桁架结构设计分解
4.3-钢桁架的加工制作
4.3 钢桁架加工方案4.3.1 工程概述:4.3.1.1 工程概况:****大屋盖以树壮支柱及两个塔搂为支座,整体展翅在****综合建筑群之上。
该屋盖长486m,宽度由两端的154m 向中间缩小为120m。
钢桁架就是架设在两个塔楼四周的钢结构构件,通过钢桁架支撑着大屋盖网架。
钢桁架布置图如下:圆塔桁架布置图如下左图,方塔桁架布置如下右图:4.3.1.2 本工程钢结构桁架分为:a. 圆塔部分桁架: HJ-1~2、5~6、9~12共8榀。
b. 方塔部分桁架:桁架HJ-3~4共2榀。
4.3.2 焊接材料选用:本工程钢桁架钢材采用国产Q345和Q235B系列钢材,相对应的焊接材料选用如下:4.3.3 技术标准4.3.3.1 采用标准:《钢结构施工与验收规范》 GB50205—95 《钢结构工程质量检验评定标准》 GB50221--95 《建筑钢结构焊接规程》 JGJ81—91 《钢结构设计规范》 GBJ17--88 《低合金钢焊条》 GBJ5118--85 《高层民用建筑钢结构技术规程》 JGJ9--98 《手工电弧焊焊缝坡口的基本形式和尺寸》 GB 985 《埋弧焊焊缝坡口的基本形式和尺寸》 GB 986 《钢结构高强螺栓连接设计施工及验收规范》 JGJ82-91 《钢结构防火涂料应用技术条件》 CECS24-90 《涂装前的钢材表面锈蚀等级和防锈等级》 GB8923--88 《涂装前的表面处理:表面粗糙度的测试评定》 ISO8502-6:1995 《钢材力学及工艺性能试样取样规定》 GB2975--82 等。
4.3.4 材料控制及详图设计4.3.4.1 材料控制a. 本工程钢结构钢桁架杆件均是焊接箱形,材料计划必须按照构件的实际尺寸从钢厂直接进行定尺采购。
定尺尺寸要考虑加工余量等。
b. 材料采购前,必须对供应材料的生产厂家进行考核。
考核合格后方可在该分供方处进行材料采购。
c. 进厂的原材料,除必须有生产厂的出厂质量证明书外,并应按合同要求和有关现行标准进行检验和验收,做好检查记录。
桁架机械手结构和设计分析
桁架机械手结构和设计分析1. 引言1.1 桁架机械手结构和设计分析介绍桁架机械手是一种具有高度灵活性和精准性的工业机器人,其设计和结构分析对于提高生产效率和质量具有重要意义。
本文将对桁架机械手的结构和设计进行深入分析,并探讨其工作原理、结构组成、设计要点、性能优势和应用领域。
桁架机械手通过桁架结构实现多自由度运动,可以完成复杂的工业任务。
其结构由横梁、立柱、关节和执行器等组成,通过精密的控制系统实现精准定位和操作。
设计要点包括结构刚度、负载能力、运动速度和精度等方面,关乎机器人的稳定性和性能表现。
桁架机械手具有快速响应、高精度、重复性好、节能环保等优势,适用于各种制造业领域,如汽车制造、电子设备组装、航空航天等。
通过优化设计和控制算法,桁架机械手在现代工业生产中发挥着不可替代的作用。
在深入分析和研究桁架机械手的结构和设计特点的基础上,可以更好地理解其工作原理和性能优势,为其在工业生产中的应用提供更有效的支持和指导。
2. 正文2.1 桁架机械手的工作原理分析桁架机械手是一种常用于工业生产线上的自动化装配机器人,其工作原理可以分为三个主要部分:控制系统、传动系统和执行系统。
控制系统是桁架机械手的大脑,负责接收并处理来自外部的指令,以实现机械手的各项动作。
控制系统通常由PLC(可编程逻辑控制器)或者工控机组成,通过编程来实现机械手的自动化操作。
控制系统可以根据预先设定的程序来指导机械手进行各种动作,包括抓取、放置、旋转等。
传动系统是桁架机械手的动力来源,主要由伺服电机、减速器、传动链条等组成。
伺服电机可以提供足够的力和速度,减速器可以将电机提供的高速度降低到合适的速度,传动链条将力传递给机械手各部件,使其进行相应动作。
执行系统是桁架机械手的动作执行部分,包括各种执行器、传感器等。
执行系统根据控制系统发出的指令,利用传动系统提供的动力,实现机械手的各项动作。
传感器可以监测机械手的位置、速度、力度等参数,确保机械手的准确运行。
大跨度钢管桁架结构设计分析
大跨度钢管桁架结构设计分析[摘要] 近些年来,随着经济的发展,钢产量的提升。
大跨度结构迅速发展,钢管结构以其力学性能优,造型适应性好,建筑表现力佳而越来越受到建筑师和结构师的青睐。
由于生产工艺及空间的要求,厂房的屋面也开始采用大跨度结构,钢管桁架屋面梁由于可以充分利用材料的特性,本文结合某工业厂房为例,对管桁架结构设计和施工进行了阐述,仅供同仁参考。
关键词:钢管桁架设计施工吊装一、钢结构厂房设计的要点1钢结构厂房设计采用的结构体系钢结构厂房因为工艺布置的要求,一般都需要大空间,结构通常采用框架结构,在层数较多、工艺条件许可的情况下也可以采用框剪结构。
结构布置的原则是:尽量使柱网对称均匀布置,使房屋的刚度中心与质量中心相近,以减小房屋的空间扭转作用,结构体系要求简捷、规则、传力明确。
