所有线段的和为4,第二个图形有22´个小正方形,所有线段的和为12,第三个图形有33´个小正方形,所有线段的和为24,按此规律,则第n 个网格所有线段的和为____________.(用含n 的代数式表示)【答案】2n 2+2n【分析】本题要通过第1、2、3和4个图案找出普遍规律,进而得出第n 个图案的规律为S n =4n +2n ×(n -1),得出结论即可.【详解】解:观察图形可知:第1个图案由1个小正方形组成,共用的木条根数141221,S =´=´´第2个图案由4个小正方形组成,共用的木条根数262232,S =´=´´第3个图案由9个小正方形组成,共用的木条根数383243,S =´=´´第4个图案由16个小正方形组成,共用的木条根数4104254,S =´=´´…由此发现规律是:第n 个图案由n 2个小正方形组成,共用的木条根数()22122,n S n n n n =+=+g 故答案为:2n 2+2n .考点2:整式相关概念1.单项式:只含有数字与字母的积的代数式叫做单项式.单独的一个数或一个字母也是单项式.2.多项式:几个单项式的和叫做多项式. 多项式中次数最高的项的次数,叫做这个多项式的次数.3.整式:单项式与多项式统称整式.4.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.【例4】(2021·青海中考真题)已知单项式4272m a b -+与223m n a b +是同类项,则m n +=______.【答案】3【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),求出m ,n 的值,再代入代数式计算即可.【详解】解:∵单项式4272m a b -+与223m n a b +是同类项,∴2m =4,n +2=-2m +7,解得:m =2,n =1,则m +n =2+1=3.故答案是:3.【例5】(2021·云南中考真题)按一定规律排列的单项式:23456,4,9,16,25a a a a a ,……,第n 个单项式是( )A .21n n a +B .21n n a -C .1n n n a +D .()21n n a +【答案】A【分析】根据题目中的单项式可以发现数字因数是从1开始的正整数的平方,字母的指数从1开始依次加1,然后即可写出第n 个单项式,本题得以解决.【详解】解:∵一列单项式:23456,4,9,16,25a a a a a ,...,∴第n 个单项式为21n n a +,故选:A .【例6】已知(m ﹣3)x 3y |m |+1是关于x ,y 的七次单项式,求m 2﹣2m +2= .【答案】17【分析】直接利用单项式的次数确定方法分析得出答案.【详解】解:∵(m ﹣3)x 3y |m |+1是关于x ,y 的七次单项式,∴3+|m |+1=7且m ﹣3≠0,解得:m =﹣3,∴m 2﹣2m +2=9+6+2=17.故答案为:17.1.①单项式中的数字因数称为这个单项式的系数;②一个单项式中,所有字母的指数的和叫做这个单项式的次数2.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数1.(2021·上海中考真题)下列单项式中,23a b 的同类项是()A .32a b B .232a b C .2a b D .3ab 【答案】B【分析】比较对应字母的指数,分别相等就是同类项【详解】∵a 的指数是3,b 的指数是2,与23a b 中a 的指数是2,b 的指数是3不一致,∴32a b 不是23a b 的同类项,不符合题意;∵a 的指数是2,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3一致,∴232a b 是23a b 的同类项,符合题意;∵a 的指数是2,b 的指数是1,与23a b 中a 的指数是2,b 的指数是3不一致,∴2a b 不是23a b 的同类项,不符合题意;∵a 的指数是1,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3不一致,∴3ab 不是23a b 的同类项,不符合题意;故选B2.关于多项式5x 4y ﹣3x 2y +4xy ﹣2,下列说法正确的是( )A .三次项系数为3B .常数项是﹣2C .多项式的项是5x 4y ,3x 2y ,4xy ,﹣2D .这个多项式是四次四项式【答案】B【分析】根据多项式的项、次数的定义逐个判断即可.【详解】解:A 、多项式5x 4y ﹣3x 2y +4xy ﹣2的三次项的系数为﹣3,错误,故本选项不符合题意;B 、多项式5x 4y ﹣3x 2y +4xy ﹣2的常数项是﹣2,正确,故本选项符合题意;C 、多项式5x 4y ﹣3x 2y +4xy ﹣2的项为5x 4y ,﹣3x 2y ,4xy ,﹣2,错误,故本选项不符合题意;D 、多项式5x 4y ﹣3x 2y +4xy ﹣2是5次四项式,错误,故本选项不符合题意;故选:B .3.若单项式﹣x 3y n +5的系数是m ,次数是9,则m +n 的值为 .【答案】0【分析】先依据单项式的系数和次数的定义确定出m 、n 的值,然后求解即可.【解答】解:根据题意得:m =﹣1,3+n +5=9,解得:m =﹣1,n =1,则m +n =﹣1+1=0.故答案为:0.考点3:整式的运算1.幂的运算性质:(1)同底数幂相乘底数不变,指数相加. 即:a m ·a n =a m +n (m ,n 都是整数).(2)幂的乘方底数不变,指数相乘. 即:(a m )n =a mn (m ,n 都是整数).(3)积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘. 即:(ab )n =a n b n (n 为整数).(4)同底数幂相除底数不变,指数相减. 即:a m ÷a n =a m -n (a ≠0,m,n 都为整数).(5)a 0=1(a ≠0), a -n =a1 (a ≠0).2.整式的运算:(1)整式的加减:几个整式相加减,如果有括号就先去括号,再合并同类项.(2)整式的乘法:单项式与单项式相乘,把它们的系数、相同字母分别相乘;单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,即m (a +b +c )=ma +mb +mc ;多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加,即(m +n )(a +b )=ma +mb +na +nb .(3)整式的除法:单项式除以单项式,把系数与同底数幂分别相除,作为商的因式;多项式除以单项式,先把这个多项式的每一项分别除以这个单项式,再把所得的商相加.3.乘法公式:(1)平方差公式:(a +b )(a -b )=a 2-b 2.(2)完全平方公式:(a ±b )2=a 2±2ab +b 2.(3)常用恒等变换:a 2+b 2=(a +b )2-2ab=(a -b )2+2ab ;(a -b )2=(a +b )2-4ab.【例7】(2021·河南中考真题)下列运算正确的是()A .22()a a -=-B .2222a a -=C .23a a a ×=D .22(1)1a a -=-【答案】C【分析】直接利用幂的运算性质和完全平方公式分别判断得出答案.【详解】解:A 、22()a a -=,原计算错误,不符合题意;B 、2222a a a -=,原计算错误,不符合题意;C 、23a a a ×=,正确,符合题意;D 、22(1)21a a a -=-+,原计算错误,不符合题意;故选:C .【例8】(2021·福建中考真题)下列运算正确的是()A .22a a -=B .()2211a a -=-C .632a a a ¸=D .326(2)4a a =【答案】D【分析】根据不同的运算法则或公式逐项加以计算,即可选出正确答案.解:A :()221a a a a -=-=,故 A 错误;B :()22121a a a -=-+,故 B 错误;C :63633a a a a -¸==,故C 错误;D :()()2232332622·44a a a a ´===.故选:D【例9】(2021·江苏连云港市·中考真题)下列运算正确的是()A .325a b ab+=B .22523a b -=C .277a a a +=D .()22112x x x -+-=【答案】D【分析】根据同类项与合并同类项、全完平方差公式的展开即可得出答案.【详解】解:A ,3a 与2b 不是同类项,不能合并,故选项错误,不符合题意;B ,25a 与22b 不是同类项,不能合并得到常数值,故选项错误,不符合题意;C ,合并同类项后2787a a a a +=¹,故选项错误,不符合题意;D ,完全平方公式:()22211221x x x x x =-++-=-,故选项正确,符合题意;故选:D .1.(2021·浙江丽水市·中考真题)计算:()24a a -×的结果是()A .8a B .6a C .8a -D .6a -【答案】B 【分析】根据乘方的意义消去负号,然后利用同底数幂的乘法计算即可.【详解】解:原式24246a a a a +=×==.2.(2021·四川宜宾市·中考真题)下列运算正确的是( )A .23a a a +=B .()32622a a =C .623a a a ¸=D .325a a a ×=【答案】D【分析】根据同底数幂相乘底数不变指数相加、同底数幂相除底数不变指数相减、乘积的幂等于各部分幂的乘积运算法则求解即可.【详解】解:选项A :a 与2a 不是同类项,不能相加,故选项A 错误;选项B :()32628a a =,故选项B 错误;选项C :62624a a a a -¸==,故选项C 错误;选项D :33522a a a a +×==,故选项D 正确;故选:D .3.(2021·黑龙江齐齐哈尔市·中考真题)下列计算正确的是()A .B .C .D .【答案】A【分析】根据平方根,幂的乘方与积的乘方,单项式乘以单项式及合并同类项的运算法则分别对每一个选项进行分析,即可得出答案.【详解】A 、,正确,故该选项符合题意;B 、,错误,故该选项不合题意;C 、,错误,故该选项不合题意;D 、与不是同类项,不能合并,故该选项不合题意;故选:A .考点4:整式化简求值【例10】(2021·湖南永州市·中考真题)先化简,再求值:,其中.【分析】先计算完全平方公式、平方差公式,再计算整式的加减法,然后将代入求值即可得.4=±()2234636m n m n =24833a a a ×=33xy x y -=4=±()2234639m n m n =24633a a a ×=3xy 3x ()()212(2)x x x +++-1x =1x =【详解】解:原式,,将代入得:原式.1.(2021·四川南充市·中考真题)先化简,再求值:,其中.【分析】利用平方差公式和完全平方公式,进行化简,再代入求值,即可求解.【详解】解:原式===,当x =-1时,原式==-22.2.(2020•凉山州)化简求值:(2x +3)(2x ﹣3)﹣(x +2)2+4(x +3),其中x=【分析】先利用平方差公式、完全平方公式、单项式乘多项式法则展开,再去括号、合并同类项即可化简原式,继而将x 的值代入计算可得答案.【详解】原式=4x 2﹣9﹣(x 2+4x +4)+4x +12=4x 2﹣9﹣x 2﹣4x ﹣4+4x +12=3x 2﹣1,当x原式=3×2﹣1=3×2﹣1=6﹣1=5.考点5:因式分解因式分解的步骤:(概括为“一提,二套,三检查”)(1)先运用提公因式法:ma +mb +mc =m (a +b +c ).(2)再套公式:a 2-b 2=(a +b )(a -b ),a 2±2ab +b 2=(a ±b )2(乘法公式的逆运算).(3)最后检查:分解因式是否彻底,要求必须分解到每一个多项式都不能再分解为止.22214x x x =+++-25x =+1x =2157=´+=2(21)(21)(23)x x x +---1x =-2241(4129)x x x ---+22414129x x x --+-1210x -()12110´--【例11】(2021·广西贺州市·中考真题)多项式32242x x x -+因式分解为( )A .()221x x -B .()221x x +C .()221x x -D .()221x x +【答案】A 【分析】先提取公因式2x ,再利用完全平方公式将括号里的式子进行因式分解即可【详解】解:32242x x x -+()()2222121x x x x x =-+=-故答案选:A .【例12】(2021·浙江杭州市·中考真题)因式分解:214y -=( )A .()()1212y y -+B .()()22y y -+C .()()122y y -+D .()()212y y -+【答案】A 【分析】利用平方差公式因式分解即可.【详解】解:214y -=()()1212y y -+,故选:A .【例13】(2020•成都)已知a =7﹣3b ,则代数式a 2+6ab +9b 2的值为 .【答案】49【分析】先根据完全平方公式变形,再代入,即可求出答案.【详解】∵a =7﹣3b ,∴a +3b =7,∴a 2+6ab +9b 2=(a +3b )2=72=49,故答案为:49.本考点是中考的高频考点,其题型一般为填空题,难度中等。

专题训练(二) 求代数式值的技巧

专题训练(二) 求代数式值的技巧

专题训练(二) 求代数式值的技巧 ► 技巧一 直接代入求值1.当a =-2,b =-3时,求代数式2a 2-3ab +b 2的值.► 技巧二 先化简,再代入求值2.先化简,再求值:12x -2⎝⎛⎭⎫x -13y 2+⎝⎛⎭⎫-32x +13y 2,其中x =-2,y =23. 3.已知A =1-x 2,B =x 2-4x -3,C =5x 2+4,求多项式A -2[]A -B -2(B -C )的值,其中x =-1.► 技巧三 先求字母的值,再代入求值4.已知||x -2+()y +12=0,求-2()2x -3y 2+5()x -y 2-1的值.5.已知多项式(2x 2+ax -y +6)-(2bx 2-3x +5y -1)的值与字母x 的取值无关,求多项式3(a 2-ab +b 2)-(3a 2+ab +b 2)的值.► 技巧四 先变形,再整体代入求值6.已知2x -3y =5,求6x -9y -5的值.7.已知当x =2时,多项式ax 3-bx +1的值为-17,那么当x =-2时,多项式ax 3-bx +1的值等于多少?► 技巧五 取特殊值代入求值8.已知()x +13=ax 3+bx 2+cx +d ,求a +b +c 的值. 详解详析1.解:当a =-2,b =-3时,原式=2×(-2)2-3×(-2)×(-3)+(-3)2=2×4-3×2×3+9=8-18+9=-1.[点评] 本题是直接代入求代数式的值,注意代入时负数参加运算需加括号.求代数式的值要注意:①代入求值的书写格式;①求代数式的值体现了一种重要的“代换”思想,但在代入求值时要注意对应着代替原式中的字母,不要代错;①在求值过程中,代数式中的运算符号和顺序都不能改变.2.解:原式=12x -2x +23y 2-32x +13y 2 =-3x +y 2,当x =-2,y =23时, 原式=-3×()-2+⎝⎛⎭⎫232=6+49=649. [点评] 本题需先化简,再将字母的值代入化简后的式子求值,而不是直接代入求值.3.解:A -2[]A -B -2(B -C )=A -2A +2B +4(B -C )=A -2A +2B +4B -4C =-A +6B -4C ,当x =-1时,A =1-x 2=0,B =x 2-4x -3=2,C =5x 2+4=9,①原式=0+12-36=-24.4.解:由条件||x -2+()y +12=0,得x -2=0且y +1=0,所以x =2,y =-1. 原式=-4x +6y 2+5x -5y 2-1=x +y 2-1.当x =2,y =-1时,原式=2+()-12-1=2.[点评] 当已知条件中没有直接给出字母的具体值时,有时可根据已知条件求出字母的具体值,再代入计算.本题先根据“若两个非负数的和等于0,则这两个非负数都为0”这一条件求出x ,y 的值,希望大家注意这一类型的条件.5.解:(2x 2+ax -y +6)-(2bx 2-3x +5y -1)=2x 2+ax -y +6-2bx 2+3x -5y +1 =(2-2b )x 2+(a +3)x -6y +7因为多项式(2x 2+ax -y +6)-(2bx 2-3x +5y -1)的值与字母x 的取值无关,所以2-2b =0,a +3=0,所以b =1,a =-3.所以3(a 2-ab +b 2)-(3a 2+ab +b 2)=3a 2-3ab +3b 2-3a 2-ab -b 2=-4ab +2b 2=-4×()-3×1+2×12=14.[点评] 本题根据隐含条件“多项式的值与字母x 的取值无关,则含x 的项的系数都为0”这一条件首先求出a ,b 的值,再代入化简后的式子求值.6.解:6x -9y -5=3(2x -3y )-5=3×5-5=10.[点评] 当由已知条件无法具体求出字母的值时,要观察已知条件与待求式子之间的关系,有时可以通过整体代入解决问题.整体代入是一种重要的思想方法,在解题中应注意灵活使用.7.解:因为当x =2时,多项式ax 3-bx +1的值为-17,所以8a -2b +1=-17,所以8a -2b =-18.当x =-2时,ax 3-bx +1=-8a +2b +1=-(8a -2b )+1=18+1=19.[点评] 本题先根据条件求出一个多项式的值,再将所求的代数式转化成关于这个多项式的形式,最后整体代入求值.8.解:令x =0,则()0+13=d ,所以d =1.再令x =1,则()1+13=a +b +c +d ,所以a +b +c +d =8.把d =1代入a +b +c +d =8,得a +b +c =8-1=7.[点评] 所求代数式中不含x ,且各项系数符号未变,可采用一般向特殊转化的方法.。

