LM2903V中文资料

合集下载

集成电路中英文对照

集成电路中英文对照

表面贴装集成电路SURFACE MOUNT INTEGRATED CIRCUITTYPE NO. FUNCTIONPIN TYPE NO. FUNCTIONPIN LM358 单电源通用型双运放8 UC3843 脉宽调制8/14 UPC1251 单电源通用型双运放(工业级) 8 UC3844 脉宽调制(开关电源) 14 LM741 单运放(通用型)8 LM317 三端可调(1.25~37V ) 8 UPC258 双运放(通用型)(工业级) 8 LM337 三端可调(1.25~37V ) 8 LM1458 双运放(通用型) 8 LM385 基准二极管(1.25V,2.5V) 8 LM4558 双运放(通用型) 8 78L05 三端稳压5V/100MA 3/8 LM324 单电源四运放14 78DS05 三端稳压5V/30MA(低压差) 3 UPC451 单电源四运放(工业级) 14 78L06 三端稳压6V/100MA 3 LM3403 单电源四运放 14 78L09 三端稳压9V/100MA 3 LM4741 单电源四运放 14 78L12 三端稳压12V/100MA 3 LF353 BI-GET 输入型双运放 8 79L05 三端稳压-5V/100MA 3 TL061 低功耗JFET 输入单远放 8 79L06 三端稳压-6V/100MA 3 TL062 低功耗JFET 输入双远放 8 79L09 三端稳压-9V/100MA 3 TL064 低功耗JFET 输入四远放 14 79L12 三端稳压-12V/100MA 3 TL072 低功耗JFET 输入双远放 8 78M05 三端稳压5V/500MA 3 TL074 低功耗JFET 输入四远放 14 78D05 三端稳压5V/500MA(低压差) 3 MC34074 高性能、单电源四远放 14 78M12 三端稳压12V/500MA 5 TL081 BEJFET 输入单远放 8 79M05 三端稳压-5V/500MA 3 TL082 BJ-JFET 输入双远放 8 79M12 三端稳压-12V500MA 3 TL084 BJ-JFET 输入四远放 14 A1600 单调MOSFET 陈列*8 16 UPC4572 高性能双远放 8 MC1403 精密基准二极管2.5V 8 UPC4574 高性能四远放 14 MC34063 开关电源 8 LM339 四电压比较器 14 MC34064 欠压传感电路 8 LM393 双电压比较器8 CD4001 二输入端四或非门 14 UPC277 双电压比较器(工业级) 8 CD4007 双互补对加倒相器 14 LM311 通用比较器(单) 8 CD4011 二输入端四与非门 14 LM319 高速双比较器8 CD4013 双D 触发器 14 LM2901 四电压比较器(-20℃~) 14 CD4016 四与向模拟开关 14 LM2902 单电源四运放(-20℃~) 14 CD4017 十进制计数/分配器 16 LM2903 双电压比较器(-20℃~) 8 CD4019 四与或选择器 16 LM2904 双电压比较器(-20℃~) 8 CD4021 八位静态移位寄存器 16 7660 电源变换器 8 CD4027 双J-K 触发器 16 LM386 功率放大 8 CD4028 BCD 十进制译码器 16 LM555 时基电路 8 CD4030 四异或门14 LMC555 COMS 时基电路 8 CD4040(HC) 四R/S 锁存器(与非三态) 14 LM556 双时基电路 14 CD4043 四R/S 锁存器(与非三态) 14 TLC556 CMOS 双时基电路 14 CD4046 锁相环16 TL431 可调三端 3/8 CD4049 六反相缓冲器/转换器 16 TL1451 双脉宽调制控制 16 CD4050(HC) 六同相缓冲器/转换器 16 D4990 串行I/O 实时时钟 16 CD4051 八选一模拟开关 16 OP07 低失调电压型运放 8 CD4052 双四选一模拟开关 16 OP27 低噪声低失调电压型运放 8 CD4053 三组二路双向模拟开关 16 OP37 低噪声低失调电压型运放(高速) 8 CD4060 14位串行二进制计数/分频/振荡 14 OP177 低失调电流型运放 8 CD4066 四双向模拟开关 14 7106 3 1/2DVM 用A/D 液晶 44 CD4069 六反相器 14 7107 3 1/2DVM 用A/D 数码管44 CD4070 四异或门 14 7117 3 1/2DVM 用A/D 数码管(HCLD ) 44 CD4071 二输入端四或门 14 D7554 4-Bit 单片机 20 CD4081 二输入端四或门14 MN1035 运放 8 CD4093 二输入端四与非史密特触发器 14 NJM318 高速单运放 8 CD4094 八位移位存储总线寄存器 16 TA76494 开关式稳压源 16 CD4512 八通道数据选择器 16 TL494 开关式稳压源 16 CD4516 二进制四位可逆计数器 16 MB3759 开关式稳压源 16 CD4518 双BCD 加法计数器 16 UC3842脉宽调制14CD4520双二进制加法计数器16表面贴装集成电路SURFACE MOUNT INTEGRATED CIRCUIT。

LM2903M中文资料

LM2903M中文资料
Output Leakage Current
VI(R)
ICC GV TLRES TRES ISINK VSAT
IO(LKG)
Note 1
RL = ∞, VCC = 5V
RL = ∞, VCC = 30V
VCC =15V, RL≥15KΩ (for large VO(P-P)swing)
VI =TTL Logic Swing VREF =1.4V, VRL = 5V, RL = 5.1KΩ
Output Leakage Current
IO(LKG)
VI(-) = 0V, VI(+) = 1V
VO(P) = 5V VO(P) = 30V
NOTE 1 LM393/LM393A: 0 ≤ TA ≤ +70°C LM2903: -40 ≤ TA ≤ +85°C LM2903I: -40 ≤ TA ≤ +105°C LM293/LM293A : -25 ≤ TA ≤ +85°C
- ±150
- 65 250
-
65 250
nA
-
- 400 -
-
400
0
-
VCC -1.5
0
0
- VCC-2 0
-
VCC -1.5 V
- VCC-2
- 0.6 1
-
0.6
1
mA
- 0.8 2.5
-
0.8 2.5
50 200 -
50 200
- V/mV
- 350 -
- 350 - nS
- 1.4 -
-
8-SOP
Operating Temperature 0 ~ + 70°C -40 ~ + 85°C

lm2903工作原理

lm2903工作原理

lm2903工作原理
LM2903是一种双运算放大器,常用于模拟和数字电路中。

它由两个相互独立的运算放大器组成。

每个运算放大器都具有两个输入端和一个输出端。

两个运算放大器具有相同的工作原理。

每个运算放大器的工作原理如下:
1. 差分输入:每个运算放大器有两个输入端,分别称为非反相输入端(+IN)和反相输入端(-IN)。

当电压在非反相输入端上升时,输出电压也会上升;当电压在反相输入端上升时,输出电压则下降。

2. 开环增益:当输入电压在一定范围内变化时,输出电压会经过放大。

LM2903的开环增益是固定的,约为200倍左右。

3. 负反馈:为了稳定运算放大器的工作,需要将一部分输出电压反馈到输入端。

具体而言,将输出端引出的信号经过电阻网络反馈到反相输入端。

这种负反馈会减小增益,但能提高稳定性和线性度。

4. 输入阻抗和输出阻抗:LM2903的输入阻抗较高,约为
100MΩ,输出阻抗较低,约为100Ω。

这样可以避免对输入和输出电路的干扰,提高信号传输质量。

5. 供电电压:LM2903通常工作在+5V至+30V的供电电压范围内。

此外,芯片还具有过电流保护和静态电保护功能,以确
保可靠的工作。

总之,LM2903的工作原理是基于运算放大器的反馈机制实现对输入电压的放大,并通过负反馈提高稳定性和线性度。

它在模拟和数字电路中具有广泛的应用。

LM2903IM中文资料

LM2903IM中文资料

©2001 Fairchild Semiconductor CorporationRev. 1.0.3Features•Single Supply Operation: 2V to 36V •Dual Supply Operation: ± 1V to ±18V•Allow Comparison of V oltages Near Ground Potential •Low Current Drain 800µA Typ.•Compatible with all Forms of Logic •Low Input Bias Current 25nA Typ.•Low Input Offset Current ±5nA Typ.•Low Offset V oltage ±1mV Typ.DescriptionThe LM2903/LM2903I, LM393/LM393A, LM293/LM293A consist of two independent voltage comparators designed to operate from a single power supply over a wide voltage range.8-DIP8-SOP11Internal Block DiagramLM2903/LM2903I,LM393/LM393A, LM293/LM293ADual Differential ComparatorLM2903/LM2903I,LM393/LM393A, LM293/LM293A2Schematic DiagramAbsolute Maximum RatingsThermal DataParameterSymbol Value Unit Power Supply Voltage V CC ±18 or 36V Differential Input Voltage VI(DIFF)36V Input VoltageV I - 0.3 to +36V Output Short Circuit to GND -Continuous -Power Dissipation, Ta = 25°C 8-DIP 8-SOPP D1040480mWOperating Temperature LM393/LM393A LM2903LM2903ILM293/LM293A T OPR 0 ~ +70- 40 ~ +85-40 ~ +105-25 ~ +85°C Storage TemperatureT STG- 65 ~ +150°CParameterSymbol Value Unit Thermal Resistance Junction-Ambient Max.8-DIP 8-SOPR θja120260°C/WLM2903/LM2903I,LM393/LM393A, LM293/LM293A3Electrical Characteristics(V CC = 5V, T A = 25°C, unless otherwise specified)NOTE 1LM393/LM393A: 0 ≤ T A ≤ +70°C LM2903: -40 ≤ T A ≤ +85°C LM2903I: -40 ≤ T A ≤ +105°CLM293/LM293A : -25 ≤ T A ≤ +85°CParameter Symbol ConditionsLM293A/LM393A LM293/LM393Unit Min.Typ.Max.Min.Typ.Max.Input Offset Voltage V IO V O(P) =1.4V, R S = 0Ω-±1±2-±1±5mV V CM = 0 to1.5V Note 1--±4.0--±9.0Input Offset Current I IO -±5±50-±5±50nA Note 1--±150--±150Input Bias Current I BIAS-65250-65250nANote 1--400--400Input Common ModeVoltage Range V I(R)0-V CC -1.50-V CC -1.5VNote 10-V CC -20-V CC -2Supply Current I CC R L = ∞ , V CC = 5V -0.61-0.61mA R L = ∞, V CC = 30V -0.8 2.5-0.8 2.5Voltage Gain G V V CC =15V, R L ≥ 15K Ω (for large V O(P-P)swing )50200-50200-V/mV Large Signal Response Time T LRES V I =TTL Logic Swing V REF =1.4V, V RL = 5V,R L = 5.1K Ω-350--350-nS Response Time T RES V RL =5V, R L =5.1K Ω- 1.4-- 1.4-µS Output Sink Current I SINK V I(-) ≥ 1V, V I(+) =0V, V O(P) ≤1.5V 618-618-mA Output Saturation Voltage V SATV I(-) ≥ 1V, VI(+) = 0V -160400-160400mV I SINK = 4mANote 1--700--700Output Leakage CurrentI O(LKG)V I(-) = 0V,V I(+) = 1VV O(P) = 5V -0.1--0.1-nA V O(P) = 30V-- 1.0-- 1.0µALM2903/LM2903I,LM393/LM393A, LM293/LM293A4Electrical Characteristics (Continued)(V CC = 5V, T A = 25°C, unless otherwise specified)Note 1LM393/LM393A: 0 ≤ T A ≤ +70°C LM2903: -40 ≤ T A ≤ +85°C LM2903I: -40 ≤ T A ≤ +105°CLM293/LM293A : -25 ≤ T A ≤ +85°CParameterSymbol ConditionsLM2903/LM2903I Unit Min.Typ.Max.Input Offset Voltage V IO V O(P) =1.4V, R S = 0Ω-±1±7mV V CM = 0 to 1.5VNote 1-±9±15Input Offset Current I IO -±5±50nA Note 1-±50±200Input Bias Current I BIAS-65250nANote 1--500Input Common Mode Voltage Range V I(R)-V CC -1.5VNote 10-V CC -2Supply Current I CC R L = ∞, V CC = 5V -0.61mA R L = ∞, V CC = 30V -1 2.5Voltage GainG V V CC =15V, R L ≥15K Ω(for large V O(P-P)swing )25100- V/mV Large Signal Response Time T LRES V I =TTL Logic SwingV REF =1.4V, V RL = 5V, R L = 5.1K Ω-350-nS Response Time T RES V RL = 5V, R L = 5.1K Ω- 1.5-µS Output Sink Current I SINK V I(-) ≥ 1V, V I(+) = 0V, V O(P) ≤ 1.5V 616-mA Output Saturation Voltage V SAT V I(-) ≥ 1V, VI(+) = 0V -160400mV I SINK = 4mA Note 1--700Output Leakage CurrentI O(LKG)V I(-) = 0V,V O(P) = 5V -0.1-nA V I(+) = 1VV O(P) = 30V-- 1.0µALM2903/LM2903I,LM393/LM393A, LM293/LM293A5Typical Performance CharacteristicsFigure 1.Supply Current vs Supply Voltage Figure 2.Input Current vs Supply VoltageFigure 3.Output Saturation Voltage vs Sink CurrentFigure 4.Response Time for Various InputOverdrive-Negative TransitionFigure 5.Response Time for Various InputOverdrive-Positive TransitionLM2903/LM2903I,LM393/LM393A,LM293/LM293AMechanical DimensionsPackageDimensions in millimeters8-DIP6LM2903/LM2903I,LM393/LM393A,LM293/LM293A Mechanical Dimensions(Continued)PackageDimensions in millimeters8-SOP7LM2903/LM2903I,LM393/LM393A, LM293/LM293A12/21/01 0.0m 001Stock#DSxxxxxxxx2001 Fairchild Semiconductor CorporationLIFE SUPPORT POLICYFAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:1.Life support devices or systems are devices or systemswhich, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can bereasonably expected to result in a significant injury of the user.2. A critical component in any component of a life supportdevice or system whose failure to perform can bereasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.DISCLAIMERFAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANYLIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.Ordering InformationProduct NumberPackage Operating TemperatureLM393N 8-DIP0 ~ + 70°CLM393AN LM393M 8-SOP LM393AM LM2903N 8-DIP -40 ~ + 85°C LM2903M 8-SOP LM2903IN 8-DIP -40 ~ + 105°C LM2903IM 8-SOP LM293N 8-DIP-25 ~ + 85°CLM293AN LM293M 8-SOPLM293AM。