避免出现应力集中和变形突变的凹角和收缩,以及竖向变化过多的外挑和内收,力求沿竖向的刚度不突变或少突变。
由于多层厂房跨度方向尺寸较大,柱子少;而柱距方向尺寸较小,柱子多。
一般都是横向控制,使纵横向的抗震能力大致相同,不仅有利于抗震,也使设计更为经济合理。
2框架结构的节点设计连接节点的设计是钢结构设计中重要的内容之一,“三强”设计原则中有两条涉及到节点的设计.在结构分析前就应对节点的形式有充分思考与确定,最终设计的节点与结构分析模型应与使用形式完全一致.按传力特性不同,节点分刚接、铰接和半刚接.节点设计主要包括以下内容:①焊接.对焊接焊缝的尺寸及形式等,规范有强制规定,应严格遵守,焊条的选用应和被连接金属材质适应,E43对应Q235,E50对应Q345,Q235与Q345连接时应该选择低强度的E43,而不是E50.焊接设计中不得任意加大焊缝,焊缝的重心应尽量与被连接构件重心接近.②栓接.普通螺栓抗剪性能差,可在次要结构部位使用.高强螺栓使用日益广泛,常用8.8级和10.9级两个强度等级,根据受力特点分承压型和磨擦型,两者计算方法不同,高强螺栓最小规格M12,常用M16~M24,超大规格的螺栓性能不稳定,设计中应慎重使用. ③连接板.可简单取其厚度为梁腹板厚度加4mm,然后验算净截面抗剪等. ④梁腹板.应验算栓孔处腹板的净截面抗剪,承压型高强螺栓连接还需验算孔壁局部承压. ⑤节点设计必须考虑安装螺栓、现场焊接等的施工空间及构件吊装顺序等,此外,还应尽可能使工人能方便地进行现场定位与临时固定.⑥节点设计必须考虑制造厂的工艺水平,比如钢管连接节点的相贯线的切口需要数控机床等设备才能完成.二、工程概况1、工程概况该项目位于江苏省昆山市,为框排架结构,局部二层,一层为钢筋砼柱,钢结构屋面,局部二层为钢筋砼框架结构,独立承台桩基础。
桁架结构优化设计
桁架结构优化设计一般所谓的优化,是指从完成某一任务所有可能方案中按某种标准寻找最佳方案。
结构优化设计的基本思想是,使所设计的结构或构件不仅满足强度、刚度与稳定性等方面的要求,同时又在追求某种或某些目标方面(质量最轻,承载最高,价格最低,体积最小)达到最佳程度。
对于图1-1的结构,已知L=2m,x b=1m,载荷P=100kN,桁架材料的密度r=7.7x10-5N/mm3,[δt]=150Mpa,[δc]=100Mpa,y b的范围:0.5m≦y b≦1.5m。
图1-1 桁架结构设计变量与目标函数(质量最小)预定参数(设计中已确定,设计者不能任意修改的量):L , x b ,P ,r ,[δt ] ,[δc ]设计变量(可由设计者调整的量)y b ,A 1,A 2 约束条件(对设计变量的约束条件) (1) 强度条件约束(截面、杆件的强度) (2) 几何条件约束(B 点的高度范围) 目标函数:桁架的质量W (最小)解:1. 应力分析0sin sin 02112=--=∑θθN N F x0cos cos 02112=---=∑P N N Fyθθ由此得:)sin(sin 2111θθθ+=p N )sin(sin 2122θθθ+-=p N由正弦定理得:ly l x pN B B 21)(2-+=ly x pN BB 222+=由此得杆1和2横截面上的正应力121)(2lA y l x pB B -+=σ2222lA y x pB B +=σ2.最轻质量设计目标函数(桁架的质量)))((222122B B y x A y l x A W B B ++-+=γ(1-1)约束条件[][]⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤+≤-+c B t B lA y x p lA y l x p B B σσ221222)( (1-2)0.5≦y b ≦1.5(m ) (1-3) (于是问题归结为:在满足上述约束条件下,确定设计变量y b ,A 1,A 2,使目标函数W 最小。
讲义总结下承式简支钢桁架桥施工设计总体解析简支钢桁梁3
在交叉形的纵向联结系中,应计算由于主桁弦杆变形
或横梁变形所引起的联结系杆件的内力。
由于主桁弦杆变形或横梁变形所引起的联结系杆件的
内力,可按下列公式计算:
交叉形斜杆因弦杆变形而生的内力:
Nd
=
N A
× 1+ 2
Ad
Ad cos2 α sin 3 α + Ad
cos3 α
Ap
A
交叉形,当横梁兼作撑杆:
Nd
交叉形的腹杆体系
桥梁工程
交叉形上平纵联
桥梁工程
交叉形的腹杆体系
2、平纵联的计算 简支桁架桥的平纵联的计算图式是水平放置的简支铰
接桁架,其计算跨度或等于主桁跨度,或等于主桁上弦端 节点之间的距离。
平纵联所受的荷载包括:横向风力,列车横向摇摆 力,离心力(若是弯道桥),由于弦杆变形所引起的力。
桥梁工程
纵梁跨中弯矩和梁端剪力影响线见下图 跨中恒载弯矩:
