材料腐蚀与防护第五章PPT课件
材料腐蚀与防护ppt课件

二:腐蚀的定义
(1) 电偶腐蚀(Galvanic Corrosion) (2)点蚀(Pitting) (3)缝隙腐蚀(Crevice Corrosion) (4)晶间腐蚀(Intergranular Corrosion)
(5)剥蚀(Exfoliation)
(6)选择性腐蚀(Selective Corrosion) (7)丝状腐蚀(Filiform Corrosion)
2 金属氧化物的蒸气压
物质在一定温度下都具有一定的蒸气压。当固体氧化物 的蒸气压低于该温度下相平衡蒸气压时,则固体氧化物蒸发。 蒸气压与标准自由能的关系:
X (s) X ( g )
蒸发热愈大,蒸气压愈小,固态氧化物愈稳定
2.金属氧化物的熔点 一些金属氧化物的熔点低于该金属的熔点,因此,当 温度低于金属熔点以下,又高于氧化物熔点以上时,氧 化物处于液态,不但失去保护作用,而且还会加速金属 腐蚀。
五:研究材料腐蚀的重要性及控制
第一章 金属与合金的高温氧化
重点:
1. Ellingham平衡图 2. 金属高温氧化的历程,物质在氧化膜内的传输途径
3. 氧化膜的P-B比
4.氧化膜的晶体缺陷 哈菲原子价规则 5. Wagner理论 6.合金的氧化形式 7.提高金属抗氧化途径
引言 一:高温氧化定义
其中以在干燥气态介质中的腐蚀行为的研究历史最 久,认识全面而深入,本章重点介绍金属(合金)高温氧 化机理及抗氧化原理。
过程装备腐蚀与防护课件-第五章

5. 2 耐腐蚀的高分子材料
2、硬聚氯乙烯设备结构设计特点 根据PVC材料的特性和具体使用条件确定许用应力 和安全系数
以长期拉伸强度作为计算许用应力的依据
焊缝系数0.85~0.95, 一般取0.6
采用单面或双面加强焊提高焊缝强度、保护焊缝;
焊缝尽可能错开(多块板材)
越不易水解
耐酸性介质水解的能力: 醚键 > 酰胺键或酰亚胺键 > 酯键 > 硅氧键 耐碱性介质水解的能力: 酰胺键或酰亚胺键 > 酯键
5. 1 高分子材料的腐蚀特性和影响因素
3、应力腐蚀开裂 在某些条件下,高分子材料在应力和腐 蚀性质共同作用下,发生类似金属应力腐蚀 破裂的现象,出现裂纹,并不断发展直至脆 断。
5. 2 耐腐蚀的高分子材料
2、硬聚氯乙烯设备结构设计特点 顶盖和筒体结构应采取措施加强刚性,防止变形
5. 2 耐腐蚀的高分子材料
2、硬聚氯乙烯设备结构设计特点 避免焊缝本体和焊缝边线的母材断面的剧烈变化
5. 2 耐腐蚀的高分子材料
2、硬聚氯乙烯设备结构设计特点 考虑到材料的膨胀系数,金属加强构件与塑料设备 之间允许相对自由位移;长管道,加膨胀结
部分结晶的塑料,晶区有应力集中,在晶区与非 晶区的交界处产生裂纹的倾向性就大
应力集中部位,环境应力开裂的可能性大
分子量小、分布窄的高聚物比大分子量的易发生 开裂 在具有中等溶胀能力的醇类、蓖麻油等活性介质 中,材料易发生环境应力开裂
5. 1 高分子材料的腐蚀特性和影响因素
4、老化(耐侯性) 影响高分子材料老化的因素:
第五章 非金属结构材料的耐蚀特性
5.1 高分子材料的腐蚀性和影响因素 5.2 耐腐蚀高分子材料 5.3 耐腐蚀无机非金属材料 5.4 碳-石墨
材料腐蚀与防护精品PPT课件

• 1.田长霖在中关村青年创新论坛的讲话
• 树立信心
• 2.教材及参考资料:
• 期刊:Tribology,Wear,Surface&Coating Technology
• 中国表面工程.腐蚀与防护.中国腐蚀与防护学报. 表面技术.材料保护.摩擦学学报
• 3.学科定义:材料腐蚀与防护是研究材料在其周 围环境作用下发生损坏以及如何防止这种破坏 的一门综合性学科.