LM2903VD中文资料

LM2903VD中文资料
元器件交易网
Order this document by LM393/D
LM393, LM393A, LM293, LM2903, LM2903V Low Offset Voltage Dual Comparators
The LM393 series are dual independent precision voltage comparators capable of single or split supply operation. These devices are designed to permit a common mode range–to–ground level with single supply operation. Input offset voltage specifications as low as 2.0 mV make this device an excellent selection for many applications in consumer automotive, and industrial electronics. • Wide Single–Supply Range: 2.0 Vdc to 36 Vdc
(Top View)
ORDERING INFORMATION
Operating Temperature Range TA = –25° to +85°C TA = 0° to +70°C TA = –40° to +105°C TA = –40° to +105°C Package SO–8 SO–8 Plastic DIP SO–8 Plastic DIP SO–8 Plastic DIP
Output A

LM2901 LM2901A LM2903 LM2903A 双极性和四极性差分比较器说明书

LM2901 LM2901A LM2903 LM2903A 双极性和四极性差分比较器说明书

Description The LM2901/2903 series comparators consist of four and two independent precision voltage comparators with very low input offset voltage specification. They are designed to operate from a single power supply over a wide range of voltages; however operation from split power supplies is also possible. They offer low power supply current independent of the magnitude of the power supply voltage.The LM2901/2903 series comparators are designed to directly interface with TTL and CMOS. When operating from both plus and minus power supplies, the LM2901/2903 series comparators will directly interface with MOS logic where their low power drain is a distinct advantage over standard comparators.The dual devices are available in SO-8, TSSOP-8, and MSOP-8, and the quad devices available in SO-14 and TSSOP-14 with industry standard pinouts. Both use green mold compound as standard.Features•Wide Power Supply Range: ▪ Single Supply: 2V to 36V ▪ Dual Supplies: ±1.0V to ±18V•Very Low Supply Current Drain—Independent of Supply Voltage ▪ LM2903: 0.6mA ▪ LM2901: 0.9mA• Low Input Bias Current: 25nA • Low Input Offset Current: ±5nA •Typical Offset Voltage: ▪ Non-A Device: 2mV ▪ A Device: 1mV• Common-Mode Input Voltage Range Includes Ground• Differential Input Voltage Range Equal to the Power Supply Voltage•Low Output Saturation Voltage: ▪ LM2903: 200mV at 4mA ▪ LM2901: 100mV at 4mA• Output Voltage Compatible with TTL, MOS and CMOS• Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2) •Halogen and Antimony Free. “Green” Device (Note 3)Pin Assignments(Top View)SO-8/TSSOP-8/MSOP-81OUT V CC2IN-2IN+1IN-1IN+GND2OUTLM2903/ LM2903A(Top View)SO-14/TSSOP-141OUT 3OUT GND4IN+3IN-3IN+4IN-2OUTV CC2IN-2IN+1IN-1IN+4OUTLM2901/ LM2901ANotes: 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.2. See https:///quality/lead-free/ for more information about Diodes Incorporated’s definitions of Halogen- and Antimony-free, "Green" and Lead-free.3. Halogen- and Antimony-free "Green” products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.Schematic DiagramOUTPUT-INPUTFunctional Block Diagram of LM2901/2901A/2903/2903A(Each Comparator)Pin DescriptionsLM2901, LM2901APin Name Pin # Function1OUT 1 Channel 1 Output2OUT 2 Channel 2 OutputV CC 3 Chip Supply Voltage2IN- 4 Channel 2 Inverting Input2IN+ 5 Channel 2 Non-Inverting Input1IN- 6 Channel 1 Inverting Input1IN+ 7 Channel 1 Non-Inverting Input3IN- 8 Channel 3 Inverting Input3IN+ 9 Channel 3 Non-Inverting Input4IN- 10 Channel 4 Inverting Input4IN+ 11 Channel 4 Non-Inverting InputGND 12 Ground4OUT 13 Channel 4 Output3OUT 14 Channel 3 OutputLM2903, LM2903A1OUT 1 Channel 1 Output1IN- 2 Channel 1 Inverting Input1IN+ 3 Channel 1 Non-Inverting InputGND 4 Ground2IN+ 5 Channel 2 Non-Inverting Input2IN- 6 Channel 2 Inverting Input2OUT 7 Channel 2 OutputV CC8 Chip Supply VoltageNotes: 4. Stresses beyond those listed under Absolute Maximum Ratings can cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods can affect device reliability.5. Short circuits from outputs to V CC can cause excessive heating and eventual destruction.6. Maximum power dissipation is a function of T J(MAX), θJA, and T A. The maximum allowable power dissipation at any allowable ambient temperature isP D = (T J(MAX)− T A)/θJA. Operating at the absolute maximum T J of 150°C can affect reliability.7. Human body model, 1.5kΩ in series with 100pF.Notes:8. Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.9. All limits are guaranteed by testing or statistical analysis. Limits over the full temperature are guaranteed by design, but not tested in production.10.V O ≅1.4V, R S= 0Ω with V CC from 5V to 30V;11.The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output sono loading change exists on the input lines.12.The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V (@ +25°C). The upper end of thecommon-mode voltage range is V CC -1.5V (@ +25°C), but either or both inputs can go to +36V without damage, independent of the magnitude of V CC.13. The response time specified is for a 100mV step input with 5mV overdrive. For larger overdrive signals 300ns can be obtained, see typical performancecharacteristics.14. Positive excursions of input voltage may exceed the power supply level. As long as other voltages remain within the common mode range, thecomparator will provide a proper output stage. The low voltage state must not be less than -0.3V (or 0.3V below the magnitude of the negative powersupply, if used).Notes:8. Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.9. All limits are guaranteed by testing or statistical analysis. Limits over the full temperature are guaranteed by design, but not tested in production.10.V O ≅1.4V, R S= 0Ω with V CC from 5V to 30V;11.The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output sono loading change exists on the input lines.12.The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V (@ +25°C). The upper end of thecommon-mode voltage range is V CC -1.5V (@ +25°C), but either or both inputs can go to +36V without damage, independent of the magnitude of V CC.13. The response time specified is for a 100mV step input with 5mV overdrive. For larger overdrive signals 300ns can be obtained, see typical performancecharacteristics.14. Positive excursions of input voltage may exceed the power supply level. As long as other voltages remain within the common mode range, thecomparator will provide a proper output stage. The low voltage state must not be less than -0.3V (or 0.3V below the magnitude of the negative powersupply, if used).Performance CharacteristicsSupply Current vs. Supply Voltage Supply Current vs. Supply VoltageSupply Current vs. Temperature Supply Current vs. TemperatureOutput Saturation Voltage vs. Sink Current Output Saturation Voltage vs. Sink CurrentPerformance Characteristics (continued)Response Time for Various Input Overdrive Response Time for Various Input OverdriveInput Current vs. Supply Voltage Input Current vs. TemperatureApplication InformationGeneral InformationThe LM2901/2903 series comparators are high-gain, wide bandwidth devices. Like most comparators, the series can easily oscillate if the output lead is inadvertently allowed to capacitive couple to the inputs via stray capacitance. This shows up only during the output voltage transition intervals as the comparators change states. Standard PC board layout is helpful as it reduces stray input-output coupling. Reducing the input resistors to <10kΩreduces the feedback signal levels. Finally, adding even a small amount (1.0mV to 10mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations, due to stray feedback, are not possible. Simply socketing the IC and attaching resistors to the pins will cause input-output oscillations during the small transition intervals unless hysteresis is used. If the input signal is a pulse waveform, with relatively fast rise and fall times, hysteresis is not required. All input pins of any unused comparators should be tied to the negative supply.The bias network of the LM2901/2903 series comparators establishes a quiescent current independent of the magnitude of the power supply voltage over the range of from 2.0V DC to 30V DC.The differential input voltage may be larger than V CC without damaging the device. Protection should be provided to prevent the input voltages from going negative more than -0.3V DC (@ +25°C). An input clamp diode can be used as shown in the applications section.The output of the LM2901/2903 series comparators is the uncommitted collector of a grounded-emitter NPN output transistor. Many collectors can be tied together to provide an output ORing function. An output pull-up resistor can be connected to any available power supply voltage within the permitted supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage applied to the V CC terminal of LM2901/2903 series comparator package. The output can also be used as a simple SPST switch to ground (when a pull-up resistor is not used).The amount of current the output device can sink is limited by the drive available (which is independent of V CC) and the β of this device. When the maximum current limit is reached (approximately 16mA), the output transistor will come out of saturation and the output voltage will rise very rapidly. The output saturation voltage is limited by the approximately 60ΩR SAT of the output transistor. The low offset voltage of the output transistor (1.0mV) allows the output to clamp essentially to ground level for small load currents.Typical Application Circuit (V CC = 5.0V DC )Typical Application Circuit(V CC = 5.0V DC) (continued)Typical Application Circuit (V CC = 5.0V DC ) (continued)Ordering Information (Note 15)LM290X X XXX - 13ChannelGrade3 : Dual PackingPackageS : SO-813 : Tape & Reel1 : Quad A : Low V IOBlank : Normal S14 : SO-14T14 : TSSOP-14M8: MSOP-8TH: TSSOP-8Part Number Package CodePackaging 13” Tape and ReelQuantity Part Number SuffixLM2901T14-13 T14 TSSOP-14 2500/Tape & Reel -13 LM2901AT14-13 T14 TSSOP-14 2500/Tape & Reel -13 LM2901S14-13 S14 SO-14 2500/Tape & Reel -13 LM2901AS14-13 S14 SO-14 2500/Tape & Reel -13 LM2903S-13 S SO-8 2500/Tape & Reel -13 LM2903AS-13 S SO-8 2500/Tape & Reel -13 LM2903AM8-13 M8 MSOP-8 2500/Tape & Reel -13 LM2903M8-13 M8 MSOP-8 2500/Tape & Reel -13 LM2903ATH-13 TH TSSOP-8 2500/Tape & Reel -13 LM2903TH-13THTSSOP-82500/Tape & Reel-13Note: 15. For packaging details, go to our website at /products/packages.html.Marking Information (1) TSSOP-14 and SO-14(2) SO-8(3) MSOP-8 & TSSOP-8Package Outline DimensionsPlease see /package-outlines.html for the latest version.SO-8SO-8Dim Min Max A − 1.75 A1 0.10 0.20 A2 1.30 1.50 A3 0.15 0.25 b 0.3 0.5 D 4.85 4.95 E 5.90 6.10 E1 3.85 3.95 e 1.27 Typ h − 0.35 L 0.62 0.82θ0° 8° All Dimensions in mmTSSOP-8MSOP-8MSOP-8Dim Min Max Typ A − 1.10 − A1 0.05 0.15 0.10 A2 0.75 0.95 0.86 A3 0.29 0.49 0.39 b 0.22 0.38 0.30 c 0.08 0.23 0.15 D 2.90 3.10 3.00 E 4.70 5.10 4.90 E1 2.90 3.10 3.00 E3 2.85 3.05 2.95 e − −0.65 L 0.400.80 0.60 a 0° 8° 4° x − − 0.750 y − − 0.750 All Dimensions in mmGauge Plane Seating PlaneDetail ‘A’Detail CSee Detail CDetail CPackage Outline Dimensions (continued)Please see /package-outlines.html for the latest version.SO-14SO-14Dim Min Max A 1.47 1.73 A1 0.10 0.25 A2 1.45 Typ B 0.33 0.51 D 8.53 8.74 E 3.80 3.99 e 1.27 Typ H 5.80 6.20 L 0.38 1.27θ0° 8° All Dimensions in mmTSSOP-14TSSOP-14 Dim Min Max a1 7° (4X) a2 0° 8° A 4.9 5.10 B 4.30 4.50 C − 1.2 D 0.8 1.05 F 1.00 Typ F1 0.45 0.75 G 0.65 Typ K 0.19 0.30 L 6.40 Typ All Dimensions in mmDetail “A”Pin# 1 Detail ‘A’Gauge Plane Seating PlaneSuggested Pad LayoutPlease see /package-outlines.html for the latest version.SO-8TSSOP-8MSOP-8XC2YSuggested Pad Layout (continued)Please see /package-outlines.html for the latest version.SO-14TSSOP-14XC1XC1。