M p = p × Ω1
梁端恒载剪力:
Qp = p×Ω2
跨中活载弯矩:
M k = η(1 + μ)K1 × Ω1
梁端活载剪力:
Qk = η(1 + μ)K 2 × Ω2
(2)纵梁的应力计算 包括:弯曲应力、疲劳强度、剪应力
桥梁工程
桥梁工程
二、纵梁和横梁的计算
鱼形板应力计算和疲劳强度的验算如下:
σ = N0 ≤ [σ ]
A0
γ dγ n (σ max − σ min ) ≤ γ t [σ 0 ]
式中 A0 —鱼形板的净截面面积; [σ ] —鱼形板的容许应力;
[σ 0 ] —疲劳容许应力幅。
桥梁工程
每块鱼形板与纵梁翼缘连接所需的螺栓数:
钢管桁架结构计算和分析
25Building Structure专业软件讲座We learn we go3D3S10.0钢管桁架结构计算和分析上海同磊土木工程技术公司3D3S 技术部3D3S V10.0版钢管桁架结构在后处理以及相贯加工方面增加了一些功能,增加了后处理菜单中定义、查询、取消杆件顺序号等命令以及相贯加工菜单,其中包括相贯加工控制参数、杆件下料、生成法因相贯加工数据、生成国际标准ISO 相贯加工数据等命令。
更好地满足了客户对相贯加工参数的控制以及输出数据的有效利用。
桁架模块适用于任何形式的平面及空间桁架结构,包含滑移、沉降、弹性等多类支座形式,跨度及具体体型不限,适用于桁架与多种形式的混合结构:钢柱+桁架、 框架+桁架、张拉弦+桁架、网架+桁架等。
下面简单介绍一下3D3S 10.0钢管桁架结构的设计流程:建模—计算分析以及设计—节点验算—后处理—施工图绘制——相贯加工。
1 建模3D3S10.0钢管桁架结构模块是将建模、分析计算与后处理以及相贯加工结合在一起的有限元分析设计软件,其目标对象是从其他结构设计软件中导入并在空间建模中扩充的结构模型以及3D3S 中的自建模型(图1)。
图1 3D3S 钢管桁架结构模块界面可以由一根或二根或三根或四根辅助线直接生成桁架,或通过LINE 命令画出桁架杆件,或直接导入ACAD 桁架模型。
使用结构编辑工具编辑模型构件属性,确定模型的结构体系,分为四种:平面桁架、平面框架、空间桁架、空间框架,见图2。
如图1所示的模型,要把其结构体系定义为空间框架,然后把上部结构进行单元释放,见图3。
图2 结构体系选择 图3 定义单元释放3D3S10.0钢管桁架结构模块中节点荷载、单元荷载、面荷载、地震作用、温度荷载、支座位移等自由添加,配合预应力模块,可进行预张力索构件的添加,见图4。
图4 荷载库2计算分析和设计1)进行各个工况和组合的内力分析,得到相应的内力和位移,见图5,6。
图5 查询内力图6 查询最大位移2)配合高级版的基本模块,可以进行几何非线性的内力和位移计算,得到结构的极限承载力。
桁架结构设计
试用截面法求图示桁架指定杆件的内力。
nm 1
A 2.5FP
34
n2m FP FP FP FP FP
6 5m
6m B
2.5FP
FN1 =-3.75FP FN4=0.65FP
FN2 =3.33FP FN3 =-0.50FP
试用截面法求图示桁架指定杆件的内力。
FN1 =-3.75FP
FN2 =3.33FP
34.8 19
-8
-8
-5.4 -5.4
37.5
34.8 19
小结:
• 以结点作为平衡对象,结点承受汇交力 系作用。
• 按与“组成顺序相反”的原则,逐次建 立各结点的平衡方程,则桁架各结点未 知内力数目一定不超过独立平衡方程数。
• 由结点平衡方程求得桁架各杆内力。
在用结点法进行计算时,注意以下三点, 可使计算过程得到简化。
2.5.5 组合结构的计算
组合结构——由链杆和受弯杆件混合组成的结构。
A FN图(kN)
5 kN
8 kN I 4
C
12 M图(kN . m)
B
-6 F 6 12
-6 G
2m
D
E
4m 2m 2m 4m
4 m 3 kN
I
一般情况下应先计算链杆的轴力 取隔离体时宜尽量避免截断受弯杆件
使计算过程得到简化。 1.相似三角形的应用 在计算中,经常需要把斜杆的内力S分解为水 平分力X和竖向分力Y。设斜杆的长度为L,其水 平和竖向投影的长度分别为Lx和Ly,则由比例关 系可知:
Y
S
α
X L
Ly
α
Lx
S
S X Y L Lx Ly
2. 结点单杆 以结点为平衡对象能仅用一个方程求 出内力的杆件,称为结点单杆(nodal single bar)。
桁架桥梁结构分析设置分解
背景素材选自位于密执安的"Old North Park Bridge"
(1904 - 1988)。该桁架桥由型钢组成,顶梁及侧梁,桥身 弦杆,底梁分别采用3种不同型号的型钢。桥长L=32m,桥 高H=5.5m。桥身由8段桁架组成,每段长4m。该桥梁可 以通行卡车,若这里仅考虑卡车位于桥梁中间位置,假设 卡车的质量为4000kg,若取一半的模型,可以将卡车对 桥梁的作用力简化为P1 ,P2和P3 ,其中P1= P3=5000 N, P2=10000N。
