韦达定理→斜率韦达定理法-FIDELHUB

合集下载

认识韦达定理:什么是韦达定理?如何应用?

 认识韦达定理:什么是韦达定理?如何应用?

**韦达定理的认识与应用**一、韦达定理的定义与来源韦达定理,也称为韦达公式,是一元二次方程的重要定理之一,由法国数学家弗朗索瓦·韦达在1615年提出。

韦达定理指出,对于一元二次方程ax²+bx+c=0(a≠0),其两个根x₁和x₂满足以下关系:1. x₁ + x₂ = -b/a2. x₁ × x₂ = c/a韦达定理不仅是一元二次方程根与系数之间关系的体现,更是代数学中的基本定理之一,具有广泛的应用价值。

二、韦达定理的详细阐述1. 根与系数的关系韦达定理最核心的内容是一元二次方程的根与系数之间的关系。

对于一个标准形式的一元二次方程ax²+bx+c=0,其两个根x₁和x₂与系数a、b、c之间存在确定的数学关系。

具体来说,就是x₁和x₂的和等于-b除以a,x₁和x₂的乘积等于c除以a。

2. 定理的证明韦达定理的证明主要依赖于一元二次方程的求根公式。

对于一元二次方程ax²+bx+c=0,其求根公式为x=(−b±√(b²-4ac))/(2a)。

通过这个求根公式,我们可以直接计算出x₁和x₂的值,然后验证它们与系数a、b、c之间的关系是否满足韦达定理。

三、韦达定理的应用场景1. 解一元二次方程韦达定理最直接的应用就是解一元二次方程。

通过韦达定理,我们可以根据一元二次方程的系数直接得出其根的和与积,这在某些情况下比使用求根公式更加简便。

2. 判断根的情况通过韦达定理,我们还可以判断一元二次方程根的情况。

例如,如果系数b²-4ac大于0,则一元二次方程有两个不相等的实数根;如果b²-4ac等于0,则一元二次方程有两个相等的实数根;如果b²-4ac小于0,则一元二次方程没有实数根。

3. 解决其他问题除了解决一元二次方程本身的问题外,韦达定理还可以应用于其他数学问题和实际问题中。

例如,在代数式求值、方程组的求解、几何问题的计算等方面都可以看到韦达定理的应用。

高考数学重要知识点:韦达定理

高考数学重要知识点:韦达定理

高考数学重要知识点:韦达定理高考数学重要知识点:韦达定理韦达定理说明了一元二次方程中根和系数之间的关系。

是高考数学的重要知识点,一起来复习下吧:韦达定理公式:一元二次方程ax^2+bx+c (a不为0)中设两个根为x和y则x+y=-b/axy=c/a韦达定理在更高次方程中也是可以使用的。

一般的,对一个n次方程∑AiX^i=0它的根记作X1,X2 (X)我们有∑Xi=(-1)^1*A(n-1)/A(n)∑XiXj=(-1)^2*A(n-2)/A(n)…∏Xi=(-1)^n*A(0)/A(n)其中∑是求和,∏是求积。

如果一元二次方程在复数集中的根是,那么法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。

历史是有趣的,韦达的.16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。

由代数基本定理可推得:任何一元 n 次方程在复数集中必有根。

因此,该方程的左端可以在复数范围内分解成一次因式的乘积:其中是该方程的个根。

两端比较系数即得韦达定理。

韦达定理在方程论中有着广泛的应用。

定理的证明设x_1,x_2是一元二次方程ax^2+bx+c=0的两个解,高中历史,且不妨令x_1 ge x_2.根据求根公式,有x_1=frac{-b + sqrt {b^2-4ac}},x_2=frac{-b - sqrt {b^2-4ac}} 所以x_1+x_2=frac{-b + sqrt {b^2-4ac} + left (-b ight) - sqrt {b^2-4ac}} =-frac,x_1x_2=frac{ left (-b + sqrt {b^2-4ac} ight) left (-b - sqrt {b^2-4ac} ight)}{left (2a ight)^2} =frac。

韦达定理文档

韦达定理文档

韦达定理介绍韦达定理(Vieta’s Theorem)是代数学中一个重要的定理,由法国数学家弗朗索瓦·维耶特(François Viète)于16世纪提出。

该定理描述了一元多项式的根与系数之间的关系,是多项式理论的基础之一。

定理内容韦达定理可以简洁地表达为:对于一元多项式$$ f(x) = a_nx^n + a_{n-1}x^{n-1} + \\ldots + a_1x + a_0 $$如果 $r_1, r_2, \\ldots, r_n$ 是该多项式的n个根,即满足f(r i)=0,则有以下关系成立:1.和与差的关系:$$ r_1 + r_2 + \\ldots + r_n = -\\frac{a_{n-1}}{a_n} $$$$ r_1r_2 + r_1r_3 + \\ldots + r_{n-1}r_n = \\frac{a_{n-2}}{a_n} $$$$ r_1r_2r_3 + r_1r_2r_4 + \\ldots + r_{n-2}r_{n-1}r_n = -\\frac{a_{n-3}}{a_n} $$ 以此类推,直到第n个根的系数为−a0/a n。