LM2903N中文资料

LM2903N中文资料
logic systems
3.5µA
100µA
3.5µA
100µA
Q2
Q3 Q4 OUTPUT
+ INPUT
– INPUT
Q1Q8 Q7 Qຫໍສະໝຸດ Q6APPLICATIONS
• A/D converters • Wide range VCO • MOS clock generator • High voltage logic gate • Multivibrators
ORDER CODE LM193FE LM293FE LM293N LM293D LM293AN LM393AFE LM393FE LM393D LM393N LM393AN LM2903N LM2903D
DWG # 0580A 0580A SOT97-1 SOT96-1 SOT97-1 0580A 0580A SOT96-1 SOT97-1 SOT97-1 SOT97-1 SOT97-1
元器件交易网
Philips Semiconductors Product specification
Low power dual voltage comparator
LM193/A/293/A/393/A/2903
DESCRIPTION
The LM193 series consists of two independent precision voltage comparators with an offset voltage specification as low as 2.0mV max. for two comparators which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though operated from a single power supply voltage. The LM193 series was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, the LM193 series will directly interface with MOS logic where their low power drain is a distinct advantage over standard comparators.

lm2903工作原理

lm2903工作原理

lm2903工作原理
LM2903是一种双路比较器,它的工作原理如下:
1. 输入阶段:LM2903有两个输入端,每个输入端都有一个电
压输入引脚。

一个输入端被标记为非反转输入(+),另一个
被标记为反转输入(-)。

在正常工作条件下,通常将非反转
输入端连接到一个参考电压源,而将反转输入端连接到被比较的信号源。

2. 比较阶段:根据非反转输入端的电压与反转输入端的电压之间的比较结果,输出端给出相应的电平。

如果非反转输入端电压大于反转输入端电压,则输出端的电平为高电平;如果非反转输入端电压小于反转输入端电压,则输出端的电平为低电平。

3. 输出阶段:输出端具有开漏结构,只能输出低电平或无连接状态。

要获取输出电压,需要将输出端连接到外部电源。

4. 连接方案:可以通过使用一个偏置电阻网络,将非反转输入端连接到参考电压源,以形成一个可调电压作为比较的参考阈值。

总的来说,LM2903的工作原理是通过比较两个输入端的电压
来产生相应的输出电平,从而实现对输入信号的比较判断。

M2943电源芯片资料

M2943电源芯片资料

M2943电源芯片资料1、首先检查7pin所连接的电解电容(或者反馈线圈所连接的电解电容),查看其容量是否符合要求,如该电容容量明显减小,更换后应该不起振的故障就能恢复;如该电容正常,进行下一步检查。

2、在电路板上单独给uc/uc的7pin加16v电压,测量其8pin是否有5v,如果测量8pin有5v电压存在,则说明此芯片没有问题;如没有5v电压,须将uc/uc拆下单独检查数据16v至7pin,测量8pin与否存有5v,如果仍然没5v,则可以证明芯片已经损毁;如果测量8pin存有5v存有,则必须就是与8pin相连接的外围元器件与地之间存有短路存有。

此步骤主要就是检测c/uc芯片本身与否损毁,如果芯片没损毁,基本可以排除故障出来在初级部分,可以展开下一步检查。

(附于:检测uc/uc芯片损毁是否的另一种方法为:在检测回去芯片外围元器件(或更改回去外围损毁的元器件)后,先连上电源开关管,提输出电测uc/uc的7pin电压,若电压在10—17v间波动,其余各脚分别也存有电压波动,则表明电路已起振,uc基本正常,若7脚电压高,其余管脚并无电压或电压不波动,则uc/uc纸机。

)3、检查次级侧,推测应该是次级由于输出过载或短路,导致电流增大,进而反映到初级侧使uc/uc芯片的3pin实现保护,这就需要对次级侧实现过流保护功能的电子元器件进行逐一测量,直至查出故障。

现将uc/uc芯片正常工作时主要引脚电压列于下面:1pin:1.5v ,2pin:2.5v ,3pin:0.v ,6pin:1.05v ,7pin:14.1v ,8pin:5 v。