I.完全耐蚀(<0.001) II.很耐蚀 (0.001~0.005&0.005~0.01) Ⅲ.耐蚀 (0.01~0.05&0.05~0.1) Ⅳ.尚耐蚀 (0.1~0.5&0.5~1.0) Ⅴ.欠耐蚀 (1.0~5.0&5.0~10.0)
Ⅵ.不耐蚀 (>10.0)
3级标准(mm/a)
可见:金属腐蚀后的质量变化换算成单位表面积与单位时间内的质
量变化来表且示,且质量指标计算的腐蚀速度只表示平均腐蚀速度, 即均匀腐蚀速度.
失重法用于能较好清除试样表面腐蚀产物的情况下,而增重法则 是若腐蚀产物牢固地附着在试样表面的情况.
⑵ 深度法
VL=V-ΔW×24×365/1000×ρ= V-ΔW×8.76/ρ VL(1单/1位03:mVmL)(㎜/a),a为annual每年. ρ(g/㎝3). V-ΔW(g/㎡·h).
目的:
通过研究材料在环境介质中,其表面或界面上发生的各种化学、电化学反 应,探求它们对组织结果损坏的规律,提出材料或其构件在不同条件下的 控制或预防腐蚀的措施.
⑥分类
按原理分:I化学(Chemical).II电化学(Electrochemical)
按形式分:I全面(General).II局部腐蚀(Localized)
腐蚀与防护检测技术 ppt课件

磁力层析技术
磁力层析技术
磁力层析技术
磁力层析技术
应用磁力仪沿管道正上方采 集磁场异常数据。管体出现 磁异常即为应力集中区,对 应管体腐蚀缺陷。
磁力层析技术(MTM)
参数和特点:
检测速度:3 米/秒 检测深度:20 倍管径 检测精度:5% 壁厚 管径范围:56 - 1420mm ➢以外检方式实现内检效果 ➢无需任何管道额外准备 ➢不受防腐层影响 ➢通过应力评估管道腐蚀缺陷
(4) 管体腐蚀损伤的检测方法
①腐蚀环境模拟:挂片模拟、防腐层材料老化试验 现场(挂片、实验短管)模拟 腐蚀速率(土壤线性极化)测量
②管内检测:漏磁、涡流、超声探伤;内窥、红外检测 ③地面检测:管地电位、电流测量、管体金属蚀失量评价
----- 间接检查
(5) 管道腐蚀检测评价流程(ECDA)
2.3 埋地管道检测设备的 基本原理与方法
2.3.4 工作原理–声发射法
2.3.4 声发射法–应用实例 储罐底板
2.3.5 工作原理– 导波技术 LRUT
长距离超声波是目前可用的扫描检测工具,提供与局 部厚度测量不同的检测方案。作为快速扫描方法提供粗略 检测结果指示进一步检测区域。 LRUT不提供对管道壁厚 直接测量,但能提供金属腐蚀的深度和环向范围的综合灵 敏度,也就是上轴向长度会附加到检测结果中。由于环向 波沿着管道壁传播,在环向截面的每一点都相互影响,该 技术对于截面的减少是敏感的。
管道腐蚀与防护管理的特点
➢ 管理过程的持续性和周期性 ➢ 检测手段的不完备性 ➢ 评价结果的不确定性
➢ 管理过程的工程特点
-济型
-- 计划性
➢ 多种技术的配合
管道腐蚀与防护管理的考虑因素
2. 埋地管道检测的 技术、仪器与方法
《材料的腐蚀防护》课件

定期检查和维护是防止腐蚀的重要手段。
1
选择合适的防腐材料
根据不同腐蚀环境选择最合适的材料。期检查和维护,及时发现并修复潜在的腐蚀问题。
3
加强防护措施
增加腐蚀防护层厚度或施加电流保护等措施。
总结
腐蚀是材料面对的普遍问题
了解不同腐蚀的原因,采取相应的防护措施。
防腐处理和防腐涂层是主要的防腐措施
选择适合的材料和涂层来延长材料使用寿命。
《材料的腐蚀防护》PPT 课件
# 材料的腐蚀防护
腐蚀的原因
酸碱侵蚀
物质受到酸或碱的侵蚀,导致腐蚀。
电化学腐蚀
金属在电解质溶液中发生化学反应,造成腐蚀。
氧化腐蚀
金属与氧气发生反应,产生氧化物,引起腐蚀。
磨损腐蚀
材料表面遭受摩擦、磨损和腐蚀的复合作用。