中考复习(代数式)[下学期]--北师大版

中考复习(代数式)[下学期]--北师大版
近年来,经常对着天空发呆冥想,总有一种空落落的感觉。一个大忙人,整天瞎忙活,干事凑凑合合,但求无过。干的越多被人揪小辫子的机会也越多,久而久之周围的人学乖了,识大体了,懂人 情世故了,但感情降温了,遇事推诿扯皮让人不爽。性格无所谓高下优劣,关键看人性。海纳百川有容乃大为我所敬仰,公平正义古道热肠为世人赞誉,小鸡肚肠斤斤计较为路人不屑,笑里藏刀为所欲 为千夫所指……不是所有的付出都有回报,乐于助人可能遇到以德报怨,感恩是一种高级修养,是后天良好环境潜移默化、心灵净化、思想升华凝聚而成。感恩之心使人快乐,发自内心的真情流露,笑 容如此甜蜜,泪水无比纯净,融化心灵的坚冰,你发现了和谐、尊严、人文的重要价值内涵,你需要坎坷磨砺,也需要温柔以待,你努力使自己的世界变得更加温柔、完美,即使微乎其微、劳心劳力的 和善作为,也能闪烁人性善良、关爱的美丽光环。网上开户什么时候可以交易
春花秋月,时光荏苒。栖栖遑遑与流离水月相伴,暖阳使人忘却烦恼忧愁,熏熏然理不清进退取舍的纷纭思绪。每当夜深人静,经常愁绪难眠。清风吹醒了昏昏欲梦的迷茫,天幕黝黑,冷月无声, 静心感受生命的悲欢易逝和岁月短暂无情。多年来,随波逐流奔走入尘世浮华喧嚣,看到了一个个目标向往,又遗失了很多珍贵的怀想。其实所有的目标都指向一个终点,你要活得问心无愧。跟着感觉 走,跟着别人走,永远回不到真正属于自己的初心世界。内心越来越强大、心智日益成熟,温柔气质已悄悄展露在你沧桑、平和的眼角眉梢。