2.一般形式:$$ r_1^{k_1}r_2^{k_2}\\ldots r_n^{k_n} + r_1^{k_1}r_2^{k_2}\\ldots r_{n-1}^{k_{n-1}}r_n^{k_n-1} + \\ldots + r_{n-1}^{k_{n-1}}r_n^{k_n} + r_n^{k_n} = (-1)^{k-n}\\frac{a_{n-k}}{a_n} $$其中k i表示常数k i的幂,而 $k = k_1 + k_2 + \\ldots + k_n$。

证明要理解韦达定理的证明,我们需要先了解复数域和多项式的根与系数之间的关系。

首先,我们知道复数域是包含实数域的,并且复数具有形如a+bi的表示方式,其中a和b是实数,而i是虚数单位。

韦达定理公式是什么样的

韦达定理公式是什么样的
韦达定理公式是什么样的
韦达定理:两根之和等于-b/a,两根之差等于c/a.
x1*x2=c/a,
x1+x2=-b/a。
韦达定理说明了一元二次方程中根和系数之间的关系。
法国数学家弗朗索瓦·韦达于1615年在著作《论方程的识别与订正》中建立了方程根与系数的关系,提出了这条定理。由于韦达最早发现代数方程的根与系数之间有这种关系,人们把这个关系称为韦达定理。
韦达定理公式运用
一元二次方程ax^2+bx+c=0(a≠0且△=b^2-4ac>0)中,设两个根为x1,x2则X1+X2=-b/a、X1·X2=c/a、1/X1+1/X2=(X1+X2)/X1·X2
用韦达定理判断方程的根一元二次方程ax²+bx+c=0(a≠0)中,
若b²-4ac<0则方程没有实数根,
最好将每天学习数学的时间分出一部分来专门练习选择题和填空题熟能生巧经过长时间的锻炼就会提高你的思考能力和计算速度通过练习你会发现大多数选择题除了固定的解题方法外还可以利用排除法代入法以及数形结合的方法来快速判断出答案
韦达定理公式是什么样的
数学中解一元二次方程我们常说韦达定理,那么韦达定理公式是什么样的呢?快来和小编一起看看吧。下面是由小编为大家整理的“韦达定理公式是什么样
很多学生学习数学时不懂得变通,对于老师上课讲的解题方法不会进行深入研究,而是照搬照挪。虽然题是做了,但是下一次遇到还是不会,这些方法或许是延续了你在小学或者初中生学习数学的方法,但是高中数学更多的是考验同学们的独立思考能力。这就要求同学们要对老师讲的方法进行归纳总结,取其精髓,懂得变通,要学会举一反三,自己多尝试摸索出其他的解题方法。
不要小看选择题和填空题