(5) 定义材料参数 ANSYS Main Menu: Preprocessor →
Material Props → Material Models → Structural → Linear → Elastic → Isotropic → input EX: 2.1e11, PRXY: 0.3(定义泊松比 及弹性模量) → OK → Density (定义材料密度) → input DENS: 7800, → OK → Close(关闭 材料定义窗口)
(8) 施加载荷 ANSYS Main Menu: Solution → Define Loads →
Apply → Structural → Force/Moment → On Keypoints → 选取底梁上卡车两侧关键点(X坐标为 12及20) → OK → select Lab: FY,Value: -5000 → Apply → 选取底梁上卡车中部关键点(X坐标为16) → OK → select Lab: FY,Value: -10000 → OK → ANSYS Utility Menu:→ Select → Everything
建筑结构选型13-桁架结构
19.01.2022
李广军
2
13. 桁架结构
13.1 桁架结构的特点
一、定义:由杆件与铰节点组成的格子式 结构(格构)。
二、桁架结构的发展由来
19.01.2022
李广军
3
13.1 桁架结构的特点
二、桁架结构的发展
掏空的梁----桁架可以看成是从梁衍化而来
13. 桁架结构
常用的组合屋架有折线形屋架,下撑式五角形屋架以及
三铰、两铰屋架等。三铰屋架受力明确,杆件短,施工
用地小。两铰屋架杆件少,构造简单。下撑式五角形屋
架的特点是重心低,因下撑而改善了屋架的受力性能,
使内力分布比较均匀,但影响了房屋的净空,增加了柱
子的高度。
19.01.2022
李广军
39
组合屋架已大量采用,由于制造简单、施工占地小、 自重轻,不需要重型起重设备,因此特别适于山区中、 小型建筑。
13.2.5 钢筋混凝土屋架
2.折线形屋架1: 外形较合理,自重轻,屋面坡度大。 适用:非卷材防水屋面的中型厂房 或大中型厂房。
3.折线形屋架2:
屋面坡度平缓,适用于卷材防 水屋面的中型厂房。
13.2.5 钢筋混凝土屋架
4.拱形屋架:
上弦一般采用抛物线形,也可采用折线形。 外形合理、内力均匀、自重轻。 矢跨比:1/6~1/8
19.01.2022
李广军
18
斜腹杆的布置方向对腹杆受力的影响:
19.01.2022
李广军
End
19
13.2 屋架结构的型式及适用范围
用于房屋上的桁架常称屋架,桁架型式的选择 一般与建筑物的使用要求,跨度和荷载大小,以及 材料供应和施工技术水平等因素有关。选择桁架型 式的一般原则是适用经济美观和制造简单。桁架可 用木材、钢材、钢筋混凝土等材料制造,由于每种 材料的力学性能各不相同,所以不同材料制造的屋 架,其型式也各不一样。
桁架机械手结构和设计分析
桁架机械手结构和设计分析【摘要】本文主要介绍了桁架机械手的结构和设计分析。
首先阐述了桁架机械手的工作原理,包括桁架结构的支撑作用和运动机理。
其次分析了桁架机械手的结构组成,包括桁架杆件、关节和执行器等部件。
随后探讨了桁架机械手的设计要点,包括刚度优化、运动精度和负载能力等方面。
接着介绍了桁架机械手的性能优势,如高强度、轻量化和高速度等特点。
最后探讨了桁架机械手在工业、医疗和航空航天等领域的应用情况。
结论部分分析了桁架机械手的发展趋势,包括智能化、自适应和灵活性等方向。
未来发展方向包括结构优化、多功能化和自主控制等方面。
桁架机械手具有广阔的发展空间和应用前景,将在未来得到更加广泛的应用。
【关键词】关键词:桁架机械手、结构分析、工作原理、设计要点、性能优势、应用领域、发展趋势、未来发展方向1. 引言1.1 桁架机械手结构和设计分析桁架机械手是一种具有高度灵活性和精准性能的机械装置,能够在工业生产中扮演关键的角色。
本文将对桁架机械手的结构和设计进行深入分析,以揭示其工作原理、优势性能以及未来发展方向。
桁架机械手的工作原理主要基于其结构特点,即由多个连杆和关节组成的桁架结构。
通过控制各个关节的运动,桁架机械手可以实现各种复杂的动作,如抓取、搬运、装配等。
其结构组成包括主体结构、驱动系统、传感器系统和控制系统等部分,每个部分协同工作,实现机械手的高效运转。
在设计要点方面,桁架机械手的轻量化、刚性化和精准化是关键考虑因素。
结构设计需要考虑载荷分布、材料选择和强度分析等技术要求,以确保机械手在各种工作环境下具备稳定性和可靠性。
性能优势方面,桁架机械手具有操作自由度高、精度高、速度快、寿命长等优点,适用于各种自动化生产场景。
