山西省阳泉市七年级数学下册5.3.1平行线的性质导学案(新版)新人教版

合集下载

七年级数学下册 5.3.1 平行线性质教案 (新版)新人教版-(新版)新人教版初中七年级下册数学教案

七年级数学下册 5.3.1 平行线性质教案 (新版)新人教版-(新版)新人教版初中七年级下册数学教案

平行线的性质导学目标1.掌握平行线的性质.2.会用平行线的性质进行推理和计算.教学重点平行线的性质教学难点平行线的性质进行推理和计算.课型新授课课时1课时教学过程环节教学内容教学任务教师活动学生活动预见性问题及对策复习1.如图1,添加一个条件,使直线并说出理由。

巡视指导,抽查复习习情况。

总结,引出新课。

独立复习思考然后举手发言,问题:学生回答的可能不够准确预习平行性质阅读教材19页-20页,回答下列问题:问题1、画出直线的平行线,然后画一条直线与这两条平行线相交,结合画图过程,找一对同位角量一量它们的数量关系是怎样的?由此你能得出什么样的结论?先让学生依案自学学案中的问题1和2,观察学生对图形的理解程度对学生存在的个别问题及时进行点拨。

收集各组的共性或生成性问题,展示时精讲。

学生先依案自学,自学完毕后由组长把本组的疑难问题反馈给老师问题:隐含没有挖掘彻底策略:学生之间可以互相补充研习性质的应用问题3、如图所示,已知平行线、被直线所截:(1)从∠1=110°,可以知道∠2是多少度?为什么?板书课题深入各组和同学们一起探讨尤其要帮助学困生或组,辅助他们学习在操作中他们有可能会比学优生动手能力强,由此可以表扬他们激发他们的学习兴趣,也可以此来鞭策学优生初步感知学习目标。

观察,讨论和交流。

看教材动手做:先自主预习然后组内交流学习成果。

问题:符号语言有可能书写的不规X策略:教师板书规X符号语言精习1、知识梳理:平行线的性质有哪些?梳理总结证明边相等的方法有哪些对照课标要求进一步明确、落实重要概念。