韦达定理详细讲解

韦达定理详细讲解

韦达定理详细讲解韦达定理是数学中的一个重要定理,它被广泛应用于代数、几何和概率等领域。

该定理的内容较为复杂,但通过详细的讲解,我们可以更好地理解和应用韦达定理。

我们来了解一下韦达定理的基本概念。

韦达定理又称作“韦达三角定理”或“韦达方程”,它是代数中关于多项式根与系数之间的关系的一个重要定理。

韦达定理是指对于一个二次方程,其两个根的和等于系数b的相反数,而两个根的乘积等于方程的常数项c。

为了更好地理解韦达定理,我们以一个具体的例子来说明。

假设我们有一个二次方程x^2 - 5x + 6 = 0,我们可以使用韦达定理来求解该方程的根。

根据韦达定理,我们知道两个根的和等于系数b的相反数,即根的和等于5的相反数,即-5。

所以,我们可以得到一个等式:x1 + x2 = -5。

接下来,根据韦达定理,我们知道两个根的乘积等于方程的常数项c,即根的乘积等于6。

所以,我们可以得到另一个等式:x1 * x2 = 6。

通过这两个等式,我们可以得到一个由根和系数构成的方程组,进一步求解得到方程的根。

在本例中,我们可以得到x1 = 2和x2 = 3,即方程的两个根分别为2和3。

除了二次方程,韦达定理也可以扩展到高次方程。

对于一个n次方程,韦达定理可以表示为:方程的n个根的和等于系数b的相反数,而n个根的乘积等于方程的常数项c。

韦达定理在代数中的应用非常广泛。

它可以用于求解方程的根,进一步用于因式分解、求解多项式的系数和揭示方程与根之间的关系。

通过韦达定理,我们可以更好地理解和解决各种代数问题。

除了代数中的应用,韦达定理在几何和概率中也有重要的应用。

在几何中,韦达定理可以用于求解三角形的边长,利用三角形的边长关系来解决几何问题。

在概率中,韦达定理可以用于计算多个独立事件同时发生的概率,从而帮助我们进行概率分析和计算。

总结一下,韦达定理是数学中的一个重要定理,它可以用于代数、几何和概率等领域。

通过韦达定理,我们可以求解方程的根,进行因式分解,揭示方程与根之间的关系,解决几何问题和计算概率等。

韦达定理——精选推荐

韦达定理——精选推荐

韦达定理说明了一元n次方程中根和系数之间的关系。

法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。

历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。

韦达定理在方程论中有着广泛的应用。

韦达定理介绍韦达定理英文名称:Viete theorem韦达定理说明了一元n次方程中根和系数之间的关系。

这里讲一元二次方程两根之间的关系。

一元二次方程aX^2+bX+C=0﹙a≠0﹚中,两根X1,X2有如下关系:X1+ X2=-b/a,X1·X2=c/a.韦达简介韦达他1540年生于法国的普瓦图。

1603年12月13日卒于巴黎。

年轻时学习法律当过律师,后从事政治活动,当过议会的议员,在对西班牙的战争中曾为政府破译敌军的密码。

韦达还致力于数学研究,第一个有意识地和系统地使用字母来表示已知数、未知数及其乘幂,带来了代数学理论研究的重大进步。

韦达在欧洲被尊称为“现代数学之父”。

韦达最重要的贡献是对代数学的推进,他最早系统地引入代数符号,推进了方程论的发展。

韦达用“分析”这个词来概括当时代数的内容和方法。

他创设了大量的代数符号,用字母代替未知数,系统阐述并改良了三、四次方程的解法,指出了根与系数之间的关系。

给出三次方程不可约情形的三角解法。

著有《分析方法入门》、《论方程的识别与订正》等多部著作。

韦达从事数学研究只是出于爱好,然而他却完成了代数和三角学方面的巨著。

他的《应用于三角形的数学定律》(1579年)是韦达最早的数学专著之一,可能是西欧第一部论述6种三角形函数解平面和球面三角形方法的系统著作。

他被称为现代代数符号之父。

韦达还专门写了一篇论文"截角术",初步讨论了正弦,余弦,正切弦的一般公式,首次把代数变换应用到三角学中。

他考虑含有倍角的方程,具体给出了将COS(nx)表示成COS(x)的函数并给出当n≤11等于任意正整数的倍角表达式了。

第03讲 韦达定理

第03讲 韦达定理

第3讲 韦达定理没有不能解决的问题. ——韦达知识方法扫描韦达定理,即一元二次方程的根与系数的关系,是方程理论的一个重要的内容。

运用这个定理,我们可以不解方程,就可以确定根的符号、可以求出关于两根的对称式的值,可以构造以某两个数为根的一元二次方程等等在运用韦达定理解题时,首先要注意运用判别式判断这个方程有没有实数根。

必要时要将韦达定理与判别式综合运用。

要掌握将一个关于两根的对称式如x 1n +x 2n 转化为两个基本对称式x 1+x 2与x 1x 2 的方法。

在求关于两根的非对称式的值时,除了运用根与系数的关系得关系外,还要注意运用根的定义来解题。

经典例题解析例1(1999年全国初中数学竞赛试题)设实数s 、t 分别满足19s 2+99s+1=0,t 2+99t+19=0, 并且st≠1。

求41st s t++的值 解 因为s≠0,所以,第一个等式可以变形为 019)1(99)1(2=++ss又因为st≠1, 所以s1,t 是一元二次方程x 2+99x+19=0的两个不同的实根,于是,有,191,991=∙-=+t st s 即st+1=-99s, t=19s. ∴51949914-=+-=++sss t s st . 例2(浙江省第二届初中数学竞赛题)设方程x 2+px+q=0的两实数根为a 、b ,且有I 1=a+b, I 2=a 2+b 2, …I n =a n +b n , 求当n≥3时,I n +pI n-1+qI n-2的值。

分析 直接求解犹如“海底捞针”,若利用方程根的意义求解,不仅能以简驭繁,且有出奇制胜之妙,我们知道x=x 0是方程ax 2+bx+c=0的根2000ax bx c ⇔++=,利用它显得思路清晰,运算简捷。