桁架机械手的应用领域涵盖了汽车制造、电子设备装配、航空航天等多个领域,为生产效率的提升和生产安全的保障作出了重要贡献。
未来随着技术的不断进步,桁架机械手将更加智能化、柔性化,为人类创造更多可能性。
方钢管桁架结构设计要点及分析
方钢管桁架结构设计要点及分析摘要:钢桁架是一种常见的结构形式,具有受力体系简单、用钢量少、轻盈跨度大等优点,常用于大跨度的厂房、展览馆、体育馆和桥梁等公共建筑中,工业厂房桁架杆件以H型钢、拼接角钢为主,本文通过对比分析,阐述方钢管桁架在造价方面的优势,并提供了设计方法、构造要求及连接节点,有助于设计人员对方钢管桁架结构设计的了解和运用。
关键词:方钢管桁架;设计原则;节点构造;引言:方钢管桁架与传统H型钢桁架相比,具有造型美观、制作安装方便、经济性好等特点,受到人们的青睐。
本文根据工程设计经验总结,阐述了方钢管桁架结构的设计原则、指标控制、构造要求、节点连接等内容。
1.结构优点方钢管桁架结构,是指由方形钢管做为腹杆和弦杆组成的桁架结构体系,与传统的H型钢桁架相比具有很多优越性能,主要有以下几个方面:1) 方钢管截面为空腔结构,材料绕中和轴均匀分布,截面回转半径大,能同时具有良好的抗压和抗弯扭承载能力,充分发挥材料强度,节省钢材,以某汽车厂研发车间为例,对用钢量进行对比,详见下表1.1。
2) 方钢管外表面积小,减少油漆、防腐、防火涂料费用。
3) 方钢管线性流畅,外形美观,无灰尘死角和凹槽,易于清理,适用于清洁度要求高的厂房。
2.设计原则2.1 材料方钢管选用Q235B或Q355B钢材,方钢管型号根据《冷弯薄壁型钢结构技术规范》(GB50018-2002)和《建筑结构用冷弯矩形钢管》(JG/T178-2005)选用。
2.2 荷载1) 竖向荷载:屋面恒载、屋面活载、公用管线及工艺吊挂荷载、雪荷载(不与活荷载同时考虑)2) 水平荷载:风荷载3) 地震作用:水平地震作用,竖向地震作用(8度跨度超过24m,9度跨度超过18m时考虑)2.3 整体建模计算采用中国建筑科学研究院PKPM结构设计软件中SATWE模块,对结构进行三维整体建模计算(如图2.1.1所示),其中可将桁架用实腹钢梁等刚度代换,进行结构分析,得到结构周期、位移及柱配筋等相关信息。
有限元分析(桁架结构)
有限元上机分析报告~学院:机械工程专业及班级:机械设计及其自动化08级7班姓名:***学号:题目编号: 2》1.题目概况结构组成和基本数据结构:该结构为一个六根杆组成的桁架结构,其中四根杆组成了直径为800cm的正方形,其他两根杆的两节点为四边形的四个角。
材料:该六根杆截面面积均为100cm2,材料均为Q235,弹性模量为200GPa,对于直径或厚度大于100mm的截面其强度设计值为190Mpa。
载荷:结构的左上和左下角被铰接固定,限制了其在平面内x和y方向的位移,右上角受到大小为2000KN的集中载荷。
结构的整体状况如下图所示:分析任务】该分析的任务是对该结构的静强度进行校核分析以验算该结构否满足强度要求。
2.模型建立物理模型简化及其分析由于该结构为桁架结构,故认为每根杆件只会沿着轴线进行拉压,而不会发生弯曲和扭转等变形。
结构中每根杆为铰接连接,有集中载荷作用于最上方的杆和最右方杆的铰接点。
单元选择及其分析由于该结构的杆可以认为是只受拉压的杆件,故可以使用LINK180单元,该单元是有着广泛工程应用的杆单元,它可以用来模拟桁架、缆索、连杆、弹簧等等。
这种三维杆单元是杆轴方向的拉压单元,每个节点具有三个自由度:沿节点坐标系X、Y、Z方向的平动。
就像铰接结构一样,不承受弯矩。
输入的数据有:两个节点、横截面面积(AREA)、单位长度的质量(ADDMAS)及材料属性。
输出有:单元节点位移、节点的应力应变等等。
由此可见,LINK180单元适用于该结构的分析。
模型建立及网格划分((1)启动Ansys软件,选择Preferences→Structural,即将其他非结构菜单过滤掉。
(2)选择单元类型:选择Preprocessor→Element Type→Add/Edit/Delete→Add,在出现的对话框中选择Link→3d finit stn 180,即LINK180,点击“OK”(3)选择实常数:选择Preprocessor→Real Constants→Add/Edit/Delete→Add,在出现的对话框中的Cross-sectional area中输入100,点击“OK”。
第9章-桁架及屋架
➢桁架的主要尺寸土或砌体柱顶, 但在 ✓某些采用钢柱的厂房中, 为了增加排架的侧向刚度, 需将屋架 与柱构成刚接 ✓这对梯形屋架比较简单易行, 而对三角形就必须设置隅撑, ✓势必影响屋架下的有效净空
➢桁架的腹杆体系
桁架中的腹杆主要用以联系上、下弦杆构成节点并传 递节点荷载,布置原则应是:
① 永久荷载: 包括屋面材料、保温材料、檩条 及屋架(包括支撑及天窗)的自重。