腐蚀的影响
1 破坏性
腐蚀会损坏材料的结构和 性能,缩短使用寿命。
2 耗损成本
修复或更换受腐蚀材料的 成本很高。
3 安全隐患
腐蚀可能导致设备故障或 泄漏,威胁人身安全。
腐蚀防护方法
选材
选择抗腐蚀能力强的材料,如 不锈钢、合金钢和高强钢。
防腐涂层
使用金属涂层、聚合物涂料或 陶瓷涂层等材料进行防腐处理。
防腐处理
应用防腐漆、热浸镀锌或阴极 保护等方法来防止腐蚀。
腐蚀防护措施
第五章腐蚀的控制方法

第五章腐蚀的控制⽅法第五章腐蚀的控制⽅法在不同情况下引起⾦属腐蚀的原因是不尽相同的,因此根据不同情况采⽤的防腐技术也是多种多样的。
在⽣产实践中⽤的最多的防腐技术⼤致可分为如下⼏类:1、合理选材,根据不同介质和使⽤件选⽤合适的⾦属材料和⾮⾦属材料;2、阴极保护:利⽤⾦属电化学腐蚀原理,将被保护⾦属设备进⾏外加阴极化以降低或防⽌⾦属腐蚀;3、阳极保护,对于钝化溶液和易钝化⾦属组成的腐蚀体系,可以采⽤外加阳极电流的⽅法使被保护⾦属设备进⾏阳极钝化以降低⾦属腐蚀;4、介质处理,包括去除介质中促进腐蚀的有害成分(例如锅炉给⽔的除氧)调节介质的PH 值及改变介质的湿度等;5、添加缓蚀剂。
往体系中添加少量能阻⽌或减缓⾦属腐蚀的物质以保护⾦属;6、⾦属表⾯覆盖层。
在⾦属表⾯喷、射、渗、镀、涂上⼀层耐蚀性好的⾦属或⾮⾦属物质以及将⾦属进⾏氧化处理。
使被保护⾦属表⾯与介质机械隔离⽽降低⾦属腐蚀;7.合理的防腐蚀设计及改进⽣产⼯艺流程以减轻或防⽌⾦属的腐蚀。
每⼀种防腐蚀措施都有其应有范围和条件。
使⽤时要注意。
对⼀种情况有效的措施,在另⼀种情况下就可能是⽆效的;有时甚⾄是有害的。
例如:阳极保护只适⽤于⾦属在介质中易于阳极钝化的体系,如果不能造成钝态,则阳极极化不仅不能减缓腐蚀,反⽽会加速⾦属的阳极溶解。
另外,在某些情况下,采取单⼀的防腐蚀措施其效果并不明显,但如果采⽤两种或多种防腐蚀措施进⾏联合保护,就⽐单⼀种⽅法效果好得多。
对于⼀个具体的腐蚀体系究竟采⽤哪种措施的防腐蚀,应根据腐蚀原因,环境条件各种措施的防腐蚀效果,施⼯难易以及经济效益综合考虑。
第⼀节合理选⽤耐腐蚀材料⼀、设备的⼯作条件(介质,温度和压⼒)对材料的要求设备的⼯作介质的情况是选材时⾸先要分析考虑的。
例如⼯作介质是硝酸,其为氧化性酸,应选⽤在氧化性介质中易形成氧化膜的材料,如不锈钢,铝,钛等⾦属材料,稀硝酸⽤不锈钢,浓硝酸⽤纯铝;如果⼯作介质是盐酸,其为还原性酸,应选⽤⾮⾦属材料。
材料腐蚀与防护ppt_图文

② 微生物的代谢过程及代谢产物对腐蚀的影响
生物膜的存在及微生物的新陈代谢活动影响 金属腐蚀过程,改变腐蚀机理、腐蚀形态,一方 面代谢过程改变腐蚀机制,另一方面一些代谢产 物具有腐蚀性,恶化金属腐蚀的环境(如酸和硫化 物的产生等)。
③ 微生物产生的有机和无机酸的影响
沉积物下酸腐蚀理论的主要依据是绝大多数 MIC的最终产物是低碳连的脂肪酸,其中较常见的 是醋酸。当醋酸在微生物腐蚀沉积物下浓缩时, 对碳钢有很强的侵蚀性。
材料腐蚀与防护ppt_图文.ppt
几乎所有的常用材料都会产生由微生物引起的腐蚀。据统计, 在金属材料、建筑材料等由微生物引起的腐蚀破坏就占到20% 。与海洋微生物附着有关的材料破坏占到涉海材料总量的 70%-80%,每年因微生物腐蚀造成的损失约为30亿-50亿美元 。如海上油气田、海底输送管线、海底采矿设备、码头、舰船 等。
⑤ 化学法:通过投放杀菌剂杀死或抑制微生物的生 长,对环境破坏较大;
⑥ 液中高压脉冲电场杀菌技术:利用高压脉冲电场 下,负向脉冲波峰的出现对微生物细胞膜形成一个快 速变化的压力,使其结构松散,从而与正向脉冲峰协 同作用,迅速破坏细胞膜的透性;