解 I n +pI n-1+qI n-2=(a n +b n )+p(a n-1+b n-1)+q(a n-2+b n-2) (n≥3) =(a n +pa n-1+qa n-2)+(b n +pb n-1+qb n-2) =(a 2+pa+q) a n-2 +(b 2+pb+q)b n-2 =0+0=0. 例3(1995年第八届“祖冲之杯”初中数学邀请赛题)已知α、β是方程x 2-7x+8=0的两根,且α>β,不解方程利用根与系数的关系,求232βα+的值分析 待求式是已知一元二次方程根的非对称式,我们可以设法构造一个待求式相应的代数式一起参与运算,从而使问题迅速获得解决解 设22223,3,A B βααβ+=+=∵α、β是方程x 2-7x+8=0的两根,且α>β, ∴α+β=7,αβ=8,β-α=-174)(2-=-+αββα ∴A+B=222233βααβ+++=αβαβ)(2++3[(β+α)2-2αβ]=4403① A-B=223232αββα--+=17485))((3)(2-=-++-αβαβαβαβ ② ①+②得:2A=,174854403- ∴A=178858403-故178858403:322-+的值为βα 例4 (2003年山东省初中数学竞赛试题)设方程20022x 2-2003·2001x-1=0的较大根是r ,方程2001x 2-2002x+1=0的较小根是s ,求r-s 的值.解 因20022-2003·2001-1=0,故1是方程20022x 2-2003·2001x-1=0的根,由根与系数的关系知两根之积为负,所以1是方程20022x 2-2003·2001x-1=0的较大根,r=1.因2001x 2-2002x+1=0, 故1也是方程2001x 2-2002x+1=0的根,由根与系数的关系知两根之积为12001,所以12001是方程的较小根s=12001.故r-s=1-12001=20002001. 例5 (2004年全国初中数学竞赛预选赛湖北赛区试题)已知关于x 的一元二次方程ax 2+bx+c=0没有实数根.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某项系数的符号,误求得两根为-1和4,求23b ca +的值.解 甲看错了二次项系数,设他所解的方程为a′x 2+bx+c=0,于是有:24'b a +=- 24'ca ⨯=,故34bc-= ① 设乙看错了一次项系数的符号,则他所解的方程为ax 2-bx+c=0.于是-1+4=ba. ②由①,②知,△=b 2-4ac=b 2-4·3b ·(43-b)= 259b 2≥0,与题设矛盾.故乙看错的只是常数项,即他所解的方程为ax 2+bx-c=0,则-1+4=ba- ③由①,③可知:232426b c b b ba a a+-==-= 例6 (2003年全国初中数学竞赛预选赛黑龙江预赛试题)设a 2+2a-1=0,b 4-2b 2-1=0,且1-ab 2≠0,求22200421()ab b a a+-+的值。

韦达定理详解

韦达定理详解

韦达定理详解韦达定理是解决几何中求未知量问题的重要工具之一。

它可以用来求平面上的三角形中各边平方和、角度数等问题。

本文将详细介绍韦达定理的原理、使用方法以及实例计算。

一、韦达定理的原理韦达定理是指:对于一个三角形ABC,它的三个内角所对应的边分别为a、b、c,则有以下公式成立:a²=b²+c²-2bc*cosA其中,cosA、cosB和cosC是表示对应角度余弦值的函数。

该公式由法国数学家韦达在1821年提出。

二、韦达定理的使用方法使用韦达定理时,首先需要明确已知的量和未知的量。

根据已知与未知,可以选择使用上述公式中的哪个。

一般情况下,需要根据题目条件,先确定一个角对应的两条边,再使用韦达公式求出未知边或角。

三、韦达定理的实例计算下面通过几个实例来演示韦达定理的计算方法。

1.已知三角形的三边长分别为3、4、5,求其内角度数。

解:将a=3,b=4,c=5带入公式,得到9=41-40×cosA所以∠A=cos⁻¹0.8≈36.87°,同理可得∠B≈53.13°,∠C=90°。

2.已知一个直角三角形,其中直角边为5,斜边为13,求另一条直角边长。

解:由题目条件可知a=5,c=13。

将这两个数带入公式:5²=b²+13²-2×b×13×cos90°25=b²+169b²=144∴b=12所以,另外一条直角边长为12。

解:将b=12,c=16,角A=120°代入公式:a²=144+256-384×(-0.5)a²=400∴a=20所以,第三边的长度为20。

总之,韦达定理是解决几何问题的常见方法。

通过运用韦达公式,可以求出三角形中的各边长度、角度大小等未知量,帮助我们更好地理解和掌握几何知识。

韦达定理全部公式

韦达定理全部公式

韦达定理全部公式韦达定理(Vieta's formulas)是一组用于描述多项式系数与其根之间关系的重要公式。

这组公式由法国数学家弗朗索瓦·韦达(François Viète)于16世纪提出,被广泛应用于代数学和数论中。

韦达定理的第一个公式是关于二次方程的。

对于一个一般形式的二次方程ax^2 + bx + c = 0,韦达定理给出了它的两个根之和和两个根之积与系数之间的关系。

根据韦达定理,这两个根之和等于-b/a,根之积等于c/a。

这个公式被广泛应用于解方程和因式分解等问题中。

对于一个更高次的多项式方程,韦达定理也同样适用。

对于一个n 次多项式方程a_nx^n + a_{n-1}x^{n-1} + ... + a_1x + a_0 = 0,韦达定理给出了它的n个根之和、n-1个根之积、n-2个根之和等与系数之间的关系。