芯片一般是指集成电路的载体,也是集成电路经过设计、制造、封装、测试后的结果,通常是一个可以立即使用的独立的整体。

“芯片”和“集成电路”这两个词经常混着使用,比如在大家平常讨论话题中,集成电路设计和芯片设计说的是一个意思,芯片行业、集成电路行业、ic行业往往也是一个意思。

实际上,这两个词有联系,也有区别。

lm2903比较器工作原理

lm2903比较器工作原理

lm2903比较器工作原理LM2903是一种常用的比较器芯片,具有广泛的应用领域。

本文将介绍LM2903比较器的工作原理及其应用。

一、LM2903比较器的工作原理LM2903比较器是一种高增益、高速度的电压比较器。

它通常由两个输入端(非反相输入端和反相输入端)、一个输出端和电源引脚组成。

其工作原理如下:1. 输入电压比较LM2903比较器的主要功能是将两个输入电压进行比较。

当非反相输入端的电压高于反相输入端时,输出端会输出高电平;反之,输出端会输出低电平。

这一特性使得LM2903比较器可以用于判断两个电压的大小关系。

2. 转换电平LM2903比较器还能将输入信号的电平转换为输出信号的电平。

当输入信号的电压高于参考电压时,输出信号为高电平;当输入信号的电压低于参考电压时,输出信号为低电平。

这一特性使得LM2903比较器可以用于模拟信号的数字化处理。

3. 输出极性选择LM2903比较器还具有输出极性选择的功能。

通过在芯片的引脚上连接电阻和电源,可以选择输出端的电平极性。

这一特性使得LM2903比较器在不同应用场景下具有更大的灵活性。

二、LM2903比较器的应用由于LM2903比较器具有高增益、高速度和灵活的输出极性选择功能,因此在实际应用中有广泛的用途。

以下是LM2903比较器的几个常见应用场景:1. 电压检测LM2903比较器可以用于电压检测。

通过将待检测电压与参考电压输入到LM2903比较器的输入端,可以判断待检测电压是高于还是低于参考电压,从而实现电压检测功能。

例如,可以将LM2903比较器应用于电池电量检测、过压保护等场景。

2. 信号比较LM2903比较器可以用于模拟信号的比较。

通过将待比较信号和参考信号输入到LM2903比较器的输入端,可以判断两个信号的大小关系。

例如,可以将LM2903比较器应用于音频信号的幅度比较、光强信号的大小比较等场景。

3. 触发器LM2903比较器可以用于触发器的设计。

德州仪器LM193 LM293 LM393 LM2903电压比较器

德州仪器LM193 LM293 LM393 LM2903电压比较器

LM193-N,LM2903-N,LM293-N,LM393-N SNOSBJ6E–OCTOBER1999–REVISED MARCH2013 LM193/LM293/LM393/LM2903Low Power Low Offset Voltage Dual ComparatorsCheck for Samples:LM193-N,LM2903-N,LM293-N,LM393-NFEATURES DESCRIPTIONThe LM193series consists of two independent •Wide Supplyprecision voltage comparators with an offset voltage –Voltage Range:2.0V to36V specification as low as 2.0mV max for two–Single or Dual Supplies:±1.0V to±18V comparators which were designed specifically tooperate from a single power supply over a wide range •Very Low Supply Current Drain(0.4mA)—of voltages.Operation from split power supplies is Independent of Supply Voltagealso possible and the low power supply current drain •Low Input Biasing Current:25nA is independent of the magnitude of the power supply•Low Input Offset Current:±5nA voltage.These comparators also have a uniquecharacteristic in that the input common-mode voltage •Maximum Offset voltage:±3mVrange includes ground,even though operated from a •Input Common-Mode Voltage Range Includessingle power supply voltage.GroundApplication areas include limit comparators,simple •Differential Input Voltage Range Equal to theanalog to digital converters;pulse,squarewave and Power Supply Voltagetime delay generators;wide range VCO;MOS clock •Low Output Saturation Voltage:250mV at4timers;multivibrators and high voltage digital logic mA gates.The LM193series was designed to directlyinterface with TTL and CMOS.When operated from •Output Voltage Compatible with TTL,DTL,both plus and minus power supplies,the LM193 ECL,MOS and CMOS logic systemsseries will directly interface with MOS logic where •Available in the8-Bump(12mil)DSBGA their low power drain is a distinct advantage over Package standard comparators.•See AN-1112(SNVA009)for DSBGAThe LM393and LM2903parts are available in TI’s Considerationsinnovative thin DSBGA package with8(12mil)largebumps.ADVANTAGES•High Precision Comparators•Reduced V OS Drift Over Temperature•Eliminates Need for Dual Supplies•Allows Sensing Near Ground•Compatible with All Forms of Logic•Power Drain Suitable for Battery OperationFigure1.Squarewave Oscillator Figure2.Non-Inverting Comparator withHysteresisPlease be aware that an important notice concerning availability,standard warranty,and use in critical applications ofTexas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.All trademarks are the property of their respective owners.PRODUCTION DATA information is current as of publication date.Copyright©1999–2013,Texas Instruments Incorporated Products conform to specifications per the terms of the TexasLM193-N,LM2903-N,LM293-N,LM393-NSNOSBJ6E–OCTOBER1999–REVISED Schematic and Connection DiagramsFigure3.SchematicFigure4.TO-99Package Figure5.CDIP,PDIP,SOIC PackagesFigure6.DSBGA Top ViewThese devices have limited built-in ESD protection.The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.2Submit Documentation Feedback Copyright©1999–2013,Texas Instruments IncorporatedLM193-N,LM2903-N,LM293-N,LM393-N SNOSBJ6E–OCTOBER1999–REVISED MARCH2013Absolute Maximum Ratings(1)(2)Supply Voltage,V+36V Differential Input Voltage(3)36V Input Voltage−0.3V to+36V Input Current(V IN<−0.3V)(4)50mA Power Dissipation(5)PDIP780mW TO-99660mW SOIC Package510mW DSBGA Package568mW Output Short-Circuit to Ground(6)Continuous Operating Temperature RangeLM3930°C to+70°C LM293−25°C to+85°C LM193/LM193A−55°C to+125°C LM2903−40°C to+85°C Storage Temperature Range−65°C to+150°C Lead Temperature(Soldering,10seconds)+260°C Soldering InformationCDIP,PDIP Package Soldering(10seconds)260°C SOIC Package215°C Vapor Phase(60seconds)Infrared(15seconds)220°C See AN-450“Surface Mounting Methods and Their Effect on Product Reliability”for other methods of soldering surface mount devices.ESD rating(1.5kΩin series with100pF)1300V(1)Refer to RETS193AX for LM193AH military specifications and to RETS193X for LM193H military specifications.(2)If Military/Aerospace specified devices are required,please contact the TI Sales Office/Distributors for availability and specifications.(3)Positive excursions of input voltage may exceed the power supply level.As long as the other voltage remains within the common-moderange,the comparator will provide a proper output state.The low input voltage state must not be less than−0.3V(or0.3V below the magnitude of the negative power supply,if used).(4)This input current will only exist when the voltage at any of the input leads is driven negative.It is due to the collector-base junction ofthe input PNP transistors becoming forward biased and thereby acting as input diode clamps.In addition to this diode action,there is also lateral NPN parasitic transistor action on the IC chip.This transistor action can cause the output voltages of the comparators to go to the V+voltage level(or to ground for a large overdrive)for the time duration that an input is driven negative.This is not destructive and normal output states will re-establish when the input voltage,which was negative,again returns to a value greater than−0.3V. (5)For operating at high temperatures,the LM393and LM2903must be derated based on a125°C maximum junction temperature and athermal resistance of170°C/W which applies for the device soldered in a printed circuit board,operating in a still air ambient.The LM193/LM193A/LM293must be derated based on a150°C maximum junction temperature.The low bias dissipation and the“ON-OFF”characteristic of the outputs keeps the chip dissipation very small(P D≤100mW),provided the output transistors are allowed to saturate.(6)Short circuits from the output to V+can cause excessive heating and eventual destruction.When considering short circuits to ground,the maximum output current is approximately20mA independent of the magnitude of V+.Copyright©1999–2013,Texas Instruments Incorporated Submit Documentation Feedback3LM193-N,LM2903-N,LM293-N,LM393-NSNOSBJ6E–OCTOBER1999–REVISED Electrical Characteristics(V+=5V,T A=25°C,unless otherwise stated)LM193A Parameter Test Conditions UnitsMin Typ MaxInput Offset Voltage(1) 1.0 2.0mV Input Bias Current I IN(+)or I IN(−)with Output In Linear25100nARange,V CM=0V(2)Input Offset Current I IN(+)−I IN(−)V CM=0V 3.025nA Input Common Mode Voltage Range V+=30V(3)0V+−1.5V Supply Current R L=∞V+=5V0.41mAV+=36V1 2.5mA Voltage Gain R L≥15kΩ,V+=15V50200V/mVV O=1V to11VLarge Signal Response Time V IN=TTL Logic Swing,V REF=1.4V300nsV RL=5V,R L=5.1kΩResponse Time V RL=5V,R L=5.1kΩ(4) 1.3μs Output Sink Current V IN(−)=1V,V IN(+)=0,V O≈1.5V 6.016mA Saturation Voltage V IN(−)=1V,V IN(+)=0,I SINK≤4mA250400mV Output Leakage Current V IN(−)=0,V IN(+)=1V,V O=5V0.1nA(1)At output switch point,V O≃1.4V,R S=0Ωwith V+from5V to30V;and over the full input common-mode range(0V to V+−1.5V),at25°C.(2)The direction of the input current is out of the IC due to the PNP input stage.This current is essentially constant,independent of thestate of the output so no loading change exists on the reference or input lines.(3)The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than0.3V.The upper endof the common-mode voltage range is V+−1.5V at25°C,but either or both inputs can go to36V without damage,independent of the magnitude of V+.(4)The response time specified is for a100mV input step with5mV overdrive.For larger overdrive signals300ns can be obtained,seeTypical Performance Characteristics.Electrical Characteristics(V+=5V,T A=25°C,unless otherwise stated)LM193LM293,LM393LM2903 Parameter Test Conditions UnitsMin Typ Max Min Typ Max Min Typ MaxInput Offset Voltage(1) 1.0 5.0 1.0 5.0 2.07.0mV Input Bias Current I IN(+)or I IN(−)with Output In251002525025250nA Linear Range,V CM=0V(2)Input Offset Current I IN(+)−I IN(−)V CM=0V 3.025 5.050 5.050nA Input Common Mode V+=30V(3)0V+−1.50V+−1.50V+−1.5V Voltage RangeSupply Current R L=∞V+=5V0.410.410.4 1.0mAV+=36V1 2.51 2.51 2.5mA Voltage Gain R L≥15kΩ,V+=15V502005020025100V/mV V O=1V to11VLarge Signal Response V IN=TTL Logic Swing,V REF=1.4V300300300ns Time V RL=5V,R L=5.1kΩResponse Time V RL=5V,R L=5.1kΩ(4) 1.3 1.3 1.5μs Output Sink Current V IN(−)=1V,V IN(+)=0,V O≤1.5V 6.016 6.016 6.016mA Saturation Voltage V IN(−)=1V,V IN(+)=0,I SINK≤4mA250400250400250400mV Output Leakage Current V IN(−)=0,V IN(+)=1V,V O=5V0.10.10.1nA(1)At output switch point,V O≃1.4V,R S=0Ωwith V+from5V to30V;and over the full input common-mode range(0V to V+−1.5V),at25°C.(2)The direction of the input current is out of the IC due to the PNP input stage.This current is essentially constant,independent of thestate of the output so no loading change exists on the reference or input lines.(3)The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than0.3V.The upper endof the common-mode voltage range is V+−1.5V at25°C,but either or both inputs can go to36V without damage,independent of the magnitude of V+.(4)The response time specified is for a100mV input step with5mV overdrive.For larger overdrive signals300ns can be obtained,seeTypical Performance Characteristics.4Submit Documentation Feedback Copyright©1999–2013,Texas Instruments IncorporatedLM193-N,LM2903-N,LM293-N,LM393-N SNOSBJ6E–OCTOBER1999–REVISED MARCH2013Electrical Characteristics(V+=5V)(1)LM193A Parameter Test Conditions UnitsMin Typ MaxInput Offset Voltage(2) 4.0mV Input Offset Current I IN(+)−I IN(−),V CM=0V100nAInput Bias Current I IN(+)or I IN(−)with Output in Linear Range,300nAV CM=0V(3)Input Common Mode Voltage Range V+=30V(4)0V+−2.0V Saturation Voltage V IN(−)=1V,V IN(+)=0,I SINK≤4mA700mV Output Leakage Current V IN(−)=0,V IN(+)=1V,V O=30V 1.0μA Differential Input Voltage Keep All V IN's≥0V(or V−,if Used),(5)36V (1)These specifications are limited to−55°C≤T A≤+125°C,for the LM193/LM193A.With the LM293all temperature specifications are limitedto−25°C≤T A≤+85°C and the LM393temperature specifications are limited to0°C≤T A≤+70°C.The LM2903is limited to−40°C≤T A≤+85°C.(2)At output switch point,V O≃1.4V,R S=0Ωwith V+from5V to30V;and over the full input common-mode range(0V to V+−1.5V),at25°C.(3)The direction of the input current is out of the IC due to the PNP input stage.This current is essentially constant,independent of thestate of the output so no loading change exists on the reference or input lines.(4)The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than0.3V.The upper endof the common-mode voltage range is V+−1.5V at25°C,but either or both inputs can go to36V without damage,independent of the magnitude of V+.(5)Positive excursions of input voltage may exceed the power supply level.As long as the other voltage remains within the common-moderange,the comparator will provide a proper output state.The low input voltage state must not be less than−0.3V(or0.3V below the magnitude of the negative power supply,if used).Electrical Characteristics(V+=5V)(1)LM193LM293,LM393LM2903 Parameter Test Conditions UnitsMin Typ Max Min Typ Max Min Typ MaxInput Offset Voltage(2)99915mV Input Offset Current I IN(+)−I IN(−),V CM=0V10015050200nA Input Bias Current I IN(+)or I IN(−)with Output in Linear300400200500nA Range,V CM=0V(3)Input Common Mode V+=30V(4)0V+−2.00V+−2.00V+−2.0V Voltage RangeSaturation Voltage V IN(−)=1V,V IN(+)=0,700700400700mVI SINK≤4mAOutput Leakage Current V IN(−)=0,V IN(+)=1V,V O=30V 1.0 1.0 1.0μA Differential Input Voltage Keep All V IN's≥0V(or V−,if Used),363636V(5)(1)These specifications are limited to−55°C≤T A≤+125°C,for the LM193/LM193A.With the LM293all temperature specifications are limitedto−25°C≤T A≤+85°C and the LM393temperature specifications are limited to0°C≤T A≤+70°C.The LM2903is limited to−40°C≤T A≤+85°C.(2)At output switch point,V O≃1.4V,R S=0Ωwith V+from5V to30V;and over the full input common-mode range(0V to V+−1.5V),at25°C.(3)The direction of the input current is out of the IC due to the PNP input stage.This current is essentially constant,independent of thestate of the output so no loading change exists on the reference or input lines.(4)The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than0.3V.The upper endof the common-mode voltage range is V+−1.5V at25°C,but either or both inputs can go to36V without damage,independent of the magnitude of V+.(5)Positive excursions of input voltage may exceed the power supply level.As long as the other voltage remains within the common-moderange,the comparator will provide a proper output state.The low input voltage state must not be less than−0.3V(or0.3V below the magnitude of the negative power supply,if used).Copyright©1999–2013,Texas Instruments Incorporated Submit Documentation Feedback5LM193-N,LM2903-N,LM293-N,LM393-NSNOSBJ6E –OCTOBER 1999–REVISED MARCH 2013Typical Performance CharacteristicsLM193/LM293/LM393,LM193ASupply CurrentInput CurrentFigure 7.Figure 8.Response Time for Various Input Overdrives—NegativeOutput Saturation VoltageTransitionFigure 9.Figure 10.Response Time for Various Input Overdrives—Positive TransitionFigure 11.6Submit Documentation Feedback Copyright ©1999–2013,Texas Instruments IncorporatedLM193-N,LM2903-N,LM293-N,LM393-NSNOSBJ6E –OCTOBER 1999–REVISED MARCH 2013Typical Performance CharacteristicsLM2903Supply CurrentInput CurrentFigure 12.Figure 13.Response Time for Various Input Overdrives—NegativeOutput Saturation VoltageTransitionFigure 14.Figure 15.Response Time for Various Input Overdrives—Positive TransitionFigure 16.Copyright ©1999–2013,Texas Instruments Incorporated Submit Documentation Feedback 7LM193-N,LM2903-N,LM293-N,LM393-NSNOSBJ6E–OCTOBER1999–REVISED APPLICATION HINTSThe LM193series are high gain,wide bandwidth devices which,like most comparators,can easily oscillate if the output lead is inadvertently allowed to capacitively couple to the inputs via stray capacitance.This shows up only during the output voltage transition intervals as the comparator change states.Power supply bypassing is not required to solve this problem.Standard PC board layout is helpful as it reduces stray input-output coupling. Reducing the input resistors to<10kΩreduces the feedback signal levels and finally,adding even a small amount(1.0to10mV)of positive feedback(hysteresis)causes such a rapid transition that oscillations due to stray feedback are not possible.Simply socketing the IC and attaching resistors to the pins will cause input-output oscillations during the small transition intervals unless hysteresis is used.If the input signal is a pulse waveform,with relatively fast rise and fall times,hysteresis is not required.All input pins of any unused comparators should be tied to the negative supply.The bias network of the LM193series establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from2.0V DC to30V DC.It is usually unnecessary to use a bypass capacitor across the power supply line.The differential input voltage may be larger than V+without damaging the device(1).Protection should be provided to prevent the input voltages from going negative more than−0.3V DC(at25°C).An input clamp diode can be used as shown in Typical Applications.The output of the LM193series is the uncommitted collector of a grounded-emitter NPN output transistor.Many collectors can be tied together to provide an output OR'ing function.An output pull-up resistor can be connected to any available power supply voltage within the permitted supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage which is applied to the V+terminal of the LM193package.The output can also be used as a simple SPST switch to ground(when a pull-up resistor is not used).The amount of current which the output device can sink is limited by the drive available(which is independent of V+)and theβof this device.When the maximum current limit is reached(approximately16mA),the output transistor will come out of saturation and the output voltage will rise very rapidly.The output saturation voltage is limited by the approximately60Ωr SAT of the output transistor.The low offset voltage of the output transistor(1.0mV)allows the output to clamp essentially to ground level for small load currents.Typical Applications(V+=5.0V DC)Figure17.Basic Comparator Figure18.Driving CMOS(1)Positive excursions of input voltage may exceed the power supply level.As long as the other voltage remains within the common-moderange,the comparator will provide a proper output state.The low input voltage state must not be less than−0.3V(or0.3V below the magnitude of the negative power supply,if used).8Submit Documentation Feedback Copyright©1999–2013,Texas Instruments IncorporatedLM193-N,LM2903-N,LM293-N,LM393-N SNOSBJ6E–OCTOBER1999–REVISED MARCH2013 (V+=5.0V DC)Figure19.Driving TTL Figure20.Squarewave Oscillator *For large ratios of R1/R2,D1can be omitted.Figure21.Pulse Generator Figure22.Crystal Controlled OscillatorV*=+30V DC+250mV DC≤V C≤+50V DC700Hz≤f o≤100kHzFigure23.Two-Decade High Frequency VCOCopyright©1999–2013,Texas Instruments Incorporated Submit Documentation Feedback9LM193-N,LM2903-N,LM293-N,LM393-NSNOSBJ6E–OCTOBER1999–REVISED (V+=5.0V DC)Figure24.Basic Comparator Figure25.Non-Inverting Comparator withHysteresisFigure26.Inverting Comparator with Hysteresis Figure27.Output StrobingFigure28.AND Gate Figure29.OR Gate10Submit Documentation Feedback Copyright©1999–2013,Texas Instruments IncorporatedLM193-N,LM2903-N,LM293-N,LM393-N SNOSBJ6E–OCTOBER1999–REVISED MARCH2013 (V+=5.0V DC)rge Fan-in AND Gate Figure31.Limit Comparatorparing Input Voltages of Opposite Figure33.ORing the OutputsPolarityFigure34.Zero Crossing Detector(Single Power Figure35.One-Shot MultivibratorSupply)Copyright©1999–2013,Texas Instruments Incorporated Submit Documentation Feedback11LM193-N,LM2903-N,LM293-N,LM393-NSNOSBJ6E–OCTOBER1999–REVISED (V+=5.0V DC)Figure36.Bi-Stable Multivibrator Figure37.One-Shot Multivibrator with Input LockOutFigure38.Zero Crossing Detector parator With a Negative ReferenceFigure40.Time Delay Generator12Submit Documentation Feedback Copyright©1999–2013,Texas Instruments IncorporatedLM193-N,LM2903-N,LM293-N,LM393-N SNOSBJ6E–OCTOBER1999–REVISED MARCH2013(V+=5.0V DC)Split-Supply Applications(V+=+15V DC and V−=−15V DC)Figure41.MOS Clock DriverCopyright©1999–2013,Texas Instruments Incorporated Submit Documentation Feedback13LM193-N,LM2903-N,LM293-N,LM393-NSNOSBJ6E–OCTOBER1999–REVISED REVISION HISTORYChanges from Revision D(March2013)to Revision E Page •Changed layout of National Data Sheet to TI format (13)14Submit Documentation Feedback Copyright©1999–2013,Texas Instruments IncorporatedPACKAGING INFORMATIONAddendum-Page 1(1) The marketing status values are defined as follows:ACTIVE: Product device recommended for new designs.LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.PREVIEW: Device has been announced but is not in production. Samples may or may not be available.OBSOLETE: TI has discontinued the production of the device.(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check /productcontent for the latest availability information and additional product content details.TBD: The Pb-Free/Green conversion plan has not been defined.Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken andAddendum-Page 2continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.Addendum-Page 3TAPE AND REEL INFORMATION*All dimensions are nominal Device Package Type Package DrawingPinsSPQ Reel Diameter (mm)Reel Width W1(mm)A0(mm)B0(mm)K0(mm)P1(mm)W (mm)Pin1Quadrant LM2903ITL/NOPB DSBGAYZR 8250178.08.4 1.7 1.70.76 4.08.0Q1LM2903ITLX/NOPB DSBGAYZR 83000178.08.4 1.7 1.70.76 4.08.0Q1LM2903MX SOICD 82500330.012.4 6.5 5.4 2.08.012.0Q1LM2903MX/NOPB SOICD 82500330.012.4 6.5 5.4 2.08.012.0Q1LM393MX SOICD 82500330.012.4 6.5 5.4 2.08.012.0Q1LM393MX/NOPB SOICD 82500330.012.4 6.5 5.4 2.08.012.0Q1LM393TL/NOPB DSBGAYZR 8250178.08.4 1.7 1.70.76 4.08.0Q1LM393TLX/NOPB DSBGA YZR 83000178.08.4 1.7 1.70.76 4.08.0Q1*All dimensions are nominalDevice Package Type Package Drawing Pins SPQ Length(mm)Width(mm)Height(mm) LM2903ITL/NOPB DSBGA YZR8250210.0185.035.0 LM2903ITLX/NOPB DSBGA YZR83000210.0185.035.0 LM2903MX SOIC D8*******.0367.035.0 LM2903MX/NOPB SOIC D8*******.0367.035.0 LM393MX SOIC D8*******.0367.035.0 LM393MX/NOPB SOIC D8*******.0367.035.0 LM393TL/NOPB DSBGA YZR8250210.0185.035.0LM393TLX/NOPB DSBGA YZR83000210.0185.035.0MECHANICAL DATA YZR0008xxxIMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries(TI)reserve the right to make corrections,enhancements,improvements and other changes to its semiconductor products and services per JESD46,latest issue,and to discontinue any product or service per JESD48,latest issue.Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.All semiconductor products(also referred to herein as“components”)are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its components to the specifications applicable at the time of sale,in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products.Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty.Except where mandated by applicable law,testing of all parameters of each component is not necessarily performed.TI assumes no liability for applications assistance or the design of Buyers’products.Buyers are responsible for their products and applications using TI components.To minimize the risks associated with Buyers’products and applications,Buyers should provide adequate design and operating safeguards.TI does not warrant or represent that any license,either express or implied,is granted under any patent right,copyright,mask work right,or other intellectual property right relating to any combination,machine,or process in which TI components or services are rmation published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement e of such information may require a license from a third party under the patents or other intellectual property of the third party,or a license from TI under the patents or other intellectual property of TI.Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties,conditions,limitations,and notices.TI is not responsible or liable for such altered rmation of third parties may be subject to additional restrictions.Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.Buyer acknowledges and agrees that it is solely responsible for compliance with all legal,regulatory and safety-related requirements concerning its products,and any use of TI components in its applications,notwithstanding any applications-related information or support that may be provided by TI.Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures,monitor failures and their consequences,lessen the likelihood of failures that might cause harm and take appropriate remedial actions.Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.In some cases,TI components may be promoted specifically to facilitate safety-related applications.With such components,TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements.Nonetheless,such components are subject to these terms.No TI components are authorized for use in FDA Class III(or similar life-critical medical equipment)unless authorized officers of the parties have executed a special agreement specifically governing such use.Only those TI components which TI has specifically designated as military grade or“enhanced plastic”are designed and intended for use in military/aerospace applications or environments.Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk,and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.TI has specifically designated certain components as meeting ISO/TS16949requirements,mainly for automotive use.In any case of use of non-designated products,TI will not be responsible for any failure to meet ISO/TS16949.Products ApplicationsAudio /audio Automotive and Transportation /automotiveAmplifiers Communications and Telecom /communicationsData Converters Computers and Peripherals /computersDLP®Products Consumer Electronics /consumer-appsDSP Energy and Lighting /energyClocks and Timers /clocks Industrial /industrialInterface Medical /medicalLogic Security /securityPower Mgmt Space,Avionics and Defense /space-avionics-defense Microcontrollers Video and Imaging /videoRFID OMAP Applications Processors /omap TI E2E Community Wireless Connectivity /wirelessconnectivityMailing Address:Texas Instruments,Post Office Box655303,Dallas,Texas75265Copyright©2013,Texas Instruments Incorporated。