⑦ 新型防污涂料:通过赋予涂层或表面基材的表面 以特殊性能,使海洋微生物难以附着或附着不牢从而 达到防污目的。
微生物腐蚀并非其本身对金属的腐蚀作用,而是微 生物生命活动的结果。微生物附着在金属表面一段 时间后会形成一层生物膜,生物膜内微生物的新陈 代谢活动使得生物膜内的环境与本体溶液不同,包 括电解质组成、浓度、温度、pH值、溶解氧等,从 而影响了材料表面的阴、阳极分布和阴、阳极反应 过程,导致材料腐蚀速度的变化和局部腐蚀的产生 。
水下清洗机
美军“鹦鹉号”核潜艇
① 清洗:从金属表面除掉沉积物,包括机械清洗法(擦除 、打磨、冲刷等)和化学清洗法(利用矿物酸、有机酸等 对表面沉积物酸洗);
材料腐蚀与防护课件

氧化还原反应
金属与氧化剂直接发生化学反应 ,导致金属原子失去电子成为正 离子,氧化剂获得电子成为负离 子。
酸碱反应
金属与酸或碱发生中和反应,释 放氢离子或氢氧根离子,导致金 属溶解。
生物腐蚀机理
01
生物腐蚀是指微生物、藻类等生 物对材料造成的腐蚀。
02
生物腐蚀通常发生在潮湿环境, 如土壤、水体等,由于生物活动 产生的代谢产物对材料造成腐蚀 。
详细描述
腐蚀的本质是材料与环境中的介质发生化学或电化学反应,导致材料结构、性能 和外观发生变化。化学腐蚀是指材料与环境中的介质发生化学反应,生成新的物 质;电化学腐蚀则是材料与电解质溶液发生原电池反应,导致材料损失。
腐蚀的原理与过程
总结词
腐蚀的原理主要包括氧化还原反应和电化学反应。在氧化还原反应中,材料失去或获得 电子,与环境中的氧化剂或还原剂发生反应;在电化学反应中,材料作为原电池的一个
蚀性。
03
材料的耐腐蚀性能评价
耐蚀性能的测试方法
浸泡试验
将材料浸泡在腐蚀介质 中,观察其腐蚀速率和
程度。
盐雾试验
模拟海洋环境,通过盐 雾加速材料的腐蚀。
恒温恒湿试验
在恒定的温度和湿度条 件下,测试材料的耐腐
蚀性能。
电化学测试
利用电化学方法测量材 料的腐蚀电流和电位等
参数。
材料的耐蚀性等级评定
腐蚀等级标准
船舶海洋工程的腐蚀防护
总结词
船舶洋工程长期处于海洋环境中,面临严重的腐蚀问题。
详细描述
船舶和海洋工程结构的腐蚀不仅影响使用寿命,还可能引发安全事故。为了应对海洋腐蚀环境,通常 采用耐腐蚀的金属材料和涂层保护,同时对船体和海洋平台进行阴极保护,以减缓腐蚀速率。
材料腐蚀与防护-5讲-腐蚀形态及机理

• 孔内介质呈滞流状态 • 溶解氧不易向内扩散
孔内金属难以钝化 • 金属离子不易向外扩散
金属离子增加,氯离子迁入以维持 电中性,形成氯化物(FeCl2)
不锈钢在充气NaCl溶液中的孔蚀
• 高浓氯化物水解,孔内酸度增 加,促使阳极溶解加快
MCl2 + 2 H2 O M (OH)2 + 2 H++ 2Cl-
• 蚀孔内部的电化学条件发生了显著的改变,对蚀孔的生长有很大的 影响,因此蚀孔一旦形成,发展十分迅速
• 蚀孔发展的主要理论是以“闭塞电池”的形成为基础,并进而形成 “活化-钝化腐蚀电池”的自催化理论
点蚀的机理-蚀孔发展
• 闭塞电池的形成条件:
(a)具备阻碍液相传质的几何条件
• 如在孔口腐蚀产物的塞积可在局部造成传质困难 • 缝隙及应力腐蚀的裂纹也都会出现类似的情况
不锈钢在充气NaCl溶液中的孔蚀
• 孔内金属表面:活化态,电位较负 • 孔外金属表面:钝化态,电位较正 • 孔内-孔外:活态-钝态微电偶腐蚀
电池 • 面积比:大阴极-小阳极,阳极电
流密度很大 • 蚀孔快速加深 • 孔外金属受到阴极保护
不锈钢在充气NaCl溶液中的孔蚀
• 孔内反应:Fe→Fe2++2e Cr →Cr3++3e、Ni →Ni2++2e
点蚀程度用点蚀系数来表示,即蚀孔的最大深 度和金属平均腐蚀深度的比值。
点蚀