具体而言,韦达定理表明这些关系可以通过系数a_0, a_1, ..., a_n-1的各种组合来表示。

韦达定理的第二个公式是关于一个多项式的根和系数之间的关系。

根据韦达定理,在给定多项式的根的情况下,可以通过根与系数之间的关系来计算出这个多项式的各个系数。

具体而言,对于一个n 次多项式方程,如果它的n个根分别为r_1, r_2, ..., r_n,那么可以通过如下公式计算出系数a_0, a_1, ..., a_n-1:a_0 = (-1)^n * r_1 * r_2 * ... * r_na_1 = (-1)^(n-1) * (r_1 * r_2 * ... * r_{n-1} + r_1 * r_2 * ... * r_{n-2} * r_n + ... + r_2 * r_3 * ... * r_n)...a_{n-1} = (-1) * (r_1 + r_2 + ... + r_n)这个公式可以通过给定的根和系数之间的关系来计算出未知的系数,从而完全确定一个多项式。

初中数学的韦达定理

初中数学的韦达定理

初中数学的韦达定理一、韦达定理的内容1. 对于一元二次方程ax^2+bx + c = 0(a≠0),设它的两个根为x_{1},x_{2}。

- 韦达定理指出:x_{1}+x_{2}=-(b)/(a),x_{1}x_{2}=(c)/(a)。

二、韦达定理的推导1. 由一元二次方程ax^2+bx + c = 0(a≠0),根据求根公式x=frac{-b±√(b^2)-4ac}{2a},设方程的两个根为x_{1}=frac{-b + √(b^2)-4ac}{2a},x_{2}=frac{-b-√(b^2)-4ac}{2a}。

2. 计算x_{1}+x_{2}:- x_{1}+x_{2}=frac{-b + √(b^2)-4ac}{2a}+frac{-b-√(b^2)-4ac}{2a}- 通分得到x_{1}+x_{2}=frac{-b+√(b^2)-4ac-b - √(b^2)-4ac}{2a}- 化简后x_{1}+x_{2}=-(b)/(a)。

3. 计算x_{1}x_{2}:- x_{1}x_{2}=frac{-b + √(b^2)-4ac}{2a}×frac{-b-√(b^2)-4ac}{2a}- 根据平方差公式(a + b)(a - b)=a^2-b^2,这里a=-b,b=√(b^2)-4ac,则x_{1}x_{2}=frac{(-b)^2-(√(b^2)-4ac)^2}{4a^2}- 进一步化简x_{1}x_{2}=frac{b^2-(b^2-4ac)}{4a^2}=(4ac)/(4a^2)=(c)/(a)。

三、韦达定理的应用1. 已知方程的一个根,求另一个根- 例如,已知方程x^2-3x - 4 = 0的一个根为x_{1}=4,设另一个根为x_{2}。

- 对于方程x^2-3x - 4 = 0,这里a = 1,b=-3,c=-4。

- 根据韦达定理x_{1}+x_{2}=-(b)/(a)=3,因为x_{1}=4,所以x_{2}=3 - 4=-1。

韦达定理推导公式6个

韦达定理推导公式6个

韦达定理推导公式6个韦达定理是中学数学中非常重要的一个定理,它在解决一元二次方程的问题时,作用可大啦!今天咱们就来好好聊聊韦达定理的 6 个推导公式。

先来说说韦达定理到底是啥。

对于一元二次方程$ax^2 + bx + c =0$($a\neq 0$),它的两个根$x_1$和$x_2$有这样的关系:$x_1 + x_2 = -\frac{b}{a}$,$x_1x_2 = \frac{c}{a}$。

这就是韦达定理的基本内容。

咱们来推导第一个公式。

由$x_1 + x_2 = -\frac{b}{a}$两边平方可得:$(x_1 + x_2)^2 = \left(-\frac{b}{a}\right)^2$$x_1^2 + 2x_1x_2 + x_2^2 = \frac{b^2}{a^2}$$x_1^2 + x_2^2 = \frac{b^2}{a^2} - 2\frac{c}{a} = \frac{b^2 -2ac}{a^2}$这就是第一个推导公式啦。

再来看第二个。

由$x_1 + x_2 = -\frac{b}{a}$,$x_1x_2 =\frac{c}{a}$,可得:$(x_1 - x_2)^2 = (x_1 + x_2)^2 - 4x_1x_2 = \left(-\frac{b}{a}\right)^2 - 4\frac{c}{a} = \frac{b^2}{a^2} - \frac{4ac}{a^2} = \frac{b^2 - 4ac}{a^2}$所以$|x_1 - x_2| = \frac{\sqrt{b^2 - 4ac}}{|a|}$,这就是第二个推导公式。

接着第三个。

$x_1^3 + x_2^3 = (x_1 + x_2)(x_1^2 - x_1x_2 + x_2^2)$把前面推导出的$x_1 + x_2 = -\frac{b}{a}$和$x_1^2 + x_2^2 =\frac{b^2 - 2ac}{a^2}$代入:$x_1^3 + x_2^3 = -\frac{b}{a}\left(\frac{b^2 - 2ac}{a^2} -\frac{c}{a}\right) = -\frac{b}{a}\frac{b^2 - 3ac}{a^2} = \frac{3abc -b^3}{a^3}$这就是第三个公式。