LM2903IMX中文资料

LM2903IMX中文资料

©2001 Fairchild Semiconductor CorporationRev. 1.0.3Features•Single Supply Operation: 2V to 36V •Dual Supply Operation: ± 1V to ±18V•Allow Comparison of V oltages Near Ground Potential •Low Current Drain 800µA Typ.•Compatible with all Forms of Logic •Low Input Bias Current 25nA Typ.•Low Input Offset Current ±5nA Typ.•Low Offset V oltage ±1mV Typ.DescriptionThe LM2903/LM2903I, LM393/LM393A, LM293/LM293A consist of two independent voltage comparators designed to operate from a single power supply over a wide voltage range.8-DIP8-SOP11Internal Block DiagramLM2903/LM2903I,LM393/LM393A, LM293/LM293ADual Differential ComparatorLM2903/LM2903I,LM393/LM393A, LM293/LM293A2Schematic DiagramAbsolute Maximum RatingsThermal DataParameterSymbol Value Unit Power Supply Voltage V CC ±18 or 36V Differential Input Voltage VI(DIFF)36V Input VoltageV I - 0.3 to +36V Output Short Circuit to GND -Continuous -Power Dissipation, Ta = 25°C 8-DIP 8-SOPP D1040480mWOperating Temperature LM393/LM393A LM2903LM2903ILM293/LM293A T OPR 0 ~ +70- 40 ~ +85-40 ~ +105-25 ~ +85°C Storage TemperatureT STG- 65 ~ +150°CParameterSymbol Value Unit Thermal Resistance Junction-Ambient Max.8-DIP 8-SOPR θja120260°C/WLM2903/LM2903I,LM393/LM393A, LM293/LM293A3Electrical Characteristics(V CC = 5V, T A = 25°C, unless otherwise specified)NOTE 1LM393/LM393A: 0 ≤ T A ≤ +70°C LM2903: -40 ≤ T A ≤ +85°C LM2903I: -40 ≤ T A ≤ +105°CLM293/LM293A : -25 ≤ T A ≤ +85°CParameter Symbol ConditionsLM293A/LM393A LM293/LM393Unit Min.Typ.Max.Min.Typ.Max.Input Offset Voltage V IO V O(P) =1.4V, R S = 0Ω-±1±2-±1±5mV V CM = 0 to1.5V Note 1--±4.0--±9.0Input Offset Current I IO -±5±50-±5±50nA Note 1--±150--±150Input Bias Current I BIAS-65250-65250nANote 1--400--400Input Common ModeVoltage Range V I(R)0-V CC -1.50-V CC -1.5VNote 10-V CC -20-V CC -2Supply Current I CC R L = ∞ , V CC = 5V -0.61-0.61mA R L = ∞, V CC = 30V -0.8 2.5-0.8 2.5Voltage Gain G V V CC =15V, R L ≥ 15K Ω (for large V O(P-P)swing )50200-50200-V/mV Large Signal Response Time T LRES V I =TTL Logic Swing V REF =1.4V, V RL = 5V,R L = 5.1K Ω-350--350-nS Response Time T RES V RL =5V, R L =5.1K Ω- 1.4-- 1.4-µS Output Sink Current I SINK V I(-) ≥ 1V, V I(+) =0V, V O(P) ≤1.5V 618-618-mA Output Saturation Voltage V SATV I(-) ≥ 1V, VI(+) = 0V -160400-160400mV I SINK = 4mANote 1--700--700Output Leakage CurrentI O(LKG)V I(-) = 0V,V I(+) = 1VV O(P) = 5V -0.1--0.1-nA V O(P) = 30V-- 1.0-- 1.0µALM2903/LM2903I,LM393/LM393A, LM293/LM293A4Electrical Characteristics (Continued)(V CC = 5V, T A = 25°C, unless otherwise specified)Note 1LM393/LM393A: 0 ≤ T A ≤ +70°C LM2903: -40 ≤ T A ≤ +85°C LM2903I: -40 ≤ T A ≤ +105°CLM293/LM293A : -25 ≤ T A ≤ +85°CParameterSymbol ConditionsLM2903/LM2903I Unit Min.Typ.Max.Input Offset Voltage V IO V O(P) =1.4V, R S = 0Ω-±1±7mV V CM = 0 to 1.5VNote 1-±9±15Input Offset Current I IO -±5±50nA Note 1-±50±200Input Bias Current I BIAS-65250nANote 1--500Input Common Mode Voltage Range V I(R)-V CC -1.5VNote 10-V CC -2Supply Current I CC R L = ∞, V CC = 5V -0.61mA R L = ∞, V CC = 30V -1 2.5Voltage GainG V V CC =15V, R L ≥15K Ω(for large V O(P-P)swing )25100- V/mV Large Signal Response Time T LRES V I =TTL Logic SwingV REF =1.4V, V RL = 5V, R L = 5.1K Ω-350-nS Response Time T RES V RL = 5V, R L = 5.1K Ω- 1.5-µS Output Sink Current I SINK V I(-) ≥ 1V, V I(+) = 0V, V O(P) ≤ 1.5V 616-mA Output Saturation Voltage V SAT V I(-) ≥ 1V, VI(+) = 0V -160400mV I SINK = 4mA Note 1--700Output Leakage CurrentI O(LKG)V I(-) = 0V,V O(P) = 5V -0.1-nA V I(+) = 1VV O(P) = 30V-- 1.0µALM2903/LM2903I,LM393/LM393A, LM293/LM293A5Typical Performance CharacteristicsFigure 1.Supply Current vs Supply Voltage Figure 2.Input Current vs Supply VoltageFigure 3.Output Saturation Voltage vs Sink CurrentFigure 4.Response Time for Various InputOverdrive-Negative TransitionFigure 5.Response Time for Various InputOverdrive-Positive TransitionLM2903/LM2903I,LM393/LM393A,LM293/LM293AMechanical DimensionsPackageDimensions in millimeters8-DIP6LM2903/LM2903I,LM393/LM393A,LM293/LM293A Mechanical Dimensions(Continued)PackageDimensions in millimeters8-SOP7LM2903/LM2903I,LM393/LM393A, LM293/LM293A12/21/01 0.0m 001Stock#DSxxxxxxxx2001 Fairchild Semiconductor CorporationLIFE SUPPORT POLICYFAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:1.Life support devices or systems are devices or systemswhich, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can bereasonably expected to result in a significant injury of the user.2. A critical component in any component of a life supportdevice or system whose failure to perform can bereasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.DISCLAIMERFAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANYLIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.Ordering InformationProduct NumberPackage Operating TemperatureLM393N 8-DIP0 ~ + 70°CLM393AN LM393M 8-SOP LM393AM LM2903N 8-DIP -40 ~ + 85°C LM2903M 8-SOP LM2903IN 8-DIP -40 ~ + 105°C LM2903IM 8-SOP LM293N 8-DIP-25 ~ + 85°CLM293AN LM293M 8-SOPLM293AM。

LM2903中文资料_数据手册_参数

LM2903中文资料_数据手册_参数
LM2903单电源或双电源,宽范围的电源电压-最大额定值…2v到36v -测试到30v…非V器件-测试到32 V…v -后缀设计,不依赖于电源电 压,具有低的电源电流损耗。输入偏置电流低…25 nA型低输入偏置电流…3 nA Typ(LM193)D低输入偏置电压…2 mV TypD共模输入电 压RangeIncludes GroundD差分输入电压范围等于toMaximum-Rated电源电压。36±VD低输出饱和电压输出与TTL兼容,金属氧化物半导 体,andCMOSdescription /订购informationThese设备包括两个独立的voltagecomparators设计的操作从一个电源广泛的电压。只要两个电源 之间的电压差在2v到36v之间,且VCC至少比输入共模电压正1.5 V,也可以从双电源运行。电流漏与电源电压无关。输出可以连接到其 他开放收集器输出,以实现连线和关系。LM193的特点是工作温度在- 55℃到125℃之间。LM293和LM293A的特点是在- 25°C到85°C 之间工作。LM393和LM393A的特点是在0°C到70°C之间运行。TheLM2903的特点是在- 40°C到125°C之间运行。无铅(RoHS): TI的 术语“无铅”或“无铅”是指与所有6种物质的现行RoHS要求兼容的半导体产品,LM2903包括在均质材料中铅的重量不超过0.1%的要 求。设计用于高温焊接的无钛pb产品适用于特定的无铅工艺。环保(RoHS &没有某人/ Br): TI定义“绿色”意味着Pb-Free (RoHS兼容), 和自由的溴(Br)和基于(某人)锑的阻燃(Br或某人不超过0.1%按重量均质材料)(3)实验室,峰值温度。湿度敏感性级别评级根据电平行业标 准分类,和soldertemperature峰值。重要信息和免责声明:本页所提供的信息代表德州仪器自提供之日起的知识和信念。TI的知识和信念基 于第三方提供的信息,对于这些信息的准确性不作任何陈述或保证。LM2903目前正在努力更好地整合来自第三方的信息。TI已采取并 将继续采取合理措施,提供具有代表性和准确的信息,LM2903但可能未对来料和化学品进行破坏性测试或化学分析。TI和TI供应商认 为某些信息是专有的,因此CAS号码和其他有限的信息可能无法发布。在任何情况下,TI因该等信息而产生的责任都不应超过TIto客户 在本文件中每年销售的TI部件的采购总价