完成学案中的反馈问题,梳理总结,落实知识,查漏补缺。

问题:隐含没有挖掘彻底时习书后习题。

七年级初一数学下册5.3.1平行线的性质第1课时导学案新版新人教版2

七年级初一数学下册5.3.1平行线的性质第1课时导学案新版新人教版2

平行线的性质(第一课时)一、目标导学1.使学生理解平行线的性质,能知道平行线的性质与判定的区别,能初步利用平行线的性质进行有关计算2. 使学生体会观察、猜想、实验、归纳、验证的研究问题方法重点:平行线的性质难点:平行线的性质及性质与判定的区别二、自学质疑活动1 知识准备如图5-3-20所示,请写出能够得到直线A B∥CD的所有直接条件.图5-3-20活动2 教材导学1.画图探究,归纳猜想任意画出两条平行线(a∥b),画一条截线(c)与这两条平行线相交,标出8个角.问题一:指出图中的同位角,并量度这些角,把结果记录下来.学生活动:画图——量度——记录——猜想.问题二:再画出一条截线d,看你的猜想结论是否仍然成立?2.引申思考,培养创新问题三:请判断两直线平行,内错角、同旁内角各有什么关系?学生活动:独立探究——小组讨论——成果展示.问题四:平行线有哪些性质?知识点平行线的性质性质1:两直线平行,同位角__ __.性质2:两直线平行,内错角__ __.性质3:两直线平行,同旁内角__ __.三、互助探究例1 如图5-3-21,AB∥CD,AD∥BC,问∠A和∠C,∠B和∠D有怎样的大小关系?为什么?图5-3-21 图5-3-24探究问题二平行线性质的实际应用例2 如图5-3-24,C处在A处的南偏东15°方向上,C处在B处的北偏东80°方向上,则∠ACB 的度数是( )A.40°B.75°C.85°D.140°四.展示点评(学生展示成果,学生点评,教师引导)五、达标巩固(1、2、3、4题是必做题,5、6题是选做题)1.如图5-3-26,直线a∥b,直线c分别与a,b相交,若∠1=50°,则∠2的度数为( ) A.150° B.130° C.100° D.50°图5-3-26 图5-3-28 图5-3-29 2.如图5-3-28,已知∠1=70°,如果CD∥BE,那么∠B的度数为( )A.70° B.100° C.110° D.120°3.如图5-3-29,AD∥BC,则一定有( )A.∠1=∠2 B.∠3=∠4C.∠1=∠2,∠3=∠4 D.∠2=∠34.[永州中考] 如图5-3-31,若AB∥CD,∠1=130°,则∠2=________.图5-3-31 图5-3-40 5.如图5-3-40,已知AB∥CD,AC∥BD,试问∠1与∠2相等吗?为什么?6.已知:如图5-3-41,AD∥EF,AB∥DG.说明∠1=∠2的理由.图5-3-40 六、归结反思通过学习这节课,我的收获和困惑分别是:七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是()A.12 B.9 C.4 D.3【答案】A【解析】摸到红球的频率稳定在25%,即3a=25%,即可即解得a的值【详解】解:∵摸到红球的频率稳定在25%,∴3a=25%,解得:a=1.故本题选A.【点睛】本题考查用频率估计概率,熟记公式正确计算是本题的解题关键2.如图,正六边形ABCDEF关于直线l的轴对称图形是六边形A′B′C′D′E′F′,下列判断错误的是()A.AB=A′B′B.BC∥B′C′C.直线l⊥BB′D.∠A′=120°【答案】B【解析】试题分析:因为正六边形ABCDEF关于直线l的轴对称图形是六边形A/B/C/D/E/F/,所以AB=A/B/,直线l⊥BB/,所以A、C正确,又六边形A/B/C/D/E/F/是正六边形,所以∠A/=120°,所以D正确,故选B.考点:轴对称的性质、正六边形的性质3.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,若添加下列一个条件后,仍然不能证明△ABC≌△DEF,则这个条件是( )A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF【答案】D【解析】解:∵∠B=∠DEF ,AB=DE ,∴添加∠A=∠D ,利用ASA 可得△ABC ≌△DEF ;∴添加BC=EF ,利用SAS 可得△ABC ≌△DEF ;∴添加∠ACB=∠F ,利用AAS 可得△ABC ≌△DEF ;故选D .点睛:本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS 、ASA 、SAS 、AAS 和HL 是解题的关键.4.据5月23日“人民日报”微信公众号文章介绍,中国兵器工业集团豫西集团中南钻石公司推出大颗粒“首饰用钻石”,打破了国外垄断,使我国在钻石饰品主流领域领跑全球,钻石、珠宝等宝石的质量单位是克拉(ct ),1克拉为100分,已知1克拉0.2=克,则“1分”用科学计数法表示正确的是( )A .20.210-⨯克B .2210-⨯克C .3210-⨯ 克D .4210-⨯克【答案】C 【解析】利用科学计数法即可解答.【详解】解:已知1克拉为100分,已知1克拉=0.2克,则一分=0.01克拉=0.002克= 2×10-3克, 故选C.【点睛】本题考查科学计数法,掌握计算方法是解题关键.5.4的平方根是( )A .2B .±2C .16D .±16【答案】B【解析】根据平方根的意义求解即可,正数a 有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.【详解】∵(±2)2=4, ∴4的平方根是±2,即4=2±±.故选B.【点睛】本题考查了平方根的意义,如果个一个数x 的平方等于a ,即x 2=a,那么这个数x 叫做a 的平方根. 6.如图,AD 是ABC 的角平分线,点O 在AD 上,且OE BC ⊥于点E ,60BAC ∠=,80C ∠=,则EOD ∠的度数为( )A .20B .30C .10D .15【答案】A 【解析】∵∠BAC=60°,∠C=80°,∴∠B=40°.又∵AD 是∠BAC 的角平分线,∴∠BAD=12∠BAC=30°, ∴∠ADE=70°,又∵OE ⊥BC ,∴∠EOD=20°.故选A .7.不等式2(x-1)≥4的解集在数轴上表示为( )A .B .C .D . 【答案】C【解析】首先求出不等式的解集,再根据解集画数轴即可.【详解】去括号得:2x ﹣2≥4,移项得:2x≥4+2,合并同类项得:2x≥6,系数化为1,得:x≥1. 故选C .【点睛】本题考查了解一元一次不等式和在数轴上表示解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含等于解集为实心点,不含等于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.8.如图,已知AB∥CD,AD平分∠BAE,∠D=38°,则∠AEC的度数是A.76°B.38°C.19°D.72°【答案】A【解析】根据平行线的性质得出∠CEA=∠EAB,∠D=∠BAD=38°,求出∠EAB,即可求出∠AEC.【详解】解:∵CD∥AB,∴∠CEA=∠EAB,∠D=∠BAD=38°,∵AD平分∠BAE,∴∠EAB=2∠DAB=76°,∴∠AEC=∠EAB=76°,故选:A.【点睛】本题考查了平行线的性质和角平分线性质,关键是求出∠EAB的度数,题目比较好,难度适中.9.如果分式的值为零,那么等于( )A.B.C.D.【答案】A【解析】根据分式值为零的条件(分母不等于零,分子等于零)计算即可.【详解】解:故选:A【点睛】本题考查了分式值为0的条件,当分式满足分子等于0且分母不等于0时,分式的值为0,分母不等于0这一条件是保证分式有意义的前提在计算时经常被忽视.10.若分式23x x -+有意义,则x 的取值范围是( ) A .x≠﹣3B .x≥﹣3C .x≠﹣3且 x≠2D .x≠2 【答案】A【解析】直接利用分式的定义得出x+1≠0,进而得出答案.【详解】∵分式23x x -+有意义,∴x+1≠0,解得:x≠﹣1. 故选A .【点睛】本题考查了分式有意义的条件,正确掌握分式的定义是解题的关键.二、填空题题11.长、宽分别为a 、b 的长方形,它的周长为16,面积为10,则22a b ab +的值为____.【答案】80【解析】∵长、宽分别为a 、b 的矩形,它的周长为16,面积为10,∴a+b=16÷2=8,ab=10,∴a²b+ab²=ab(a+b)=10×8=80,故答案为80.12.如图(1),在三角形ABC 中,38A ∠=,72C ∠=,BC 边绕点C 按逆时针方向旋转一周回到原来的位置(即旋转角0360α≤≤),在旋转过程中(图2),当'//CB AB 时,旋转角为________度;当CB 所在直线垂直于AB 时,旋转角为__________度.【答案】70或250 160或1【解析】在△ABC 中,根据三角形的内角和得到∠B 的度数,如图1,当CB'∥AB 时,根据平行线的性质即可得到结论;如图2,当CB'⊥AB 时根据垂直的定义和周角的定义即可得到结论.【详解】∵在△ABC 中,∠A=38°,∠C=72°,∴∠B=180°﹣38°﹣72°=70°,如图1,当CB'∥AB 时,旋转角=∠B=70°,当CB ″∥AB 时,∠B ″CA=∠A=38°,∴旋转角=360°﹣38°﹣72°=250°. 综上所述:当CB'∥AB 时,旋转角为70°或250°;如图2,当CB'⊥AB时,∠BCB″=90°﹣70°=20°,∴旋转角=180°﹣20°=160°,当CB″⊥AB时,旋转角=180°+160°=1°.综上所述:当CB'⊥AB时,旋转角为160°或1°.故答案为:70或250;160或1.【点睛】本题考查了三角形的内角和定理,平行线的性质,正确的画出图形是解题的关键.13.小亮解方程组2212x yx y+=⎧⎨-=⎩●的解为5xy★=⎧⎨=⎩,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●和★的值为__________.【答案】8和2-【解析】把x=5代入方程组中第二个方程求出y的值,即为“★”表示的数,再将x与y的值代入第一个方程求出“●”表示的数即可.【详解】解:把x=5代入1x-y=11中,得:y=-1,把x=5,y=-1代入得:1x+y=10-1=8,则“●”“★”表示的数分别为8,-1.故答案为:8,-1.【点睛】此题考查了二元一次方程组的解,能使方程组中每个方程的左右两边相等的未知数的值即是方程组的解.解题的关键是要知道两个方程组之间解的关系.14.小明在拼图时,发现8个样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm的小正方形,则每个小长方形的面积为__________2mm.【答案】2375mm【解析】设小长方形的长是xmm ,宽是ymm .根据图(1),知长的3倍=宽的5倍,即3x=5y ;根据图(2),知宽的2倍-长=5,即2y+x=5,建立方程组.【详解】设小长方形的长是xmm ,宽是ymm ,根据题意得:3525x y y x =⎧⎨-=⎩,解得2515x y =⎧⎨=⎩ ∴小长方形的面积为:22515375xy mm 【点睛】此题的关键是能够分别从每个图形中获得信息,建立方程.15.如图,//,AD BC ABD ∆的面积是5,AOD ∆的面积是2,那么COD ∆的面积是_________.【答案】1【解析】观察图形可知,△ABD 和△ACD 同底同高,所以S △ACD =S △ABD =5,又S △COD =S △ACD -S △AOD ,代入即可求出答案,【详解】解:观察图形可知,△ABD 和△ACD 同底同高,∴S △ACD =S △ABD =5,∴S △COD =S △ACD -S △AOD =5-2=1.故答案为:1.【点睛】本题考查三角形的面积,难度不大,关键是观察出△ABD 和△ACD 同底同高,它们的面积相等. 16.如果不等式3x -m≤0有3个正整数解,则 m 的取值范围是______.【答案】9≤m <12.【解析】先解不等式,再结合不等式的正整数解可得关于m 的不等式,解之可得.【详解】解3x-m≤0得x≤m 3,∵不等式3x-m≤0有3个正整数解,∴不等式的正整数解为1、2、3,∴3≤m 3<4, 解得:9≤m <12.故答案为:9≤m <12.【点睛】本题考查了不等式的正整数解,解题的关键是注意能根据整数解的具体数值,找出不等式解集的具体取值范围.17.将一条两边沿互相平行的纸带按如图折叠,设∠1=40°,则∠α的度数是___.【答案】70°【解析】先标注各个点以及角,由平行线的性质可知∠ABC=∠1,由折叠的性质可知∠CBD+∠ABD=180°,列方程求解.【详解】作图如下,由平行线的性质,得∠ABC=∠1=40°,由折叠的性质,得∠CBD+∠ABD=180°,即α+α+∠ABC=180°,2α+40°=180°,解得α=70°.故答案为:70°.【点睛】本题考查翻折变换(折叠问题),解题的关键是掌握平行线的性质和折叠的性质.三、解答题18.如图,CE 平分ACD ∠,F 为CA 延长线上一点,//FG CE 交AB 于点G ,100ACD ∠=︒,20AGF ∠=︒,求B 的度数.【答案】30°【解析】根据角平分线的定义求出∠ACE ,再根据两直线平行,内错角相等可得∠AFG=∠ACE ,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式求出∠BAC ,再根据邻补角的定义求出∠ACB ,然后利用三角形的内角和定理列式计算即可得解.【详解】CE 平分ACD ∠,111005022ACE ACD ∴∠=⨯∠=⨯︒=︒, //FG CE ,50AFG ACE ∴∠=∠=︒,在AFG ∆中,502070BAC AFG AGF ∠=∠+∠=︒+︒=︒,又180********ACB ACD ∠=︒-∠=︒-︒=︒,180180708030B BAC ACB ∴∠=︒-∠-∠=︒-︒-︒=︒.【点睛】本题考查了三角形的内角和定理,角平分线的定义,平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图,理清图中各角度之间的关系是解题的关键. 19.为了更好的治理西流湖水质,保护环境,市治污公司决定购买 10 台污水处理设备.现有 A 、B 两种型号的设备,其中每台的价格,月处理污水量如下表:A 型B 型 价格(万元/台) a b处理污水量(吨/月) 240200 经调查:购买一台 A 型设备比购买一台 B 型设备多 2 万元,购买 2 台 A 型设备比购买 3 台 B 型设备少 6 万元.(1)求 a ,b 的值;(2)经预算:市治污公司购买污水处理设备的资金不超过 105 万元,你认为该公司 有哪几种购买方案; (3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于 2040 吨,为了节 约资金,请你为治污公司设计一种最省钱的购买方案.【答案】(1)1210ab==⎧⎨⎩;(2)①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台. ;(3)为了节约资金,应选购A型设备1台,B型设备9台.【解析】(1)根据“购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B 型设备少6万元”即可列出方程组,继而进行求解;(2)可设购买污水处理设备A型设备x台,B型设备(10-x)台,则有12x+10(10-x)≤105,解之确定x的值,即可确定方案;(3)因为每月要求处理流溪河两岸的污水量不低于2040吨,所以有240x+200(10-x)≥2040,解之即可由x的值确定方案,然后进行比较,作出选择.【详解】(1)根据题意得:2326a bb a-=-=⎧⎨⎩,∴1210ab==⎧⎨⎩;(2)设购买污水处理设备A型设备x台,B型设备(10−x)台,则:12x+10(10−x)⩽105,∴x⩽2.5,∵x取非负整数,∴x=0,1,2,∴有三种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.(3)由题意:240x+200(10−x)⩾2040,∴x⩾1,又∵x⩽2.5,x取非负整数,∴x为1,2.当x=1时,购买资金为:12×1+10×9=102(万元),当x=2时,购买资金为:12×2+10×8=104(万元),∴为了节约资金,应选购A型设备1台,B型设备9台.【点睛】此题考查一元一次不等式的应用,二元一次方程组的应用,解题关键在于理解题意列出方程. 20.下图表示购买某种商品的个数与付款数之间的关系(1)根据图形完成下列表格购买商品个数(个) 2 4 6 7付款数(元)(2)请写出表示付款数y(元)与购买这种商品的个数x(个)之间的关系式.【答案】(1)4;8;12;14;(2)付款数y(元)与购买这种商品的个数x(个)之间的关系式为y=2x.【解析】根据折线统计图即可写得答案根据题意可得关系式为y=kx,代入x与y的值即可解得k为2,及关系式为y=2x.【详解】(1)当购买商品个数为2个时,付款数为4元;当购买商品个数为4个时,付款数为8元;当购买商品个数为6个时,付款数为12元;当购买商品个数为7个时,付款数为14元;故答案为:4;8;12;14;(2)设付款数y(元)与购买这种商品的个数x(个)之间的关系式为y=kx,根据题意得:4=2k,解得k=2,∴付款数y(元)与购买这种商品的个数x(个)之间的关系式为y=2x.【点睛】本题考查一元一次方程,根据题意列出关系式并解出k的值是解题的关键.21.完成下面(1)(2)的画图,回答问题(3)(4),如图,P是∠AOB的边OA上一点.(1)过点P画OB的垂线,垂足为H;(2)过点P画OA的垂线,交OB于点C;(3)点O到直线PC的距离是线段_______的长度;(4)把线段OP、PH和OC按从小到大用“<”连接:_________;理由是_____________.【答案】(1)见解析;(2)见解析;(3)OP;(4)PH<OP<OC,垂线段最短.【解析】(1)(2)根据要求画垂线即可;(3)根据点到直线的距离的定义解答;(4)根据连接直线外一点与直线上各点的线段中,垂线段最短,可得PH<OP,OP<OC,问题得解.【详解】解:(1)如图所示,PH即为所求;(2)如图所示,CP即为所求;(3)点O到直线PC的距离是线段OP的长度,故答案为:OP;(4)∵连接直线外一点与直线上各点的线段中,垂线段最短,∴PH<OP,OP<OC,∴PH<OP<OC.理由是:垂线段最短,故答案为:PH<OP<OC,垂线段最短.【点睛】本题考查了垂线段最短:连接直线外一点与直线上各点的线段中,垂线段最短.也考查了基本作图.22.如图,已知∠BAD+∠ADC=180°,AE平分∠BAD,CD与AE相交于F,DG交BC的,延长线于G,∠CFE=∠AEB(1)若∠B=87°,求∠DCG的度数;(2)AD与BC是什么位置关系?并说明理由;(3)若∠DAB=α,∠DGC=β,直接写出α、β满足什么数量关系时,AE∥DG.【答案】(1)∠DCG=87°;(2)AD∥BC,理由见解析;(3)当α=2β时,AE∥DG.理由见解析.【解析】(1)根据平行线的判定定理得到AB∥CD,由平行线的性质得到∠DCG=∠B=87°;(2)由平行线的性质得到∠BAF=∠CFE,根据角平分线的定义得到∠BAF=∠FAD,等量代换得到∠DAF=∠CFE,∠DAF=∠AEB,由平行线的判定即可得到结论;(3)根据平行线的判定定理得到∠DAF=∠AEB,根据角平分线的定义得到∠DAB=2∠DAF=2∠AEB,然后根据平行线的性质即可得到结论.【详解】(1)∵∠BAD+∠ADC=180°,∴AB∥CD,∴∠DCG=∠B=87°;(2)AD∥BC,理由如下:∵AB∥CD,∴∠BAF=∠CFE,又∵AE平分∠BAD,∴∠BAF=∠FAD,∴∠DAF=∠CFE,而∠CFE=∠AEB,∴∠DAF=∠AEB,∴AD∥BC;(3)当α=2β时,AE∥DG.理由:若AE∥DG,则∠G=∠AEB=∠DAE=∠BAD,即当∠BAD=2∠G时,AE∥DG.【点睛】本题考查了平行线的判定和性质,角平分线的定义,熟练掌握平行线的判定和性质是解题的关键,属于中考常考题型.23.先化简,再求值:x(x-3y)+(2y+y)(2x-y)-(2x-y)(x-y),其中x=﹣2,y=﹣1 2【答案】1112【解析】原式利用单项式乘以多项式,平方差公式计算得到结果,将x 与y 的值代入计算即可求出值.【详解】)原式=x 2−3xy+4x 2−y 2−2x 2+2xy+xy−y 2=3x 2−2y 2,当x=−2,y=−12时,原式=12−12=1112. 故答案为:1112 【点睛】此题考查整式的混合运算—化简求值,掌握运算法则是解题关键24.某体育用品商店购进乒乓球拍和羽毛球拍进行销售,已知羽毛球拍比乒乓球拍每副进价高20元,用10000元购进羽毛球拍与用8000元购进乒乓球拍的数量相等.(1)求每副乒乓球拍、羽毛球拍的进价各是多少元?(2)该体育用品商店计划用不超过8840元购进乒乓球拍、羽毛球拍共100副进行销售,且乒乓球拍的进货量不超过60副,请求出该商店有几种进货方式?【答案】(1)每副乒乓球拍、羽毛球拍进价分别为80元、100元;(2)共有3种进货方式,详见解析.【解析】(1)可设购买1副乒乓球拍需x 元,根据用10000元购进羽毛球拍与用8000元购进乒乓球拍的数量相等,列出分式方程,解方程检验即可.(2)可设购买了乒乓球拍y 副,根据该体育用品商店计划用不超过8840元购进乒乓球拍、羽毛球拍共100副,列出不等式求解,再根据乒乓球拍的进货量不超过60副取公共部分的整数,可知共有3种.【详解】(1)设每副乒乓球拍进价为x 元,由题意得:10000800020=+x x解得:80x =,经检验80x =是原方程的解,且符合题意,此时20100x +=.答:每副乒乓球拍、羽毛球拍进价分别为80元、100元.(2)设购进乒乓球拍y 副,由题意得:80100(100)8840+-≤y y解得:58≥y ,因为60,≤y 所以5860≤≤y ,所以58,59,60 y .故共有3种进货方式:①购买58副乒乓球拍,42副羽毛球拍;②购买59副乒乓球拍,41副羽毛球拍;③购买60副乒乓球拍,40副羽毛球拍.【点睛】本题考查了分式方程的应用及一元一次不等式组的应用,解题的关键是仔细审题,找到等量关系及不等关系,列出方程与不等式组,难度一般.25.(1)如图(1),在△ABC 中,∠A=62°,∠ABD=20°,∠ACD=35°,求∠BDC 的度数.(2)图(1)所示的图形中,有点像我们常见的学习用品--圆规.我们不妨把这样图形叫做“规形图”,观察“规形图”图(2),试探究∠BDC 与∠A 、∠B 、∠C 之间的数量关系,并说明理由.(3)请你直接利用以上结论,解决以下问题:①如图(3),把一块三角尺XYZ 放置在△ABC 上,使三角尺的两条直角边XY 、XZ 恰好经过点B 、C ,若∠A=42°,则∠ABX+∠ACX=°.②如图(4),DC 平分∠ADB ,EC 平分∠AEB ,若∠DAE=60°,∠DBE=140°,求∠DCE 的度数. ③如图(5),∠ABD ,∠ACD 的10等分线相交于点G 1、G 2…、G 9,若∠BDC=140°,∠BG 1C=68°,求∠A 的度数.【答案】(1)117°;(2)∠BDC=∠A+∠B+∠C ;;(3)①48°;②100°;③60°. 【解析】(1)先根据三角形内角和定理求出∠ABC+∠ACB 的度数,再由∠1=20°,∠2=35°求出∠DBC+∠DCB 的度数,由三角形内角和定理即可得出结论;(2)首先连接AD 并延长至点F ,然后根据外角的性质,即可判断出∠BDC=∠A+∠B+∠C . (3)①由(1)可得∠ABX+∠ACX+∠A=∠BXC ,然后根据∠A=42°,∠BXC=90°,求出∠ABX+∠ACX 的值是多少即可.②由(1)可得∠DBE=∠DAE+∠ADB+∠AEB ,再根据∠DAE=60°,∠DBE=140°,求出∠ADB+∠AEB的值是多少;然后根据∠DCE=12(∠ADB+∠AEB)+∠DAE,求出∠DCE的度数是多少即可.③根据∠BG1C=110(∠ABD+∠ACD)+∠A,∠BG1C=68°,设∠A为x°,可得∠ABD+∠ACD=140°-x°,解方程,求出x的值,即可判断出∠A的度数是多少.【详解】(1)∵在△ABC中,∠A=62°,∴∠ABC+∠ACB=180°-62°=118°.∵∠1=20°,∠2=35°,∴∠DBC+∠DCB=∠ABC+∠ACB-∠1-∠2=118°-20°-35°=63°.∴∠BDC=180°-(∠DBC+∠DCB)=180°-63°=117°;(2)如图2,连接AD并延长至点F,根据外角的性质,可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,又∵∠BDC=∠BDF+∠CDF,∠BAC=∠BAD+∠CAD,∴∠BDC=∠A+∠B+∠C;(3)①由(1),可得∠ABX+∠ACX+∠A=∠BXC,∵∠A=42°,∠BXC=90°,∴∠ABX+∠ACX=90°-42°=48°;故答案为:48°;②由(1),可得∠DBE=∠DAE+∠ADB+∠AEB,∴∠ADB+∠AEB=∠DBE-∠DAE=140°-60°=80°,∴12(∠ADB+∠AEB)=80°÷2=40°,∴∠DCE=12(∠ADB+∠AEB)+∠DAE=40°+60°=100°;③∠BG1C=110(∠ABD+∠ACD)+∠A,∵∠BG1C=68°,∴设∠A为x°,∵∠ABD+∠ACD=140°-x°∴110(140-x)+x=70,∴14-110x+x=68,解得x=60即∠A的度数为60°.【点睛】(1)此题主要考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°.(2)此题还考查了三角形的外角的性质,要熟练掌握,解答此题的关键是要明确:三角形的外角等于和它不相邻的两个内角的和.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,直线AB,CD被直线EF,GH所截,有下列结论:①若∠l1=∠2,则AB∥CD;②若∠1=∠2,则EF∥GH;③若∠1=∠3,则AB∥CD;④若∠1=∠3,则EF∥GH.其中,正确的个数是()A.1个B.2个C.3个D.4个【答案】B【解析】同位角相等,两直线平行,据此进行判断即可.【详解】解:直线AB,CD被直线EF,GH所截,若∠1=∠2,则EF∥GH,故②正确;若∠l=∠3,则AB∥CD,故③正确;故选B.【点睛】本题主要考查了的平行线的判定,平行线的判定是由角的数量关系判断两直线的位置关系.2.如图,画ABC一边上的高,下列画法正确的是().A.B.C.D.【答案】A【解析】三角形高的定义对各选项进行判断.【详解】根据三角形高的定义可判断A选项正确.故选:A.【点睛】此题考查作图-基本作图,三角形高、角平分线和中线的定义,解题关键在于熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).3.下列解不等式22135x x+-的过程中,出现错误的一步是()①去分母,得5(x+2)>3(2x-1).②去括号,得5x+10>6x-3.③移项,得5x-6x>-10-3.④系数化为1,得x>13.A.①B.②C.③D.④【答案】D【解析】去分母,去括号,移项,合并同类项,系数化成1即可.【详解】去分母:5(x+2)>3(2x-1);去括号:5x+10>6x-3;移项:5x-6x>-10-3;合并同类项,得:-x>-1,系数化为1得:x<1.故选D.【点睛】.本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键.不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变4.如图,宽为50cm的长方形团由10个形状大小完全相同的小长方形拼成,其汇总一个小长方形的面积为()A.400cm2B.500cm2C.600cm2D.4000cm2【答案】A【解析】设小长方形的长为xcm,小长方形的宽为ycm,根据图示,找出等量关系,列方程组求解.【详解】解:设小长方形的长为xcm,小长方形的宽为ycm,由题意得,5024x yx x y+=⎧⎨=+⎩,解得:4010 xy=⎧⎨=⎩,小长方形的面积为:40×10=400(cm2).故选:A.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.5.如图,在矩形中,是的中点,,,则()A.3 B.C.D.【答案】C【解析】利用余弦函数求出AB的长度,再利用勾股定理求出AC即可.【详解】在直角△ABE中,∠BAE=30°.∴BE=AE=1,AB=AE×=是的中点∴BC=1BE=1.在直角△ABC中利用勾股定理得到:AC=故选C.【点睛】本题考查了矩形的基本性质及余弦函数与勾股定理,熟练掌握余弦函数=是正确求解的关键. 6.小明家1至6月份的用水量统计如图所示,则5月份的用水量比4月份增加的百分率为()A.25%B.20%C.50%D.33%【答案】B【解析】先在统计图找到4月份、5月份的用水量,再根据增长率的定义即可求解.【详解】由图可知4月份、5月份的用水量分别为5、6吨,故5月份的用水量比4月份增加的百分率为(6-5)÷5×100%=20%,故选B【点睛】此题主要考查统计图的应用,解题的关键是熟知增长率的定义.7.在下列命题中:①同旁内角互补;②两点确定一条直线;③不重合的两条直线相交,有且只有一个交点;④若一个角的两边分别与另一个角的两边平行,那么这两个角相等其中属于真命题的有()A.1个B.2个C.3个D.4个【答案】B【解析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:①两直线平行,同旁内角互补,是假命题;②两点确定一条直线,是真命题;③不重合的两条直线相交,有且只有一个交点,是真命题;④若一个角的两边分别与另一个角的两边平行,那么这两个角相等或互补,是假命题;故选:B.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.如图,直线AB,CD,相交于点O,∠MON=90°.∠BON比∠MOA多10°.求∠BON,∠MOA的度数若设∠BON=x°,∠MOA=y°.可列方程组为()A.9010x yx y+=⎧⎨-=⎩B.9010x yx y+=⎧⎨+=⎩C.9010x yx y-=⎧⎨-=⎩D.29010x yx y+=⎧⎨-=⎩【答案】A【解析】任意平角均为180°,所以∠BON+∠MOA=90°【详解】∵∠BON+∠MOA+∠MON=180°,∴x+y=90°,且由题可知,x-y=10°,故选A.【点睛】本题主要考查平角的问题.熟悉平角为180°是本题的关键.9.如图,CD是直角△ABC斜边AB上的高,CB>CA,图中相等的角共有()A.2对B.3对C.4对D.5对【答案】D【解析】根据直角和高线可得三对相等的角,根据同角的余角相等可得其它两对角相等:∠A=∠DCB,∠B=∠ACD.【详解】∵CD是直角△ABC斜边AB上的高,∴∠ACB=∠ADC=∠CDB=90°,∴∠A+∠ACD=∠ACD+∠DCB=90°,∴∠A=∠DCB,同理得:∠B=∠ACD,∴相等的角一共有5对,故选:D .【点睛】本题考查了直角三角形的性质,熟练掌握同角的余角相等是解题的关键.10.如果0,0a b <<,且6a b -=,则22a b -的值是( ) A .6 B .6- C .6或6- D .无法确定【答案】B【解析】22a b -=-a-(-b)=b-a=-6.故选B二、填空题题11.数轴上点A 表示的数是1-2,那么点A 到原点的距离是________.【答案】2-1【解析】先估计1-2的大小,再求A 到原点的距离.【详解】1-20<12∴-到原点的距离是它的绝对值,等于122=--1故答案为2-1【点睛】此题重点考察学生对数轴上的点的认识,把握点到原点的距离是解题的关键.12.如图,直线AB∥CD∥EF,则∠α+∠β-∠γ=_______.【答案】1°【解析】根据平行线性质得出∠α=∠ADC ,∠CDF=1°-∠γ,根据∠β+∠ADC+∠CDF=360°推出∠β+∠α+1°-∠γ=360°即可得出答案.【详解】解:∵AB ∥CD ∥EF ,∴∠α=∠ADC ,∠CDF=1°-∠γ,∵∠β+∠ADC+∠CDF=360°,∴∠β+∠α+1°-∠γ=360°∴∠α+∠β-∠γ=1°,故答案为:1.【点睛】本题考查了平行线的性质的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.13.已知α∠和β∠互为补角,且β∠比α∠小30,则β∠等于______【答案】1【解析】根据已知得出方程组,求出方程组的解即可.【详解】解:α∠和β∠互为补角,且β∠比α∠小30,α+β180βα30⎧∠∠=∴⎨∠=∠-⎩, 解得:α105∠=,β75∠=,故答案为1.【点睛】本题考查了余角和补角定义,能熟记α∠的补角180α∠=-是解此题的关键.14.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为_____. 【答案】 4.5112x y x y +=⎧⎪⎨-=⎪⎩ 【解析】设木条长x 尺,绳子长y 尺,根据绳子和木条长度间的关系,可得出关于,x y 的二元一次方程组,此题得解.【详解】设木条长x 尺,绳子长y 尺,依题意,得: 4.5112x y x y +=⎧⎪⎨-=⎪⎩故答案为 4.5112x y x y +=⎧⎪⎨-=⎪⎩. 【点睛】。