2019届中考数学专题提升(二)代数式的化简与求值

2019届中考数学专题提升(二)代数式的化简与求值

专题提升(二) 代数式的化简与求值类型之一 整式的化简与求值【经典母题】已知x +y =3,xy =1,你能求出x 2+y 2的值吗?(x -y)2呢?解:x 2+y 2=(x +y)2-2xy =32-2×1=7;(x -y)2=(x +y)2-4xy =32-4×1=5.【思想方法】 利用完全平方公式求两数平方和或两数积等问题,在化简求值、一元二次方程根与系数的关系中有广泛应用,体现了整体思想、对称思想,是中考热点考题.完全平方公式的一些主要变形有:(a +b)2+(a -b)2=2(a 2+b 2),(a +b)2-(a -b)2=4ab ,a 2+b 2=(a +b)2-2ab =(a -b)2+2ab ,在四个量a +b ,a -b ,ab 和a 2+b 2中,知道其中任意的两个量,能求出(整体代换)其余的两个量.【中考变形】1.已知(m -n)2=8,(m +n)2=2,则m 2+n 2的值为( C ) A .10 B .6 C .5 D .32.已知实数a 满足a -1a =3,则a 2+1a 2的值为__11__. 【解析】 将a -1a =3两边平方,可得a 2-2+1a 2=9,即a 2+1a 2=11. 3.[2019·重庆B 卷]计算:(x +y)2-x(2y -x).解:原式=x 2+2xy +y 2-2xy +x 2=2x 2+y 2.4.[2019·漳州]先化简(a +1)(a -1)+a(1-a)-a ,再根据化简结果,你发现该代数式的值与a 的取值有什么关系(不必说明理由)?解:原式=a 2-1+a -a 2-a =-1.故该代数式的值与a 的取值没有关系.【中考预测】先化简,再求值:(a -b)2+a(2b -a),其中a =-12, b =3.解:原式=a 2-2ab +b 2+2ab -a 2=b 2.当a =-12,b =3时,原式=32=9. 类型之二 分式的化简与求值【经典母题】计算:(1)a b -b a -a 2+b 2ab ;(2)⎝ ⎛⎭⎪⎫3x x -2-x x +2·x 2-4x . 解:(1)原式=a 2-b 2ab -a 2+b 2ab =-2b 2ab =-2b a; (2)原式=3x (x +2)-x (x -2)(x -2)(x +2)·x 2-4x =2x 2+8x x 2-4·x 2-4x=2x +8. 【思想方法】 (1)进行分式混合运算时,一定要注意运算顺序,并结合题目的具体情况及时化简,以简化运算过程;(2)注意适当地利用运算律,寻求更合理的运算途径;(3)分子分母能因式分解的应进行分解,并注意符号的处理,以便寻求组建公分母而约分化简;(4)要注意分式的通分与解分式方程去分母的区别.【中考变形】 1.[2019·重庆A 卷]计算:⎝ ⎛⎭⎪⎫3a +2+a -2÷a 2-2a +1a +2. 解:原式=⎝ ⎛⎭⎪⎫3a +2+a 2-4a +2÷(a -1)2a +2 =(a +1)(a -1)a +2·a +2(a -1)2=a +1a -12.[2019·攀枝花]先化简,再求值:⎝ ⎛⎭⎪⎫1-2x +1÷x 2-1x 2+x,其中x =2. 解:原式=x +1-2x +1·x (x +1)(x +1)(x -1)=x -1x +1·x (x +1)(x +1)(x -1)=x x +1. 当x =2时,原式=22+1=23. 【中考预测】先化简,再求值:⎝ ⎛⎭⎪⎫x 2-4x +3x -3-13-x ⎝ ⎛⎭⎪⎫x2-2x +1x 2-3x +2-2x -2,其中x =4. 解:原式=⎝ ⎛⎭⎪⎫x 2-4x +3x -3+1x -3⎣⎢⎡⎦⎥⎤(x -1)2(x -1)(x -2)-2x -2 =(x -2)2x -3·⎝ ⎛⎭⎪⎫x -1x -2-2x -2=(x -2)2x -3·x -3x -2 =x -2.当x =4时,原式=x -2=2.类型之三 二次根式的化简与求值【经典母题】已知a =3+2,b =3-2,求a 2-ab +b 2的值. 解:∵a=3+2,b =3-2,∴a +b =23,ab =1,∴a 2-ab +b 2=(a +b)2-3ab =(23)2-3=9.【思想方法】 在进行二次根式化简求值时,常常用整体思想,把a +b ,a -b ,ab 当作整体进行代入.整体思想是很重要的数学思想,利用其解题能够使复杂问题变简单.整体思想在化简、解方程、解不等式中都有广泛的应用,是中考重点考查的数学思想方法之一.【中考变形】1.已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为( C )A .9B .±3C .3D .5 2.[2019·仁寿二模]先化简,再求值:a 2-2ab +b 2a 2-b 2÷⎝ ⎛⎭⎪⎫1a -1b ,其中a =2+1,b =2-1. 解:原式=(a -b )2(a +b )(a -b )÷b -a ab =a -b a +b ·ab b -a =-ab a +b, 当a =2+1,b =2-1时,原式=-122=-24. 3.[2019·绵阳]先化简,再求值:⎝ ⎛⎭⎪⎫x -yx 2-2xy +y 2-x x 2-2xy ÷y x -2y,其中x =22,y = 2. 解:原式=⎣⎢⎡⎦⎥⎤x -y (x -y )2-x x (x -2y )÷y x -2y=⎝ ⎛⎭⎪⎫1x -y -1x -2y ÷y x -2y=⎣⎢⎡⎦⎥⎤(x -2y )-(x -y )(x -y )(x -2y )÷y x -2y=-y (x -y )(x -2y )·x -2y y =-1x -y . 当x =22,y =2时,原式=-1x -y =-12=-22. 【中考预测】先化简,再求值:1a +b +1b +b a (a +b ),其中a =5+12,b =5-12. 解:原式=ab +a (a +b )+b 2ab (a +b )=(a +b )2ab (a +b )=a +b ab, ∵a +b =5+12+5-12=5,ab =5-12×5+12=1, ∴原式= 5.2019-2020学年数学中考模拟试卷一、选择题1.二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=cx在同一平面直角坐标系中的图象可能是()A. B.C.D.2.如图,已知矩形 AOBC 的三个顶点的坐标分别为 O(0,0),A(0,3), B(4,0),按以下步骤作图:①以点 O 为圆心,适当长度为半径作弧,分别交 OC,OB 于点 D,E;②分别以点 D,E 为圆心,大于12DE的长为半径作弧,两弧在∠BOC 内交于点 F;③作射线 OF,交边 BC于点 G,则点 G 的坐标为( )A.(4,43) B.(43,4) C.(53,4) D.(4,53)3.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A.2 B.75C.53D.544.如图示,用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则ABBC的值是( )A B C D5.给出下列4个命题:①对顶角相等;②同位角相等;③在同一个圆中,同一条弦所对的圆周角都相等;④圆的内接四边形对角互补.其中,真命题为()A.①②④B.①③④C.①④D.①②③④6.从甲,乙,丙三人中任选一名代表,甲被选中的可能性是A.12B.1C.23D.137.如图,数轴上的点A、B、O、C、D分别表示数2-、1-、0、1、2,则表示数2的点P应落在()A.线段AB上B.线段BO上C.线段OC上D.线段CD上8.已知抛物线y=ax2+bx+c(a<0)经过点(﹣1,0),且满足4a+2b+c>0,有下列结论:①a+b>0;②﹣a+b+c>0;③b2﹣2ac>5a2.其中,正确结论的个数是()A.0 B.1 C.2 D.39.如图1,菱形ABCD中,∠B=60°,动点P以每秒1个单位的速度自点A出发沿线段AB运动到点B,同时动点Q以每秒2个单位的速度自点B出发沿折线B﹣C﹣D运动到点D.图2是点P、Q运动时,△BPQ 的面积S随时间t变化关系图象,则a的值是()A.2 B.2.5 C.3 D.10.不等式组12314xx-<⎧⎨+⎩…的整数解的个数是()A.6 B.5 C.4 D.311.不等式组次33015xx x->⎧⎨-≥-⎩的解集在数轴上表示正确的是()A .B .C .D . 12.如图,已知11(,)3A y ,2(3,)B y 为反比例函数1y x=图象上的两点,动点(,0)P x 在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( )A .1(,0)3B .4(,0)3C .8(,0)3D .10(,0)3二、填空题 13.若方程x 2+2x -11=0的两根分别为m 、n ,则mn (m +n )=______.14.已知2m -3n=-4,则代数式m(n -4)-n(m -6)的值为 .15.在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是_____.16.如图,点A 在双曲线2x 上,点B 在双曲线k y x=上,且AB ∥x 轴,点C 、D 在x 轴上,若四边形ABCD 为矩形,且面积为3,则k=__________.17.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠AED 的正切值等于__________.18.用反证法证明命题“三角形中至少有两个锐角”,第一步应假设_____.三、解答题19.(1)计算:|1(12)﹣1﹣2tan60°(2)先化简,再求值:22121()242x x x x x x -++÷-++,其中x ﹣1.20.计算:0cos 60π︒-21.某地下车库出口处安装了“两段式栏杆”,如图1所示,点A 是栏杆转动的支点,点E 是栏杆;两段的联结点.当车辆经过时,栏杆AEF 最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计,EF 长度远大于车辆宽度),其中AB ⊥BC ,EF ∥BC ,∠AEF =143°,AB =AE =1.2米,该地下车库出口的车辆限高标志牌设置如图4是否合理?请通过计算说明理由.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)22.我市楚水商城销售一种进价为10元/件的饰品,经调查发现,该饰品每天的销售量y (件)与销售单价x (元)满足函数y =﹣2x+100,设销售这种饰品每天的利润为W (元).(1)求W 与x 之间的函数关系式;(2)在确保顾客得到优惠的前提下,该商城还要通过销售这种饰品每天获利750元,应将销售单价定为多少元?23.如图,ABCD 中,顶点A 的坐标是()0,2,AD x 轴,BC 交y 轴于点E ,顶点C 的纵坐标是-4,ABCD 的面积是24.反比例函数k y x=的图象经过点B 和D ,求:(1)反比例函数的表达式;(2)AB 所在直线的函数表达式.24.为缓解某学校大班额现状,某市决定通过新建学校来解决该问题.经测算,建设6个小学,5个中学,需费用13800万元,建设10个小学,7个中学,需花费20600万元.(1)求建设一个小学,一个中学各需多少费用.(2)该市共计划建设中小学80所,其中小学的建设数量不超过中学建设数量的1.5倍.设建设小学的数量为x 个,建设中小学校的总费用为y 万元.①求y 关于x 的函数关系式;②如何安排中小学的建设数量,才能使建设总费用最低?(3)受国家开放二胎政策及外来务工子女就读的影响,预计在小学就读人数会有明显增加,现决定在(2)中所定的方案上增加投资以扩大小学的就读规模,若建设小学总费用不超过建设中学的总费用,则每所小学最多可增加多少费用?25.先化简,再求值:2311221x x x x x x -⎛⎫-÷- ⎪+++⎝⎭,其中x 满足方程x 2-2x-3=0.【参考答案】***一、选择题二、填空题13.2214.15.416.517.18.同一三角形中最多有一个锐角 .三、解答题19.(1+1;(2)12. 【解析】 【分析】(1)根据绝对值、负整数指数幂、特殊角的三角函数值可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【详解】(1)|1|+(12)﹣1﹣2tan60°1+21+2﹣;(2)22121()242x x x x x x -++÷-++ =21(2)(21)222x x x x x x -+-+÷++()() =221222221x x x x x x -+++--()() =211211x x x -+-()()()=12(1)xx-+,当x﹣1=12.【点睛】本题考查分式的化简求值、绝对值、负整数指数幂、特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.20.1 2【解析】【分析】按顺序先分别进行0次幂的运算、立方根的运算、代入特殊角的三角函数值,然后再按运算顺序进行计算即可.【详解】0cos60π+︒=1﹣2+1 2=﹣12.【点睛】本题考查了实数的运算,涉及了0指数幂、特殊角的三角函数值等,熟练掌握各运算的运算法则是解题的关键.21.该地下车库出口的车辆限高标志牌设置如图4合理.【解析】【分析】过点A作BC的平行线AG,过点E作EH⊥AG于H,则∠BAG=90°,∠EHA=90°.先求出∠AEH=53°,则∠EAH=37°,然后在△EAH中,利用正弦函数的定义得出EH=AE•sin∠EAH,则栏杆EF段距离地面的高度为:AB+EH,代入数值计算即可.【详解】解:如图,过点A作BC的平行线AG,过点E作EH⊥AG于H,则∠EHG=∠HEF=90°,∵∠AEF=143°,∴∠AEH=∠AEF﹣∠HEF=53°,∠EAH=37°,在△EAH中,∠EHA=90°,∠EAH=37°,AE=1.2米,∴EH=AE•sin∠EAH≈1.2×0.60=0.72(米),∵AB =1.2米,∴AB+EH≈1.2+0.72=1.92>1.9米.∴该地下车库出口的车辆限高标志牌设置如图4合理.【点睛】本题考查了解直角三角形在实际中的应用,难度适中.关键是通过作辅助线,构造直角三角形,把实际问题转化为数学问题加以计算.22.(1) W =﹣2x 2+120x ﹣1000;(2)应将销售单价定为25元.【解析】【分析】本题是通过构建函数模型解答销售利润的问题.(1)根据销售利润=销售量×(售价﹣进价),依据题意易得出W 与 x 之间的函数关系式,(2)令W =750,求解即可,因为要确保顾客得到优惠,故最后x 应取最小值【详解】(1)根据题意,得:W =(﹣2x+100)(x ﹣10)整理得W =﹣2x 2+120x ﹣1000∴W 与 x 之间的函数关系式为:W =﹣2x 2+120x ﹣1000(2)∵每天销售利润W 为750元,∴W =﹣2x 2+120x ﹣1000=750解得x 1=35,x 2=25又∵要确保顾客得到优惠,∴x =25答:应将销售单价定为25元【点睛】本题考查了二次函数的性质在实际生活中的应用.我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.再根据销售利润=销售量×(售价﹣进价),建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.23.(1)8y x =;(2)32y x =+ 【解析】【分析】(1)根据题意得出6AE =,结合平行四边形的面积得出4AD BC ==,继而知点D 坐标,从而得出反比例函数解析式;(2)先根据反比例函数解析式求出点B 的坐标,再利用待定系数法求解可得.【详解】(1)∵顶点A 的坐标是()0,2,顶点C 的纵坐标是-4,∴6AE =,又ABCD 的面积是24,∴4AD BC ==,则()4,2D , ∴428k =⨯=, ∴反比例函数解析式为8y x=; (2)由题意知B 的纵坐标为-4, ∴其横坐标为-2, 则()2,4B --,设AB 所在直线解析式为y kx b =+,将()0,2A 、()2,4B --代入,得:224b k b =⎧⎨-+=-⎩,解得:32k b =⎧⎨=⎩,所以AB 所在直线解析式为32y x =+. 【点睛】本题考查了待定系数法求反比例函数解析式,解题的关键是掌握平行四边形的面积公式及待定系数法求反比例函数和一次函数解析式的方法.24.(1)建设一个小学需800万元,一个中学需1800万元;(2)①y==﹣1000x+144000(0<x≤48且x 是整数);②中小学建设数量为:48个小学,32个中学;(3)每所小学最多可增加400万元的费用. 【解析】 【分析】(1)先设建设一个小学需x 万元,一个中学各需y 万元,根据建设6个小学,5个中学,需费用13800万元,建设10个小学,7个中学,需花费20600万元列出方程组,求出x ,y 的值即可;(2)①根据建设小学的总费用+建设中学的总费用=y ,列式化简可得,根据小学的建设数量不超过中学建设数量的1.5倍列不等式可得x 的取值;②根据x 的取值可计算建设总费用最低时,中小学建设的数量; (3)根据建设小学总费用不超过建设中学的总费用,列不等式可得结论. 