LM293中文资料

LM293中文资料

1995 Nov 27
2
Philips Semiconductors
Product specification
Low power dual vo/393/A/2903
DC AND AC ELECTRICAL CHARACTERISTICS
V+=5VDC, LM193/193A: -55°C TA ≤ +125°C, unless otherwise specified. LM293/293A: -25°C TA ≤ +85°C, unless otherwise specified. LM393/393A: 0°C TA ≤ +70°C, unless otherwise specified. LM2903: -40°C TA ≤ +125°C, unless otherwise specified. SYMBOL VOS VCM VIDR PARAMETER Input offset voltage2 Input common-mode voltage range3, 6 Differential input voltage1 Input bias current4 TEST CONDITIONS TA=25°C Over temp. TA=25°C Over temp. Keep all VINs ≥0VDC (or V- if need) IIN(+) or IIN(-) with output in linear range TA=25°C Over temp. IIN(+)-IIN(-) TA=25°C Over temp. VIN(-)≥1VDC, VIN(+)=0, V0≤1.5VDC TA=25°C V0=5VDC, TA=25°C VIN(+)≥1VDC, VIN(-)=0 V0=30VDC Over temp. RL=∞ on both comparators, TA=25°C RL=∞ on both comparators, V+=30V RL≥15kΩ, V+=15VDC, TA=25°C VIN(-)≥1VDC, VIN(+)=0, ISINK≤4mA VOL Saturation voltage TA=25°C Over temp. Large-signal response time Response time5 VIN=TTL logic swing, VREF=1.4VDC VRL=5VDC, RL=5.1kΩ, TA=25°C VRL=5VDC, RL=5.1kΩ TA=25°C 250 400 700 250 400 700 400 400 700 mV mV 50 6.0 0 0 LM193A Min Typ ±1.0 Max ±2.0 ±4.0 V+-1.5 V+-2.0 V+ 0 0 LM293A/393A Min Typ ±1.0 Max ±2.0 ±4.0 V+-1.5 V+-2.0 V+ 0 0 Min LM2903 Typ ±2.0 ±9 Max ±7.0 ±15 V+-1.5 V+-2.0 V+ UNIT mV mV V V V

LM2903MX中文资料

LM2903MX中文资料

(Contact address for overseas customers in Japan)
Yokohama
As of 18th. April 2005
Appendix1-Rev1.1
Contact us
Attached-1
Thank you for your accessing to ROHM product ions. More detail product informations and catalogs are available, please contact your nearest sales office.
Japan / (Internal Sales)
Tokyo Yokohama Nagoya Kyoto 2-1-1, Yaesu, Chuo-ku, Tokyo 104-0082 TEL : +81(3)5203-0321 FAX : +81(3)5203-0300 2-4-8, Shin Yokohama, Kohoku-ku, Yokohama, Kanagawa 222-8575 TEL : +81(45)476-2131 FAX : +81(45)476-2128 Dainagayo Building 9F 3-28-12, Meieki, Nakamura-ku, Nagoya,Aichi 450-0002 TEL : +81(52)581-8521 FAX : +81(52)561-2173 579-32 Higashi Shiokouji-cho, Karasuma Nishi-iru, Shiokoujidori, Shimogyo-ku, Kyoto 600-8216 TEL : +81(75)311-2121 FAX : +81(75)314-6559 TEL : +81(45)476-9270 FAX : +81(045)476-9271

LM2903J中文资料

LM2903J中文资料

LM193/LM293/LM393/LM2903Low Power Low Offset Voltage Dual ComparatorsGeneral DescriptionThe LM193series consists of two independent precision voltage comparators with an offset voltage specification as low as 2.0mV max for two comparators which were de-signed specifically to operate from a single power supply over a wide range of voltages.Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.These comparators also have a unique characteris-tic in that the input common-mode voltage range includes ground,even though operated from a single power supply voltage.Application areas include limit comparators,simple analog to digital converters;pulse,squarewave and time delay gen-erators;wide range VCO;MOS clock timers;multivibrators and high voltage digital logic gates.The LM193series was designed to directly interface with TTL and CMOS.When operated from both plus and minus power supplies,the LM193series will directly interface with MOS logic where their low power drain is a distinct advantage over standard comparators.The LM393and LM2903parts are available in National’s innovative thin micro SMD package with 8(12mil)large bumps.Advantagesn High precision comparatorsn Reduced V OS drift over temperature n Eliminates need for dual supplies n Allows sensing near groundn Compatible with all forms of logicnPower drain suitable for battery operationFeaturesn Wide supply—Voltage range: 2.0V to 36V—Single or dual supplies:±1.0V to ±18V n Very low supply current drain (0.4mA)—independent of supply voltagen Low input biasing current:25nAn Low input offset current:±5nA n Maximum offset voltage:±3mV n Input common-mode voltage range includes ground n Differential input voltage range equal to the power supply voltagen Low output saturation voltage,:250mV at 4mA n Output voltage compatible with TTL,DTL,ECL,MOS and CMOS logic systemsn Available in the 8-Bump (12mil)micro SMD package n See AN-1112for micro SMD considerationsSquarewave Oscillator Non-Inverting Comparator with Hysteresis0057093800570909August 2002LM193/LM293/LM393/LM2903Low Power Low Offset Voltage Dual Comparators©2002National Semiconductor Corporation Schematic and Connection Diagrams00570902Metal Can Package Dual-In-Line/SOIC Package0057090300570901micro SMD micro SMD Marking00570945Top View00570946Top ViewL M 193/L M 293/L M 393/L M 2903 2Absolute Maximum Ratings(Note10) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.Supply Voltage,V+36V Differential Input Voltage(Note8)36V Input Voltage−0.3V to+36V Input Current(V IN<−0.3V)(Note3)50mA Power Dissipation(Note1)Molded DIP780mW Metal Can660mW Small Outline Package510mW micro SMD Pacakge568mW Output Short-Circuit to Ground(Note2)Continuous Operating Temperature RangeLM3930˚C to+70˚C LM293−25˚C to+85˚CLM193/LM193A−55˚C to+125˚C LM2903−40˚C to+85˚C Storage Temperature Range−65˚C to+150˚C Lead Temperature(Soldering,10seconds)+260˚C Soldering InformationDual-In-Line PackageSoldering(10seconds)260˚C Small Outline Package215˚C Vapor Phase(60seconds)Infrared(15seconds)220˚C See AN-450“Surface Mounting Methods and Their Effect on Product Reliability”for other methods of soldering surface mount devices.ESD rating(1.5kΩin series with100pF)1300VElectrical Characteristics(V+=5V,T A=25˚C,unless otherwise stated)Parameter Conditions LM193A UnitsMin Typ Max Input Offset Voltage(Note9) 1.0 2.0mV Input Bias Current I IN(+)or I IN(−)with Output In Linear25100nARange,V CM=0V(Note5)Input Offset Current I IN(+)−I IN(−)V CM=0V 3.025nA Input Common Mode V+=30V(Note6)0V+−1.5VVoltage RangeSupply Current R L=∞V+=5V0.41mAV+=36V1 2.5mA Voltage Gain R L≥15kΩ,V+=15V50200V/mVV O=1V to11VLarge Signal Response V IN=TTL Logic Swing,V REF=1.4V300ns Time V RL=5V,R L=5.1kΩResponse Time V RL=5V,R L=5.1kΩ(Note7) 1.3µsOutput Sink Current V IN(−)=1V,V IN(+)=0,V O≈1.5V 6.016mA Saturation Voltage V IN(−)=1V,V IN(+)=0,I SINK≤4mA250400mV Output Leakage Current V IN(−)=0,V IN(+)=1V,V O=5V0.1nAElectrical Characteristics(V+=5V,T A=25˚C,unless otherwise stated)Parameter Conditions LM193LM293,LM393LM2903UnitsMin Typ Max Min Typ Max Min Typ MaxInput Offset Voltage(Note9) 1.0 5.0 1.0 5.0 2.07.0mVInput Bias Current I IN(+)or I IN(−)with Output In251002525025250nALinear Range,V CM=0V(Note5)Input Offset Current I IN(+)−I IN(−)V CM=0V 3.025 5.050 5.050nAInput Common Mode V+=30V(Note6)0V+−1.50V+−1.50V+−1.5V Voltage RangeLM193/LM293/LM393/LM29033Electrical Characteristics(Continued)(V +=5V,T A =25˚C,unless otherwise stated)ParameterConditionsLM193LM293,LM393LM2903Units Min TypMax Min TypMax Min TypMax Supply Current R L =∞V +=5V 0.410.410.4 1.0mA V +=36V1 2.51 2.51 2.5mA Voltage GainR L ≥15k Ω,V +=15V 502005020025100V/mV V O =1V to 11VLarge Signal Response V IN =TTL Logic Swing,V REF =1.4V 300300300ns TimeV RL =5V,R L =5.1k ΩResponse Time V RL =5V,R L =5.1k Ω(Note 7) 1.3 1.3 1.5µs Output Sink Current V IN (−)=1V,V IN (+)=0,V O ≤1.5V 6.016 6.016 6.016mA Saturation Voltage V IN (−)=1V,V IN (+)=0,I SINK ≤4mA 250400250400250400mV Output Leakage CurrentV IN (−)=0,V IN (+)=1V,V O =5V0.10.10.1nAElectrical Characteristics(V+=5V)(Note 4)ParameterConditionsLM193A UnitsMinTypMax Input Offset Voltage (Note 9)4.0mV Input Offset Current I IN(+)−I IN(−),V CM =0V100nA Input Bias Current I IN (+)or I IN (−)with Output in Linear Range,300nA V CM =0V (Note 5)Input Common Mode Voltage Range V +=30V (Note 6)V +−2.0V Saturation Voltage V IN (−)=1V,V IN (+)=0,I SINK ≤4mA 700mV Output Leakage Current V IN (−)=0,V IN(+)=1V,V O =30V1.0µA Differential Input VoltageKeep All V IN ’s ≥0V (or V −,if Used),(Note 8)36VElectrical Characteristics(V+=5V)(Note 4)ParameterConditions LM193LM293,LM393LM2903Units Min TypMax Min TypMax Min TypMax Input Offset Voltage (Note 9)99915mV Input Offset Current I IN(+)−I IN(−),V CM =0V 10015050200nA Input Bias CurrentI IN (+)or I IN (−)with Output in Linear Range,V CM =0V (Note 5)300400200500nAInput Common Mode Voltage Range V +=30V (Note 6)0V +−2.00V +−2.00V +−2.0V Saturation Voltage V IN (−)=1V,V IN (+)=0,I SINK ≤4mA700700400700mV Output Leakage Current V IN (−)=0,V IN(+)=1V,V O =30V 1.0 1.0 1.0µA Differential Input VoltageKeep All V IN ’s ≥0V (or V −,if Used),(Note 8)363636VNote 1:For operating at high temperatures,the LM393and LM2903must be derated based on a 125˚C maximum junction temperature and a thermal resistance of 170˚C/W which applies for the device soldered in a printed circuit board,operating in a still air ambient.The LM193/LM193A/LM293must be derated based on a 150˚C maximum junction temperature.The low bias dissipation and the “ON-OFF”characteristic of the outputs keeps the chip dissipation very small (P D ≤100mW),provided the output transistors are allowed to saturate.Note 2:Short circuits from the output to V +can cause excessive heating and eventual destruction.When considering short circuits to ground,the maximum output current is approximately 20mA independent of the magnitude of V +.Note 3:This input current will only exist when the voltage at any of the input leads is driven negative.It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps.In addition to this diode action,there is also lateral NPN parasitic transistor actionL M 193/L M 293/L M 393/L M 2903 4Electrical Characteristics(Continued)on the IC chip.This transistor action can cause the output voltages of the comparators to go to the V+voltage level(or to ground for a large overdrive)for the time duration that an input is driven negative.This is not destructive and normal output states will re-establish when the input voltage,which was negative,again returns to a value greater than−0.3V.Note4:These specifications are limited to−55˚C≤T A≤+125˚C,for the LM193/LM193A.With the LM293all temperature specifications are limited to −25˚C≤T A≤+85˚C and the LM393temperature specifications are limited to0˚C≤T A≤+70˚C.The LM2903is limited to−40˚C≤T A≤+85˚C.Note5:The direction of the input current is out of the IC due to the PNP input stage.This current is essentially constant,independent of the state of the output so no loading change exists on the reference or input lines.Note6:The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than0.3V.The upper end of the common-mode voltage range is V+−1.5V at25˚C,but either or both inputs can go to36V without damage,independent of the magnitude of V+.Note7:The response time specified is for a100mV input step with5mV overdrive.For larger overdrive signals300ns can be obtained,see typical performance characteristics section.Note8:Positive excursions of input voltage may exceed the power supply level.As long as the other voltage remains within the common-mode range,the comparator will provide a proper output state.The low input voltage state must not be less than−0.3V(or0.3V below the magnitude of the negative power supply, if used).Note9:At output switch point,V O.1.4V,R S=0Ωwith V+from5V to30V;and over the full input common-mode range(0V to V+−1.5V),at25˚C.Note10:Refer to RETS193AX for LM193AH military specifications and to RETS193X for LM193H military specifications.Ordering InformationPackage Temperature Range Part Number NSC Drawing8-Pin Metal Can −55˚C to125˚CLM193H*H08CLM193H/883LM193H-MLSLM193AH-MLSLM193AH-QMLV**LM193AHLM193AH/883−25˚C to85˚C LM293H0˚C to70˚C LM393H8-Pin Ceramic DIP−55˚C to125˚CLM193J/883*J08A LM193AJ/883LM193AJ-QMLV**LM193AJ-MLS8-Pin Molded DIP0˚C to70˚C LM393NN08E −40˚C to85˚C LM2903N8-Pin SOIC0˚C to70˚CLM393MM08ALM393MX−40˚C to85˚CLM2903MLM2903MX8-Bump(12mils) micro SMD0˚C to70˚CLM393TLTLA08AAALM393TLX−40˚C to85˚CLM2903ITLLM2903ITLXNote:*Also available per LM38510/11202Note:**See STD Mil DWG5962-94526LM193/LM293/LM393/LM29035Typical Performance CharacteristicsLM193/LM293/LM393,LM193ASupply CurrentInput Current0057092500570926Output Saturation VoltageResponse Time for Various Input Overdrives —NegativeTransition0057092700570928Response Time for Various Input Overdrives —PositiveTransition00570929L M 193/L M 293/L M 393/L M 2903 6Typical Performance CharacteristicsLM2903Supply CurrentInput Current0057093000570931Output Saturation VoltageResponse Time for Various Input Overdrives —NegativeTransition0057093200570933Response Time for Various Input Overdrives —PositiveTransition00570934LM193/LM293/LM393/LM29037Application HintsThe LM193series are high gain,wide bandwidth devices which,like most comparators,can easily oscillate if the output lead is inadvertently allowed to capacitively couple to the inputs via stray capacitance.This shows up only during the output voltage transition intervals as the comparator change states.Power supply bypassing is not required to solve this problem.Standard PC board layout is helpful as it reduces stray input-output coupling.Reducing the input re-sistors to <10k Ωreduces the feedback signal levels and finally,adding even a small amount (1.0to 10mV)of positive feedback (hysteresis)causes such a rapid transition that oscillations due to stray feedback are not possible.Simply socketing the IC and attaching resistors to the pins will cause input-output oscillations during the small transition intervals unless hysteresis is used.If the input signal is a pulse waveform,with relatively fast rise and fall times,hysteresis is not required.All input pins of any unused comparators should be tied to the negative supply.The bias network of the LM193series establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from 2.0V DC to 30V DC .It is usually unnecessary to use a bypass capacitor across the power supply line.The differential input voltage may be larger than V +without damaging the device (Note 8).Protection should be provided to prevent the input voltages from going negative more than −0.3V DC (at 25˚C).An input clamp diode can be used as shown in the applications section.The output of the LM193series is the uncommitted collector of a grounded-emitter NPN output transistor.Many collectors can be tied together to provide an output OR’ing function.An output pull-up resistor can be connected to any available power supply voltage within the permitted supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage which is applied to the V +terminal of the LM193package.The output can also be used as a simple SPST switch to ground (when a pull-up resistor is not used).The amount of current which the output device can sink is limited by the drive available (which is independent of V +)and the βof this device.When the maximum current limit is reached (approximately 16mA),the output transistor will come out of saturation and the output voltage will rise very rapidly.The output saturation voltage is limited by the ap-proximately 60Ωr SAT of the output transistor.The low offset voltage of the output transistor (1.0mV)allows the output to clamp essentially to ground level for small load currents.Typical Applications(V +=5.0V DC )Basic ComparatorDriving CMOSDriving TTL005709350057093600570937Squarewave Oscillator Pulse Generator Crystal Controlled Oscillator0057093800570939*For large ratios of R1/R2,D1can be omitted.00570940L M 193/L M 293/L M 393/L M 2903 8Typical Applications (V +=5.0V DC )(Continued)Two-Decade High Frequency VCO00570941V *=+30V DC+250mV DC ≤V C ≤+50V DC 700Hz ≤f o ≤100kHzBasic Comparator Non-Inverting Comparator with Hysteresis0057090600570909Inverting Comparator with Hysteresis Output Strobing0057091000570911LM193/LM293/LM393/LM29039Typical Applications (V +=5.0V DC )(Continued)AND GateOR Gate0057091200570913Large Fan-in AND Gate Limit Comparator0057091400570915Comparing Input Voltages of Opposite Polarity ORing the Outputs0057091600570917L M 193/L M 293/L M 393/L M 2903 10Typical Applications(V+=5.0VDC)(Continued)Zero Crossing Detector(Single Power Supply)One-Shot Multivibrator0057092100570922 Bi-Stable Multivibrator One-Shot Multivibrator with Input Lock Out0057092400570923 Zero Crossing Detector Comparator With a Negative Reference0057094300570944LM193/LM293/LM393/LM290311Typical Applications (V +=5.0V DC )(Continued)Time Delay Generator00570907Split-Supply Applications(V +=+15V DC and V −=−15V DC )MOS Clock Driver00570942L M 193/L M 293/L M 393/L M 2903 12Physical Dimensionsinches (millimeters)unless otherwise notedMetal Can Package (H)NS Package Number H08CCeramic Dual-In-Line Package NS Package Number J08ALM193/LM293/LM393/LM290313Physical Dimensionsinches (millimeters)unless otherwise noted (Continued)SOIC PackageNS Package Number M08AMolded Dual-In-Line Package (N)NS Package N08EL M 193/L M 293/L M 393/L M 2903 14Physical Dimensionsinches (millimeters)unless otherwise noted (Continued)NOTE:UNLESS OTHERWISE SPECIFIED 1.EPOXY COATING2.63Sn/37Pb EUTECTIC BUMP3.RECOMMEND NON-SOLDER MASK DEFINED LANDING PAD.4.PIN A1IS ESTABLISHED BY LOWER LEFT CORNER WITH RESPECT TO TEXT ORIENTATION REMAINING PINS ARE NUMBERED COUNTERCLOCKWISE.5.XXX IN DRAWING NUMBER REPRESENTS PACKAGE SIZE VARIATION WHERE X 1IS PACKAGE WIDTH,X 2IS PACKAGE LENGTH AND X 3IS PACKAGE HEIGHT.6.REFERENCE JEDEC REGISTRATION MO-211,VARIATION BC.8-Bump (12mil)micro SMD PackageNS Package TLA08AAAX 1=1.514mm X 2=1.514mm X 3=0.600mmLIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices or systems which,(a)are intended for surgical implant into the body,or (b)support or sustain life,and whose failure to perform when properly used in accordance with instructions for use provided in the labeling,can be reasonably expected to result in a significant injury to the user.2.A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system,or to affect its safety or effectiveness.National Semiconductor Corporation AmericasEmail:support@National Semiconductor EuropeFax:+49(0)180-5308586Email:europe.support@Deutsch Tel:+49(0)6995086208English Tel:+44(0)8702402171Français Tel:+33(0)141918790National Semiconductor Asia Pacific Customer Response Group Tel:65-2544466Fax:65-2504466Email:ap.support@National Semiconductor Japan Ltd.Tel:81-3-5639-7560Fax:81-3-5639-7507LM193/LM293/LM393/LM2903Low Power Low Offset Voltage Dual ComparatorsNational does not assume any responsibility for use of any circuitry described,no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.。