七年级数学下册平行线的性质导学案新版新人教版

七年级数学下册平行线的性质导学案新版新人教版

5.3 平行线的性质5.3.1 平行线的性质(1)【学习目标】掌握平行线的三个性质,并能运用它们作简单的推理.【学习重点】探索并掌握平行线的性质,能用平行线的性质进行简单的推理和计算.【学习难点】能区分平行线的性质和判定方法.行为提示:通过旧知回顾,引导学生进入新知的探索.行为提示:借助数形结合,初步体验新知行为提示:让学生动手操作,动脑思考,体验知识的形成过程.方法指导:要会寻找“三线八角”中各种位置关系的角.情景导入生成问题旧知回顾:思考:如何用同位角、内错角、同旁内角来判定两条直线是否平行?解:(1)同位角相等,两直线平行.(2)内错角相等,两直线平行.(3)同旁内角互补,两直线平行.问题:若把思维的指向反过来:如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又如何表达?自学互研生成能力【自主探究】仔细阅读教材P18-19的内容,完成下面问题:1.两条直线平行,同位角相等.2.两条直线平行,内错角相等.3.两条直线平行,同旁内角互补.【合作探究】活动1:操作观察:用直尺和三角尺画两条平行线a∥b,然后,画一条截线c与这两条平行线相交.思考:(1)度量所形成的8个角的度数,把结果填入下表:角∠1 ∠2 ∠3 ∠4度数角∠5 ∠6 ∠7 ∠8度数(2)∠1~∠8中,哪些是同位角?它们的度数之间有什么关系?(3)由此猜想两条平行线被第三条直线截得的同位角有什么关系.(4)再任意画一条截线d,同样度量并比较各组同位角的度数,你的猜想还成立吗?解:(1)略;(2)∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8;相等;(3)相等;(4)成立.形成结论:一般地,平行线具有性质:性质1 两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.活动2:思考:(1)图中哪些角是内错角?它们具有怎样的数量关系?解:∠4与∠6,∠3与∠5;相等;(2)图中哪些角是同旁内角?它们具有怎样的数量关系?解:∠3与∠6,∠4与∠5;互补.(3)演绎推理,发现平行线的其他性质.①已知:如图(1),直线AB、CD被直线EF所截,AB∥CD.求证:∠1=∠2.②已知:如图(2),直线AB、CD被直线EF所截,AB∥CD.求证:∠1+∠2=180°.学习笔记:利用平行线的性质求角的度数时,一定要弄清楚所求角与已知角的关系.学法指导:平行线的性质是由直线的位置关系确定角的数量关系;平行线的判定是由角的数量关系确定直线的位置关系.行为提示:进一步激发学生的探究兴趣,学会用所学知识解决问题,提高能力.形成结论:性质2 两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相行等.性质3 两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.【自主探究】解答下列问题:1.如图,直线a∥b,∠2=54°,那么∠1=54°,理论依据:两直线平行,同位角相等,∠3=54°,理论依据:两直线平行,内错角相等,∠4=126°,理论依据:两直线平行,同旁内角互补.2.填空:如图:(1)∵a∥b(已知),∴∠1=∠5,∠3=∠7(两直线平行,同位角相等);(2)∵∠3=∠5(已知),∴a∥b(内错角相等,两直线平行);(3)∵∠4+∠5=180°,∴a∥b(同旁内角互补,两直线平行).【合作探究】活动3:小组讨论交流.思考:平行线的判定与性质有什么区别与联系?区别:(1)性质:根据两条直线平行,证角相等或互补.(2)判定:根据两角相等或互补,证两条直线平行.联系:它们的条件和结论是互逆的,性质与判定要证明的问题是不同的.交流展示生成新知【交流预展】1.将阅读教材时“生成的新问题”和通过“自主探究、合作探究”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.【展示提升】知识模块一平行线的性质知识模块二平行线的性质与判定的区别与联系检测反馈达成目标【当堂检测】1.如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为( B )A.30°B.45°C.60°D.90°(第1题图) (第2题图) (第3题图)2.如图,DE∥AB,若∠ACD=55°,则∠A等于( B )A.35°B.55°C.65°D.125°3.如图,已知AB∥CD,CE平分∠ACD,当∠A=120°时,∠ECD的度数是( D )A.45°B.40°C.35°D.30°4.如图,直线a,b被第三条直线c所截,如果a∥b,∠1=70°,那么∠3的度数是70°.(第4题图) (第5题图)5.如图所示,已知AB∥CD,则∠A=100°.【课后检测】见学生用书课后反思查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________。

5.3.1 平行线的性质(导学案)

5.3.1 平行线的性质(导学案)