其中屋面材料和保温材料的自重, 荷载规范中所给的q (kN/m 2 )常按屋面的实际面积计算, 需除以屋面倾 角的余弦cosα方得按屋面水平投影面积计算的自重值。 所给估算屋架自重经验公式则是按屋面的水平投影面积 计算, 常用估算公式为
➢屋盖的主要平面尺寸——屋架的平面尺寸
当房屋区段长度超过某规定值时, 需设置伸缩缝。最常用的 设置方法是在伸缩缝处设置双柱。使每一温度区段相互隔开 可以自由伸缩, 否则由于纵向或横向构件的温度变化将使某 些构件如支柱中产生较大的温度应力和变形。
➢屋架的支撑系统
屋架在垂直于屋架平面方向, 不设支撑体系不能是不能保 持其几何不变, 如下图, 虽有檩条和系杆的连系, 但屋架相 互间几何可变, 在侧向力作用下屋架会倾斜
➢桁架的主要尺寸——屋架外形的选用
◆ 受力合理。应使屋架的外形与弯矩图相近, 杆件受力均匀; 短杆受压、长杆受拉;荷载布置在节点上, 以减少弦杆局部 弯矩, 屋架中部有足够高度, 以满足刚度要求。
两端简支的受弯构件在满跨均布荷载作用下, 弯矩图形 为一抛物线, 因此屋架的外形若接近抛物线, 则弦杆各节间 中的内力最为均匀。
式中, So为基本雪压, 随地区不同而异, 系以当地一般空旷 平坦地面上统计所得50年遇的最大积雪自重确定, 规范中给 出了基本雪压的分布图。山区的基本雪压应通过实际调查确 定;在无实际资料时, 可按当地空旷平坦地面的基本雪压乘 以系数1.2采用。雪荷载的组合值系数ɸc, 可取0.7。
桁架_图文——精选推荐
桁架桁架:一种由杆件彼此在两端用铰链连接而成的结构。
桁架由直杆组成的一般具有三角形单元的平面或空间结构,桁架杆件主要承受轴向拉力或压力,从而能充分利用材料的强度,在跨度较大时可比实腹梁节省材料,减轻自重和增大刚度。
“桁”字念“héng”,由于“桁”字较少使用,误被念为“háng”(行),故此,“行架”由此得名。
桁架的定义:由杆件通过焊接、铆接或螺栓连接而成的支撑横梁结构,称为“桁架”。
桁架的优点是杆件主要承受拉力或压力,可以充分发挥材料的作用,节约材料,减轻结构重量。
常用的有钢桁架、钢筋混凝土桁架、预应力混凝土桁架、木桁架、钢与木组合桁架、钢与混凝土组合桁架。
[1]广州震鸿展览展示有限公司,主要以租赁行业为主,太空架租赁/铝合金桁架租赁/舞台租赁/灯光音响租赁/展台租赁/展架租赁/展板租赁/背景架租赁/展览架;地处广州市(海珠区琶洲黄埔村)广州国际会展中心附近。
是由一般充满活力的年轻队伍组成,是一间广告制作综合性厂家搭建公司。
我公司本以"诚信服务"为宗旨,但我们抱着没有最好只有更好的态度为客服服务。
我司拥有一支高素质的专业生产队伍,籍着提供"质量好、交货快"的服务,一直以来得到厂家、广告礼仪公司等行业客户的认同和支持!一、理论原理桁架是由一些用直杆组成的三角形框构成的几何形状不变的结构物。
杆件间的结合点称为节点(或结点)。
根据组成桁架杆件的轴线和所受外力的分布情况,桁架可分为平面桁架和空间桁架。
屋架或桥梁等空间结构是由一系列互相平行的平面桁架所组成。
若它们主要承受的是平面载荷,可简化为平面桁架来计算。
平面桁架组成桁架的杆件的轴线和所受外力都在同一平面上(图1)。
平面桁架可视为在一个基本的三角形框上添加杆件构成的。
每添加两个杆,须形成一个新节点才能使结构的几何形状保持不变。
这种能保持几何坚固性的桁架叫作无余杆(或叫无冗杆)桁架。
如果只添加杆件而不增加节点,就不能保持桁架的几何坚固性,这种桁架叫作有余杆(或叫有冗杆)桁架。
三轴桁架的设计和应用
三轴桁架的设计和应用三轴桁架是一种常见的结构设计,广泛应用于建筑、工程和航空航天领域。
它由三根相互垂直的轴构成,具有高度的稳定性和强度,可承受复杂的力学载荷。
本文将介绍三轴桁架的设计原理、应用领域以及其在工程中的重要性。
我们来了解一下三轴桁架的设计原理。
三轴桁架是由若干根直径相等、长度相等的杆件组成的。
这些杆件按照一定的角度和长度连接在一起,形成一个稳定的结构体系。
在三轴桁架中,每根杆件都承受着力的作用,通过相互之间的受力平衡,使整个结构保持稳定。
三轴桁架的设计灵活多样,可以根据实际需要进行调整。
设计师可以通过改变杆件的长度、角度和连接方式来满足不同的工程需求。
同时,三轴桁架的设计还需要考虑材料的选择和结构的稳定性,确保其能够承受各种力学载荷。
三轴桁架的应用领域非常广泛。
在建筑领域,三轴桁架常用于搭建大跨度的屋顶结构,如体育馆、会展中心等。
它能够提供足够的支撑力,并且具有较高的空间利用率。
在工程领域,三轴桁架常用于搭建临时性的支撑结构,如施工脚手架、桥梁施工支架等。
它能够提供稳定的支撑,为工程施工提供便利。
在航空航天领域,三轴桁架常用于飞机和火箭的机身结构,能够提供足够的强度和刚度,保证飞行的安全性。
三轴桁架在工程中的重要性不可忽视。
它具有高度的稳定性和强度,能够承受复杂的力学载荷。
同时,三轴桁架的设计灵活多样,能够满足不同的工程需求。