【详解】(1)设建设一个小学需x 万元,一个中学各需y 万元,根据题意得:651380*********x y x y +=⎧⎨+=⎩,解得:8001800x y =⎧⎨=⎩,答:建设一个小学需800万元,一个中学各需1800万元, (2)①∵建设小学的数量为x 个, ∴建设中学的数量是(80﹣x)个, x≤1.5(80﹣x), x≤48,由题意得:y =800x+1800(80﹣x)=﹣1000x+144000(0<x≤48且x 是整数);②∵﹣1000<0, ∴y 随x 的增大而减小, ∴当x =48时,y 有最小值,此时中小学建设数量为:48个小学,32个中学; (3)设每所小学可增加a 万元的费用, 由题意得:48(800+a)≤1800×32, a≤400,则每所小学最多可增加400万元的费用. 【点睛】本题考查了一次函数、二元一次方程组和一元一次不等式组的应用,解题的关键是读懂题意,找出之间的数量关系,列出二元一次方程组和一元一次不等式组,注意x 只能取整数. 25.94【解析】 【分析】先根据分式的运算法则化简分数,然后解一元二次方程求出x ,将能使分式有意义的值代入化简后的式子即可求出答案. 【详解】 解:原式=1(2)211x x x xx x x -+⋅-+-+ =1x x x -+ =21x x +; 当x 2-2x-3=0时,解得:x=3或x=-1(不合题意,舍去) 当x=3时,原式=94; 【点睛】本题考查分式的运算和一元二次方程解法,解题的关键是熟练运用分式的运算法则化简分式,注意代入x 值要使分式有意义.2019-2020学年数学中考模拟试卷一、选择题1.如图,矩形ABCD,AD=1,CD=2,点P为边CD上的动点(P不与C重合),作点P关于BC的对称点Q,连结AP,BP和BQ,现有两个结论:①若DP≥1,当△APB为等腰三角形时,△APB和△PBQ一定相似;②记经过P,Q,A三点的圆面积为S,则4π≤S<254.下列说法正确的是()A.①对②对B.①对②错C.①错②对D.①错②错2.如图,八个完全相同的小长方形拼成一个正方形网格,连结小长方形的顶点所得的四个三角形中是相似三角形的是()A.①和②B.②和③C.①和③D.①和④3.小明用尺规作了如下四幅图形:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,从保留的作图痕迹看出作图正确的是()A.①②④B.②③C.①③④D.①②③④4.下列四个图案中,不是中心对称图案的是()A. B. C. D.5.如图,已知一次函数的图像与轴分别交于点,与反比例函数的图像交于点,且,则的值为()A. B. C. D.6.如图所示的几何体是一个圆锥,下面有关它的三视图的结论中,正确的是()A.主视图是中心对称图形B.左视图是中心对称图形C.俯视图既是中心对称图形又是轴对称图形D.主视图既是中心对称图形又是轴对称图形7.有两个一元二次方程M:ax2+bx+c=0,N:cx2+bx+a=0,其中a+c=0,下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.b=0时,方程M和方程N有一个相同的根,那么这个根必是x=1C.如果5是方程M的一个根,那么15是方程N的一个根D.ac≠08.如图,Rt△ABC中,∠ACB=90°,AC=BC,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴的正半轴上的点A′处,若AO=OB=2,则阴影部分面积为()A.πB.23π﹣1 C.43π+1 D.43π9.下列命题中哪一个是假命题()A.8的立方根是2B.在函数y=3x的图象中,y随x增大而增大C.菱形的对角线相等且平分D.在同圆中,相等的圆心角所对的弧相等10.如图,∠AOB=45°,OC是∠AOB的角平分线,PM⊥OB,垂足为点M,PN∥OB,PN与OA相交于点N,那么PMPN的值等于()A .12B .2C D .11.如图, 甲乙两城市相距600千米,一辆货车和一辆客车均从甲城市出发匀速行驶至乙城市,已知货车出发1小时后客车再出发,先到终点的车辆原地休息,在汽车行驶过程中,设两车之间的距离为s (千米),客车出发的时间为t (小时),它们之间的关系如图所示,则下列结论:①货车的速度是60千米/小时;②离开出发地后,两车第一次相遇时,距离出发地150千米;③货车从出发地到终点共用时7小时;④客车到达终点时,两车相距180千米.正确的有( ) A .1B .2C .3D .412.如图,矩形ABCD 中,AB =5,BC =12,点E 在边AD 上,点G 在边BC 上,点F 、H 在对角线BD 上,若四边形EFGH 是正方形,则AE 的长是( )A .5B .11924C .13024D .16924二、填空题13.如图,在ABC △中,,点D 在BC 上,且BD BA =,ABC ∠的平分线BE 交AD 于点E ,点F 是AC 的中点,连结EF .若四边形DCFE 和△BDE 的面积都为3,则△ABC 的面积为____.14.如图,将矩形OABC 置于一平面直角坐标系中,顶点A ,C 分别位于x 轴,y 轴的正半轴上,点B 的坐标为(5,6),双曲线y =kx(k≠0)在第一象限中的图象经过BC 的中点D ,与AB 交于点E ,P 为y 轴正半轴上一动点,把△OAP 沿直线AP 翻折,使点O 落在点F 处,连接FE ,若FE ∥x 轴,则点P 的坐标为___.15.如图,O是正方形ABCD边上一点,以O为圆心,OB为半径画圆与AD交于点E,过点E作⊙O的切线交CD于F,将△DEF沿EF对折,点D的对称点D'恰好落在⊙O上.若AB=6,则OB的长为_____.16.计算:1-+=________.12-17.某校抽查50名九年级学生对艾滋病三种主要传授途径的知晓情况,结果如表估计该校九年级600名学生中,三种传播途径都知道的有_____人.18_____.三、解答题19.如图1,在⊙O中,AB为⊙O的直径,AC是弦,OC=4,∠OAC=60度.(1)求∠AOC的度数;(2)在图1中,P为直径BA延长线上的一点,当CP与⊙O相切时,求PO的长;(3)如图2,一动点M从A点出发,在⊙O上按逆时针方向运动,当S△MAO=S△CAO时,求动点M所经过的弧长.20.如图,正方形ABCD中,AB=O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,CF(1)如图1,求证:AE=CF;(2)如图2,若A,E,O三点共线,求点F到直线BC的距离.21.计算:0)﹣122.如图,在平面直角坐标系中,二次函数y=﹣14x2+bx+c的图象与y轴交于点A(0,8),与x轴交于B、C两点,其中点C的坐标为(4,0).点P(m,n)为该二次函数在第二象限内图象上的动点,点D的坐标为(0,4),连接BD.(1)求该二次函数的表达式及点B的坐标;(2)连接OP,过点P作PQ⊥x轴于点Q,当以O、P、Q为顶点的三角形与△OBD相似时,求m的值;(3)连接BP,以BD、BP为邻边作▱BDEP,直线PE交x轴于点T.当点E落在该二次函数图象上时,求点E的坐标.23.如图,在平面直角坐标系中,已知△AOB,A(0,﹣3),B(﹣2,0).将△OAB先绕点B 逆时针旋转90°得到△BO1A1,再把所得三角形向上平移2个单位得到△B1A2O2;(1)在图中画出上述变换的图形,并涂黑;(2)求△OAB在上述变换过程所扫过的面积.24.如图,△ABC内接于⊙O,AB是⊙O的直径,弦CD与AB交于点E,连接AD,过点A作直线MN,使∠MAC=∠ADC.(1)求证:直线MN是⊙O的切线.(2)若sin∠ADC=12,AB=8,AE=3,求DE的长.25.在一次数学考试中,小明有一道选择题(只能在四个选项A、B、C、D中选一个)不会做,便随机选了一个答案;小亮有两道选择题都不会做,他也随机选了两个答案.(1)小明随机选的这个答案,答对的概率是;(2)通过画树状图或列表法求小亮两题都答对概率是多少?(3)这个班数学老师参加集体阅卷,在阅卷的过程中,发现学生的错误率较高.他想:若这10道选择题都是靠随机选择答案,则这10道选择题全对的概率是.【参考答案】***一、选择题二、填空题13.1014.(0,53)或(0,15).15.10 316.1 2 -17.300 18.1 三、解答题19.(1)∠AOC=60°;(2)PO=8;(3)点M经过的弧长为43π或83π或163π或203π.【解析】【分析】(1)根据等腰三角形中有一角为60度时是等边三角形得到△ACO是等边三角形,∴∠AOC=60°(2)由CP与⊙O相切,OC是半径.得CP⊥OC,∴∠P=90°−∠AOC=30°,∴PO=2 CO=8 (3)如图,当S△MAO=S△CAO时,动点M的位置有四种.①作点C关于直径AB的对称点M1,连接AM1,OM1.②过点M1作M1M2∥AB交⊙O于点M2,连接AM2,OM2,③过点C作CM3∥AB交⊙O于点M3,连接AM3,OM3,④当点M运动到C时,M与C重合,求得每种情况的OM转过的度数,再根据弧长公式求得弧AM的长.【详解】(1)∵在△ACO中,∠OAC=60°,OC=OA∴△ACO是等边三角形∴∠AOC=60°.(2)∵CP与⊙O相切,OC是半径.∴CP⊥OC,又∵∠OAC=∠AOC=60°,∴∠P=90°﹣∠AOC=30°,∴在Rt△POC中,CO=12PO=4,则PO=2CO=8;(3)如图,①作点C关于直径AB的对称点M1.易得S△M1AO=S△CAO,∠AOM1=60°∴144603 180AMππ︒︒=⨯=∴当点M运动到M1时,S△MAO=S△CAO,此时点M经过的弧长为43π.②过点M1作M1M2∥AB交⊙O于点M2,易得S△M2AO=S△CAO.∴∠AOM1=∠M1OM2=∠BOM2=60°∴2481203 180AMππ︒︒=⨯=∴当点M运动到M2时,S△MAO=S△CAO,此时点M经过的弧长为83π.③过点C作CM3∥AB交⊙O于点M3,易得S△M3AO=S△CAO ∴∠BOM3=60°,234162403 180AM Mππ︒︒=⨯=,∴当点M运动到M3时,S△MAO=S△CAO,此时点M经过的弧长为163π.④当点M运动到C时,M与C重合,S△MAO=S△CAO,此时点M经过的弧长为4203003180ππ︒︒⨯=.【点睛】本题利用了等边三角形的判定和性质,切线的性质,弧长公式,同底等高的三角形的面积相等的性质求解.20.(1)详见解析;(2)点F到直线BC的距离为5.【解析】【分析】(1)由旋转的性质可得∠EDF=90°,DE=DF,由正方形的性质可得∠ADC=90°,DE=DF,可得∠ADE=∠CDF,由“SAS”可证△ADE≌△CDF,可得AE=CF;(2)由勾股定理可求AO的长,可得AE=CF=3,通过证明△ABO∽△CPF,可得CF PFAO BO=,即可求PF的长,即可求点F到直线BC的距离.【详解】证明:(1)∵将线段DE绕点D逆时针旋转90°得DF,∴∠EDF=90°,DE=DF.∵四边形ABCD是正方形,∴∠ADC=90°,DE=DF,∴∠ADC=∠EDF,∴∠ADE=∠CDF,且DE=DF,AD=CD,∴△ADE≌△CDF(SAS),∴AE=CF,(2)解:如图2,过点F作FP⊥BC交BC延长线于点P,则线段FP的长度就是点F到直线BC的距离.∵点O是BC中点,且AB=BC=∴BO∴AO5,∵OE =2,∴AE =AO ﹣OE =3.∵△ADE ≌△CDF ,∴AE =CF =3,∠DAO =∠DCF ,∴∠BAO =∠FCP ,且∠ABO =∠FPC =90°,∴△ABO ∽△CPF , ∴CF PF AO BO=, ∴35=∴PF ,∴点F 到直线BC . 【点睛】本题考查了旋转的性质,全等三角形的判定和性质,正方形的性质,相似三角形的判定和性质,证明△ABO ∽△CPF 是本题的关键.21【解析】【分析】将原式中每一项分别化为11+再进行化简.【详解】解:原式=11+=【点睛】本题考查实数的运算;熟练掌握运算性质,绝对值的意义,负整数指数幂,零指数幂是解题的关键.22.(1)2184y x x =--+ ,(﹣8,0);(2)﹣4或﹣1;(3)(1,274). 【解析】【分析】(1)直接将A ,C 两点代入即可求(2)可设P (m ,-14m 2-m+8),由∠OQP=∠BOD=90°,则分两种情况:△POQ ∽△OBD 和△POQ ∽△OBD 分别求出PQ 与OQ 的关系即可(3)作平行四边形,实质是将B 、P 向右平移8个单位,再向上平移4个单位即可得到点E 和点D ,点E 在二次函数上,代入即可求m 的值,从而求得点E 的坐标.【详解】(1)把A (0,8),C (4,0)代入y =﹣14x 2+bx+c 得8440c b c =⎧⎨-++=⎩,解得18b c =-⎧⎨=⎩ ∴该二次函数的表达为y =﹣14x 2﹣x+8 当y =0时,﹣14x 2﹣x+8=0,解得x 1=﹣8,x 2=4 ∴点B 的坐标为(﹣8,0) (2)设P (m ,﹣14m 2﹣m+8),由∠OQP =∠BOD =90°,分两种情况: 当△POQ ∽△OBD 时,PQ BO 82OQ OD 4=== ∴PQ =2OQ 即﹣14m 2﹣m+8=2×(﹣m ),解得m =﹣4,或m =8(舍去) 当△POQ ∽△OBD 时,OQ B 82PQ D 4O O === ∴OQ =2PQ即﹣m =2×(﹣14m 2﹣m+8),解m =﹣1或m =﹣综上所述,m 的值为﹣4或﹣1(3)∵四边形BDEP 为平行四边形,∴PE ∥BD ,PE =BD∵点B 向右平移8个单位,再向上平移4个单位得到点D∴点P 向右平移8个单位,再向上平衡4个单位得到点E∵点P (m ,﹣14m 2﹣m+8), ∴点E (m+8,﹣14m 2﹣m+12), ∵点E 落在二次函数的图象上 ∴﹣14(m+8)2﹣(m+8)+8=﹣14m 2﹣m+12 解得,m =﹣7 ∴点E 的坐标为(1,274). 【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.23.(1)详见解析;(2)1394π+ 【解析】【分析】(1)根据旋转的性质,结合网格结构找出点A 、O 的对应点A 1、O 1,再与点B 顺次连接即可得到△BO 1A 1;再根据平移的性质,结合网格结构找出点B 、A 1、O 1的对应点B 1、A 2、O 2,然后顺次连接即可得解;(2)结合图形不难看出,变换过程所扫过的面积为扇形BAA 1,与梯形A 1A 2O 2B 的面积的和,然后根据扇形的面积公式与梯形的面积公式列式进行计算即可求解.【详解】(1)如图所示;(2)在Rt △AOB 中,AB ==∴扇形BAA 1的面积=290133604ππ⋅⨯=, 梯形A 1A 2O 2B 的面积=12×(2+4)×3=9, ∴变换过程所扫过的面积=扇形BAA 1的面积+梯形A 1A 2O 2B 的面积=134π+9. 【点睛】本题考查了利用旋转变换与平移变换作图,以及扇形的面积计算,熟悉网格结构找出对应点的位置是解题的关键.24.(1)见解析;(2)13. 【解析】【分析】(1)由圆周角定理得到∠ACB=90°,求得∠BAM=90°,根据垂直的定义得到AB ⊥MN ,即可得到结论;(2)连接OC ,过E 作EH ⊥OC 于H ,根据三角函数的定义得到∠D=30°,求得∠AOC=60°,解直角三角形得到1,22OH EH ==,根据相交弦定理得到结论. 【详解】(1)证明:∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠B+∠BAC =90°,∵∠B =∠D ,∠MAC =∠ADC ,∴∠B =∠MAC ,∴∠MAC+∠CAB =90°,∴∠BAM =90°,∴AB ⊥MN ,∴直线MN 是⊙O 的切线;(2)解:连接OC ,过E 作EH ⊥OC 于H ,∵sin ∠ADC =12, ∴∠D =30°,∴∠B =∠D =30°,∴∠AOC =60°,∵AB =8,∴AO =BO =4,∵AE =3,∴OE =1,BE =5,∵∠EHO =90°,∴1,22OH EH ==, ∴CH =72,CE ∴==∵弦CD 与AB 交于点E ,由相交弦定理得,AE•BE=CE•DE,13AE BE DE CE ⋅∴===. 【点睛】本题考查了切线的判定和性质,解直角三角形,相交弦定理,正确的作出辅助线是解题的关键.25.(1)14;(2)116;(3)1014. 【解析】【分析】(1)错误答有3个,除以答案总数4即可(2)根据题意画出树状图即可知道一共有16种情况,选出两题都错的情况,即可解答(3)由(2)可知两题都对的概率为(14)2,10道选择题全对的概率是10个14的乘积 【详解】(1)∵只有四个选项A 、B 、C 、D ,对的只有一项,∴答对的概率是14 ; 故答案为:14; (2)根据题意画图如下:共有16种等情况数,两题都答对的情况有1种, 则小亮两题都答对概率是116; (3)由(2)得2道题都答对的概率是(14)2,则这10道选择题全对的概率是(14)10=1014. 故答案为:1014. 【点睛】 此题考查概率公式和列表法与树状图法,解题关键在于看懂题中数据。