5.3 平行线的性质5.3.1 平行线的性质一、新课导入1.导入课题:利用同位角、内错角、同旁内角之间的关系可以判定两条直线平行.你还记得这些判定方法分别是如何叙述的吗?反过来,如果两条直线平行,那么同位角、内错角、同旁内角又各有什么关系呢?这就是本节课我们所要研究的内容.(板书课题)2.学习目标:(1)能叙述平行线的三条性质.(2)能运用平行线的三条性质进行简单的推理和计算.3.学习重、难点:重点:对平行线性质的理解及它们与平行线的判定之间的关系.难点:性质2和性质3的推理过程的逻辑表述.二、分层学习1.自学指导:(1)自学内容:课本P18的内容.(2)自学时间:8分钟.(3)自学要求:正确画图、测量、验证、归纳.(4)探究提纲:①画图:画两条平行线a∥b,再画一条截线c与直线a、b相交(如图1所示).②测量:测量这些角的度数,把结果填入表内.③分析:∠1~∠8中,哪些是同位角?它们的度数之间有什么关系?答案:同位角有:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8,相等.④猜想:两条平行线被第三条直线截得的同位角有什么关系?⑤验证:如果改变截线的位置,你的猜想还成立吗?⑥归纳:a.你能用文字语言表述你发现的结论吗?b.你还能用符号语言表述该结论吗?2.自学:学生按探究提纲进行研讨式学习.3.助学:(1)师助生:①明了学情:了解学生围绕探究提纲进行学习的情况及存在的困惑.②差异指导:对个别学生在学法和认知有偏差时进行点拨引导.(2)生助生:小组内学生之间相互交流,展示成果,查找并纠正不正确的认识或结论.4.强化:(1)平行线的性质1及其几何表述.(2)经历平行线的性质1的探究过程,体会研究几何图形的一般方法.1.自学指导:(1)自学内容:课本P19的内容.(2)自学时间:8分钟.(3)自学要求:阅读教材,重要的部分做好圈点,疑点处做好记号.(4)自学参考提纲:①与平行线的判定类似,你能由性质1推出两条平行线被第三条直线截得的内错角之间的关系吗?a.结合图2,你能写出推理过程吗?b.类比性质1,你能用文字语言表述上面的结论吗?答案:两直线平行,内错角相等.c.你还能用几何语言表述该结论吗?②a.类似地,可以推出平行线关于同旁内角的性质3:两直线平行,同旁内角互补,如图2,用几何语言表述为:∵a∥b,∴∠2+∠4=180°.b.试写出用性质1推出性质3的推理过程.c.试写出用性质2推出性质3的推理过程.③如图3,平行线AB、CD被直线AE所截.a.从∠1=110°,可以知道∠2是多少度吗?为什么?答案:∠2=110°.两直线平行,内错角相等.b.从∠1=110°,可以知道∠3是多少度吗?为什么?答案:∠3=110°.两直线平行,同位角相等.c.从∠1=110°,可以知道∠4是多少度吗?为什么?答案:∠4=70°.两直线平行,同旁内角互补.④如图4,AB∥CD,AE∥CF,∠A=39°,∠C是多少度?为什么?答案:∠C=39°.∵AB∥CD,∴∠C=∠FGB,又∵AE∥CF,∴∠A=∠FGB,∴∠A=∠C=39°.2.自学:同学们可参照自学参考提纲进行自学.3.助学:(1)师助生:①明了学情:教师深入课堂巡视了解学生的自学情况,尤其是性质2和性质3的推理过程,看学生能否写出来.②差异指导:对部分感到困难的学生进行点拨引导.(2)生助生:小组内相互交流、研讨、订正.4.强化:(1)平行线的性质1、2、3及其几何表述.(2)判定与性质的区别:从角的关系得到两直线平行,就是判定;从已知直线平行得到角相等或互补,就是性质.(3)练习:课本P20“练习”第1题和第2题.三、评价1.学生学习的自我评价:各小组组长对本组的学习成果和困惑进行总结交流.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法、成效及不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):这节课比较成功的地方是:①对教学的方式进行了一定的尝试,注重学生的分析能力,启发学生用不同方法解决问题.②尽量锻炼学生使用规范性的几何语言.不足的是师生之间的互动配合和默契程度有待加强.(时间:12分钟满分:100分)一、基础巩固(60分)1.(10分)如图,由AB∥CD可以得到(C)A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠4第1题图第2题图2.(10分)如图,如果AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=(C)A.180°B.270°C.360°D.540°3.(10分)如图,一条公路两次转弯后,和原来的方向相同,那么如果第一次拐的角是76°,那么第二次拐的角是76度,根据是两直线平行,内错角相等.4.(10分)如图,要在公路的两侧铺设平行管道,如果公路一侧铺设的管道与纵向联通管道的角度为120°,那么,为了使管道对接,另一侧应以60°角度铺设纵向联通管道,根据是两直线平行,同旁内角互补.第3题图第4题图第5题图5.(20分)如图,已知a∥b,c、d是截线,若∠1=80°,∠5=70°,求∠2、∠3、∠4各是多少度?为什么?解:∵a∥b,∴∠2=∠1=80°(两直线平行,内错角相等),∠3=180°-∠5=110°(两直线平行,同旁内角互补).∵∠4=∠3(两直线平行,同位角相等),∴∠4=110°.二、综合运用(20分)6.光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,∠1=45°,∠2=122°,求图中其他角的度数.解:由题意得:∠3=∠1=45°,∠1+∠7=180°,∴∠7=180°-∠1=135°.∴∠8=∠7=135°.又∠4=∠2=122°,∠2+∠5=180°,∴∠5=180°-∠2=58°.∴∠6=∠5=58°.三、拓展延伸(20分)7.如图,直线DE经过点A,DE∥BC,∠B=44°,∠C=57°.(1)∠DAB等于多少度?为什么?(2)∠EAC等于多少度?为什么?(3)∠BAC等于多少度?(4)由(1)、(2)、(3)的结果,你能说明为什么三角形的内角和是180°吗?解:(1)∵DE∥BC,∴∠DAB=∠B=44°(两直线平行,内错角相等).(2)∵DE∥BC,∴∠EAC=∠C=57°(两直线平行,内错角相等).(3)∵∠DAB+∠BAC+∠EAC=180°,∴∠BAC=180°-∠DAB-∠EAC=180°-44°-57°=79°.。

人教版七年级数学下导学案:5.3.1平行线的性质一

人教版七年级数学下导学案:5.3.1平行线的性质一

8765cba341221DCBA E 课题:5.3.1平行线的性质一课型:新授课 总第8节 时间:星期三【学习目标】1.使学生理解平行线的性质,能初步运用平行线的性质进行有关计算. 2.通过本节课的教学,培养学生的概括能力和“观察-猜想-证明”的探索方法,培养学生的辩证思维能力和逻辑思维能力.3.培养学生的主体意识,向学生渗透讨论的数学思想,培养学生思维的灵活性和广阔性. 【学习重点】平行线性质的研究和发现过程是本节课的重点.预 习 篇1、如右图所示,只要______________就能说明a//b , 理由是_______________________________2、(1)测量上图这些角的度数,把结果填入表内.角 ∠1 ∠2 ∠3 ∠4 ∠5 ∠6 ∠7 ∠8 度数(2)图中哪些角是同位角?它们具有怎样的数量关系? 图中哪些角是内错角?它们具有怎样的数量关系? 图中哪些角是同旁内角?它们具有怎样的数量关系? 分析后,写出你的猜想学 习 篇(3) 验证猜想 在任意画一条截线同样度量并计算各个角的度数,你的猜想还成立吗?平行线性质1 平行线性质2: 平行线性质3: 4根据上图将下列几何语言补充完整性质1: 性质2: 性质3: ∵ a ∥b ∵ a ∥b ∵a ∥b∴∠___=∠___ ∴∠___=∠___ ∴∠ +∠ =训 练 篇1、(1)根据右图将下列几何语言补充完整 ∵AB ∥ CD (已知)∴∠1=∠A ( )1A DBC3421D EFAB C O213ba c∠2=∠B ( ) ∠A+∠ACD=180°( ) (2)如右图,若AD ∥BC, 则∠1=∠_______,∠______+∠________=180° 若DC ∥AB,则∠1=∠_______, ∠ABC+∠_________=180°. (三)合作探究,交流展示2、如图AB ∥DF, DE ∥BC,且∠1=65°, 求∠2 ∠3 ∠4的度数3、两条平行线的距离1、)如图,已知直线AB ∥CD,E 是直线CD 上任意一点,过E 向直线AB 作垂线,垂足为F ,这样做出的垂线段EF 的长度是平行线的距离。

2019-2020学年七年级数学下册 5.3.1 平行线的性质导学案(一)(新版)新人教版.doc

2019-2020学年七年级数学下册 5.3.1 平行线的性质导学案(一)(新版)新人教版.doc

87654321ab c d 2019-2020学年七年级数学下册 5.3.1 平行线的性质导学案(一)(新版)新人教版一 学习目标1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。

2.经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算. 二、自主学习1、如右图所示,只要______________就能说明a//b , 理由是_______________________________2、图中哪些角是内错角?它们具有怎样的数量关系? 图中哪些角是同旁内角?它们具有怎样的数量关系? 分析后,写出你的猜想(3) 验证猜想在任意画一条截线同样度量并计算各个角的度数,你的猜想还成立吗? 3、平行线性质1 平行线性质2: 平行线性质3:4根据上图将下列几何语言补充完整性质1: 性质2: 性质3: ∵ a ∥b ∵ a ∥b ∵a ∥b∴∠___=∠___ ∴∠___=∠___ ∴∠ +∠ = 5尝试练习 (1)根据右图将下列几何语言补充完整 ∵AB ∥ (已知)∴∠1=∠A ( )∠2=∠B ( )∠A+∠ACD=180°( ) (2)如右图,若AD ∥BC, 则∠1=∠_______, ∠______+∠________=180° 若DC ∥AB,则∠1=∠_______,∠ABC+∠_________=180°.三、合作学习1根据性质1,推出性质2成立的道理 根据性质1,推出性质3成立的道理2讨论平行线的性质与平行线判定有何区别?23514ab lnba 四、拓展提高1、平行线性质应用.(课本20页例题)2、如图直线l 与直线a 、b 相交,若a ∥b , ∠1=70°,求∠2的度数3、如图AB ∥DF, DE ∥BC,且∠1=65°, 求∠2 ∠3 ∠4的度数五、反馈检测1、如图∠1=70°,若m ∥n,则∠2=2、如图AD ∥BC,点E 在BD 的延长线上, 若∠ADE=155°,则∠DBC=3、如图a ∥b ,∠1=20°,∠2=65° 则∠3=。

新人教版七年级下5.3.1平行线的性质学案

新人教版七年级下5.3.1平行线的性质学案

新人教版七年级下5.3.1平行线的性质学案一、课前自主学习: (一)填空题 1. 如图(1),若l 1∥l 2,∠1=45°,则∠2=_____.2.如图(2),已知直线a ∥b ,c ∥d ,∠1=115°,则∠2=_____,∠3=_____.3.如图(3)已知AB ∥CD ,∠1=100°,∠2=120°,则∠ =_____.4.如图(4)所示,直线a ,b 被c 所截,,现给出下列四个条件:①∠2=∠6;②∠2=∠8;③∠1+∠4=180°;④∠3=∠8.其中能判定a ∥b 的条件的序号是( ) A . ①、② B . ①、③ C . ①、④ D . ③、④5.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是_________. A .第一次向右拐40°,第二次向左拐40° B .第一次向右拐50°,第二次向左拐130° C .第一次向右拐50°,第二次向右拐130° D .第一次向左拐50°,第二次向左拐130° (二)选择题:6.如图(5),已知DE ∥AB ,那么表示∠3的式子是( )A .∠1+∠2-180°B .∠1-∠2C .180°+∠1-∠2D .180°-2∠1+∠27.已知下列命题 ①内错角相等;②相等的角是对顶角;③互补的两个角是一定是一个为锐角,另一个为钝角;④同旁内角互补.其中正确命题的个数为 ( )A .0B .1C .2D .3 8如图(6),可以得到DE ∥BC 的条件是_________.A .∠ACB =∠BAC B .∠ABC +∠BAE =180° C .∠ACB +∠BAD =180° D .∠ACB =∠BAD9. 两条直线被第三条直线所截,若有一对同位角相等,则一对同旁内角的角平分线( ) A .互相垂直 B .互相平行 C .相交但不垂直 D .不能确定 10. 如图(7),如果∠1=∠2,那么下面结论正确的是( )A .AD ∥BCB .AB ∥CDC .∠3=∠4D .∠A =∠C (三)解答题:d c b a 321α21E D C B A 321F E D C B A 87654321c b a 4321D CBA (2) (3) (4) (5) (6) (7)11. 如图(8),已知∠1=∠2,求∠3+∠4的度数.12. 如图(9),已知∠AEC=∠A+∠C,试说明:AB∥CD.课前自主学习答案:1.135°;2.115°,115°;3.20°;4A;.5.A;6.A;7.A;8.B;9.A;10.B;11.解:∵∠1=∠2,∴AB∥CD,∴∠3+∠MND=180°,又∠4+∠MND==180°,∴∠3=∠4;12.解:如图(10)过点E作EF∥AB,∴∠A=∠AEF,∵∠AEC=∠A+∠C∴∠AEC=∠AEF+∠C∴∠AEC-∠AEF=∠C∴∠FEC=∠C∴EF∥CD,∴AB∥CD.二、课堂互动探究(1)知识要点梳理8的度数:可以发现,∠1=∠5,∠2=∠6,∠3=∠7,∠4=∠8知识点一:平行线的性质1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等;知识点二:平行线的性质2:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等;EDCBAF EDCBAa (8)(9)(10)如图(12),a ∥b ,求证:∠1=∠2.∵a ∥b , ∴∠3=∠2, ∵∠1=∠3, ∴∠1=∠2.知识点三:平行线的性质3两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补;如图(13),a ∥b ,求证:∠1+∠2=180°.∵a ∥b , ∴∠3=∠2∵∠3+∠1=180°∴∠1+∠2=180°.(2)典型例题分析例一:如图(14)所示,已知180ABC C ∠+∠=︒,BD 平分,与D ∠相等吗?请说明理由.分析:本题考查的是平行线的判定和性质的应用.由已知可得AB ∥CD ,∠ABD =∠D ,∠ABD =∠DBC ,问题得证.解:∠D =∠DBC .理由如下: ∵180ABC C ∠+∠=︒,∴AB ∥CD , ∴∠D =∠ABD , 又∠ABD =∠DBC , ∴∠D =∠DBC .变式一:已知:如图(15),∠+∠=∠=∠BAP APD 18012,. 求证:∠E=∠F.分析:分析:本题考查的是平行线的判定和性质的应用.证明:,180=∠+∠APD BAP∴AB ∥CD ,∴∠BAP =∠CP A , ∵∠1=∠2,∴∠BAP -∠1=∠CP A -∠2, ∴∠EAP =∠FP A . ∴PF ∥AE , ∴∠E=∠F.DCBAP21F E DCB Ac ac a(14)(15)变式二:已知:如图(16):∠AHF +∠FMD =180°,GH 平分∠AHM ,MN 平分∠DMH 。