它在建筑、工程和航空航天领域都发挥着重要的作用。
合理设计和应用三轴桁架能够提高工程的质量和效率,减少材料的使用,降低成本。
三轴桁架是一种常见的结构设计,广泛应用于建筑、工程和航空航天领域。
它通过三根相互垂直的轴构成,具有高度的稳定性和强度。
三轴桁架的设计灵活多样,可以根据实际需要进行调整。
它在建筑、工程和航空航天领域都发挥着重要的作用,能够提供稳定的支撑和强度保证。
合理设计和应用三轴桁架能够提高工程的质量和效率,推动相关领域的发展。
图文详解伸臂桁架与腰桁架
图文详解伸臂桁架与腰桁架在外框柱与核心筒之间设置伸臂桁架的主要目的是减小结构侧移,它的机理是提高水平荷载作用下的外框架柱的轴力,从而增加框架承担的倾覆力矩,同时减小了内核心筒的倾覆力矩。
它对结构形成的反弯作用可以有效的增大结构的抗侧刚度,减小结构侧移动,一般情况下也会减小外框架的剪力分担比。
对于框架核心筒结构,设置伸臂桁架后减小侧移显著,而对于筒中筒结构而言,减小侧移的效果很小。
在结构周围设置腰桁架的作用作用是使各框架柱承受的轴力均匀变化,因此也可以达到提高外框架抗倾覆力矩的能力以及减小侧移的目的,但是不如伸臂有效。
在框架核心筒结构中,视外框柱的数量和布置方式,可以设置腰桁架,也可以不设置;由于腰桁架可以减小框筒结构的剪力滞后,因而在筒中筒结构中,腰桁架可以加大结构的整体刚度并减小其侧移。
结构可以根据具体情况,仅设置一种或者同时设置以上两种构件,设置了伸臂桁架、腰桁架的楼层可统称为加强层。
设置加强层后,造成结构沿高度方向刚度不均匀,刚度突变带来内力突变,因此在加强层及上下相邻层构件的内力会出现较大的改变,设置是方向性的改变,加强层的刚度越大,内力突变的程度也越大,这种突变会产生薄弱层效应。
因此,在结构抗风设计中,采用伸臂桁架、腰桁架的效果很好,它可以采用刚度大的加强层,以形成较大的抗侧刚度。
而在抗震设计的结构中,应尽可能的减小出现薄弱层形成的不利效应,因此可以不设置加强层时,就不必设置加强层,需要设置加强层时,也不宜采用刚度过大的伸臂和腰桁架,以避免加强层范围出现过大的刚度突变。
沿高度可以布置一个楼层(一道)或多个楼层(多道)的伸臂桁架和腰桁架。
研究表明,多道伸臂桁架减小侧移的效果优于一道伸臂桁架,但是伸臂结构数量与减小侧移并不成正比,当设置四道以上的伸臂桁架时,减小侧移的效果就不再明显。
伸臂设置的位置不同,其减小侧移的效果也不相同,研究表明,当沿高度仅设置一道伸臂桁架时,可以设置在结构的2/3H处减小侧移效果最好,而要减小内筒倾覆弯矩则越靠下越好;设置两道伸臂桁架时,其中一道可设置在0.7H高度处,另一道大约设置在0.5H处。
桁架机械手结构和设计分析
桁架机械手结构和设计分析桁架机械手是一种能够执行复杂运动的多自由度机器人,其结构和设计至关重要。
一般而言,桁架机械手主要由三个部分组成:基座、臂和端效应器。
其中基座是机器人的主体部分,负责提供机器人的支撑力和稳定性;臂是机器人的伸缩部分,负责提供机器人的工作半径;端效应器是机器人进行工作的部分,常常与被操作对象贴合在一起。
对于机械手的结构和设计,主要考虑以下几个方面:1. 动力和控制系统桁架机械手需要有强大的动力和控制系统来实现其复杂的运动和操作。
动力系统一般由驱动系统和控制系统组成,用来提供机器人的动能和稳定性。
控制系统则用来控制机器人的运动轨迹、速度和力度等参数,其精度和可靠性直接影响机器人的工作效率和安全性。
2. 结构强度和刚度桁架机械手需要具有足够的结构强度和刚度,以支持机器人在工作中的各种运动和操作。
一般来说,机器人的结构强度和刚度主要由材料和结构布局来决定,材料的选择应该根据机器人的负荷和工作环境来决定,而结构布局则要保证机器人的各个部分结构紧密、连接稳固,以避免机器人在工作时产生过多的振动和变形。
3. 运动自由度和灵活性桁架机械手的设计必须考虑到机器人的运动自由度和灵活性。
一般来说,机器人的自由度越高,其可以执行的操作就越复杂,但其结构和控制系统也越复杂。
同时,机器人的灵活性也是非常重要的,它需要具有足够的柔性和适应性,以便在工作中适应各种不同的条件和要求。
4. 外形设计和人机交互最后,桁架机械手的设计还需要考虑其外形设计和人机交互。
外形设计要保证机器人在工作场景中具有较好的可视性和美观性,而人机交互则需要考虑到机器人的操控和监测操作,要保证其安全可靠、易于操作和方便维护。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
桁架内力分析
桁架结构(truss structure)
横梁
主桁架
纵梁
2.5.1 概述
一、桁架的组成和特点 桁架是由若干杆件在每杆两端用铰联 结而成的结构。当各杆的轴线都在同一 平面内,且外力也在这个平面内时,称 为平面桁架。在平面桁架的计算简图中, 通常引用如下假定:
(1)各结点都是无摩擦的理想铰。