• 点蚀的危害: 点蚀导致金属的失重非常小,由于阳极面积 很小,局部腐蚀速度很快,常使设备和管壁穿 孔,从而导致突发事故。 对孔蚀的检查比较困难。 蚀孔尺寸很小,且经常被腐蚀产物遮盖。
腐蚀与防护 ppt课件

Chapter 1
Questions:
? What is corrosion ?
腐蚀源于拉丁文“corrdere”,意即“损坏”、“腐烂”
Corrosion can be defined as the degradation of a material due to a reaction with its environment.
Bilingual Teaching
Demand of economic globalization.
China Ministry of Education “Bilingual Teaching Course Reform Plan” , 2001 To improve students’ learning and acquiring of make them competent for international communication in their specialty fields.
Materials Corrosion and Protection
1
Instructor:
Dr. Jing MA Depart. of Metallic Materials Engineering Office: A344 Material Building E-mail: majingt@
Uncontrolled corrosion may lead to disastrous consequences
腐蚀与防护PPT课件

18.07.2020
10
腐蚀电池的形成的几种情况
腐蚀电池的形成主要有以下几种情况: 微电池: 1、金属化学成分不均匀; 2、金属组织不均匀; 3、金属物理状态不均匀; 4、金属表面膜不完整; 5、土壤微结构的差异。 宏电池: 1、不同金属与同一电解质相接触(如管道本体金属与焊缝金属); 2、同种金属接触不同的电解质溶液(如氧气浓差电池,氧的电极 平衡可写成1/2H2O+1/4O2+e→OH-,氧分压高的为阴极,氧分压低 的为阳极); 3、不同金属接触不同的电解质。
18.07.2020
18
管道防腐蚀保护示意图
金属 + 土壤腐蚀源自18.07.202019
金属 + 土壤
腐蚀
涂层 将金属与土壤隔离开
18.07.2020
20
金属 + 土壤
腐蚀
涂层 将金属与土壤隔离开
阴极保护 针对有的缺陷涂层
18.07.2020
21
整流器 将交流电流转变成
脉动直流电流
18.07.2020
18.07.2020
3
第一章 腐蚀的概念
1.1 腐蚀现象 1.2 腐蚀概念 1.3 腐蚀类型 1.4 腐蚀电池形成的几种情况 1.5 腐蚀的检测
18.07.2020
4
管道腐蚀现象
18.07.2020
5
从生产到腐蚀:管道材料的循环
18.07.2020
6
金属从矿石中提炼出来时,需要提供很大的能量,使 其处于一个高能级状态。这些矿石是典型的金属氧化 物,如用来炼钢的赤铁矿(Fe2O3)。热力学的一个规 律是:材料总是趋向于以最低能量状态存在。因此, 多数的金属处于热力学不稳定状态,具有寻求低能量 状态的倾向,如形成氧化物或其他化合物。金属转化 成低能量氧化物的过程就是腐蚀。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一: 铁的电化学性质及其耐蚀性
铁形成铁离子的标准平衡电位
E Fe/ Fe2
0.44V
E Fe/ Fe3
0.036V
1.铁在酸碱中的稳定性
铁在盐酸中的腐蚀速度是随着酸的浓度增 加,腐蚀速度按指数关系上升.