代数式化简求值-初中数学常见的模型方法专题

代数式化简求值-初中数学常见的模型方法专题

代数式化简求值方法一:先化简,再代入例1:1. 化简求值:()2222252342ab a b ab ab a b --+-,其中3a =-,12b =. 【答案】24ab ,3-.【解析】【分析】原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【详解】解:()2222252342ab a b ab ab a b --+- 2222252342ab a b ab ab a b =-+-+24ab =,当3a =-,12b =时, 原式()214332⎛⎫=⨯-⨯=- ⎪⎝⎭. 【点睛】本题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键. 变:1-12. 先化简,再求值:()()23223232324xy y x y x y y xy y +---++-,其中2x =,3y =-.【答案】xy 2+y 3,9.【解析】【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【详解】解:2(xy 2+3y 3−x 2y )−(−2x 2y +y 3+xy 2)−4y 3=2xy 2+6y 3-2x 2y +2x 2y -y 3-xy 2-4y 3=xy 2+y 3,当x =2,y =-3时,原式=()()2322339⨯⨯-+-=.【点睛】本题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键. 变式1-2 3. 先化简,再求值:()22222333a ab a ab ⎛⎫+-+- ⎪⎝⎭,其中6a =-,23b =. 【答案】232a ab ++,26【解析】【分析】先对整式去括号、合并同类项,再将6a =-,23b =代入求值即可. 【详解】解:()222222223346332323a ab a ab a ab a ab a ab ⎛⎫+-+-=+--+=++ ⎪⎝⎭, 当6a =-,23b =时, 原式()()22636236122263=-+⨯-⨯+=-+= 【点睛】本题考查整式化简求值,解题关键是熟练运用整式的运算法则. 变式1-34. 先化简,再求值:221122y x y x y x xy y ⎛⎫-÷ ⎪-+-+⎝⎭,其中x ,y =1﹣.【答案】x y x y-+ 【解析】【分析】先将括号里的通分得()()()()x y x y x y x y +---+,再将2222y x xy y -+分母用完全平方式转化,再将除法转化成乘法,进行化简,化简之后将x ,y 的值代入求解即可.【详解】解:原式=()()()()()2·2x y x y x y x y x y y+----+=()()·2x y x y x y x y y -+-++=x y x y -+ ;当x ,y =1时,原式( . 方法二:赋值求值法赋值求值法是指代数式中的字母的取值由答题者自己确定,然后求出所提供的代数式的值的一种方法.这是一种开放型题目,答案不唯一,在赋值时,要注意取值范围. 例25. 请将式子211111x x x -⎛⎫⨯+ ⎪-+⎝⎭化简后,再从0,1,2三个数中选择一个你喜欢且使原式有意义的x 的值代入求值.【答案】2x +;当0x =时,原式值为2或当2x =时,原式值为4【解析】【分析】先计算括号内的分式的加法运算,再计算乘法运算,结合分式有意义的条件确定x 的值,再代入计算即可. 【详解】解:原式(1)(1)11111x x x x x x +-+⎛⎫=⋅+ ⎪-++⎝⎭ 2(1)21x x x x +=+⋅=++. 依题意,只要1x ≠就行,当0x =时,原式=22x +=或当2x =时,原式=24x .【点睛】本题考查的是分式的化简求值,掌握分式的混合运算是解题的关键. 变式2-16. 先化简,2211(1)x x x-+÷,然后请你自选一个理想的x 值求出原式的值 【答案】x x 1-,x=2时,原式=2. 【解析】【分析】本题可先把分式化简,再将x 的值代入求解;为了使原分式有意义,x 取1,-1和0以外的任何数. 【详解】原式=()2x 1x x (x 1)x 1+⨯+- =x x 1- x=2时,原式=2.【点睛】本题需注意的是:化简后代入的数不能使分母的值为0,变式2-27. 先化简,再求值:2221169x x x x x -⎛⎫-⋅ ⎪--+⎝⎭,其中x 是从1,2,3中选取的一个合适的数. 【答案】3x x -;-2 【解析】【分析】先计算括号内的异分母分式减法,再计算乘法,最后将可选取的x 值代入计算即可. 【详解】解:原式23(1)1(3)3x x x x x x x --=⋅=---, 当x 2=时,原式2223==--. 【点睛】此题考查分式的化简求值,正确掌握分式的混合运算法则及确定字母的可取数值是解题的关键.方法三:先变形,再整体代入从整体上认识问题和思考问题是一种重要的思想方法,在数学学习中有很广泛的应用,整体思想主要是将所考察的对象作对一个整体来对待,而这个整体是各要素按一定的思路组合成的有机统一体.不求字母的值,将所求代数式变形成与已知条件有关的式子. ①变换条件后,整体代入求值例318. 已知2410x x -=+,求43228481x x x x +--+的值.【答案】 1.-【解析】【分析】由2410x x -=+可得232214,4,41,x x x x x x x =-=-+=再利用整体代入的方法把原式降到是二次多项式,再整体代入求值即可. 【详解】解: 2410x x -=+,232214,4,41,x x x x x x x ∴=-=-+=∴ 43228481x x x x +--+()()22221484481x x x x x =-+---+ 22221632832481x x x x x x =-++---+24163x x =--+()2443x x =-++43 1.=-+=-【点睛】本题考查的是利用整体思想求解代数式的值,掌握降次的思想方法是解题的关键.变式3-1-19. 已知212a a -+=,则222a a a a+--的值为________. 【答案】1【解析】 【分析】由已知可知21a a -=,则21a a -=-,代入即可求值.【详解】解:212a a -+=,21a a ∴-=,则21a a -=-,2222111a a a a ∴+-=-=-. 故答案为1.【点睛】本题考查了求代数式的值,关键是由已知条件求出21a a -=和21a a -=-,考查了整体代入的思想.变式3-1-2 10. 116a b +=,求312a ab b a ab b-+++的值. 【答案】16【解析】【分析】结合题意,根据分式加法的性质,得6a b ab +=;再根据分式性质计算,即可得到答案. 【详解】∵116a b+= ∴6a b ab+= ∴6a b ab += ∴312a ab b a ab b -+++3=12a b ab a b ab +-++63=612ab ab ab ab -+318ab ab = 16=. 【点睛】本题考查了分式、代数式的知识,解题的关键是熟练掌握分式、代数式的性质,从而完成求解.②变换结论后,整体代入求值例3.211. 如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( )A. -3B. -1C. 1D. 3【答案】D【解析】 【分析】原式化简后,约分得到最简结果,把已知等式代入计算即可求出值.【详解】解:原式=()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭ 2()()()()m n m n m n m n m m n m m n ⎡⎤+-=+⋅+-⎢⎥--⎣⎦ 3()()3()()m m n m n m n m m n =⋅+-=+- 1m n +=∴原式=3,故选D.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键. 变式3-2-112. 已知2xy =-,3x y +=,求整式(310)[5(223)]xy y x xy y x ++-+-的值.【答案】22【解析】【分析】先把整式化简,然后把xy ,x y +分别作为一个整体代入求出整式的值.【详解】(310)[5(223)]xy y x xy y x ++-+-310(5223)xy y x xy y x =++--+3105223xy y x xy y x =++--+5310232x x y y xy xy =++-+-88x y xy =++8()x y xy =++.把2xy =-,3x y +=代入得,原式83(2)24222=⨯+-=-=.【点睛】求整式的值,一般先化简后求值,但当题目中含未知数的部分可以看成一个整体时,要用整体代入法,即把“整体”当成一个新的字母,求关于这个新的字母的代数式的值,这样会使运算更简便.变式3-2-213. 已知12x x -=,则221x x +的值为( ) A. 2 B. 4 C. 6 D. 8【答案】C【解析】 【分析】根据完全平方公式得到214x x ⎛⎫-= ⎪⎝⎭,据此求解即可. 【详解】解:∵12x x -=, ∴214x x ⎛⎫-= ⎪⎝⎭,即41222=+-x x , ∴2216x x +=, 故选:C .【点睛】本题考查了完全平方公式,掌握完全平方公式的结构特征是解决此题的关键.③变换条件和结论后,整体代入求值例3.314. 若2250a ab b +-=,则b a a b-的值为______. 【答案】5【解析】 【详解】∵2250a ab b +-=,∴225b a ab -=,∴b a a b -=22b a ab -=5ab ab =5, 故答案为5.【点睛】本题考查了分式化简求值,正确地对所给的式子进行变形是解决此题的关键.变式3-3-115. 已知x 2﹣3x+1=0,求x 221x +的值. 【答案】7【解析】 【分析】先将等式两边同时除以x ,并整理可得x 1x+=3,然后利用完全平方公式的变形即可求出结论.【详解】解:∵x 2﹣3x+1=0,∴x ﹣31x +=0, ∴x 1x+=3, ∴x 221x +=(x 1x+)2﹣2=32﹣2=7. 【点睛】此题考查的是等式的变形和完全平方公式的变形,掌握完全平方公式的变形是解题关键.变式3-3-216. 先化简,再求值(1a b -,22b a b -,÷2222+a ab a ab b --,其中a,b 满足a+b,12=0, 【答案】原式=1a b+=2 【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值. 【详解】,1a b -,22b a b -,÷2222+a ab a ab b-- =()()()()2•a b a b b a b a b a a b -+-+-- =1a b+ 由a+b ﹣12=0,得到a+b=12, 则原式=112=2.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键. 方法四:隐含条件求值法先通过隐含条件求出字母值,然后化简再求值.例417. 若单项式23m a b --与12n b a +是同类项,求代数式()222332m mn n n --++的值. 【答案】0【解析】【分析】先通过3ab -与ba 是同类项这一条件,将m 、n 的值求出,然后再化简求值式后求值.【详解】∵23m a b --与12n b a +是同类项,∴2211m n -=⎧⎨+=⎩, 解得:00m n =⎧⎨=⎩∴()222332m mn n n --++ 223m mn n =+-0300=+⨯-0=.【点睛】本题考查了整式运算、代数式、二元一次方程组的知识;解题的关键是熟练掌握同类项、代数式的性质,从而完成求解.变式4-118. 已知2|2|(1)0a b -++=,求()22225242ab a b ab a b ⎡⎤---⎣⎦的值. 【答案】34【解析】【分析】先通过已知式2|2(1)0a b -++=∣, 求出a 、b 的值,因为绝对值式和平方式都具有非负性,如果两个非负数之和等于0,那么它们均为0,再去括号,合并同类项把原式化简,最后代入求值即可.【详解】解:∵2|2|(1)0a b -++=,又∵|2|0-≥a ,2(1)0b +≥,∴2010a b -=⎧⎨+=⎩,解得:21a b =⎧⎨=-⎩., ∴()22225242ab a b ab a b ⎡⎤---⎣⎦ 222544ab ab a b =+-2294ab a b =-.当2a =,1b =-时,原式2292(1)42(1)=⨯⨯--⨯⨯-1816=+34=.【点睛】本题考查的是非负数的性质,整式的加减运算,化简求值,掌握去括号,合并同类项是解题的关键.变式4-219.|83|b -互为相反数,则2127ab ⎛⎫-= ⎪⎝⎭________. 【答案】37【解析】【分析】直接利用非负数的性质进而得出1﹣3a =0,8b ﹣3=0,求出a ,b 的值,再代入所求代数式中即可求出答案.|83|0b -=,0≥,830b -≥∴130a -=,830b -=, ∴13a =,38b =, ∴222112727827371338ab ⎛⎫ ⎪⎛⎫-=-=-= ⎪ ⎪⎝⎭ ⎪⨯⎝⎭. 故答案为37.【点睛】本题考查了非负数的性质,解题时利用了绝对值和二次根式的非负性,也利用了互为相反数的两个数的和为0这个结论.方法五:利用“无关”求值或说理方法总结要说明一个代数式值与某个字母的取值无关时需先对原式进行化简,则可得出该无关字母的系数为0;若给定字母写错得出正确答案,则该代数式的值与该字母无关. 例520. 有这样一道题:计算2222213823333535x x xy y x xy y ⎛⎫⎛⎫-+-+++ ⎪ ⎪⎝⎭⎝⎭的值,其中12x =-,2y =.甲同学把“12x =-”错抄成了“12x =”,他的计算结果也是正确的,你知道这是怎么回事吗?【答案】见解析.【分析】原式去括号合并得到最简结果,即可作出判断. 【详解】解:2222213823333535x x xy y x xy y ⎛⎫⎛⎫-+-+++ ⎪ ⎪⎝⎭⎝⎭ 2222213823333535x x xy y x xy y =--++++ 2y =,结果与x 的取值无关,故甲同学把“12x =-”错抄成了“12x =”,但他计算的结果也是正确的.【点睛】本题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键. 变式5-121. 已知2231A x xy y =++-,2B x xy =-.(1)若2A B -的值与y 的值无关,求x 的值.(2)若3A mB x --的值与x 的值无关,求y 的值.【答案】(1)x 的值为1-;(2)y 的值为1.【解析】【分析】(1)将A ,B 代入A -2B ,再去括号,再由题意可得10x +=,求解即可; (2)将A ,B 代入A −mB −3x ,再去括号,再由题意可得20m -=,30y my +-=,求解即可;【详解】解:(1)∵A 2231x xy y =++-,B =2x xy -,∴A -2B=(2231x xy y ++-)-2(2x xy -)=2223122x xy y x xy ++--+331xy y =+-()311x y =+-,∵A -2B 的值与y 的值无关,∴10x +=,∴1x =-;∴x 的值为1-;(2)∵A 2231x xy y =++-,B =2x xy -,=(2231x xy y ++-)-m (2x xy -)−3x=222313x xy y mx mxy x ++--+-()()22331m x y my x y =-++-+-∵A −mB −3x 的值与x 的值无关,∴20m -=,30y my +-=,∴2m =,1y =;∴y 的值为1.【点睛】本题考查了整式的加减,熟练掌握整式的加减的运算法则是解题的关键. 变式5-222. 已知多项式2233x mx nx x -++-+值与x 的取值无关,求()3232mn m mn m mn ⎡⎤---+⎣⎦的值.【答案】2.【解析】【分析】对多项式2233x mx nx x -++-+进行变形为(3)(1)3n x m x -+-+,根据多项式的值与x 的取值无关,则令30n -=,10m -=,求出m 、n 的值,然后代入()3232mn m mn m mn ⎡⎤---+⎣⎦进行计算即可.【详解】2233x mx nx x -++-+解:原式(3)(1)3n x m x =-+-+因为与x 的取值无关所以:30n -=3n =10m -=1m =()3232mn m mn m mn ⎡⎤---+⎣⎦32332mn m mn m mn =-+--2323mn m m =--当1m =,3n =时原式23213311=⨯⨯-⨯-6312=--=【点睛】本题主要考查了整式的加减-化简求值,熟练掌握整式加减的运算法则是解题的关键.方法六:配方法若已知条件含有完全平方式,则可通过配方,把条件转化成几个平方和的形式,再利用非负数的性质来确定字母的值,从而求得结果.例623. 已知a 2,b 2,2a ,4b ,5,0,求2a 2,4b ,3的值.【答案】7,【解析】【详解】试题分析:利用交换律凑出完全平方公式,求出a,b 的值,再代入目标整式求值.试题解析:解:因为a 2+b 2+2a -4b +5=0,,,a 2+2a +1,+,b 2-4b +4,=0,即(a +1,2+,b -2,2=0,,a +1=0且b -2=0,,a =-1且b =2,,原式=2×,-1,2+4×2-3=7,变式6-224. 已知2228170x x y y -+++=,求2()x y +的值.【答案】9【解析】【分析】利用配方法将2228170x x y y -+++=变为22(1)(4)0x y -++=,根据非负数的性质得到1,4==-x y ,最后求出答案.【详解】解:∵2228170x x y y -+++=∴22(21)(816)0x x y y -++++=,∴22(1)(4)0x y -++=∴10,40x y -=+=,∴1,4==-x y ,∴22()(14)9x y +=-=.【点睛】本题考查了配方法的应用以及代数式求值,关键在于将已知方程的左侧进行正确的配方.方法七:平方法在直接求值比较困难时,有时也可先求出其平方,再求平方值的平方根(即以退为进的策略),但要注意最后结果的符号.例725. 已知7x y +=且12xy =,则当x y <时,11x y 的值等于________. 【答案】112【解析】【分析】利用分式的加减运算法则与完全平方公式把原式化为:222()4x y xy x y +-,再整体代入求值,再利用平方根的含义可得答案.【详解】解:因为7x y +=,12xy =, 所以2222211()y x x y x y xy x y ⎛⎫⎛⎫---== ⎪ ⎪⎝⎭⎝⎭ 22222()47412112144x y xy x y +--⨯===, 又因为x y <,所以110x y->, 所以11112x y -=, 故答案为:112. 【点睛】本题考查的是由条件式求解分式的值,掌握变形的方法是解题的关键. 变式7-126. 已知13x x +=,则1x x-的值是________.【答案】【分析】把已知等式两边平方,利用完全平方公式化简,整理求出221x x +的值,再利用完全平方公式即可求出所求式子的值. 【详解】解:由13x x +=,得到219x x ⎛⎫+= ⎪⎝⎭,即2217x x +=, ∴2221125x x x x ⎛⎫-=+-= ⎪⎝⎭,∴1x x-=故答案为:【点睛】本题考查了分式的化简求值,熟练掌握完全平方公式的变形是解本题的关键.变式7-227. 若22212,60a b c a b c ++=++=,求ab ac bc ++的值【答案】42【解析】【分析】根据题意先将式子a +b +c =12进行完全平方后展开可得式子2222()144,222a b c a b b ab a c c c +++++=++=结合22260,a b c ++=求出ab +ac +bc 的值.【详解】根据题意可得:2222()144222a c b ac a b c c b b a +++++=+=+, 将22260a b c ++=代入式子可得2()60144222ab a a b c c bc +++=++=, 则42ab ac bc +=+故答案为42.【点睛】此题考查完全平方公式,解题关键在于结合实际运用完全平方公式. 方法八:特殊值法有些试题,用常规方法直接求解比较困难,若根据答案中所提供的信息,选择某些特殊情况进行分析,或选择某些特殊值进行计算,把一般形式变为特殊形式进行判断,这时常常会使题目变得十分简单.例828. 若3230123)x a a x a x a x =+++,则()()220213a a a a +-+的值为【答案】1【解析】【分析】把1x =代入已知计算得到301231)a a a a +++=;把1x =-代入已知计算得到301231)a a a a -+-=+;再利用平方差公式即可求解.【详解】解:由3230123)x a a x a x a x =+++,若令1x =,则301231)a a a a +++=;若令1x =-,则301231)a a a a -+-=+,所以()()220213a a a a +-+ ()()02130213a a a a a a a a =++++--331)1)=31)]=1=.故答案为:1.【点睛】本题考查了代数式求值,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.变式8-129. 已知实数a ,b 满足1a b ⋅=,那么221111a b +++的值为( ) A. 14 B. 12C. 1D. 2 【答案】C【解析】【分析】把所求分式通分,再把已知条件代入求解.【详解】解:∵•1a b =,∴()2221a b ab ==, ∴22222222112111a b a b a b b a +++=+++++ 2222211a b b a ++=+++1=.故选:C .【点睛】本题考查了分式的化简求值, 妥题的关键是利用a•b=1,把a•b=1代入通分的式子就可得到,分子分母相等的一个分式,所以可求出答案是1. 方法九:设参法遇到比值的情况,可对比值整体设参数,把每个字母用参数表示,然后代入计算即可. 例930. 已知234x y z ==,求222xy yz zx x y z ++++的值. 【答案】2629【解析】 【分析】先根据234xy z ==设出(0)234x y z k k ===≠,得到2x k =,3y k =,4z k =,然后代入分式求值即可. 【详解】解:设(0)234x y z k k ===≠, 则2x k =,3y k =,4z k =. ∴222xy yz zx x y z ++++ 22222261284916k k k k k k++=++ 2226262929k k ==. 【点睛】本题考查的是分式的化简求值,在解答此类题目时要注意,当条件是连等式,因此可用设参数法,即设出参数k ,得出x ,y ,z 与k 的关系,然后再代入待求的分式化简是解题的关键.变式9-131. 若x y a b b z c c a==---,求x y z ++的值. 【答案】0【解析】 【分析】设===---x y z k a b b c c a,则()x k a b =-,()y k b c =-,()z k c a =-,然后计算即可得到答案. 【详解】解:∵x y a b b z c c a ==---, 设===---x y z k a b b c c a, ∴()x k a b =-,()y k b c =-,()z k c a =-,∴()()()x y z k a b k b c k c a ++=-+-+-=ka kb kb kc kc ka -+-+-=0;【点睛】本题考查了比例的性质,求代数式的值,解题的关键是熟练掌握比例的性质进行解题.变式9-232. 已知0347x y z ==≠,求3x y z y ++的值. 【答案】5【解析】【分析】设已知等式等于k ,表示出x ,y ,z ,代入原式计算即可得到结果. 【详解】解:设347x y z k ===, 则x =3k ,y =4k ,z =7k , ∴394754x y z k k k y k++++==. 【点睛】本题考查了比例的性质,利用等式的性质得出x =3k ,y =4k ,z =7k 是解题关键.方法十:利用根与系数的关系如果代数式可以看作某两个“字母”的轮换对称式,而这两个“字母”又可能看作某个一元二次方程的根,可以先用根与系数的关系求得其和、积式,再整体代入求值. 直接用根与系数的关系求值例10.133. 阅读材料:设一元二次方程20ax bx c ++=的两根为1x ,2x ,则两根与方程系数之间有如下关系12b x x a +=-,12c x x a⋅=根据该材料填空: 已知1x ,2x 是方程2630x x ++=的两实数根,则2112x x x x +的值为_____ 【答案】10【解析】 【分析】根据一元二次方程的根与系数的关系得到,两根之和与两根之积,把代数式变形成与两根之和和两根之积有关的式子,代入两根之和与两根之积,求得代数式的值.【详解】解:由题意知,12126,3b x x x x a+=-=-=, 所以()2222121221211212122(6)23103x x x x x x x x x x x x x x +-⋅+--⨯+====⋅⋅. 故答案为:10.变式10-1-134. 已知1x 、2x 是一元二次方程220x x --=的两个根,则1211+x x 的值是( ) A. 1 B. 12 C. 1- D. 12- 【答案】D【解析】 【分析】根据1x 、2x 是一元二次方程220x x --=的两个根得到12121,2x x x x +==-,再将1211+x x 变形为1212x x x x +,然后代入计算即可. 【详解】解:∵1x 、2x 是一元二次方程220x x --=的两个根,∴12121,2x x x x +==- ∵12121211x xx x x x ++=, ∴121212111122x x x x x x ++===--, 选D .【点睛】本题主要考查了一元二次方程20(a 0)++=≠ax bx c 的根与系数的关系:若方程的两根为1x 、2x ,则1212,b c x x x x a a+=-=,熟记知识点与代数式变形是解题的关键.②构造一元二次方程,利用根与系数的关系求值.例10.235. 已知21a a -=,21b b -=,求a b b a+的值.【答案】-3【解析】【分析】由已知得a ,b 是方程210x x --=的两个根,再根据一元二次方程根与系数的关系求解即可.【详解】解:∵21a a -=,21b b -=,即210a a --=,210b b --=, ∴a ,b 是方程210x x --=的两个根,∴1a b +=,1ab =-,∴2222()212(1)31a b a b a b ab b a ab ab ++--⨯-+====--. 【点睛】本题考查了一元二次方程根与系数的关系,熟练地掌握一元二次方程根与系数的关系是解题的关键.方程20ax bx c ++=(0a ≠)的两根为12x x 、,则有12b x x a +=-,12c x x a=. 变式10-2-136. 已知2430m m -+=,22310n n -+=,1mn ≠,求值221m n +. 【答案】5或13或10【解析】【分析】通过求解一元二次方程,并结合题意,得到m 和n 的值,再代入计算即可得到答案.【详解】∵2430m m -+=∴()()130m m --=∴1m =或3m =∵22310n n -+=∴()()2110n n --=∴12n =或1n = ∵1mn ≠ ∴当1m =时,12n =;当3m =时,12n =或1n = ∴2215m n +=或13或10. 【点睛】本题考查了一元二次方程、代数式的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解.③根的含义和根与系数的关系结合使用求值例10.337. 已知1x ,2x 是方程2310x x -+=的两根,求2211222584x x x x ++++的值.【答案】34 【解析】【分析】由1x ,2x 是方程2310x x -+=的两根,可得123x x +=,21131x x =-,22231x x =-,再把原式降次为:()12111x x ++,从而可得答案.【详解】解:∵1x ,2x 是方程2310x x -+=的两根∴123x x +=,21131x x =-,22231x x =-∴221122112225846253184x x x x x x x x ++++=-++-++()1211133134x x =++=+=【点睛】本题考查的是一元二次方程的解,一元二次方程根与系数的关系,掌握降次的思想是解题的关键.变式10-3-238. 已知α、β是方程210x x --=的两个实根,求5325αβ+的值. 【答案】21 【解析】【分析】由方程的解与根与系数的关系可得:2210,10,+=11,ααββαβαβ--=--==-,再把5325αβ+降次为2255155ααββ++++,再变形,整体代入计算即可得到答案. 【详解】解: α、β是方程210x x --=的两个实根,2210,10,+=11,ααββαβαβ∴--=--==-, 22=+1,=+1,ααββ∴()()2532+5=2+1+5+1αβααββ∴32224255αααββ=++++()22214255ααααββ=+++++226455ααββ=+++ 2255155ααββ=++++()()25251αβαβαβ⎡⎤=+-+++⎣⎦()51251121.=⨯++⨯+=【点睛】本题考查的是一元二次方程的解的含义,一元二次方程根与系数的关系,掌握降次的思想是解题的关键.方法十一:利用分式的基本性质求值例1139. 已知3x y =,求222223x xy y x xy y +--+的值.【答案】127【解析】【详解】试题分析:由3x y =可得:3x y =代入式子222223x xy y x xy y +--+中化简即可. 试题解析, ,3xy=, , x =3y.∴()()()222222222232322312127733y y y y x xy y y x xy y y y y y y+⨯⨯-+-===-+-⨯+ . 例11-140. 先化简,再求值:2222m n m mn n +-+·(m,n),其中mn,2.【答案】原式=2m nm n+-=5. 【解析】【详解】【试题分析】先将分母进行因式分解,再约分化简,最后代入即可.2222m n m mn n +-+·(m,n),()22m n m n +-·(m,n),2m nm n +-. 因为m n ,2,所以m,2n. 所以原式=42n nn n+-,5. 【试题解析】2222m n m mn n +-+·(m,n),()22m n m n +-·(m,n),2m nm n +-. 因为m n ,2,所以m,2n. 所以原式=42n nn n+-,5. 【方法点睛】本题目是一道分式的化简求值,方法是:先将每个式子进行因式分解,再约分,化简.方法十二:利用消元法求值若已知条件以比值的形式出现,则可利用比例的性质设比值为一个参数,或利用一个字母来表示另一个字母. 例1241. 如果2a b =,则2222a ab b a b -++= ( ) A.45B. 1C. 35D. 2【答案】C 【解析】【详解】由题意可知,2a b =,因此222222222224233455a ab b b b b b a b b b b -+-+===++,故选C 变式12-142. 若43a b =,则a bb-的值是( ) A.13 B.23C. 1D.43【答案】A 【解析】【分析】由已知得到43a b =,再代入原式计算即可求解. 【详解】解:∵43a b =, ∴43a b =, ∴4133b ba b b b --==, 故选:A .【点睛】本题考查了比例的性质,由已知得到43a b =再代入计算是解题的关键. 变式12-243. 已知2a c b d ==,求a b a +和c d c d -+值.【答案】32,13【解析】【分析】由2a cb d==可得2a b =,2c d =,再代入求值即可. 【详解】解:∵2a cb d ==,∴2a b =,2cd =.∴2322a b b b a b ++==, 2123c d d d c d d d --==++. 【点睛】本题考查的是比例的基本性质,掌握利用含有一个字母的代数式表示另外一个字母是解题的关键.变式12-344. 若29a b c +=,25a b c -=,则22222223749a b c a b c ++=-+________. 【答案】2 【解析】【分析】结合题意,通过求解二元一次方程组,分别的a 、b 和c 的关系式;再通过分式性质运算,即可得到答案.【详解】∵2925a b ca b c+=⎧⎨-=⎩,∴7a cb c=⎧⎨=⎩∴22222223749a b ca b c++=-+2222222(7)37(7)49c c cc c c++-+22108254cc==故答案为:2.【点睛】本题考查了二元一次方程组、分式运算、代数式的知识;解题的关键是熟练掌握二元一次方程组、合并同类项、分式、代数式的性质,从而完成求解.方法十三:利用倒数法求值倒数法是指将已知条件或待求的代数式作倒数变形,从而求出代数式的值的一种方法.例1345. 已知21 13 xx=+,求241xx+的值.【答案】1 7【解析】【分析】由21 13 xx=+可得0x≠,再取倒数可得:213xx+=,即13xx+=,再求解原代数式的倒数242221112,xx xx x x+⎛⎫=+=+-⎪⎝⎭从而可得答案.【详解】解:由21 13 xx=+知0x≠,所以213xx+=,即13xx+=.所以2422221112327xx xx x x+⎛⎫=+=+-=-=⎪⎝⎭.故241xx+的值为17.【点睛】本题考查的是利用倒数法求解分式的值,掌握222112x xx x⎛⎫+=+-⎪⎝⎭是解题的关键. 变式13-146. 已知21315x x x =-+,求2421x x x ++的值. 【答案】163【解析】【分析】已知等式分子分母除以x 变形求出1x x +的值,两边平方求出221x x+的值,原式分子分母除以2x 变形后,将各自的值代入计算即可求出值. 【详解】解:由21315x x x =-+知0x ≠,∴2315x x x -+=,即135x x -+=. ∴18x x+=. ∴2164x x ⎛⎫+= ⎪⎝⎭,∴22162x x +=, ∴4222211162163x x x x x ++=++=+=.∴2421163x x x =++. 【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.变式13-247. 若22237y y ++的值为14,则21461y y +-的值为( ).A. 1B. -1C. -17 D. 15【答案】A 【解析】【详解】解:设234x x y += ,∵22347x x ++ 的值为14, ∴2174y =+,计算得出y=1, ∴2111681121x x ==+-⨯-.所以A 选项是正确的.点睛:本题主要考查了计算分式的值,设234x x y +=是解题关键,注意整体代入思想的运用.变式13-348. 已知14x x -=,则24251x x x =-+_______.【答案】113. 【解析】【分析】计算21()16x x-=,从而得到221+18x x =,然后先求原式的倒数,从而求解. 【详解】解:∵14x x-= ∴21()16x x-=221-2+16x x = ∴221+18x x = 42222551118513x x x x x --+=-==+∴24215113x x x =-+ 故答案为:113. 【点睛】本题考查倒数,完全平方公式的运用及分式的化简求值,掌握完全平方公式的结构以及分式的化简计算是解题关键.总结:事实上,以上这些方法并不是绝对孤立不变的,有时需要多种方法一起使用才能灵活解决问题,解题时,要仔细观测,深入分析,以便选择合理的解题方法,做到简洁、快速解题.。