《5.3.1 平行线的性质》教案、导学案、同步练习

《5.3.1 平行线的性质》教案、导学案、同步练习

《5.3.1 平行线的性质》教案第1课时平行线的性质【教学目标】1.理解平行线的性质;(重点)2.能运用平行线的性质进行推理证明.(重点、难点)【教学过程】一、情境导入窗户内窗的两条竖直的边是平行的,在推动过程中,两条竖直的边与窗户外框形成的两个角∠1、∠2有什么数量关系?二、合作探究探究点一:平行线的性质如图,AB∥CD,BE∥DF,∠B=65°,求∠D的度数.解析:利用“两直线平行,内错角相等,同旁内角互补”的性质可求出结论.解:∵AB∥CD,∴∠BED=∠B=65°.∵BE∥FD,∴∠BED+∠D=180°,∴∠D=180°-∠BED=180°-65°=115°.方法总结:已知平行线求角度,应根据平行线的性质得出同位角相等,内错角相等,同旁内角互补.再结合已知条件进行转化.探究点二:平行线与角平分线的综合运用如图,DB∥FG∥EC,∠ACE=36°,AP平分∠BAC,∠PAG=12°,求∠ABD 的度数.解析:先利用GF ∥CE ,易求∠CAG ,而∠PAG =12°,可求得∠PAC =48°.由AP 是∠BAC 的角平分线,可求得∠BAP =48°,从而可求得∠BAG =∠BAP +∠PAG =48°+12°=60°,即可求得∠ABD 的度数.解:∵FG ∥EC ,∴∠CAG =∠ACE =36°.∴∠PAC =∠CAG +∠PAG =36°+12°=48°.∵AP 平分∠BAC ,∴∠BAP =∠PAC =48°.∵DB ∥FG ,∴∠ABD =∠BAG =∠BAP +∠PAG =48°+12°=60°.方法总结:(1)利用平行线的性质可以得出角之间的相等或互补关系,利用角平分线的定义,可以得出角之间的倍分关系;(2)求角的度数,可把一个角转化为一个与它相等的角或转化为已知角的和差.探究点三:平行线性质的探究应用如图,已知∠ABC .请你再画一个∠DEF ,使DE ∥AB ,EF ∥BC ,且DE 交BC 边与点P .探究:∠ABC 与∠DEF 有怎样的数量关系?并说明理由.解析:先根据题意画出图形,再根据平行线的性质进行解答即可.解:∠ABC 与∠DEF 的数量关系是相等或互补.理由如下:如图①,因为DE ∥AB ,所以∠ABC =∠DPC .又因为EF ∥BC ,所以∠DEF =∠DPC ,所以∠ABC =∠DEF .如图②,因为DE ∥AB ,所以∠ABC +∠DPB =180°.又因为EF ∥BC ,所以∠DEF =∠DPB ,所以∠ABC +∠DEF =180°.故∠ABC 与∠DEF 的数量关系是相等或互补.方法总结:画出满足条件的图形时,必须注意分情况讨论,即把所有满足条件的图形都要作出来.三、板书设计平行线的性质⎩⎨⎧⎭⎬⎫两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补求角的大小或说明角之间的数量关系【教学反思】平行线的性质是几何证明的基础,教学中注意基本的推理格式的书写,培养学生的逻辑思维能力,鼓励学生勇于尝试.在课堂上,力求体现学生的主体地位,把课堂交给学生,让学生在动口、动手、动脑中学数学第2课时平行线的性质和判定及其综合运用【教学目标】1.掌握平行线的性质与判定的综合运用;(重点、难点)2.体会平行线的性质与判定的区别与联系.【教学过程】一、复习引入问题:平行线的判定与平行线的性质的区别是什么?判定是已知角的关系得平行关系,性质是已知平行关系得角的关系.两者的条件和结论刚好相反,也就是说平行线的判定与性质是互逆的.二、合作探究探究点一:先用判定再用性质如图,C,D是直线AB上两点,∠1+∠2=180°,DE平分∠CDF,EF ∥AB.(1)CE与DF平行吗?为什么?(2)若∠DCE=130°,求∠DEF的度数.解析:(1)由∠1+∠DCE=180°,∠1+∠2=180°,可得∠2=∠DCE,即可证明CE∥DF;(2)由平行线的性质,可得∠CDF=50°.由DE平分∠CDF,可得∠CDE=1 2∠CDF=25°.最后根据“两直线平行,内错角相等”,可得到∠DEF的度数.解:(1)CE∥DF.理由如下:∵∠1+∠2=180°,∠1+∠DCE=180°,∴∠2=∠DCE,∴CE∥DF;(2)∵CE∥DF,∠DCE=130°,∴∠CDF=180°-∠DCE=180°-130°=50°.∵DE平分∠CDF,∴∠CDE=12∠CDF=25°.∵EF∥AB,∴∠DEF=∠CDE=25°.方法总结:根据题目中的数量找出各量之间的关系是解这类问题的关键.从角的关系得到直线平行用平行线的判定,从平行线得到角相等或互补的关系用平行线的性质,二者不要混淆.探究点二:先用性质再用判定如图,已知DF∥AC,∠C=∠D,CE与BD有怎样的位置关系?说明理由.解析:由图可知∠ABD和∠ACE是同位角,只要证得同位角相等,则CE∥BD.由平行线的性质结合已知条件,稍作转化即可得到∠ABD=∠C.解:CE∥BD.理由如下:∵DF∥AC,∴∠D=∠ABD.∵∠C=∠D,∴∠ABD=∠C,∴CE∥BD.方法总结:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.探究点三:平行线性质与判定中的探究型问题如图,AB∥CD,E,F分别是AB,CD之间的两点,且∠BAF=2∠EAF,∠CDF=2∠EDF.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并说明理由;(2)∠AFD与∠AED之间有怎样的数量关系?解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)∠AED=∠BAE+∠CDE.理由如下:如图,过点E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD =∠BAF +∠CDF .∵∠BAF =2∠EAF ,∠CDF =2∠EDF ,∴∠BAE +∠CDE =32∠BAF +32∠CDF =32(∠BAF +∠CDF )=32∠AFD ,∴∠AED =32∠AFD .方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.三、板书设计⎭⎬⎫同位角相等内错角相等同旁内角互补判定性质两直线平行【教学反思】本节内容的重点是平行线的性质及判定的综合,直接运用了“∵”“∴”的推理形式,为学生创设了一个学习推理的环境,逐步培养学生的逻辑推理能力.因此,这一节课有着承上启下的作用,比较重要.本节内容的难点是理解平行线的性质和判定的区别,并在推理中正确地应用.由于学生还没有学习命题的概念和命题的组成,不知道判定和性质的本质区别和联系是什么,所以在教学中,应让学生通过应用和讨论,体会到如果已知角的关系,推出两直线平行,就是平行线的判定;反之,如果两直线平行,得出角的关系,就是平行线的性质《5.3.1 平行线的性质》导学案第1课时 平行线的性质【学习目标】:1.掌握两直线平行,同位角、内错角相等,同旁内角互补,并能熟练运用.2.通过独立思考,小组合作,运用猜想、推理的方法,提升自己利用图形分析问题的能力.3.激情投入,全力以赴,培养严谨细致的学习习惯.【重点】:平行线的性质.【难点】:根据平行线的性质进行推理.【自主学习】一、知识链接平行线的判定方法有哪几种?二、新知预习如图,直线a与直线b平行,直线c与它们相交.(1)量一量:用量角器量图中8个角的度数.(2)说一说:由测量的结果,你发现∠1与∠5、∠2与∠6、∠3与∠7、∠4与∠8、∠3与∠6、∠4与∠5、∠3与∠5、∠4与∠6的大小有什么关系?(3)想一想:(2)中的各对角分别是什么角?(4)议一议:两条平行直线被第三条直线所截,所得的同位角、内错角、同旁内角有什么关系?三、自学自测1.如图,直线a∥b,∠1=70°,那么∠2的度数是()A.50°B.60°C.70°D.80°2.下列说法中,(1)同位角相等,两直线平行;(2)两直线平行,同旁内角互补;(3)内错角相等,两直线平行;(4)同一平面内,垂直于同一直线的两条直线平行.其中是平行线的性质的是()A.(1)和(3)B.(2)C.(4)D.(2)和(4)【课堂探究】要点探究探究点:平行线的性质问题1:画两条平行线a//b,然后画一条截线c与a、b相交,标出如图所示的角. 度量所形成的8个角的度数,把结果填入下表:角∠1 ∠2 ∠3 ∠4度数角∠5 ∠6 ∠7 ∠8度数观察:∠1~ ∠8中,哪些是同位角?它们的度数之间有什么关系?说出你的猜想.猜想:两条平行线被第三条直线所截,同位角 .思考:再任意画一条截线d,同样度量各个角的度数,你的猜想还成立吗?问题2:如图,已知a//b,那么∠2与∠3相等吗?为什么?问题3:如图,已知a//b,那么∠2与∠4有什么关系呢?为什么?例1.如图是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,梯形的另外两个角的度数分别是多少?例2:小明在纸上画了一个∠A,准备用量角器测量它的度数时,因不小心将纸片撕破,只剩下如图的一部分,如果不能延长DC、FE的话,你能帮他设计出多少种方法测出∠A的度数?【当堂检测】1.如图,已知平行线AB、CD被直线AE所截(1)从∠1=110°可以知道∠2 是多少度吗,为什么?(2)从∠1=110°可以知道∠3是多少度吗,为什么?(3)从∠1=110°可以知道∠4 是多少度吗,为什么?2.如图,一条公路两次拐弯的前后两条路互相平行.第一次拐弯时∠B是142°,第二次拐弯时∠C是多少度?为什么?3.如图,直线 a ∥ b,直线b垂直于直线c,那么直线a垂直于直线c吗?4.如果有两条直线被第三条直线所截,那么必定有()A.内错角相等B.同位角相等C.同旁内角互补D.以上都不对5.(1)如图1,若AB∥DE , AC∥DF,试说明∠A=∠D.请补全下面的解答过程,括号内填写依据.解: ∵ AB∥DE( )∴∠A=_______ ( )∵AC∥DF( )∴∠D=______ ( )∴∠A=∠D ( )(2)如图2,若AB∥DE , AC∥DF,试说明∠A+∠D=180o.请补全下面的解答过程,括号内填写依据.解: ∵ AB∥DE( )∴∠A= ______ ( )∵AC∥DF( )∴∠D+ _______=180° ( )∴∠A+∠D=180°()6.【拓展题】如图,潜望镜中的两面镜子是互相平行放置的,光线经过镜子反射时,∠1=∠2,∠3=∠4,∠2和∠3有什么关系?为什么进入潜望镜的光线和离开潜望镜的光线是平行的?5.3.1 平行线的性质第2课时平行线的性质和判定及其综合运用【学习目标】:1.进一步熟悉平行线的判定方法和性质.2.运用平行线的性质和判定进行简单的推理和计算.【重点】:平行线的判定方法和性质.【难点】:平行线的性质和判定的综合运用.【自主学习】一、知识链接1.平行线的判定方法有哪些?2.平行线的性质有哪些?二、新知预习1.两条直线被第三条直线所截,同位角、内错角相等,或者说同旁内角互补,这句话对吗?2.自主归纳:(1)两直线平行,同位角,内错角,同旁内角 .(2)不难发现,平行线的判定,反过来就是,注意它们之间的联系和区别.(3)运用平行线的性质时,不要忽略前提条件“”,不要一提同位角或内错角,就认为是相等的.【课堂探究】一、要点探究探究点:平行线的性质和判定及其综合应用例1.如图,三角形ABC中,D是AB上一点,E是AC上一点,∠ADE=60°,∠B = 60°,∠AED=40°.(1)DE和BC平行吗?为什么?(2)∠C是多少度?为什么?做一做:已知AB∥CD,∠1 = ∠2.试说明:BE∥CF.例2.如图,AB∥CD,猜想∠A、∠P 、∠PCD的数量关系,并说明理由.例3.如图,若AB//CD ,你能确定∠B 、∠D 与∠BED 的大小关系吗?说说你的看法.【变式题1】如图,AB//CD ,探索∠B 、∠D 与∠DEB 的大小关系 .【变式题2】如图,AB ∥CD,则∠A ,∠C 与∠E 1,∠E 2,…,∠E n 有什么关系?【变式题3】如图,若AB ∥CD, 则∠A ,∠C 与各拐角之间有什么关系?EDC BA【当堂检测】1.填空:如图,(1)∠1= 时,AB∥CD.(2)∠3= 时,AD∥BC.2.直线a,b与直线c相交,给出下列条件:①∠1= ∠2;②∠3= ∠6;③∠4+∠7=180°;④∠3+ ∠5=180°,其中能判断a//b的是( )A. ①②③④ B .①③④ C. ①③ D. ④3. 有这样一道题:如图,AB//CD,∠A=100°, ∠C=110°,求∠AEC的度数. 请补全下列解答过程.解:过点E作EF//AB.∵AB//CD(已知),∴ // (平行于同一直线的两直线平行).∴∠A+∠ =180°,∠C+∠ =180°(两直线平行,同旁内角互补).又∵∠A=100°,∠C=110°(已知),∴∠ = °, ∠ = °.∴∠AEC=∠1+∠2= °+ ° = °.4.已知AB⊥BF,CD⊥BF,∠1= ∠2,试说明∠3=∠E.5.如图,EF∥AD,∠1=∠2,∠BAC=70 °,求∠AGD的度数.第五章相交线与平行线5.3.1《平行线的性质》同步练习一、单选题(共15题;共30分)1、如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20o,那么∠2的度数是( )A、30°B、25°C、20°D、15°2、如图所示BC//DE,∠1=108°,∠AED=75°,则∠A的大小是()A、60°B、33°C、30°D、23°3、两条平行直线被第三条直线所截,下列命题中正确的是()A、同位角相等,但内错角不相等B、同位角不相等,但同旁内角互补C、内错角相等,且同旁内角不互补D、同位角相等,且同旁内角互补4、一架飞机向北飞行,两次改变方向后,前进的方向与原来的航行方向平行,已知第一次向左拐50°,那么第二次向右拐()A、40°B、50°C、130°D、150°5、如图,下列说法正确的是()A、若AB//CD,则∠1=∠2B、若AD//BC,则∠B+∠BCD=180ºC、若∠1=∠2,则AD//BCD、若∠3=∠4,则AD//BC6、下列图形中,由AB//CD能得到∠1=∠2的是()A、 B、C、 D、7、下列语句:①两条不相交的直线叫做平行线;②过直线外一点有且只有一条直线与已知直线垂直;③若AB=BC,则点B是AC的中点;④若两角的两边互相平行,则这两个角一定相等;其中说法正确的个数是()A、1B、2C、3D、48、同一平面内,两条不重合的直线的位置关系是()A、平行或垂直B、平行或相交C、平行、相交或垂直D、相交9、下列生活实例中;①交通道口的斑马线;②天上的彩虹;③体操的纵队;④百米跑道线;⑤火车的平直铁轨线.其中属于平行线的有()A、1个B、2个C、3个D、4个10、如图,AB∥CD,∠A=46°,∠C=27°,则∠AEC的大小应为()A、19°B、29°C、63°D、73°11、如图,直线l1∥l2,且分别与△ABC的两边AB、AC相交,若∠A=50°,∠1=35°,∠2的度数为()A、95°B、65°C、85°D、35°12、如图,已知:AB∥CD,CE分别交AB、CD于点F、C,若∠E=20°,∠C=45°,则∠A的度数为()A、5°B、15°C、25°D、35°13、如图,l∥m,矩形ABCD的顶点B在直线m上,则∠α=()A、20°B、25°C、30°D、35°14、如图,若a∥b,则下列选项中,能直接利用“两直线平行,内错角相等”判定∠1=∠2的是()A、 B、C、 D、15、如图,如果AB∥CD,那么图中相等的内错角是()A、∠1与∠5,∠2与∠6B、∠3与∠7,∠4与∠8C、∠5与∠1,∠4与∠8D、∠2与∠6,∠7与∠3二、填空题(共5题;共10分)16、如图,已知:∠A=∠F,∠C=∠D,求证:BD∥EC,下面是不完整的说明过程,请将过程及其依据补充完整.证明:∵∠A=∠F(已知)∴AC∥________,________∴∠D=∠1________又∵∠C=∠D(已知)∴∠1=________________∴BD∥CE ________17、如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD.若∠ECA为α度,则∠GFB为________ 度(用关于α的代数式表示).18、如图所示,一条公路两次拐弯后和原来的方向相同,即拐弯前、•后的两条路平行,若第一次拐角是150°,则第二次拐角为________ .19、如图,把含有60 º角的三角尺ABC的直角顶点C放在直线DE上,当AB∥DE。