韦达定理所有公式

韦达定理所有公式

韦达定理所有公式韦达定理是解决三角形中任意三边与其对应的角之间的关系的重要定理。

在本文档中,我们将讨论韦达定理的各种公式及其应用。

一、韦达定理的基本形式韦达定理的一个基本形式是:在一个三角形ABC中,设边长分别为a、b、c,对应的角为A、B、C,则有以下公式成立:1. a² = b² + c² - 2bc·cosA2. b² = a² + c² - 2ac·cosB3. c² = a² + b² - 2ab·cosC这三个公式是韦达定理的基本形式,可以用来计算三角形中的任意一边的长度。

二、角的余弦定理韦达定理还可以通过角的余弦定理进行推导。

角的余弦定理是说,在一个三角形ABC中,设边长分别为a、b、c,对应的角为A、B、C,则有以下公式成立:1. cosA = (b² + c² - a²) / (2bc)2. cosB = (a² + c² - b²) / (2ac)3. cosC = (a² + b² - c²) / (2ab)将上述公式代入韦达定理的基本形式,可以得到:1. a² = b² + c² - 2bc·[(b² + c² - a²) / (2bc)]2. b² = a² + c² - 2ac·[(a² + c² - b²) / (2ac)]3. c² = a² + b² - 2ab·[(a² + b² - c²) / (2ab)]经过简化,得到了韦达定理的基本形式。

三、韦达定理的特殊情况1. 直角三角形在一个直角三角形ABC中,设边长分别为a、b、c,对应的角为A、B、C,其中角C为直角,则有以下公式成立:1. a² = b² + c²2. b² = a² + c²3. c² = a² + b²这是因为在直角三角形中,余弦函数的值为0,所以角的余弦定理可以简化为上述形式。

初中数学韦达定理公式

初中数学韦达定理公式

初中数学韦达定理公式韦达定理是数学中一个重要的定理,它在代数中有着广泛的应用。

韦达定理的全称是“韦达利亚定理”,它是由法国数学家韦达利亚于16世纪提出的。

韦达定理可以用来求解二次方程的根,它的公式为:对于二次方程ax^2+bx+c=0,根的和为-x1-x2=-b/a,根的积为x1*x2=c/a。

韦达定理的应用非常广泛,不仅可以用于求解二次方程的根,还可以用于解决一些实际问题。

下面我将通过几个具体的例子来说明韦达定理的应用。

例1:求解二次方程的根假设有一个二次方程x^2+3x+2=0,我们可以使用韦达定理来求解它的根。

根据韦达定理的公式,我们可以得到根的和为-x1-x2=-3/1=-3,根的积为x1*x2=2/1=2。

所以这个二次方程的根为x1=-1,x2=-2。

例2:求解实际问题假设有一片长方形的土地,已知它的周长为20米,面积为48平方米。

我们可以使用韦达定理来求解这片土地的长和宽。

设土地的长为x米,宽为y米,根据题意我们可以得到以下两个方程:2(x+y)=20,表示周长为20米;xy=48,表示面积为48平方米。

根据韦达定理的公式,我们可以得到x+y=-10,xy=48。

我们可以将x+y=-10带入xy=48的公式中,得到x和y的值。

进而可以求出这片土地的长和宽分别为6米和8米。

例3:应用于物理问题假设一个物体从静止开始做匀减速运动,已知它的加速度为2m/s^2,最终速度为10m/s,求它的运动时间和位移。

我们可以使用韦达定理来求解这个问题。

设运动时间为t秒,位移为s米,根据题意我们可以得到以下两个方程:at=v,表示加速度乘以时间等于速度;s=vt-1/2at^2,表示位移等于速度乘以时间减去1/2加速度乘以时间的平方。

根据韦达定理的公式,我们可以得到at=2t=10,s=10t-1/2*2*t^2。

我们可以将at=10带入s=10t-1/2*2*t^2的公式中,得到t和s的值。

进而可以求出物体的运动时间为5秒,位移为25米。

韦达定理推导公式

韦达定理推导公式

韦达定理推导公式韦达定理呀,在数学的世界里可是个相当重要的家伙!咱们先来说说啥是韦达定理。

对于一元二次方程$ax^2 + bx + c =0$($a≠0$),它的两个根$x_1$和$x_2$有这样的关系:$x_1 + x_2 = -\frac{b}{a}$,$x_1x_2 = \frac{c}{a}$。