中考复习(代数式)[下学期]--北师大版

中考复习(代数式)[下学期]--北师大版
此时来,人生里的苦涩,很多时候就如同口中的咖啡,而畅想,如花,如你。
我还记得,你手腕上的那枚手镯,在阳光下闪出天青色的光泽,折射青雾一样的迷幻之境。天青色的幻境里,我和你,你一言我一语地说话。我的思路总是被你手镯的光晕所干扰,说话断断续续, 你责怪我心不在焉。你哪里知道,心猿意马也是风情的另一种解读。天青色的光,像这个季节的秋叶,从树梢上飘落下来,有的飘在陌路,有的飘在了河水里,和这个季节的秋水随波而去。我倚在午后 时光小屋古色的单人藤椅中,看你,看你在天青色的光晕里,如诗如画般清雅。球网网址
你是荷吗?我犹豫了须臾,把目光看向窗外。道路上,行人稀少,有的也只是行色匆匆。再望过去,道路不远处是一座石桥,石桥上,一个穿了大唐盛世朝代古装的少女摆出一些优雅委婉的姿态, 一个摄影师在给她拍照。石桥旁,垂柳的柳叶正在凋落,有风吹拂着,稀疏的柳条撩拨着水面的涟漪,摇曳摆动,遗落入石桥下的流水里。你说了一句:流水无情。我沉吟片刻,说:春泥护花,落叶亦 是。望过石桥是一片曲亭水榭,飞檐回廊,镜花水月,白墙青瓦,尽在其中。我知道,那里有一处湖水,湖中有零散的荷花,入秋了,秋水也凉,那些荷花多半已枯萎,弯曲着乌铜色的骨架,娉婷于水 中。