新人教版七年数学下导学案(课题:5.3.1平行线的性质)

新人教版七年数学下导学案(课题:5.3.1平行线的性质)

班 姓名 成绩: 优 良 差学习目标:1.使学生理解平行线的性质,能初步运用平行线的性质进行有关计算.2.通过本节课的教学,培养学生的概括能力和“观察-猜想-证明”的探索方法,培养学生的辩证思维能力和逻辑思维能力.3.培养学生的主体意识,向学生渗透讨论的数学思想,培养学生思维的灵活性和广阔性。

学习重点及难点:重点:平行线性质的研究和发现过程是本节课的重点.难点:正确区分平行线的性质和判定是本节课的难点.知识链接:平行线的判定是什么?学法指导:自主学习、合作探究学习过程一、自主学习1、预习疑难:2、平行线判定:二、合作探究【探究一】(一)平行线性质 1、观察思考:教材19页思考2、探索活动:完成教材19页探究3、归纳性质:同位角 。

两条平行线被第三条直线所截, 。

同位角相等)∵a ∥b (已知)cb a 4321F E D C B A O D C B A O F E D C B A D C B A 1简单说成:两直线平行 。

∴∠3=∠5( )∵a ∥b (已知)。

∴∠3+∠6=180°( )(二)证明性质的正确性:1、性质1→性质2:如右图,∵a ∥b (已知)∴∠1=∠2( )又∵∠3=∠1(对顶角相等)。

∴∠2=∠3(等量代换)。

2、性质1→性质3:如右图,∵a ∥b (已知)∴∠1=∠2( )又∵ ( )。

∴ 。

(三)两条平行线的距离1、如图,已知直线AB ∥CD,E 是直线CD 上任意一点,过E 向直线AB作垂线,垂足为F ,这样做出的垂线段...EF ..的长度...是平行线的距离。

2、结论:两条平行线的距离处处相等,而不随垂线段的位置而改变3、对应练习:如右图,已知:直线m ∥n ,A 、B 为 C D m直线n 上的两点,C 、D 为直线m 上的两点。

(1)请写出图中面积相等的各对三角形;(2)如果A 、B 、C 为三个定点,点D 在m 上移动。

那么,无论D 点移动到任何位置,总有三角形 与 AB n三角形ABC 的面积相等,理由是 。

人教版七年级数学下册5.3.1 《平行线的性质》导学案

人教版七年级数学下册5.3.1 《平行线的性质》导学案

人教版义务教育课程标准实验教科书七年级下册5.3.1平行线的性质(第1课时)导学案学习目标:1、经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算。

2 、能结合一些具体内容进行说理,初步养成言之有据的习惯。

学习过程:一、复习导入由已知角相等或互补能推出两直线平行,由两直线平行能否推出两角相等或互补呢?二、探究新知认真阅读教材P124页内容,完成活动一的内容:活动一动手画两条平行线a、b,并画第三条直线c与它们相截,标出形成的8个角,1、图中哪些角是同位角?猜想它们具有怎样的数量关系?猜想:2、用你手中的工具证明你的猜想。

活动二1、再任意画一条截线MN,同样度量并计算各个角的度数,你的猜想还成立吗?制定定方案再次验证你的猜想,2、用文字语言表述你发现的结论3、用符号语言表述性质1活动三你能根据性质1,说出性质2、性质3成立的道理吗?1、对于性质2,试在下面的说理中注明每步推理的根据。

如图,因为a ∥b所以∠1=∠3( ) 又∠2=_____( ) 所以∠2=∠3结论:平行的性质2: 语言表达为: 2、类似地,对于性质3,请你仿照上面的推理写出说理过程。

结论:平行线的性质3: 语言表达为: 3、思考:平行线的性质与平行线判定的区别是什么?三、巩固测评 1、看图填空:(1)由DE ∥BC ,可以得到∠ADE=________, 依据是_____________________________________; (2)由DE ∥BC ,可以得到∠DFB=________, 依据是_____________________________________;(3)由DE ∥BC ,可以得到∠C+________=180°,依据是__________________; (4)由DF ∥AC ,可以得到∠AED=________,依据是_____________________; (5)由DF ∥AC ,可以得到∠C=________,依据是________________________; 2、如图,已知直线a ∥b , (1)∠3= 500, 求∠2的度数.(2)变式1:已知条件不变,求∠1,∠4的度数? (3)变式2:如图,已知∠1=110°,∠2=130°,∠3=70°,求∠4的度数.3、已知:如图AB ∥CD, ∠ABE= 60°, ∠CDE= 32°,求∠BED 的度数.4321DCBA4的方向相同,也就是拐弯前后的两条路互相平行.第一次拐的角∠B等于1420,第二次拐的角∠C是多少度?为什么?5、如图,已知AB∥CD,AE∥CF,∠A= 39°,∠C是多少度?为什么?四、反思小结布置作业1、反思小结:对于本节课的知识,如果还有不明白的地方请提出来,同学和老师共同帮助解决2、布置作业:教材P23第2、3、4题(选做)如图,所示,已知AB∥DC,AD∥BC,请说明∠ABC=∠ADC的理由.图GFEDCBAE⌒A BC D60°32°。

七年级数学下册 5.3.1 平行线的性质导学案2 (新版)新人教版

七年级数学下册 5.3.1 平行线的性质导学案2 (新版)新人教版

5.3.1 平行线的性质(2)【学习目标】1.进一步理解平行线的性质,能用平行性质与判定去解决一些问题.2.在学习过程中进一步培养学生的推理能力,发展学生的空间观念.【学习重点】进一步理解平行线的性质,运用平行线的性质解决问题.【学习难点】结合平行线的性质和判定去解决问题.行为提示:教师提出问题,学生思考后回答.教师注意规范学生的回答.这一过程也可以结合图形让学生去说明性质与判定的内容.行为提示:认真阅读课本,独立完成“自学互研”中的题目,发现新知,理解新知.知识链接:梯形上,下两底互相平行.方法指导:学生讨论思考后作出回答,在此基础上再去解决问题.可以先尝试让学生说一说,之后师生再共同解决,教师规范地写出解答过程.情景导入生成问题旧知回顾:1.平行线有哪些性质?两直线平行,内错角相等.答:平行线的性质两直线平行,同旁内角互补.2.平行线的判定方法有哪些?内错角相等,两直线平行.答:判定方法同旁内角互补,两直线平行.3.二者有什么区别?判定:由角相等或互补→平行.答:平行线的性质与判定的区别性质:由平行→角相等或互补.自学互研生成能力【自主探究】解答下面的问题:1.如图,已知∠1=∠2,AB∥CD吗?为什么?解:AB∥CD.理由:∵∠1=∠2(已知),∠2=∠3(对顶角相等,∴∠1=∠3(等量代换).∴AB∥CD(同位角相等,两直线平行).2.如图,若∠1=∠4,∠1+∠2=180°,则AB、CD、EF的位置关系如何?解:∵∠1+∠2=180°,∠2+∠3=180°,∴∠1=∠3,∴AB∥CD.又∵∠1=∠4,∴AB∥EF,∴AB∥CD∥EF.【合作探究】典例讲解:如图是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,梯形另外两个角分别是多少度?解:因为梯形上、下两底AB与DC互相平行,根据“两直线平行,同旁内角互补”,可得∠A与∠D互补,∠B 与∠C互补.所以∠D=180°-∠A=180°-100°=80°,∠C=180°-∠B=180°-115°=65°.所以梯形的另外两个角分别是80°,65°.学习笔记:行为提示:学生分组讨论、交流,然后展示,师生合作,共同点评.学习笔记:【自主探究】解答下列问题:如图,BCD是一条直线,∠A=75°,∠1=53°,∠2=75°,求∠B的度数.解:∵∠A=75°,∠2=75°(已知),∴∠A=∠2,∴AB∥CE(内错角相等,两直线平行),∴∠B=∠1=53°(两直线平行,同位角相等).【合作探究】典例讲解:如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4,求证:AD∥BE.证明:∵∠1=∠2,∴∠1+∠CAE=∠2+∠CAE,即∠BAE=∠DAC.∵AB∥CD,∴∠4=∠BAE,∴∠4=∠DAC,而∠3=∠4,∴∠3=∠DAC,∴AD∥BE.交流展示生成新知【交流预展】1.将阅读教材时“生成的新问题”和通过“自主探究、合作探究”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.【展示提升】知识模块一运用平行线的性质解决问题知识模块二平行线性质、判定的综合运用检测反馈达成目标【当堂检测】1.(丽水中考)如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是( D )A.50°B.45°C.35°D.30°(第1题图) (第2题图) (第3题图)2.将一直角三角板与两边平行的纸条如图所示放置,下列结论:①∠1=∠2;②∠3=∠4;③∠2+∠4=90°;④∠4+∠5=180°.其中正确的个数是( D )A.1个B.2个C.3个D.4个3.(云南中考)如图,直线l1∥l2,并且被直线l3、l4所截,则∠α=64°.4.如图所示,请根据图形填空:∵AB∥CD(已知),∴∠AEF=∠CFN(两直线平行,同位角相等).∵EG 平分∠AEF ,FH 平分∠CFN(已知), ∴∠1=21∠CFN ,∠2=21∠AEF(角平分线定义). ∴∠1=∠2(等量代换).∴EG ∥FH(同位角相等,两直线平行). 【课后检测】见学生用书课后反思 查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________。

七年级数学下册 5.3.1 平行线的性质导学案(新版)新人教版(7)

七年级数学下册 5.3.1 平行线的性质导学案(新版)新人教版(7)

cba 4321F E DC BA 5.3.1平行线的性质一、问题引入,展示目标1. 如图1所示,∠1与∠2是__ _角,∠2与∠4是_ 角,∠2与∠3是__ _角.2.通过前面的学习,你知道判定两条直线平行有哪几种方法吗?二、问题启发,探究新知(一)平行线性质 1、观察思考:教材19页思考2、探索活动:完成教材19页探究3、归纳性质:同位角 。

两条平行线被第三条直线所截, 。

∵a ∥b (已知)同位角 。

∴∠1=∠5(两直线平行,同位角相等)简单说成:两直线平行 。

0°(二)证明性质的正确性:1、性质1→性质2:如右图,∵a ∥b (已知) ∴∠1=∠2( )又∵∠3=∠1(对顶角相等)。

∴∠2=∠3(等量代换)。

2、性质1→性质3:如右图,∵a ∥b (已知) ∴∠1=∠2( )又∵ ( )。

∴ 。

三、问题变换,深化理解(一)1、如图,已知直线AB ∥CD,E 是直线CD 上任意一点, 过E 向直线AB 作垂线,垂足为F ,这样做出的垂线..段.O D C B A O F E D C B A D C B A 1EF ..的长度...是平行线的距离。

2、结论:两条平行线的距离处处相等,而不随垂线段的位置而改变3、对应练习:如右图,已知:直线m ∥n ,A 、B 为 C D m 直线n 上的两点,C 、D 为直线m 上的两点。

(1)请写出图中面积相等的各对三角形;(2)如果A 、B 、C 为三个定点,点D在m 上移动。

那么,无论D 点移动到任何位置,总有三角形 与 A B n三角形ABC 的面积相等,理由是 。

(二)例 (教材20)如图是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°, 梯形另外两个角分别是多少度?1、分析①梯形这条件说明 ∥ 。

②∠A 与∠D 、∠B 与∠C 的位置关系是 ,数量关系是 。

(三)练一练:教材21页练习1、2四、问题反馈,认知升华1、本节课你有哪些收获?你还有哪些疑惑?2、预习时的疑难解决了吗?五、问题集萃,当堂达标(5-8分钟检测)1.如图1所示,AB ∥CD,则与∠1相等的角(∠1除外)共有( )A.5个B.4个C.3个D.2个(1) (2) (3)2.如图2所示,CD ∥AB,OE 平分∠AOD,OF ⊥OE,∠D=50°,则∠BOF 为( )A.35°B.30°C.25°D.20°3.∠1和∠2是直线AB 、CD 被直线EF 所截而成的内错角,那么∠1和∠2 的大小关系是( )A.∠1=∠2B.∠1>∠2;C.∠1<∠2D.无法确定4.一个人驱车前进时,两次拐弯后,按原来的相反方向前进, 这两次拐弯的角度是( ) A.向右拐85°,再向右拐95°; B.向右拐85°,再向左拐85°C.向右拐85°,再向右拐85°;D.向右拐85°,再向左拐95°5.如图3所示,AB ∥CD,∠D=80°,∠CAD:∠BAC=3:2,则∠CAD=_______,∠ACD=•_______.6.如图4,若AD ∥BC,则∠______=∠_______,∠_______=∠_______,D C B A87654321D C B A ∠ABC+∠_______=180°; 若DC ∥AB,则∠______=∠_______, ∠________=∠__________,∠ABC+∠_________=180°.(4)。