铁和其他金属比较,其耐腐蚀性较差,主要原因:
1.铁及其氧化物的氢过电位值、氧过电位值均较 低,易于发生析氢腐蚀和吸氧腐蚀 2铁锈及溶液中的三价铁离子均有良好的去极化 作用。 3铁的腐蚀产物保护性能较差。 4铁易形成氧浓差电池而受蚀。 5在自然条件下铁的钝化能力较弱。
2.加入易钝化的合金元素
3.加入阴极性合金元素促进阳极钝化 这种途径适用于可能钝化的金属体系。金属 或合金中加入阴极性合金元素,可促使合金 进入钝化状态.
加入阴极去极化作用的金属,与金属形成原电池, 使阳极金属极化,电位升高到稳定钝化区.
阴极性元素一般是正电性的金属,如Pd、Pt、Ru 及其它铂族金属;有时也可采用电位不太正的金 属
初始阴极过程EC0—C1
加入适量阴极性合金产生 强烈去极化作用(极化斜 率变小)极化曲线为 EC0—C3。腐蚀速度为ip
量不足变为EC0—C2---不 稳定,腐蚀速度容易由 IC1---IC2
过量时极化曲线为EC40— C4,交于过钝化区,易点 蚀。
Eao C1
Ep Eco
Ebr Eop
C2 C3
1.减少阳极面积
合金的第二相相对基体是阳极相,在腐蚀过程中减少这 些微阳极相的数量.可增加阳极极化程度,阻滞阳极 过程的进行,提高合金耐蚀性。
例如,Al-Mg合金中的第二相A12Mg3是阳极相。腐蚀 过程中A12Mg3相逐渐被腐蚀掉,使阳极总量减少,腐 蚀速度降低。所以A12Mg3合金耐海水腐蚀性能就比第 二相为阴极的硬铝(Al-Cu)合金好。
合金中加入析氢过电 位高的合金元素,来 提高合金的阴极析氢 过电位,降低合金在 非氧化性或氧化性不 强的酸中的活性溶解 速度。
300
腐 蚀 200 速 度 100
50
Mg w(Mn)=1%
0.005 0.010 0.015 0.020 0.025
w(Fe)/%
三 降低合金的阳极活性
这种方法是提高合金耐蚀措施中最有效、应用 最广的方法之一.