那这韦达定理是咋推导出来的呢?咱们来一步步瞧瞧。

假设一元二次方程$ax^2 + bx + c = 0$($a≠0$)的两个根分别是$x_1$和$x_2$。

因为$x_1$是方程的根,所以把$x_1$代入方程,就得到$ax_1^2 +bx_1 + c = 0$。

同理,把$x_2$代入方程,就有$ax_2^2 + bx_2 + c = 0$。

接下来,咱们用$ax_1^2 + bx_1 + c = 0$减去$ax_2^2 + bx_2 + c = 0$,可得:\[\begin{align*}ax_1^2 + bx_1 + c - (ax_2^2 + bx_2 + c)&=0\\a(x_1^2 - x_2^2) + b(x_1 - x_2)&=0\\a(x_1 + x_2)(x_1 - x_2) + b(x_1 - x_2)&=0\\\end{align*}\]因为$x_1 ≠ x_2$,所以可以把$(x_1 - x_2)$约掉,就得到$a(x_1 + x_2) + b = 0$,也就是$x_1 + x_2 = -\frac{b}{a}$。

再看,由$ax_1^2 + bx_1 + c = 0$可得$bx_1 = -ax_1^2 - c$,同理$bx_2 = -ax_2^2 - c$。

所以$bx_1 × bx_2 = (-ax_1^2 - c)(-ax_2^2 - c)$\[\begin{align*}b^2x_1x_2&=(ax_1^2 + c)(ax_2^2 + c)\\b^2x_1x_2&=a^2x_1^2x_2^2 + ac(x_1^2 + x_2^2) + c^2\\\end{align*}\]又因为$(x_1 + x_2)^2 = x_1^2 + 2x_1x_2 + x_2^2$,所以$x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2$。

韦达定理→斜率韦达定理法-FIDELHUB

韦达定理→斜率韦达定理法-FIDELHUB
1.位置关系:相交、相切、相离 2.判别方法(代数法) 联立直线与椭圆的方程 消元得到二元一次方程组 (1)△>0直线与椭圆相交有两个公共点; (2)△=0 直线与椭圆相切有且只有一个公共点; (3)△<0 直线与椭圆相离无公共点.
通法
题型一:直线与椭圆的位置关系 例1:已知直线y=x们的位置关系。
椭圆的弦所在的直线方程.
解 : (2)5 12 9 12 45
5x 9 y 14 0
小结
1、直线与椭圆的三种位置关系及判断方法; 解方程组消去其中一元得一元二次型方程 △< 0 相离 △= 0 相切 △> 0 2、弦长的计算方法: 弦长公式:
6 当k = 时有一个交点 3 当k> 当6 6 或k<时有两个交点 3 3
x2 y2 1 练习2.无论k为何值,直线y=kx+2和曲线 9 4 交点情况满足( D )
6 6 k< 时没有交点 3 3
A.没有公共点
C.两个公共点
B.一个公共点
D.有公共点
题型一:直线与椭圆的位置关系
2 2
解:设直线m平行于l,
则l可写成: 4x 5 y k 0
4 x 5 y k 0 2 2 2 2 消去y,得25x 8kx k - 225 0 由方程组 x y 1 25 9 由 0,得64k 2 - 4 25 (k 2 - 225) 0
代数方法
Ax By C 0 2 由方程组ຫໍສະໝຸດ x y2 2 2 1 b a
mx 2 nx p 0(m 0)
△=n2 4mp
△ 0
方程组有两解 方程组有一解 方程组无解

韦达定理——精选推荐

韦达定理——精选推荐

于是,c、d是⽅程x2-2bxcosA+b2-a2=0的两个根.由韦达定理,有c+d=2bcosA,c·d=b2-a2.例2已知a+a2-1=0,b+b2-1=0,a≠b,求ab+a+b的值.分析:显然已知⼆式具有共同的形式:x2+x-1=0.于是a和b可视为该⼀元⼆次⽅程的两个根.再观察待求式的结构,容易想到直接应⽤韦达定理求解.解:由已知可构造⼀个⼀元⼆次⽅程x2+x-1=0,其⼆根为a、b.由韦达定理,得a+b=-1,a·b=-1.故ab+a+b=-2.⼆、先恒等变形,再应⽤韦达定理若已知条件或待证结论,经过恒等变形或换元等⽅法,构造出形如a+b、a·b形式的式⼦,则可考虑应⽤韦达定理.例3若实数x、y、z满⾜x=6-y,z2=xy-9.求证:x=y.证明:将已知⼆式变形为x+y=6,xy=z2+9.由韦达定理知x、y是⽅程u2-6u+(z2+9)=0的两个根.∵x、y是实数,∴△=36-4z2-36≥0.则z2≤0,⼜∵z为实数,∴z2=0,即△=0.于是,⽅程u2-6u+(z2+9)=0有等根,故x=y.由已知⼆式,易知x、y是t2+3t-8=0的两个根,由韦达定理三、已知⼀元⼆次⽅程两根的关系(或系数关系)求系数关系(或求两根的关系),可考虑⽤韦达定理例5已知⽅程x2+px+q=0的⼆根之⽐为1∶2,⽅程的判别式的值为1.求p与q之值,解此⽅程.解:设x2+px+q=0的两根为a、2a,则由韦达定理,有a+2a=-P,①a·2a=q,②P2-4q=1.③把①、②代⼊③,得(-3a)2-4×2a2=1,即9a2-8a2=1,于是a=±1.∴⽅程为x2-3x+2=0或x2+3x+2=0.解得x1=1,x2=2,或x1=-1,x2=-2.例6设⽅程x2+px+q=0的两根之差等于⽅程x2+qx+p=0的两根之差,求证:p=q或p+q=-4.证明:设⽅程x2+px+q=0的两根为α、β,x2+qx+P=0的两根为α'、β'.由题意知α-β=α'-β',故有α2-2αβ+β2=α'2-2α'β'+β'2.从⽽有(α+β)2-4αβ=(α'+β')2-4α'β'.①把②代⼊①,有p2-4q=q2-4p,即p2-q2+4p-4q=0,即(p+q)(p-q)+4(p-q)=0,即(p-q)(p+q+4)=0.故p-q=0或p+q+4=0,即p=q或p+q=-4.四、关于两个⼀元⼆次⽅程有公共根的题⽬,可考虑⽤韦达定理例7m为问值时,⽅程x2+mx-3=0与⽅程x2-4x-(m-1)=0有⼀个公共根?并求出这个公共根.解:设公共根为α,易知,原⽅程x2+mx-3=0的两根为α、-m-α;x2-4x-(m-1)=0的两根为α、4-α.由韦达定理,得α(m+α)=3,①α(4-α)=-(m-1).②由②得m=1-4α+α2,③把③代⼊①得α3-3α2+α-3=0,即(α-3)(α2+1)=0.∵α2+1>0,∴α-3=0即α=3.把α=3代⼊③,得m=-2.故当m=-2时,两个已知⽅程有⼀个公共根,这个公共根为3.韦达定理的补充资料:韦达定理的发展简史法国数学家弗朗索⽡·韦达于1615年在著作《论⽅程的识别与订正》中改进了三、四次⽅程的解法,还对n=2、3的情形,建⽴了⽅程根与系数之间的关系,现代称之为韦达定理。