2019-2020年七年级数学下册 5.3.1 平行线的性质导学案(新版)新人教版(II)

2019-2020年七年级数学下册 5.3.1 平行线的性质导学案(新版)新人教版(II)

P D C B A 43212019-2020年七年级数学下册 5.3.1 平行线的性质导学案(新版)新人教版(II)课型:新授课 课时:1【学习目标】 1. 使学生掌握平行线的性质。

2. 使学生能用平行线的性质解决一些简单的问题,培养学生简单的推理能力。

3. 通过同学们对问题的观察→猜想→证明的一个探索过程,逐步培养同学们分析问题、解决问题的逻辑思维能力和逻辑推理能力。

【预习导学】 1. 请同学们预习课本第18-19页的思考和探究。

2. 由1)可以得到平行线有什么样的结论。

【合作探究】1. 由预习可以得到平行线的性质:性质1: 。

性质2: 。

性质3: 。

以上性质可以简单说成:性质1: 。

性质2: 。

性质3: 。

2. 请同学们完成课本第20页的练习第1题。

3. 请同学们完成课本第20页的练习第2题【学以致用】1. 如图1,直线a ,b 被直线c 所截,a ∥b ,0621=∠,则=∠2 .c2. 如图2,21∠=∠,01083=∠,则=∠4 .3. 如图3,已知062321=∠=∠=∠,则4∠的度数是( ).A. 062B. 028C. 0118D. 01284321图2图121b a4. 如图4,AB ∥CD ,已知036=∠B ,058=∠BPD ,则D ∠的度数是( ).A. 036B. 058C. 094D. 022 5. 如图所示,直线AB ∥CD ,∠1=75°,求∠2的度数.6. 如图,直线l 分别交AB 、CD 于点E 、F ,EP 平分∠BEF ,FP AB ∥CD ,,能否判定∠EPF=090,如果能,请说明理由.【巩固提升】 如图,已知直线1l ∥2l ,且 3l 和1l 、2l 分别交于A 、B (1)试找出∠1、∠2、∠3之间的关系并说明理由;(2)当点P 在A 、B 两点间运动时(不与点A 、B 重合),问∠1、∠2、∠3之间的关系是否发生变化?(3)如果点P 在在直线3l 上,线段AB 外侧上运动时,试探究∠1、∠2、∠3之间的关系.(点P 和A 、B 不重合,只要写出结论即可)A B C D321。

七年级数学下册5.3.1平行线的性质第2课时导学案新版新人教版2

七年级数学下册5.3.1平行线的性质第2课时导学案新版新人教版2

平行线的性质(第二课时)一、目标导学1、使学生理解平行线的性质,能知道平行线的性质与判定的区别,能初步利用平行线的性质进行有关计算.2、使学生体会观察、猜想、实验、归纳、验证的研究问题方法.重点:平行线的性质.难点:平行线的性质及性质与判定的区别二、自学质疑活动1 知识准备(1)平行线的判定方法有哪些? (2)平行线的性质有哪些?活动2 教材导学1.打过台球的同学们,你们知道打台球时会涉及平行线的知识吗?如图5-3-43所示,打台球时,用白球沿图示箭头方向去打黑球,要使黑球经过一次反弹后直接撞入袋中,入射角∠4等于反射角∠5,且∠1=∠2.若∠3=30°,则打黑球时必须保持∠1等于多少度才能将黑球撞入袋中?图5-3-43 图5-3-44 图5-3-45 2.如图5-3-44,三个相同的三角板拼接成一个图形,请找出图中所有的平行线.知识点一平行线的性质的应用性质1:两直线平行,同位角__ __.如图5-3-45,∵AB∥CD(已知),∴∠1=∠2( ).性质2:两直线平行,内错角__ __.如图5-3-45,∵AB∥CD(已知),∴∠2=∠3( ).性质3:两直线平行,同旁内角__ __.如图5-3-45,∵AB∥CD(已知),∴∠2+∠4=180°( ).知识点二平行线的判定的应用判定方法1:同位角__ __,两直线平行.如图5-3-45,∵∠1=∠2(已知),∴AB∥CD( ).判定方法2:内错角__ __,两直线平行.如图5-3-45,∵∠2=∠3(已知),∴AB∥CD( ).判定方法3:同旁内角___,两直线平行.如图5-3-45,∵∠2+∠4=180°(已知),∴AB∥CD( ).三、互助探究例1 如图5-3-46,已知∠1=73°,∠2=107°,∠3=79°,求∠4的度数.例2 如图5-3-47是一张四边形纸片ABCD被撕掉∠A,∠C后的剩余部分(∠A在左上角).量得∠1=∠2,∠B=45°,∠D=105°.在图中画出被撕掉的部分并求原来∠A,∠C的度数.例3 如图5-3-49,已知AB∥CD,EG,FR分别是∠BEF,∠EFC的平分线.试说明EG∥FR.图5-3-46 图5-3-47 如图5-3-49四.展示点评(学生展示成果,学生点评,教师引导)五、达标巩固(必做题)1.如图5-3-56,已知∠1=∠2,∠3=73°,则∠4的度数为________度.图5-3-56 图5-3-58 图5-3-59 2.如图5-3-58,若∠1=40°,∠2=40°,∠3=116°30′,则∠4=__________.3.已知:如图5-3-59,若∠1=∠2,∠A=60°,则∠AD C=________度.4.如图5-3-60,l∥m,若∠1=120°,∠A=55°,则∠ACB的大小是________.图5-3-60图5-3-615.已知:如图5-3-61,∠1=∠2,CE∥BF,试说明AB∥CD.六、归结反思通过学习这节课,我的收获和困惑分别是:七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.若实数m 满足1<m <2,则实数m 可以是( )A . 4.1B .0.97C . 1.4D .﹣ 3.1 【答案】C【解析】根据无理数的估算及实数的大小比较方法逐项分析即可.【详解】A. ∵ 4.1>2,故不符合题意;B. ∵0.97<1 ,故不符合题意; C. ∵1< 1.4<2 ,故符合题意;D. ∵﹣ 3.1<0,故不符合题意;故选C.【点睛】此题主要考查了估算无理数的大小及实数的大小比较,注意首先估算被开方数在哪两个相邻的平方数之间,再估算该无理数在哪两个相邻的整数之间.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.2.如图,在△ABC 中,E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别S 、S 1、S 2,且S=36,则S 1-S 2=( )A .8B .6C .4D .2 【答案】B【解析】ADF BEF ABD ABE S S S S ∆∆-=- ,所以求出三角形ABD 的面积和三角形ABE 的面积即可,因为EC=2BE ,点D 是AC 的中点,且S △ABC =36,就可以求出三角形ABD 的面积和三角形ABE 的面积,即S 1-S 2的值.【详解】解:∵点D 是AC 的中点,∴12AD AC =36ABC S ∆= 11361822ABD ABC S S ∆∆∴==⨯= 2,36ABC EC BE S ∆==11361233ABE ABC S S ∆∆∴==⨯= ()().ABD ABE ADF ABF ABF BEF ADF BEF S S S S S S S S ∆∆∆-=+-+==-即:..18126ADF BEF ABD ABE S S S S ∆∆∆∆-=-=-=即:S 1-S 2=6故答案为:B.【点睛】本题考查三角形的面积,关键知道当高相等时,面积等于底边的比,根据此可求出三角形的面积,然后求出差.3.25的算术平方根是( )A .5B .5±C .5-D .25【答案】A【解析】分析:根据“算术平方根”的定义进行分析判断即可.详解:∵2525=,∴25的算术平方根是5.故选A.点睛:熟记“算术平方根”的定义:“对于一个非负数x ,若x 2=a ,则x 叫做a 的算术平方根”是解答本题的关键.4.如图,点E 在AC 的延长线上,下列条件中:①∠1=∠2,②∠3=∠4,③∠A =∠DCE ,④∠D +∠ABD =180º,能判断AB ∥CD 的是( )A .①③④B .①②③C .①②④D .②③④【答案】A【解析】根据平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;依此即可得出答案.【详解】①∵∠1=∠2,∴ AB∥CD,②∵∠ 3=∠4,∴BD∥AC,③∵∠ A=∠ DCE,∴AB∥CD,④∵∠ D+∠ ABD=180°,∴ AB∥ CD,综上所述:能判断AB∥CD的有①③④ .故答案为A.【点睛】本题考查了平行线的判定定理,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.5.已知是方程组的解,则的值为()A.B.C.D.【答案】B【解析】把代入方程组中,得到关于a、b的方程组,解之即得答案.【详解】解:∵是方程组的解,∴,解得.故选B.【点睛】本题考查了二元一次方程组的解的概念,难度不大,属于基础题目.6.如图,直线//AB CD ,点E 在CD 上,点O 、点F 在AB 上,EOF ∠的角平分线OG 交CD 于点G ,过点F 作FH OE ⊥于点H ,已知148OGD ∠=︒,则OFH ∠的度数为( )A .26ºB .32ºC .36ºD .42º【答案】A 【解析】依据∠OGD=148°,可得∠EGO=32°,根据AB ∥CD ,可得∠EGO =∠GOF ,根据GO 平分∠EOF ,可得∠GOE =∠GOF ,等量代换可得:∠EGO=∠GOE=∠GOF=32°,根据FH OE ⊥,可得:OFH ∠=90°-32°-32°=26° 【详解】解:∵ ∠OGD=148°, ∴∠EGO=32°∵AB ∥CD ,∴∠EGO =∠GOF,∵EOF ∠的角平分线OG 交CD 于点G ,∴∠GOE =∠GOF,∵∠EGO=32°∠EGO =∠GOF∠GOE =∠GOF,∴∠GOE=∠GOF=32°, ∵FH OE ⊥,∴OFH ∠=90°-32°-32°=26° 故选A.【点睛】本题考查的是平行线的性质及角平分线的定义的综合运用,易构造等腰三角形,用到的知识点为:两直线平行,内错角相等.7.《九章算术》中有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则列方程组为()A.1x y5022y x503⎧+=⎪⎪⎨⎪+=⎪⎩B.1y y5022x x503⎧+=⎪⎪⎨⎪+=⎪⎩C.1x y5022y x503⎧+=⎪⎪⎨⎪+=⎪⎩D.1x y5022y x503⎧+=⎪⎪⎨⎪+=⎪⎩【答案】A【解析】设甲的钱数为x,乙的钱数为y,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:设甲的钱数为x,乙的钱数为y,依题意,得:1x y5022y x503⎧+=⎪⎪⎨⎪+=⎪⎩.故选A.【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.为了了解某校八年级400名学生的体重情况,从中抽取50名学生进行统计分析.在这个问题中,总体是指()A.40名学生B.被抽取的50名学生C.400名学生的体重情况D.被抽取的50名学生的体重【答案】C【解析】根据统计调查的总体的定义即可判断.【详解】总体是考察对象的全体.这里的总体是400名学生的体重情况.【点睛】此题主要考查统计调查总体的定义,解题的关键是熟知总体的含义.9.掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件属于随机事件的是()A.掷一次,骰子向上的一面点数大于0B.掷一次,骰子向上的一面点数是7C .掷两次,骰子向上的一面点数之和是13D .掷三次,骰子向上的一面点数之和是偶数【答案】D【解析】根据必然事件、不可能事件、随机事件的概念以及事件发生的可能性大小判断即可.【详解】A.掷一次骰子,在骰子向上的一面上的点数大于0是必然事件,不合题意;B.掷一次骰子,在骰子向上的一面上的点数为7是不可能事件,不合题意;C.掷两次骰子,在骰子向上的一面上的点数之积刚好是13是不可能事件,不合题意D.掷三次骰子,在骰子向上的一面上的点数之和刚好为偶数是随机事件,符合题意故选D【点睛】此题考查随机事件,难度不大10.已知一次函数 y 2x 4=+ 与 y x 2=-- 的图象都经过点A ,且与y 轴分别交于点B ,C ,若点()D m,2在一次函数 y 2x 4=+ 的图象上,则BCD 的面积为A .3B .4C .6D .8【答案】A【解析】首先根据题意,分别求出点A 、B 、C 、D 的坐标,即可判定BCD 的底为6,高为1,则可求出面积.【详解】解:根据题意,联立方程 242y x y x =+⎧⎨=--⎩解得20x y =-⎧⎨=⎩ 即点A 的坐标为(-2,0)又根据题意,可得点B (0,4),点C 的坐标为(0,-2),点D 的坐标为(-1,2) BCD 中,BC=6,其高为点D 的横坐标的长度,即为1,则16132BCD S =⨯⨯=△ 故答案为A.【点睛】此题主要考查利用一次函数解析式求解点的坐标以及其构成的三角形的面积,关键是利用坐标找出三角形的底和高,即可解题.二、填空题题11.已知()(2)10a b a b ++-+=,则+a b 的值为__________.【答案】1.【解析】先把()(2)1a b a b ++-+化成完全平方式,然后直接开平方,即可求解.【详解】∵()(2)10a b a b ++-+=,∴2()2()10a b a b +-++=,∴2(1)0a b +-=,∴10a b +-=,∴1a b +=.故答案为1.【点睛】本题考查用直接开平方法解一元二次方程和完全平方公式,本题中对已知等式进行变形时,应把+a b 看成一个整体进行计算.12.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了()n a b +(n 为非负整数)展开式的项数及各项系数的有关规律.例如,在三角形中第三行的三个数1,2,1,恰好对应着()2222a b a ab b +=++展开式中各项的系数;第五行的五个数1,4,6,4,1,恰好对应着()4432234464a b a a b a b ab b +=++++展开式中各项的系数,等等.请观察图中数字排列的规律,求出代数式x y z ++的值为______.【答案】41.【解析】根据每个数等于它上方两数之和,即可求出x ,y ,z 的值,即可求解.【详解】解:根据图表的特征,可得x=10+10=20,y=10+5=15,z=5+1=6,故2015641x y z ++=++=, 故本题填41.【点睛】本题考查探索与表达规律,解决此题时需找出图中已知数据之间的位置以及数量关系,从而得出未知数的值.13.分解因式:mn2﹣4m=_____.【答案】m(n+2)(n-2).【解析】先提取公因式m,再对余下的多项式利用平方差公式继续分解.【详解】:mn2-4m,=m(n2-4),=m(n+2)(n-2).故答案为m(n+2)(n-2).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.如图,将直径为1个单位长度的圆从原点处沿着数轴无滑动的逆时针滚动一周,使圆上的点A从原点运动至数轴上的点B,则点B表示的数是_______.【答案】-π【解析】因为圆从原点沿数轴向左滚动一周,可知OA=π,再根据数轴的特点即可解答.【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周,∴OA之间的距离为圆的周长=π,A点在原点的左边.∴A点对应的数是-π.∴点B表示的数是-π故答案为-π.【点睛】此题考查了数轴,关键是熟悉数轴的特点及圆的周长公式.15.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2011次运动后,动点P的坐标是________【答案】 (2011,2)【解析】根据动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次运动到点(4,0),第5次接着运动到点(5,1),…,∴横坐标为运动次数,经过第2011次运动后,动点P 的横坐标为2011,纵坐标为1,0,2,0,每4次一轮,∴经过第2011次运动后,动点P 的纵坐标为:2011÷4=502余3,故纵坐标为四个数中第三个,即为2,∴经过第2011次运动后,动点P 的坐标是:(2011,2),故答案为(2011,2).16.某小学捐给一所山区小学一些图书,如果每名学生分6册,那么还差100册;如果每名学生分5册,那么多出50册,若设这所山区小学有学生x 人,图书有y 册,则根据题意列方程组,得______.【答案】6100550x y y x -=⎧⎨-=⎩【解析】设这所山区小学有学生x 人,图书有y 册,根据“如果每名学生分6册,那么还差100册;如果每名学生分5册,那么多出50册”,即可得出关于x 、y 的二元一次方程组,此题得解.【详解】设这所山区小学有学生x 人,图书有y 册,根据题意得:6100550x y y x -=⎧⎨-=⎩. 故答案为:6100550x y y x -=⎧⎨-=⎩. 【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.17.四个电子宠物捧座位,一开始,小鼠、小猴、小兔、小猫分别坐在1.2,3,4号座位上(如图所示).以后它们不停地变换位置,第一次上下两排交换,第二次是在第一次换位后,再左右两列交换位置,第三次上下两排交换,第四次再左右两列交换…这样一直下去,则第2018次交换位置后,小兔了坐在_____号位上.【答案】1【解析】根据题意,不难发现:小鼠所在的号位的规律是4个一循环,由此规律可求解.【详解】因为1018÷4=504…1,即第1018次交换位置后,小鼠所在的号位与第三次交换的位置相同,即小鼠所在的座号是1,故答案为1.【点睛】此题主要考查了学生对图形的变化类这一知识点的理解和掌握,能够发现小鼠所在的号位的规律是4个一循环,是解答此题的关键,然后即可进行计算.三、解答题18.计算:(1)12502﹣1248×1252(用公式计算)(2)(213-)8×(0.2)5×(0.6)6×(﹣5)4【答案】(1)4;(2)59.【解析】(1)先利用平方差公式的计算1248×1252,再计算即可;(2)根据同底数幂相乘和积的乘方的法则,直接计算即可.【详解】(1)12502﹣1248×1252=12502﹣(1250﹣2)×(1250+2)=12502﹣(12502﹣22)=12502﹣12502+22=4;(2)(213-)8×(0.2)5×(0.6)6×(﹣5)4=(53)8×(15)5×(35)6×54=(53)6×(15)4×(35)6×54 ×(53)2×15=(53)6×(35)6×54 ×(15)4×(53)2×15= (53)2×15=59. 【点睛】本题主要考查平方差公式及积的乘方运算,解决此类计算题熟记公式是关键.19.对数的定义:一般地,若x a N =(a >0,a≠1),那么x 叫做以a 为底N 的对数,记作:log a x N =,比如指数式24=16可转化为24log 16=,对数式52log 25=互转化为52=25.我们根据对数的定义可得对数的一个性质:log ()log log a a a M N M N ⋅=+(a >0,a≠1,M >0,N >0)解决以下问题:(1)将指数43=64转化为对数式________;(2)试说明log log log a a a M M N N=-(a >0,a≠1,M >0,N >0) (3)拓展运用:计算333log 2log 6log 4+-=_______【答案】(1)43log 64=(2)log log log a a a M M N N=-(3)1 【解析】(1)根据题意可以把指数式34=64写成对数式 (2)先设log a M =mlog a N =n ,根据对数的定义可表示为指数式为:M=a m ,N=a n ,计算M N 的结果,同理由所给材料的证明过程可得结论。