IL2903资料

IL2903资料

TECHNICAL DATALow Power Low Offset Voltage Dual ComparatorsIL2903The IL2903 consists of two independent precision voltagecomparators with an offset voltage specification as low as 2.0 specifically to operate from a single power supply over a wide range of voltages.Application areas include limit comparators, simple analog to digital converters; pulse, squarewave and time delay multivibrators and high voltage digital logic gates. • Single or Split Supply Operation• Low Input Bias Current• Low Input Offset Current • Input Common Mode Voltage Range to Gnd • Low Output Saturation Voltage • TTL and CMOS CompatibleLOGIC DIAGRAMPIN 8 = V CC PIN 4 = GNDPIN ASSIGNMENTMAXIMUM RATINGS*Symbol Parameter ValueUnit V CC Power Supply VoltagesSingle Supply Split Supplies36±18VV IDR Input Differential Voltage Range 36 VV ICR Input Common Mode Voltage Range (1) -0.3 to V CC V I SC Output Short Circuit to Ground ContinuousI IN Input Current, per pin (2) 50 mAT J JunctionTemperaturePlastic Packages 150 °CTstg Storage Temperature -65 to +150 °CT L Lead Temperature, 1mm from Case for 10 Seconds 260 °CP D Power Dissipation @T A=25°CPlastic Package Derate above 25°C 5705.7µWmW/°C*Maximum Ratings are those values beyond which damage to the device may occur.Functional operation should be restricted to the Recommended Operating Conditions.Notes:1.Split Power Supplies.2.V IN<-0.3V. This input current will only exist when voltage at any of the input leads is driven negative.RECOMMENDED OPERATING CONDITIONSSymbol Parameter MinMaxUnitV CC DC Supply Voltage ±2.5 or5.0 ±15 or30VT A Operating Temperature, All Package Types -40 +85 °CThis device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V IN and V OUT should be constrained to the range GND≤(V IN or V OUT)≤V CC.Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V CC). Unused outputs must be left open.DC ELECTRICAL CHARACTERISTICS (T A=-40 to +85°C)GuaranteedLimit Symbol Parameter Test Conditions Min Typ Max UnitV IO Input Offset Voltage V0=1.4VV CC=5.0-30V;R S≤100ΩV ICR=0V - (V CC-1.5)V - 9.05.0*mVI IB Input Bias Current V0=1.4VV CC=5.0-30VV ICR=0V - (V CC-1.5)V - 400nAI IO Input Offset Current V0=1.4VV CC=5.0-30VV ICR=0V - (V CC-1.5)V - ±15050*nAV ICR Input Common ModeVoltage Range V CC=5.0-30V 0V CC-2.0VVI CC SupplyCurrent R L=∞,V CC=5.0R L=∞,V CC=30V --1.0*2.5*mAA VOL VoltageGain V CC=15V, R L=15KΩ- 200* - V/mVt1 LargeSignalResponse Time V IN=TTL Logic Swing,V ref=1.4V, V CC=5.0V,R L=5.1KΩ, V RL=5.0V- 300* - nst2Response Time(Note 6) V CC=5.0V, R L=5.1KΩ,V RL=5.0V- 1.3* - µsI sink Output Sink Current V I(-)=1.0V, V I(+)=0V,V0≤1.5V, V CC=5.0V6.0* - - mAV sat SaturationVoltage V I(-)=1.0V, V I(+)=0V,I sink≤4.0mA, V CC=5.0V - - 700mVI OL OutputLeakageCurrent V I(+)=1.0V, V I(-)=0V,V0=5.0VV0=30V0.1*1000nAV IDR DifferentialInputVoltage Range All V IN≥GND or V-Supply(if used)V CC V*=@25°CTYPICAL PERFORMANCE CHARACTERISTICS(V CC =1.5V, T A =+25°C, (each comporator))Figure 1. Input Bias Current versus Power Supply VoltageFigure 2. Output Saturation Voltage versus OutputSink CurrentFigure 3. Output Saturation Voltage versus Output Sink CurrentFigure 4. Power Supply Current versus PowerSupply VoltageFigure 5. Power Supply Current versus PowerSupply Voltage。

常用三端稳压芯片

常用三端稳压芯片

常⽤三端稳压芯⽚LM2930T-5.0 5.0V低压差稳压器LM2930T-8.0 8.0V低压差稳压器LM2931AZ-5.0 5.0V低压差稳压器(TO-92)LM2931T-5.0 5.0V低压差稳压器LM2931CT 3V to 29V低压差稳压器(TO-220,5PIN) LM2940CT-5.0 5.0V低压差稳压器LM2940CT-8.0 8.0V低压差稳压器LM2940CT-9.0 9.0V低压差稳压器LM2940CT-10 10V低压差稳压器LM2940CT-12 12V低压差稳压器LM2940CT-15 15V低压差稳压器LM123K 5V稳压器(3A)LM323K 5V稳压器(3A)LM117K 1.2V to 37V三端正可调稳压器(1.5A)LM317LZ 1.2V to 37V三端正可调稳压器(0.1A) LM317T 1.2V to 37V三端正可调稳压器(1.5A)LM317K 1.2V to 37V三端正可调稳压器(1.5A)LM133K 三端可调-1.2V to -37V稳压器(3.0A)LM333K 三端可调-1.2V to -37V稳压器(3.0A)LM337K 三端可调-1.2V to -37V稳压器(1.5A)LM337T 三端可调-1.2V to -37V稳压器(1.5A)LM337LZ 三端可调-1.2V to -37V稳压器(0.1A)LM150K 三端可调1.2V to 32V稳压器(3A)LM350K 三端可调1.2V to 32V稳压器(3A)LM350T 三端可调1.2V to 32V稳压器(3A)LM138K 三端正可调1.2V to 32V稳压器(5A)LM338T 三端正可调1.2V to 32V稳压器(5A)LM338K 三端正可调1.2V to 32V稳压器(5A)LM336-2.5 2.5V精密基准电压源LM336-5.0 5.0V精密基准电压源LM385-1.2 1.2V精密基准电压源LM385-2.5 2.5V精密基准电压源LM399H 6.9999V精密基准电压源LM431ACZ 精密可调2.5V to 36V基准稳压源LM723 ⾼精度可调2V to 37V稳压器LM105 ⾼精度可调4.5V to 40V稳压器LM305 ⾼精度可调4.5V to 40V稳压器MC1403 2.5V基准电压源MC34063 充电控制器SG3524 脉宽调制开关电源控制器TL431 精密可调2.5V to 36V基准稳压源TL494 脉宽调制开关电源控制器TL497 频率调制开关电源控制器TL7705 电池供电/⽋压控制器7805 正5V稳压器(1A)7806 正6V稳压器(1A)7808 正8V稳压器(1A)7809 正9V稳压议(1A)7812 正12V稳压器(1A)7815正15V稳压器(1A)7818 正18V稳压器(1A)7824 正24V稳压器(1A)7905 负5V稳压器(1A)7906 负6V稳压器(1A)7908 负8V稳压器(1A)7909 负9V稳压器(1A)7912 负12V稳压器(1A)7915 负15V稳压器(1A)7918 负18V稳压器(1A)7924 负24V稳压器(1A)78L05 正5V稳压器(100ma)78L06 正6V稳压器(100ma)78L08 正8V稳压器(100ma)78L09 正9V稳压器(100ma)78L12 正12V稳压器(100ma)78L15 正15V稳压器(100ma)78L18 正18V稳压器(100ma)78L24 正24V稳压器(100ma)线性稳压器件(输⼊输出电流相等,压降3V以上)型号稳压(V) 最⼤输出电流可替代型号79L05 -5V 100mA79L06 -6V 100mA79L08 -8V 100mALM7805 5V 1A L7805,LM340T5LM7806 6V 1A L7806LM7808 8V 1A L7808LM7809 9V 1A L7809LM7812 12V 1A L7812,LM340T12LM7815 15V 1A L7815,LM340T15LM7818 18V 1A L7815LM7824 24V 1A L7824LM7905 -5V 1A L7905LM7906 -6V 1A L7906,KA7906LM7908 -8V 1A L7908LM7909 -9V 1A L7909LM7912 -12V 1A L7912LM7915 -15V 1A L7915LM7918 -18V 1A L7918LM7924 -24V 1A L792478L05 5V 100mA78L06 6V 100mA78L08 8V 100ma78L09 9V 100ma78L12 12V 100ma78L15 15V 100ma78L18 18V 100ma78L24 24V 100ma来源:[/doc/fe993b350b4c2e3f5727638c.html ]机电之家·机电⾏业电⼦商务平台!。