北师版数学九年级上册 第六章 由和反比例函数的交点坐标生成的代数式求值问题探析 讲义

北师版数学九年级上册 第六章 由和反比例函数的交点坐标生成的代数式求值问题探析 讲义

1 / 3北师版数学九年级 由与反比例函数的交点坐标生成的代数式求值问题探析翻开近几年的中考题,以反比例函数为背景条件求代数式的值的问题成为一个命题的趋势.今天就结合2017年考题向同学们介绍其中的三位豪杰,供学习时借鉴.1.据反比例函数与一次函数的一个交点坐标求代数式的值例1 (2017年江苏连云港)设函数3y x =与y=-2x-6的图象的交点坐标为(a,b),则12a b+的值是 .分析 :此题是这类问题中最简单问题之一,解答时,做到“三代一化”:1.将交点坐标代入反比例函数的解析式中,得到ab 的值;2.将交点坐标代入一次函数的解析式,得到2a+b 的值;3.将被求代数式进行通分变形,将上述数值代入变形代数式;4.对代数式进行化简即可.解:因为函数3y x =与y=-2x-6的图象的交点坐标为(a,b),所以ab=3,b=-2a-6即2a+b=-6, 所以12a b +=b+2a 6ab 3-==-2. 点评: 熟记“三代一化”的意义,并能熟练掌握这种解题的方法,至少你心中有了一种解题的基本思路,至少你可以大胆一试,不会再一筹莫展,束手无策.2.据反比例函数与正比例函数的两个交点坐标求代数式的值例2(2017年山东菏泽)直线)0(>=k kx y 与双曲线x y 6=交于),(11y x A 和),(22y x B 两点, 则122193y x y x -的值为 .分析:交点的坐标同时满足两个函数的解析式是解题的基础,依此为基础,结合所求代数式灵活变形是解题的关键.解:因为直线)0(>=k kx y 过点),(11y x A 和),(22y x B ,所以2211,kx y kx y == 所以2121x x y y =;因为双曲线xy 6=经过),(11y x A 和),(22y x B 两点, 所以62211==y x y x ,所以1221x x y y =,所以1221x x x x =,所以2212x x =,所以1x =-2x , 所以122193y x y x -=31x k 2x +91x 1y =-31x k 1x +91x 1y =-31x 1y +91x 1y =61x 1y =36.点评 可以利用反比例函数的中心对称性质求解也是可以的,根据对称性直接得出1x =-2x ,1y =-2y ,然后变形代入整体求解即可.此题的求解思路也是典型的消元法,熟练掌握消元法的意义也是解题的有效方法.3.据反比例函数与反比例函数的交点求代数式的值例3(2017年湖南怀化)如图1,A ,B 两点在反比例函数y=1k x 的图象上,C ,D 两点在反比例函数y=2k x2 /3 的图象上,AC ⊥y 轴于点E ,BD ⊥y 轴于点F ,AC=2,BD=1,EF=3,则1k -2k 的值是 ( )21A .6B .4C .3D .2分析:当直线与两个反比例函数同时相交时,求解的思路至少有两条,一条是设交点坐标法;一种是构造矩形或三角形法,利用反比例函数k 的几何意义去破解问题.解法1 :构造三角形法连接OA 、OC 、OD 、OB ,如图:由反比例函数的性质可知:AOE S 三角形=S 三角形BO F =12|1k |=121k ; OE S 三角形C =S 三角形D O F =12|2k |=-122k ;因为S 三角形A O C =AOE S 三角形+OE S 三角形C , 所以S 三角形A O C =12(1k -2k ),因为S 三角形A O C =12AC•OE=12×2OE=OE ,所以1k -2k =2OE…①, 因为S 三角形B O D =S 三角形D O F +S 三角形BO F ,所以S 三角形B O D =12(1k -2k ),因为S 三角形BO D =12BD •O F=12×1×(3-OE)=32-12OE ,所以1k -2k =32-12OE ……②,由①②两式解得OE=1, 所以1k -2k =2OE =2.故选D .点评:解法的精妙所在就是通过构造三角形,充分利用了反比例函数k 的几何意义,构造新等式,实现新突破,需要深厚的数学功底.解法2 :巧设交点坐标法设点A 的坐标为(m,1k m ),点D 的坐标为(n,2k n ),则点C 的坐标为(21k m k ,1k m ),点E 的坐标(0,1k m ), 点B 的坐标为(12k n k ,2k n ),点F 的坐标(0,2k n ),因为AC=2,BD=1,EF=3, 所以m-21k m k =2,n-12k n k =1, 1k m -2k n =3,所以12k -k 2=1k m ,2k -1k =2k n ,所以12k -k =-2k n ,3 / 3 所以12k -k 2+(12k -k )=1k m -2k n=3,所以12k -k =2,所以选D. 点评:巧设点的坐标,设而不求,也是解决反比例函数问题的一种常用方法,值得熟练掌握.此外,熟练表示平行x 轴的直线上的两点之间的距离,平行y 轴或y 轴上的两点之间的距离也是解题的一个重要因素;特别是能熟练运用数学思想解题更是数学的精髓,这里就用到了整体的数学思想,使得问题的解决效率得以大幅提升.。

代数式的变形和求值

代数式的变形和求值

小小测试
小小测试
难点四,二次根式的运算
• 二次根式的运算以简单计算为主,已经 舍弃了前些年对二次根式的复杂计算的 要求,所以我们只需要掌握最基本的计 算方法。了解:二次根式的概念及加减 乘除运算法则,会用它们进行有关实数 的简单四则运算。
1,二次根式的概念及意义
• (1)一般的,式子 叫做二次根式。它 省略的根指数是2。这种定义方式是形式上的, 只要给出一个式子符合条件,一是外形为 二是被开方数a≥0符合这两点就可,其他不必 考虑。 • (2)二次根式具有双重非负性,被开方数不 能为负数,开方后的值也不能为负数。 • (3)最简二次根式条件:一是被开方数中不 含分母,二是被开方数中不能含开的尽方的的 因数或因式。二次根式的运算结果中如果还有 二次根式,那么它只能是最简二次根式了。
3,幂的运算性质
• (1)同底数幂的乘法性质:同底数幂相乘,底 数不变指数相加。用字母表示为: • (2)幂的乘方的性质:幂的乘方,底数不变, m n mn 指数相乘。用字母表示为
n am an m a
(a ) a
• (3)积的乘方的性质:积的成方等于各因数乘方 的积。简说成积的幂等于幂的积。用字母表示 为: n n
问题实质
• 1,各种运算性质是解题的基础和关键。这些 运算性质要能够熟练灵活运用,同时还需要对 它们进行变形,比如逆用一些运算性质,或者 把它们组合运用。 • 2,代数式的求值和变形是以运算为基础的。 在整式、分式、二次根式的运算中,实数的运 算法则、性质、运算律也是可以使用的,还要 注意不同的运算所具有的独特性质。
难点一——整式的运算
• 2、整式的加减 • 进行整式的加减,遇到括号先去括号, 再合并同类项。去括号时,如果括号前 是“-”号,括号内各项要变号。一个数和 括号内各项相乘,不要漏乘任何一项。 合并同类项是整式加减的基础,整式加 减主要通过合并同类项来化简。

中考数学解题方法代数式变形与求值讲义 (2)

中考数学解题方法代数式变形与求值讲义 (2)

0b da c 代数式变形与求值讲义板块一:绝对值和二次根式的化简去绝对值的三种常用方法:去绝对值的法则(分类讨论)、绝对值的几何意义、平方法!二次根式的化简可以充分考虑二次根式的双重非负性、凑完全平方式化简复合二次根式!个别地方会用到几何意义法。

【例1】利用数轴化简代数式【2009】1.已知实数a ,b ,c ,d 在数轴上的位置如图所示,则代数式()b d b c d c a a ------22++的值是( )A .aB .bC .dD .0【2008】1.若211,(1)x x x -=+-=则 ( )A .1-xB .1C .x -1D .1- 【例2】利用二次函数的图象化简代数式(2001全国初中数学联赛)已知二次函数的图象如图所示,并设M =|a +b +c |-|a -b +c |+|2a +b |-|2a -b |,则( )A .M >0B .M =0C .M <0D .不能确定M 为正、为负或为0-11OyxxyO1(练习)已知二次函数2y ax bx c =++的图象如图所示,记+2p a b c a b =-++,+2q a b c a b =++-,则( )A .p>qB .p=qC .p<qD .p 、q 大小关系不能确定【例3】分类讨论已知a 、b 、c 都不等于0,则a b c abc a b c abc+++值为 .【例4】复合二次根式的化简(2003全国初中数学联赛)232217122-+-=( )A .542-B .421-C .5D .1要诀:复合二次根式化简根号下凑完全平方式,“由中间凑两边”!(2005全国初中数学联赛D 卷)55329125----与329125--的( )A .和为1B .差为1C .积为1D .商为1【例5】利用非负性化简与绝对值、根式有关的代数式【2008】若20022003a a a -+-=,则22002a -= .板块二:整体代换思想【例1】整体代入,降次化简(1)已知210x x --=,求321x x -+的值.(2)已知1x 、2x 为方程230x x +-=的两根,求3212419x x -+的值。

北师大版九年级数学下 第2讲 整式与因式分解 中考知识点梳理

北师大版九年级数学下 第2讲 整式与因式分解  中考知识点梳理
(2)因式分解与整式的乘法互为逆运算.
(5)多项式÷单项式:①多项式的每一项除以单项式;②商相加.
失分警示:计算多项式乘以多项式时,注意不能漏乘,不能丢项,不能出现变号错.
例:(2a-1)(b+2)=2ab+4a-b-2.
(6)乘法
公式
平方差公式:(a+b)(a-b)=a2-b2.
注意乘法公式的逆向运用及其变形公式的运用
完全平方公式:(a±b)2=a2±2ab+b2.变形公式:
(2)常用方法:①提公因式法:ma+mb+mc=m(a+b+c).
②公式法:a2-b2=(a+b)(a-b);a2±2ab+b2=(a±b)2.
(3)一般步骤:①若有公因式,必先提公因式;②提公因式后,看是否能用公式法分解;③检查各因式能否继续分解.
(1)因式分解要分解到最后结果不能再分解为止,相同因式写成幂的形式;
(2)在解决幂的运算时,有时需要先化成同底数.例:2m·4m=23m.
5.整式的乘除运算
(1)单项式×单项式:①系数和同底数幂分别相乘;②只有一个字母的照抄.
(2)单项式×多项式:m(a+b)=ma+mb.
(3)多项式×多项式:(m+n)(a+b)=ma+mb+na+nb.
(4)单项式÷单项式:将系数、同底数幂分别相除.
例:-2(3a-2b-1)=-6a+4b+2.
4.幂运算法则
(1)同底数幂的乘法:am·an=am+n;
(2)幂的乘方:(am)n=amn;
(3)积的乘方:(ab)n=an·bn;
(4)同底数幂的除法:am÷an=am-n(a≠0).
其中m,n都在整数
(1)计算时,注意观察,善于运用它们的逆运算解决问题.例:已知2m+n=2,则3×2m×2n=6.

北师大版九年级(初三)数学上册教案 2.5.5 代数式求值及求另一根

北师大版九年级(初三)数学上册教案   2.5.5 代数式求值及求另一根

第 课时
§2.5.5 代数式求值及求另一根
教学目标
1、 会求代数式的值
2、 会根据方程的一个根求另一个根
教学重点和难点
重点:求代数式的值
难点:根据方程的一个根求另一个根
教学过程设计
一、
从学生原有的认知结构提出问题 本节课,我们利用一元二次方程,解决一些实际问题。

二、 师生共同研究形成概念
1、 讲解例题
例1 当x 为何值时,代数式562++x x 与1-x 的值相等。

分析:此题其实就是两个代数式相等,联立方程,进而求解,要注意格式。

✧ 巩固练习
1) 当x 为何值时,代数式1722-+x x 与73+x 的值相等。

2) 当x 为何值时,代数式1722-+x x 与132-x 的值相等。

例2 若032=--a ax x 的一个根为2-,求a 的值。

分析:此类题目学生没有接触过,应仔细分析。

✧ 巩固练习
1)已知方程062=-+kx x 的一个根为2,求k 的值。

例3 若023622=+-b x x 的一个根是1,求b 的值及另一根。

分析:与上一题对比,多了一个步骤,要求另一根。

巩固练习
1)若0622=-+kx x 的一个根是3-,求另一根及k 的值。

三、
随堂练习 1、 书本 P 70 B 2
四、
小结 做这类题目时,要注意审清题意,注意格式。

五、
作业 书本 P 71 C 1
六、 教学后记。

代数式的变形(整式与分式)

代数式的变形(整式与分式)