2)加入阴极性元素的种类、数量要同基体合金、 环境相适应,加入的阴极性元素要适量,否则 加速腐蚀。
4. 使合金表面生成自耐蚀的腐蚀产物膜
加入一些合金元素促使在合金表面生成致密、 耐蚀的保护性膜。
如在钢中加入Cu、P等合金元素,能使低合 金钢在一定条件下表面生成一种耐大气腐蚀 的非晶态的保护膜。
5.3 铁的耐蚀性
Fe-Cr合金腐蚀速度与含Cr量关系
有序固溶体理论—n/8定律
该理论认为,在给定腐 蚀介质中,当耐蚀组元与不 耐蚀组元组成长程有序固溶 体,形成了单由耐蚀组元的 原子构成的表面层时,合金 在该条件下耐蚀。
但这种耐蚀的长程有序
化,是在耐蚀组元占一定原
子分数的情况下发生的。其
原子分数通常服从n/8定律, Fe-Cr 铸造合金在如90oC,素对可钝化体系腐 蚀规律影响的示意图
阴极性合金元素 的加入量(质量分 数)一般为0.2%0.5%,最多1%。
加入阴极性合金元素促进阳极钝化是有条件的:
1)腐蚀体系可钝化,否则加入阴极性元素只会加 速腐蚀。
如果不能钝化,则加入阴极性元素与基体元素 构成原电池加速腐蚀。
缺点是它要消耗大量贵金属,而且合金元素 在固溶体中的固溶度也是有限的.
二 阻滞阴极过程
这种途径适用于不产生钝化的活化体系,主要 由阴极控制的腐蚀过程-------提高阴极的过电位, 反应驱动力降低。
1. 减少合金的阴极活性面积
2. 阴极析氢过程优先在析氢过电位低的阴极相或阴极 活性夹杂物上进行. 减少这些阴极相或夹杂物,就是
上次作业题
如何解释工业大气中含有SO2时其腐蚀作 用机制是硫酸盐穴自催化机制P87
2不锈钢在充气的含Cl-离子的中性介质中 的腐蚀过程,解释点蚀空生长过程65
5.1 纯金属的耐蚀性 5.2 合金耐蚀途径 5.3 铁的耐蚀性
5.4 铸铁的耐蚀性及其应用 5.5 耐蚀低合金钢 5.6 不锈钢
5.1 纯金属的耐蚀性
减少活性阴极的面积.从而增加阴极极化程度,提高 合金的耐蚀性.
3.
例如减少工业Zn中杂质Fe的含量就会减少Zn中
FeZn7阴极相,降低Zn在非氧化性酸中的腐蚀速度。
可采用热处理方法(固溶处理).使合金成为单相固 溶体,消除活性阴极第二相。
2. 加入析氢过电位高的合金元素
这种途径适用于由析氢过电位控制的析氢腐 蚀过程.
合金的耐蚀性不仅取决于合金成分、组织等内因, 也取决于介质的种类、浓度、温度等外因。由于 合金应用环境不同,提高合金耐蚀性的途径也不 同.
在一定的介质条件下,合金中所加入的耐蚀元素 数量必须达到某一个临界值时,才有显著的耐蚀 性。
例如: Fr-Cr合金中,只有当Cr的加入量超过12.5%时, 合金才会发生自钝化,其耐蚀性才有显著的提高。
其中n为l-7等。
85%H3PO4中120 h的腐蚀 失重变化
一般情况下.介质的腐蚀性愈强,临界组成要求 的n数值愈大。
如: Cu—Au合金中当金含量50%(原子)时在 900 0C浓硝酸中的耐蚀性突然增高。
一: 提高合金热力学稳定性
用热力学稳定性高的元素进行合金化
这种方法是向本来不耐蚀的纯金属或合金中 加入热力学稳定性高的合金元素(贵金属)使之 成为固溶体。
一:纯金属热力学稳定性
一般情况下,各种纯金属的热力学稳定性可根据其 标准电极电位值作出近似的判断。
标准电极电位较正的金属,其热力学稳定性也较高, 较负的则稳定性较低。
氧和氢的平衡电位
pH 氧的平衡电位 氢的平衡电位
(v)
(v)
7
0.815
-0.414
0
1.23
0.000
二: 自钝性
在热力学不稳定的金属中,有不少金属在适宜的条 件下,由活化态转为钝化态而耐蚀。
其中,最容易钝化的金属有Zr、Ti、Ta、Nb、A1、 Cr、Be、Mo、Mg、Ni、Co等。
三: 生成保护性腐蚀产物膜
在热力学不稳定金属中,除了因钝化而耐蚀外,还 有在腐蚀过程中由于生成较致密的保护性能良好的 腐蚀产物膜而耐蚀.
如Pb在H2SO4溶液中,Fe在H3P04溶液中,Mo在HCl中
5.2 合金耐蚀途径