对称结构受对称荷载作用, 内力和反 力均为对称:
E 点无荷载,红色杆不受力
FAy
FBy
对称结构受反对称荷载作用, 内力和 反力均为反对称:
垂直对称轴的杆不受力
FAy
FBy
对称轴处的杆不受力
2.5.4
截
面
法
截取桁架的某一局部作为隔离体,由 平面任意力系的平衡方程即可求得未知的 轴力。 对于平面桁架,由于平面任意力系的 独立平衡方程数为3,因此所截断的杆件数 一般不宜超过3
在用结点法进行计算时,注意以下三点, 可使计算过程得到简化。
1. 对称性的利用 如果结构的杆件轴线对某轴(空间桁架为 某面)对称,结构的支座也对同一条轴对 称的静定结构,则该结构称为对称结构 (symmetrical structure)。 对称结构在对称或反对称的荷载作用下, 结构的内力和变形(也称为反应)必然对 称或反对称,这称为对称性(symmetry)。
2.5.5
组合结构的计算
8 kN
I
组合结构——由链杆和受弯杆件混合组成的结构。 12 G E 4m
I
ቤተ መጻሕፍቲ ባይዱ
A FN图(kN) 5 kN
4 -6 F 6 12
M图(kN . m)
B 2m 4m 3 kN
C -6
D 4m 2m 2m
一般情况下应先计算链杆的轴力 取隔离体时宜尽量避免截断受弯杆件
0
-33 34.8 19 -8
-33
19
0
-33 34.8 19 -8
-33 -5.4 37.5 19
-8 kN
YDE CD 0.75 X DE CE 0.5
0
-33 34.8 19 -8
-33
-33 -8
-33 34.8 19
-5.4 -5.4 37.5
小结:
• 以结点作为平衡对象,结点承受汇交力 系作用。 • 按与“组成顺序相反”的原则,逐次建 立各结点的平衡方程,则桁架各结点未 知内力数目一定不超过独立平衡方程数。 • 由结点平衡方程求得桁架各杆内力。
2.5.2 桁架结构的分类:
一、根据维数分类 1. 平面(二维)桁架(plane truss) ——所有组成桁架的杆件以及荷载的作 用线都在同一平面内
2. 空间(三维)桁架(space truss) ——组成桁架的杆件不都在同一平面内
二、按外型分类 1. 平行弦桁架 2. 三角形桁架
3. 抛物线桁架
FN2 =3.33FP
FN3 =-0.50FP
截面单杆 截面法取出的隔离体,不管其上 有几个轴力,如果某杆的轴力可以通过列一 个平衡方程求得,则此杆称为截面单杆。 可能的截面单杆通常有相交型和平行型两种 形式。
小结: 熟练掌握 计算桁架内力的基 本方法: 结点法和截面法 采取最简捷的途径计算桁架内力 能够分析和计算组合结构的内力 尤其注意区分二力杆和非二力杆
4. 梯形桁架
三、按几何组成分类 简单桁架 (simple truss)
联合桁架 (combined truss)
复杂桁架 (complicated truss)
四、按受力特点分类:
1. 梁式桁架
2. 拱式桁架
五、计算方法 1.结点法 2.截面法 3.联合法
六、结构计算的技巧应用 在用结点法进行计算时,注意以下三点,可 使计算过程得到简化。 1.相似三角形的应用 在计算中,经常需要把斜杆的内力S分解为水 平分力X和竖向分力Y。设斜杆的长度为L,其水 平和竖向投影的长度分别为Lx和Ly,则由比例关 系可知:
试用截面法求图示桁架指定杆件的内力。
n m 1 3 A 2.5FP FP 4 n2m FP FP B FP FP 6m
6 5m
2.5FP
FN1 =-3.75FP FN4=0.65FP
FN2 =3.33FP FN3 =-0.50FP
试用截面法求图示桁架指定杆件的内力。
FN1 =-3.75FP
FN4=0.65FP
(2)各杆轴线绝对平直,并通过铰的 中心。 (3)荷载和支座反力作用在结点上。 二、桁架的各部名称
弦杆 下弦杆
上弦杆
斜杆
竖杆
腹杆 桁高
d 节间 跨度
• 经抽象简化后,杆轴交于一点,且“只 受结点荷载作用的直杆、铰结体系”的 工程结构. • 特性:只有轴力,而没有弯矩和剪力。 轴力又称为主内力(primary internal forces)。
FN=0
FN=0
判断结构中的零杆
FP FP FP/2
FP/ 2
FP
2.5.3
结点法(nodal analysis method)
以只有一个结点的隔离体为研究对象,用 汇交力系的平衡方程求解各杆的内力的方法 例1. 求以下桁架各杆的内力
0
-33 34.8 19 19
YNAD CD 0.5 X NAD AC 1.5
Y
S
α
X L Ly
α
S
Lx
S X Y L Lx Ly
2. 结点单杆 以结点为平衡对象能仅用一个方程 求出内力的杆件,称为结点单杆(nodal single bar)。 利用这个概念,根据荷载状况可判断此杆内力是 否为零。 3. 零杆 零内力杆简称零杆(zero bar)。
FN2=0
FN1=0