[文件] sxjsck0009 .doc[科目] 数学[关键词] 初一/代数式/整式/分式[标题] 代数式的变形(整式与分式)[内容]代数式的变形(整式与分式)在化简、求值、证明恒等式(不等式)、解方程(不等式)的过程中,常需将代数式变形,现结合实例对代数式的基本变形,如配方、因式分解、换元、设参、拆项与逐步合并等方法作初步介绍.1. 配方在实数范围内,配方的目的就是为了发现题中的隐含条件,以便利用实数的性质来解题.例1 (1986年全国初中竞赛题)设a 、b 、c 、d 都是整数,且m=a 2+b 2,n=c 2+d 2,mn 也可以表示成两个整数的平方和,其形式是______.解mn=(a 2+b 2)(c 2+d 2)=a 2c 2+2abcd+b 2d 2+a 2d 2+b 2c 2-2abcd=(ac+bd)2+(ad-bc)2=(ac-bd)2+(ad+bc)2,所以,mn 的形式为(ac+bd)2+(ad-bc)2或(ac-bd )2+(ad+bc)2.例2(1984年重庆初中竞赛题)设x 、y 、z 为实数,且(y-z)2+(x-y)2+(z-x)2=(y+z-2x)2+(z+x-2y)2+(x+y-2z)2.求)1)(1)(1()1)(1)(1(222++++++z y x xy zx yz 的值. 解 将条件化简成2x 2+2y 2+2z 2-2xy-2x 2-2yz=0∴(x-y)2+(x-z)2+(y-z)2=0∴x=y=z,∴原式=1.2.因式分解前面已介绍过因式分解的各种典型方法,下面再举几个应用方面的例子.例3(1987年北京初二数学竞赛题)如果a 是x 2-3x+1=0的根,试求1825222345+-+-a a a a a 的值. 解 ∵a 为x 2-3x+1=0的根,∴ a 2-3a+1=0,,且132+a a =1. 原式.11313)32)(13(22232-=+-=+-+++-=a a a a a a a a a 说明:这里只对所求式分子进行因式分解,避免了解方程和复杂的计算.3.换元换元使复杂的问题变得简洁明了.例4 设a+b+c=3m,求证:(m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)=0.证明 令p=m-a,q=m-b,r=m-c 则p+q+r=0.P 3+q 3+r 3-3pqr=(p+q+r)(p 2+q 2+r 2-pq-qr-rp)=0∴p 3+q 3+r 3-3pqr=0即 (m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)=0例5 (民主德国竞赛试题) 若67890123475678901235,67890123455678901234==B A ,试比较A 、B 的大小.解 设 ,y x A =则,21++=y x B)2(2)2()1()2(21+-=++-+=++-y y yx y y x y y x y x y x .∵2x >y ∴2x-y >0, 又y >0, 可知.021++-y x y x∴A >B.4.设参当已知条件以连比的形式出现时,可引进一个比例系数来表示这个连比.例6 若,a c zc b yb a x-=-=-求x+y+z 的值.解 令,k a c zc b yb a x=-=-=-则有 x=k(a-b), y=(b-c)k z=(c-a)k,∴x+y+z=(a-b)k+(b-c)k+(c-a)k=0.例7 已知a 、b 、c 为非负实数,且a 2+b 2+c 2=1,3111111-=⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛+b a c a c b c b a ,求a+b+c 的值.解 设 a+b+c=k则a+b=k-c ,b+c=k-a,a+c=k-b. 由条件知,3-=⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛+ab b a c ac c a b bc c b a即 .3222-=-+-+-ab c ck ac b bk bc a ak∴a 2k-a 3+b 2k-b 3+c 2k-c 3=-3abc,∴(a 2+b 2+c 2)k+3abc=a 3+b 3+c 3.∵a 2+b 2+c 2=1,∴k=a 3+b 3+c 3-3abc=(a+b)3-3a 2b-3ab 2+c 3-3abc=(a+b+c)[(a+b)2+c 2-(a+b)c]-3ab(a+b+c),=(a+b+c)(a 2+b 2+c 2-ab-bc-ca),∴k=k(a 2+b 2+c 2-ab-bc-ac),∴k(a 2+b 2+c 2-ab-bc-ca-1)=0,∴k(-ab-bc-ac)=0.若K=0, 就是a+b+c=0.若-ab-bc-ac=0,即 (a+b+c)2-(a 2+b 2+c 2)=0,∴(a+b+c)2=1,∴a+b+c=±1综上知a+b+c=0或a+b+c=±15.“拆”、“并”和通分下面重点介绍分式的变形:(1) 分离分式 为了讨论某些用分式表示的数的性质,有时要将一个分式表示为一个整式和一个分式的代数和.例8(第1届国际数学竞赛试题)证明对于任意自然数n ,分数314421++n n 皆不可约., 证明 如果一个假分数可以通约,化为带分数后,它的真分数部分也必定可以通约. ,314171314421+++=++n n n n 而 ,171217314++=++n n n 显然171+n 不可通约,故17314++n n 不可通约,从而314421++n n 也不可通约. (2) 表示成部分分式 将一个分式表示为部分分式就是将分式化为若干个真分式的代数和.例9 设n 为正整数,求证:21)12)(12(1531311 +-++∙+∙n n 证明 令1212)12)(12(1+--=+-k B k A k k 通分,,)12)(12()()(21212+-++-=+--k k B A k B A k B k A 比较①、②两式,得A-B=0,且A+B=1,即A=B=21. ∴),121121(21)12)(12(1+--=+-k k k k 令k=1,2,…,n 得)12)(12(1531311+-++⋅+⋅n n ① ②.21121121121121513131121 ⎪⎭⎫ ⎝⎛+-=⎢⎣⎡⎥⎦⎤⎪⎭⎫ ⎝⎛+--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=n n n(3)通分 通分是分式中最基本的变形,例9的变形就是以通分为基础的,下面再看一个技巧性较强的例子.例10(1986年冬令营赛前训练题) 已知.0222=-+-+-cab c b ac b a bc a 求证:0)()()(222222=-+-+-c ab c b ac b a bc a . 证明 .))((222222222c ab b ac c b ac bc ab c ab c b ac b a bc a --+-+-=---=- .0))()(()()()(.))()(()(.))()(()(.))()(()(222222222222222222222222222222222222222222222222=---+-+-+-+++-+-=-+-+-∴---+-+-=----+-+-=-----++-=-∴c ab b ac a bc b a c b ab c a c a bc ac b a c b ac bc ab c ab c b ac b a bc a c ab b ac a bc c a c b ab c a c ab c c ab a bc b ac c a bc ac ab b ac b c ab b ac a bc c b ac bc ab a bc a 同理6.其他变形例11 (1985年全国初中竞赛题)已知x(x ≠0,±1)和1两个数,如果只许用加法、减法和1作被除数的除法三种运算(可用括号),经过六步算出x 2.那么计算的表达式是______. 解 x 2=x(x+1)-x .1111)1(11x x x x x x -+-=-+= 或 x 2=x(x-1)+x.1111)1(11x xx x x x +--=+-=例12 (第3届美国中学生数学竞赛题)设a 、b 、c 、d 都是正整数,且a 5=b 4,c 3=d 2,c-a=19,求d-b.解 由质因数分解的唯一性及a 5=b 4,c 3=d 2,可设a=x 4,c=y 2,故19=c-a=(y 2-x 4)=(y-x 2)(y+x 2)⎪⎩⎪⎨⎧=+=-∴.19,122x y x y 解得 x=3. y=10. ∴ d-b=y 3-x 5=757A 2+b 2+c 2=(a+b+c)2 Ab+ac+bc=0(a+b+c)2= A 2+b 2+c 2-2ab-2ac-2bc练 习 七1选择题(1)(第34届美国数学竞赛题)把25321,1,xx x x x +++相乘,其乘积是一个多项式,该多项式的次数是( )(A )2 (B )3 (C )6 (D )7 (E )8(2) 已知,111b a b a +=+则ba ab +的值是( ). (A)1 (B)0 (C)-1 (D)3(3)(第37届美国中学数学竞赛题)假定x 和y 是正数并且成反比,若x 增加了p%,则y 减少了( ).(A )p% (B)p p +1% (C)P 100% (D)p p +100% (E)p p +100100% 2填空题(1)(x-3)5=ax 5+bx 4+cx 3+dx 2+ex+f ,则a+b+c+d+e+f=________, b+c+d+e=_______.(2)若yyx x y xy x y x ---+=-2232,311则=_____. (3)已知y 1=2x,y 2=198519862312,,2,2y y y y y == ,21n y -=2x 2n y =1/x 则y 1y 1986=______ 3若(x-z )2-4(x-y)(y-z)=0,试求x+z 与y 的关系.x 2 + 2xz + z 2 - 4xy + 4y 2 - 4yz=0(x+z)^2 -4(x+z)y+4y^2 = 0(x+z -2y)^2 = 0x+z = 2y4(1985年宁夏初中数学竞赛题)把a b b a -写成两个因式的积,使它们的和为ab b a +,求这两个式子.5.若x+3y+5z=0,2x+4y+7z=0.求22222274253zy x z y x ++++的值. 6.已知x,y,z 为互不相等的三个数,求证.111111222⎪⎪⎭⎫ ⎝⎛-+-+-=⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-y x x z z y y x x z z y 7已知a 2+c 2=2b 2,求证.211ac b a c b +=+++ 8.设有多项式f(x)=4x 4-4px 3+4qx 2+2q(m+1)x+(m+1)2,求证:如果f(x)的系数满足p 2-4q-4(m-1)=0,那么,f(x)恰好是一个二次三项式的平方.9.设(a+b)(b+c)(c+d)(d+a)=(a+b+c+d)(bcd+cda+dab+abc).求证:ac=bd.练习七1.C.C.E2.(1)-32,210 (2)53 (3)2 3.略. 4..,.,bb a a b a b a a b b b a a b a b b a a b a a b b a -+∴+=-++-⋅+=-两个因式为而 5.118 6.略, 7.略. 8.∵p 2-4q-4(m+1)=0, ∴4q=p 2-4(m+1)=0,∴f(x)=4x 4-4px 3+[p 2-4(m+1)]x 2+2p ·(m+1)x+(m+1)2=4x 4+p 2x 2+(m+1)2-4px 3-4(m+1)x 2+2p(m+1)x=[2x 2-px-(m+1)]2.9.令a+b=p,c+d=q,由条件化为pq(b+c)(d+a)=(p+q)(cdp+adq),展开整理得cdp 2-(ac+bd)+pq+abq 2=0,即(cp-bq)(dp-aq)=0.于是cp=bq 或dp=aq,即c(a+b)=b(c+a)或d(a+b)=a(c+d).均可得出ac=bd.、 基本解法与思想解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。

中考复习(代数式)[下学期]--北师大版

中考复习(代数式)[下学期]--北师大版
声的吼叫了起来。 “你……你连你门中祖师爷的规矩也不守啦?” 他的确愿意为雪山派战死! 不知何时,那道人的手中出现了一柄剑,白光闪闪,一望而知是柄锋利的长剑,别说杀人,就是只老虎也杀得死。 本来有一百单八位好汉,但有好些人在外面戍守。
这些人的身上,包括战马的身上,都是鲜血淋漓,仿佛浑身被血洗过一般。 “到了现在,你还不叫我师傅?”道士的声音很严厉。 出乎意料的,何易没有听老龙的话,斜刺里冲了过去,竟当无枪的枪不存在。
教育加盟
到了何易的窗下,蒙面人狸猫一般的闪在角落里,指头蘸了口水,轻轻的捅破窗纸,向屋子里张望。 “啊……” 无枪的眼睛凸了起来。 正是顾月楼的贴身卫士展九。 “你必须杀他,你不杀,就不能证明你对我是忠心的,你这样的人,要是造起反来,我可要吃不了兜着走,你说呢?”
他的飞刀,可虚可实。 何易随即想到刚刚游老大帮自己挡飞刀的事情,顿时信了,慨然道:“好,我何易这条命,今后算是交给游老大了。” “不行!这是祖师爷的遗训,我不能违背,自我心意门创立以来,所有的弟子,想要收徒的话,必须得要自己的弟子杀了自己,我们这一门,从来都是一脉单传!” “这……怎么搞的?” 血花散落如雨,腥味十足,偏偏在斜阳的映照下,折射出一种惊心动魄的美。
无枪立即附和:“是的,师傅,你别瞎起疑心啦!” “柴刀第三式‘初晴’,他已经完全练成!” “薛兄弟,抛下你的救命之恩,你救我这一次,有勇有谋,在顾月楼的千军万马之中,潇洒自如,令我佩服之极!我游人熊粗人一个,有勇无谋,轻信人言,性格暴躁,祸起萧墙而不自知,不仅害了自己,还害了跟随我的许多兄弟 ,思之汗颜无地,还有什么脸面做雪山派的帮主!” “嘿嘿,骂吧,我知道我有错!” 他的声音中有愤怒之意。
三十六把飞刀! 他早已经打听清楚,这是何等妖孽一般的刀法啊?居然可以让一个肉身境界低微的人越级挑战强者,并且可以和顾月楼这样的强者一较高下! “我怎么敢说大总管你,我说的是能够一手遮天,有的是兄弟替他去送命,又是在贡马上射杀暗算我,又派人偷听我说话,更在晚上又喂毒的暗器伤我,更可怕的是,这人使得一手绝好的飞刀,要不是我脚底跑得快,恐怕早就死了 !” 何易听到众兄弟一齐叫他的名字,想到自己无父无母无依靠,一生孤苦,和妹子相依为命,到头来妹子还是不幸冤死,自身还受到大匈帝国的通缉,本以为将来就算不死,也过的是丧家犬一般的日子,想不到还有这么多兄弟愿意接 纳他,忍不住热泪盈眶,高声将游人熊的话念了一遍,伏地跪拜,一个一个的对拜了过去。 只有一个人的剑。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题:代数式的变形与代数式的求值
1、已知x 3y 0-=,求22
2x y
(x y)x 2xy y +--+的值.
2、 已知2x 5x 14-=,求()()()2
x 12x 1x 11---++的值
3、已知22a 2ab b =0++,求代数式()()()a a 4b a 2b a 2b +-+-的值.
4、已知a b =023≠,求代数式5a 2b
(a 2)(a+2b)(a 2b)
b ⋅---的值.
5、先化简,再求值:262
393
m m m m -÷+--,其中2m =-.
6、已知230x -=,求代数式22()(5)9x x x x x -+--的值.
7、已知240x -=,求代数式22(1)()7x x x x x x +-+--的值.
8、已知3
2,3a
c b a ==,求代数式c b a c b a -+++的值。

9、若5
43
z
y x ==,且10254=+-z y x ,求z y x +-52的值。

10、若不论x 取什么值,代数式8
3
++bx ax 的值都相同,试求a 与b 的关系。

11、设()0122334455512a x a x a x a x a x a x +++++=-,求:(1)543210a a a a a a +++++; (2)543210a a a a a a -+-+-;(3)420a a a ++
12、代数式c bx ax ++5,当3-=x 时值为8,当0=x 时值为1,求当3=x 时,该代数式的值。

13、若3
2z
y x ==,且12=++z y x ,试求z y x 432++的值。

14、
15、已知:210x x --=,则3222002x x -++的值为多少?
16、已知17=
a ,1=
b ,1
=c ,求代数式ac ab a +-23的值。

17、已知19951996+=x a ,19961996+=x b ,19971996+=x c ,求222c b a ++
ca bc ab ---的值。

18、已知0132=--x x ,求19875762
3+-+x x x 的值。

19、已知实数a 满足a 2
+2a -8=0,求3
41
21311222+++-⨯
-+-+a a a a a a a 的值. 20、已知11+x +21+x 2+41+x 4+81+x 8=0,求161-x 16
-1
1-x
的值。

21、已知123456789=a ,123456785=b ,123456783=c ,求--++ab c b a 2
22
ca bc -的值
22、已知01382
=+-x x ,求分式x 4-6x 3-2x 2+18x+23x 2
-8x+15
23、已知a 、b 、c 为整数,且满足不等式c b ab c b a 233222++<+++,求abc c b a )
111(++的值。

24、 设211
11--+=++
b b a a 且02≠+-b a ,求b a ab +-的值。

25、当0142=+-x x ,求)1
1(1
2
2x x x x -+--的值。

26、已知正数a 、b 、c 满足1=abc ,求111+++
+++++c ac c
b b
c b a ab a 的值。

27、已知0=++c b a ,求)
11()11()11(b a c a c b c
b a +++++的值。

28、已知x 2-5x =3,求(x -1)(2x -1)-(x +1)2+1的值.
29、已知x 2-2x =8,求代数式(x -2)2+2x (x -1)-5的值.
30、已知a -b =-3,b -c =2.求代数式(a -b )2+2(b -c)2-3(a -c)2的值.
31
+
x 时的值.
32、先化简2
11111
x x x x ⎛⎫-÷
⎪-+-⎝⎭,再从-1,0,1三个数中,选择一个你认为合适的数作为x 的值代入求值.
33、已知x 是一元二次方程x 2+3x -1=0的实数根,求代数式2
352362x x x x x -⎛
⎫÷+- ⎪--⎝⎭
的值.
34、已知21
14
x x x =++,求24
21x x x ++的值.。

相关文档
最新文档