2903芯片

2903芯片

2903芯片2903芯片是一种高性能的系统芯片,广泛应用于各种电子设备中。

本文将介绍2903芯片的主要特点以及应用领域,并对其技术参数和性能进行详细解读。

2903芯片是由美国德州仪器(Texas Instruments)公司研发的一款32位RISC处理器,采用高效的超标量架构,能够支持多线程执行和并行计算,达到更高的性能和效率。

该芯片的主频可以达到1.5GHz以上,具备强大的计算能力和处理速度。

2903芯片还采用了先进的制造工艺,如7纳米工艺,使得其能够在较小的尺寸下集成更多的功能和计算单元。

同时,该芯片还采用了多层架构设计,具备高度可扩展性,能够满足不同应用场景中的需求。

该芯片在应用领域广泛,包括人工智能、无人驾驶、云计算、网络安全等。

在人工智能领域,2903芯片能够支持深度学习和神经网络模型的训练和推理,具备强大的图像处理和语音识别能力。

在无人驾驶领域,2903芯片能够实现高精度的感知和决策,提供更安全、可靠的自动驾驶功能。

在云计算领域,该芯片能够处理大规模的数据计算和存储,提供高速的数据传输和分析能力。

在网络安全领域,2903芯片能够实现高级加密和解密功能,保护机密信息的安全。

从技术参数和性能上来看,2903芯片具有很多优势。

首先,它采用了高效的超标量架构,能够实现多线程执行和并行计算,提高了计算效率。

其次,该芯片具备较高的主频和运行速度,能够满足高性能计算的需求。

此外,2903芯片还具备较低的功耗和散热量,能够降低设备的能耗和发热问题。

最后,该芯片还具备良好的可扩展性和兼容性,能够与其他设备和系统进行良好的集成和交互。

总之,2903芯片是一款高性能的系统芯片,具备强大的计算和处理能力,广泛应用于人工智能、无人驾驶、云计算和网络安全等领域。

其具有较高的主频、多线程执行和较低的功耗等特点,可以满足不同应用场景的需求。

未来,随着科技的发展和应用需求的增加,2903芯片有望在更多领域发挥重要作用,为人类创造更多便捷和智能的生活方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PACKAGING INFORMATIONOrderableDevice Status (1)Package Type Package Drawing Pins Package Qty Eco Plan (2)Lead/Ball FinishMSL Peak Temp (3)5962-9452601Q2A ACTIVE LCCC FK 201TBD POST-PLATE N /A for Pkg Type 5962-9452601QPA ACTIVE CDIP JG 81TBD A42SNPB N /A for Pkg Type JM38510/11202BPAACTIVE CDIP JG 81TBD A42SNPB N /A for Pkg Type LM193DR ACTIVE SOIC D 82500TBD CU NIPDAU Level-1-220C-UNLIM LM193FKB ACTIVE LCCC FK 201TBD POST-PLATE N /A for Pkg TypeLM193JG ACTIVE CDIP JG 81TBD A42SNPB N /A for Pkg Type LM193JGB ACTIVE CDIP JG 81TBD A42SNPB N /A for Pkg Type LM2903AVQDR ACTIVE SOIC D 82500Pb-Free (RoHS)CU NIPDAU Level-2-250C-1YEAR/Level-1-235C-UNLIM LM2903AVQPWRACTIVE TSSOP PW 82000TBD CU NIPDAU Level-1-250C-UNLIM LM2903D ACTIVE SOIC D 875Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM2903DE4ACTIVE SOIC D 875Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM2903DG4ACTIVE SOIC D 875Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM2903DGKR ACTIVE MSOP DGK 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM2903DGKRG4ACTIVE MSOP DGK 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM2903DR ACTIVE SOIC D 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM2903DRE4ACTIVE SOIC D 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM2903DRG4ACTIVE SOIC D 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM2903P ACTIVE PDIP P 850Pb-Free (RoHS)CU NIPDAU N /A for Pkg Type LM2903PE4ACTIVE PDIP P 850Pb-Free (RoHS)CU NIPDAU N /A for Pkg Type LM2903PSR ACTIVE SO PS 82000Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM2903PSRG4ACTIVE SO PS 82000Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM2903PWLE OBSOLETE TSSOP PW 8TBDCall TI Call TILM2903PWR ACTIVE TSSOP PW 82000Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM2903PWRE4ACTIVE TSSOP PW 82000Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM2903PWRG4ACTIVE TSSOP PW 82000Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM2903QD NRND SOIC D 875TBD CU NIPDAU Level-1-220C-UNLIM LM2903QDR NRND SOIC D 82500TBD CU NIPDAU Level-1-220C-UNLIM LM2903QP OBSOLETE PDIP P 8TBD Call TI Call TILM2903VQDR ACTIVE SOIC D 82500Pb-Free (RoHS)CU NIPDAU Level-2-250C-1YEAR/Level-1-235C-UNLIM LM2903VQPWRACTIVETSSOPPW82000TBDCU NIPDAULevel-1-250C-UNLIM22-Feb-2007OrderableDeviceStatus (1)Package Type Package DrawingPins Package Qty Eco Plan (2)Lead/Ball Finish MSL Peak Temp (3)LM293AD ACTIVE SOIC D 875Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM293ADE4ACTIVE SOIC D 875Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM293ADG4ACTIVE SOIC D 875Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM293ADGKR ACTIVE MSOP DGK 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM293ADGKRG4ACTIVE MSOP DGK 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM293ADR ACTIVE SOIC D 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM293ADRE4ACTIVE SOIC D 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM293ADRG4ACTIVE SOIC D 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM293D ACTIVE SOIC D 875Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM293DE4ACTIVE SOIC D 875Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM293DG4ACTIVE SOIC D 875Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM293DGKR ACTIVE MSOP DGK 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM293DGKRG4ACTIVE MSOP DGK 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM293DR ACTIVE SOIC D 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM293DRE4ACTIVE SOIC D 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM293DRG4ACTIVE SOIC D 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM293P ACTIVE PDIP P 850Pb-Free (RoHS)CU NIPDAU N /A for Pkg Type LM293PE4ACTIVE PDIP P 850Pb-Free (RoHS)CU NIPDAU N /A for Pkg Type LM393AD ACTIVE SOIC D 875Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM393ADE4ACTIVE SOIC D 875Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM393ADG4ACTIVE SOIC D 875Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM393ADGKR ACTIVE MSOP DGK 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM393ADGKRG4ACTIVE MSOP DGK 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM393ADR ACTIVE SOIC D 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM393ADRE4ACTIVE SOIC D 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM393ADRG4ACTIVESOICD82500Green (RoHS &no Sb/Br)CU NIPDAULevel-1-260C-UNLIM22-Feb-2007OrderableDeviceStatus (1)Package Type Package DrawingPins Package Qty Eco Plan (2)Lead/Ball Finish MSL Peak Temp (3)LM393AP ACTIVE PDIP P 850Pb-Free (RoHS)CU NIPDAU N /A for Pkg Type LM393APE4ACTIVE PDIP P 850Pb-Free (RoHS)CU NIPDAU N /A for Pkg Type LM393APSR ACTIVE SO PS 82000Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM393APSRE4ACTIVE SO PS 82000Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM393APWLE OBSOLETE TSSOP PW 8TBDCall TI Call TILM393APWR ACTIVE TSSOP PW 82000Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM393APWRE4ACTIVE TSSOP PW 82000Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM393D ACTIVE SOIC D 875Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM393DE4ACTIVE SOIC D 875Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM393DG4ACTIVE SOIC D 875Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM393DGKR ACTIVE MSOP DGK 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM393DGKRG4ACTIVE MSOP DGK 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM393DR ACTIVE SOIC D 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM393DRE4ACTIVE SOIC D 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM393DRG4ACTIVE SOIC D 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM393P ACTIVE PDIP P 850Pb-Free (RoHS)CU NIPDAU N /A for Pkg Type LM393PE4ACTIVE PDIP P 850Pb-Free (RoHS)CU NIPDAU N /A for Pkg Type LM393PSLE OBSOLETE SO PS 8TBDCall TI Call TILM393PSR ACTIVE SO PS 82000Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM393PSRG4ACTIVE SO PS 82000Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM393PW ACTIVE TSSOP PW 8150Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM393PWE4ACTIVE TSSOP PW 8150Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM393PWG4ACTIVE TSSOP PW 8150Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM393PWLE OBSOLETE TSSOP PW 8TBDCall TI Call TILM393PWR ACTIVE TSSOP PW 82000Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM393PWRE4ACTIVE TSSOP PW 82000Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM393PWRG4ACTIVETSSOPPW82000Green (RoHS &no Sb/Br)CU NIPDAULevel-1-260C-UNLIM22-Feb-2007(1)The marketing status values are defined as follows:ACTIVE:Product device recommended for new designs.LIFEBUY:TI has announced that the device will be discontinued,and a lifetime-buy period is in effect.NRND:Not recommended for new designs.Device is in production to support existing customers,but TI does not recommend using this part in a new design.PREVIEW:Device has been announced but is not in production.Samples may or may not be available.OBSOLETE:TI has discontinued the production of the device.(2)Eco Plan -The planned eco-friendly classification:Pb-Free (RoHS),Pb-Free (RoHS Exempt),or Green (RoHS &no Sb/Br)-please check /productcontent for the latest availability information and additional product content details.TBD:The Pb-Free/Green conversion plan has not been defined.Pb-Free (RoHS):TI's terms "Lead-Free"or "Pb-Free"mean semiconductor products that are compatible with the current RoHS requirements for all 6substances,including the requirement that lead not exceed 0.1%by weight in homogeneous materials.Where designed to be soldered at high temperatures,TI Pb-Free products are suitable for use in specified lead-free processes.Pb-Free (RoHS Exempt):This component has a RoHS exemption for either 1)lead-based flip-chip solder bumps used between the die and package,or 2)lead-based die adhesive used between the die and leadframe.The component is otherwise considered Pb-Free (RoHS compatible)as defined above.Green (RoHS &no Sb/Br):TI defines "Green"to mean Pb-Free (RoHS compatible),and free of Bromine (Br)and Antimony (Sb)based flame retardants (Br or Sb do not exceed 0.1%by weight in homogeneous material)(3)MSL,Peak Temp.--The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications,and peak solder temperature.Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided.TI bases its knowledge and belief on information provided by third parties,and makes no representation or warranty as to the accuracy of such information.Efforts are underway to better integrate information from third parties.TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.TI and TI suppliers consider certain information to be proprietary,and thus CAS numbers and other limited information may not be available for release.In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s)at issue in this document sold by TI to Customer on an annualbasis.22-Feb-2007IMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and todiscontinue any product or service without notice. Customers should obtain the latest relevant informationbefore placing orders and should verify that such information is current and complete. All products are soldsubject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its hardware products to the specifications applicable at the time of sale inaccordance with TI’s standard warranty. Testing and other quality control techniques are used to the extentTI deems necessary to support this warranty. Except where mandated by government requirements, testingof all parameters of each product is not necessarily performed.TI assumes no liability for applications assistance or customer product design. Customers are responsiblefor their products and applications using TI components. To minimize the risks associated with customerproducts and applications, customers should provide adequate design and operating safeguards.TI does not warrant or represent that any license, either express or implied, is granted under any TI patentright, copyright, mask work right, or other TI intellectual property right relating to any combination, machine,or process in which TI products or services are used. Information published by TI regarding third-partyproducts or services does not constitute a license from TI to use such products or services or a warranty orendorsement thereof. Use of such information may require a license from a third party under the patents orother intellectual property of the third party, or a license from TI under the patents or other intellectualproperty of TI.Reproduction of information in TI data books or data sheets is permissible only if reproduction is withoutalteration and is accompanied by all associated warranties, conditions, limitations, and notices.Reproduction of this information with alteration is an unfair and deceptive business practice. TI is notresponsible or liable for such altered documentation.Resale of TI products or services with statements different from or beyond the parameters stated by TI forthat product or service voids all express and any implied warranties for the associated TI product or serviceand is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.Following are URLs where you can obtain information on other Texas Instruments products and applicationsolutions:Products ApplicationsAmplifiers Audio /audioData Converters Automotive /automotive/broadbandBroadbandDSP DigitalControl /digitalcontrol Interface Military /military Logic Power Mgmt Optical Networking /opticalnetworkSecurity /security Microcontrollers Low Power Wireless /lpw Telephony /telephonyVideo & Imaging /video/wirelessWirelessMailing Address: Texas InstrumentsPost Office Box 655303 Dallas, Texas 75265Copyright © 2007, Texas Instruments Incorporated。

相关文档
最新文档