七年级数学下册 5.3.1 平行线的性质教案 新人教版(2021学年)

七年级数学下册 5.3.1 平行线的性质教案 新人教版(2021学年)

七年级数学下册5.3.1 平行线的性质教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学下册5.3.1 平行线的性质教案(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学下册5.3.1 平行线的性质教案(新版)新人教版的全部内容。

平行线的性质教学目标1、掌握平行线的三个性质,能够进行简单的推理;2、初步理解命题的含义,能够辨别简单命题的题设和结论;重点、难点重点:平行线的三个性质的探索.难点: 平行线三个性质的应用教学过程一、复习导入1、如图(1)∠3=∠B,则EF∥AB,依据是(2)∠2+∠A=180°,则DC∥AB,依据是(3)∠1=∠4,则GC∥EF,依据是设计意图:利用复习导入,让学生回顾旧知识的同时将新知识纳入自己的认知体系做好铺垫,使学生认识到数学知识来源与生活,应用与生活,激发他们的求知欲望。

二、探究新知问题1:教师以窗格为例,已知窗户的横格是平行的,用三角尺进行检验,发现同位角相等.这个结论是否具有一般性呢?(1)利用坐标纸上的直线或者用直尺和三角尺画两条平行线a∥b,画一条截线c与这两条平行线相交,标出如图的角.(2)度量这些角,把结果填入下表:(3)比较同位角∠1和∠5的大小它们有什么关系?图中还有其他同位角吗?它们的大小有什么关系?学生首先独立完成问题,鼓励学生运用多种方法进行探索,在此过程中教师要关注:学生能否按要求正确画图并准确标记直线和角;能否准确找出同位角、内错角和同旁内角,分别进行讨论,并得出正确结论.对于学有困难的学生教师要给予具体的帮助、鼓励和指导,使全班同学都能积极参与探索活动.设计意图:通过动手画图,度量角度等简单易行的操作调动所有学生参加到课堂教学的活动中来,再通过自己的独立思考,小组交流验证自己的结论是否正确,使学生体验到成功的喜悦,使学生乐学爱学。

七年级数学下册 5.3.1 平行线的性质教学设计2 (新版)新人教版-(新版)新人教版初中七年级下册

七年级数学下册 5.3.1 平行线的性质教学设计2 (新版)新人教版-(新版)新人教版初中七年级下册

平行线的性质教学目标:(1)知识与技能:探索平行线的性质定理,并掌握它们的图形语言、文字语言、符号语言;会用平行线的性质定理进行简单的计算、证明。

(2)过程与方法:在定理的学习中,锻炼观察能力,尝试与他人合作开展讨论、研究,并表达自己的见解。

(3)情感态度、价值观:在课堂练习中,体验几何与实际生活的密切联系。

教学重点:平行线的性质。

教学难点:平行线的性质定理与判定定理的区别。

教学模式:发现教学模式。

教学方法:直观教学法、发现教学法、主体互动法。

教学手段:计算机辅助教学。

教学过程:例题示X 【大屏幕】例:如图是一块梯形铁片的残余部分,量得∠A=100o,∠B=115o,梯形另外两个角分别是多少度?思考、尝试运用符号语言进行推理。

要求学生会用平行线的性质进行计算,只需算出所求的度数即可。

初次计算格式不一定很完整。

趣味练习【大屏幕】(见附录2) 思考、讨论、解释结论寓教于乐,进一步让学生感受“认识来源于实践”。

巩固练习【大屏幕】巩固练习(见附录3) 积极思考、展开讨论、踊跃回答循序渐进提高难度、提高灵活运用定理的能力,感受解决有关平行问题的关键,突破难点,并进一步提高用符号语言进行推理的能力。

拓 展 思 路 【大屏幕】探究题(见附录4)【备注】如果时间不允许的话,该题可作为课后作业,并给予简单的提示。

猜测、讨论,寻找规律使重点中学学生的思路进一步得以拓宽,初次接触辅助线的添加,使学生能力得以提高。

课堂 小结【提问】本节课我们学习了哪些定理?在表述这些定理时,应注意什么呢?回顾、归纳 将本节课知识进行回顾。

布置 作业 【大屏幕】布置作业:教材P67的4、5;P68的6、7;P69的11、12课后完成 课后能进一步巩固,鼓励学生去发现身边的数学问题。

附录1:如图,请选取条格纸上的任意两条直线l 1、l 2,画一条直线l 3与这两条平行线相交,标出这些角。

度量这些角,把结果填入下表:各对同位角、内错角、同旁内角的度数之间有什么关系?大胆的去猜想,试着说一说!附录2:趣味练习:一辆汽车在笔直的公路上行驶,在两次转弯后,仍在原来的方向上平行前进,那么这两次转弯的角度可以是( )A 、先右转80o,再左转100 oB 、先左转80 o,再右转80 o角 ∠1 ∠2 ∠3 ∠4度数角∠5 ∠6 ∠7 ∠8度数C、先左转80 o ,再左转100 oD、先右转80 o,再右转80 o附录3:巩固练习:1、如图,直线a∥b,∠1=54o,那么∠2、∠3、∠4各多少度?2、请在括号中填写理由:①∵∠B=∠3 ∴AB∥CE ( )②∵AB∥CE ∴∠A=∠2 ( )③∵AB∥CE ∴∠B+∠BCE= 180o( )④∵∠A=∠2 ∴AB∥CE ( )3、如图,填空:①∵ED∥AC(已知)∴∠1=∠C ( )②∵DF∥(已知)∴∠2=∠BED ( )③∵AB∥DF(已知)∴∠3=∠( )④∵AC∥ED(已知)∴∠=∠(两直线平行,内错角相等)4、请结合图形,根据所给定的平行线填入所需的角,并说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线的性质
自主学习、课前诊断
一、温故知新
如何判定两直线平行?
二、设问导读:
阅读课本P18-19完成下列问题:
问题1:平行线具有的性质:
性质一:_____________________
性质二:_____________________
性质三:_____________________
问题2:借助图5.3-1,利用“性质一”证明“性质三”,写出推理过程。

三、自学检测:
1如图:当AD∥BC时,∠DAC=∠_____.
(第1题图)(第2题图)
2.如图:AB∥CD ,∠ A=98°,∠C=75°,∠B=_____度,∠D=_____
3.如图,所示,一条公路两次拐弯
后和原来的方向相同,
即拐弯前后的两条路
平行,若第一次拐角
是150°,则第二次拐角为_____.
4. 如图,AB∥CD, BC∥DG, ∠B=
750试求:∠D的度数。

A 北 北
B
C 互动学习、问题解决
导入新课
二、交流展示
学用结合、提高能力
一、巩固训练
1.如图所示,如果DE ∥AB ,那么
∠A+ =1800或∠B+____=1800,
根据是 ;如果∠CED=∠FDE ,那么 _∥ ,根据
是 .
(第1题图) (第2题图) 2.(2012,宁夏)如图,C 岛在A 岛的北偏东450方向,在B 岛的北偏西250方向,则3.若两条平行线被第三条直线所截,则一组同位角的平分线互相( )
A.垂直
B.平行
C.重合
D.相交
4.如图,点D 、E 、F 分别在⊿ABC 的边AB 、AC 、BC 上,且DE ∥BC,∠B=480,
(1)试求∠ADE 的度数
(2)如果∠DEF=480,那么与平行吗?
二、当堂检测
1.如图,已知DE ∥BC,CD 是∠ACB
的平分线,∠B=72°,∠ACB=400,
那么∠BDC 等于( )
A.78°
B.90°
C.88°
D.92°
2.如图,已知AB ∥CD,AE ∥CF,试判断∠BAE 与∠DCF 的关系,并说明理由。

三、拓展延伸:
如图,已知∠B=65°,∠EAC
=130°,AD∥BC,能否判断AD平分∠EAC?为什么?
课堂小结、形成网络
________________________________________________________________________ ______________________________
5.3.1 平行线的性质
自学检测:
1. ∠ACB
2. 105° 82°
3. 150°
4.解:∵AB∥CD
∴∠B= ∠C
∵∠B=750
∴∠C=750
∵BC∥DG
∴∠C+∠D=1800
∴∠D=1050
巩固训练:
1. ∠AED ∠BDE 两直线平行,同旁内角互补 AC DF 内错角相等,两直线平行
2. 70°
3.B
4.(1) ∠ADE=480
(2) EF∥AB
理由:∵∠DEF=480∠ADE=480
∴∠DEF=∠ADE
∴EF∥AB
当堂检测
C
解:∠BAE=∠DCF
理由:∵AB∥CD
∴∠BAC=∠ACD
∵AE∥CF
∴∠CAE=∠ACF
∴∠BAC-∠CAE =∠ACD-∠ACF 即:∠BAE=∠DCF
拓展延伸:
解:AD平分∠EAC
理由:∵AD∥BC
∴∠B=∠EAD
∵∠B=65°
∴∠EAD=65°
∵∠EAC=130°
∴∠DAC=∠EAD=65°
∴AD平分∠EAC。

相关文档
最新文档