韦达定理记忆口诀

韦达定理记忆口诀

韦达定理记忆口诀什么是韦达定理?韦达定理,又称为洛必达法则,是高等数学中用于求解极限问题的一种常用方法。

它是由17世纪法国数学家洛必达(L’Hôpital)提出的,因此得名。

韦达定理简化了求解极限问题的过程,特别适合于那些无法直接用极限的基本性质求解的情况。

韦达定理的口诀为了方便记忆韦达定理的使用方法和公式,我们可以利用一个口诀来帮助我们记住这个定理。

下面是一个简洁明了的口诀:“直上直下第二弯,力导力导肩并肩。

方程相减洛必达,求数值化恒为差。

下下力导上上上,低高差商极限定。

洛其心若发光辉,尽数吾友韦达称!”这个口诀明确地将韦达定理的使用流程和关键公式呈现出来,方便我们应对不同类型的极限问题。

口诀详解让我们逐行解析这个口诀,看看每一行都代表着什么含义。

第一行:“直上直下第二弯,力导力导肩并肩。

”这一行的含义是:在求解极限问题时,需要考虑到函数在极限点附近的”直上直下”和”第二弯”的情况。

也就是说,我们需要关注函数的极限点的正旁和负旁,以及可能存在的次高阶导数的情况。

第二行:“方程相减洛必达,求数值化恒为差。

”这一行的含义是:在应用韦达定理时,我们需要对两个函数进行求导,并将求导后的两个函数相减。

这样可以将原问题转化为求两个函数的极限值的差。

此外,我们还需要将函数化为数值化的形式,以便进行具体的计算。

第三行:“下下力导上上上,低高差商极限定。

”这一行的含义是:我们应当优先考虑函数导数的阶数,也就是力导数的次数。

如果函数和它的导数都为0,我们需要考虑导数的高阶。

当计算结果为无穷大或无穷小时,我们可以得出极限不存在的结论。

同时,差商也是求解极限的常用工具。

第四行:“洛其心若发光辉,尽数吾友韦达称!”这一行的含义是:使用韦达定理求解极限问题能够充分展示我们对洛必达法则的理解和掌握。

只有真正理解了这个定理,我们才能在解决数学问题的过程中信心满满,并恰当地应用它。

如何运用韦达定理?根据韦达定理的口诀,我们可以总结出一套基本的应用步骤:1.首先,先判断需要求解的极限问题是否适用于韦达定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:∵椭圆
∴直线 AB 的方程为 y x 1 设 A( x1 , y1 ), B( x2 , y2 )
1 2
与椭圆x2+4y2=2 ,判断它
解:联立方程组
1 y x 2 x2+4y2=2
消去y
5x 4x 1 0
2
----- (1)
因为 ∆>0
所以,方程(1)有两个根,
则原方程组有两组解。
题型一:直线与椭圆的位置关系
练习1.K为何值时,直线y=kx+2和曲线2x2+3y2=6有 两个公共点?有一个公共点?没有公共点?
直线与椭圆的位置关系
前面我们用椭圆方程发现了一些椭圆的 几何性质 , 可以体会到坐标法研究几何图形 的重要作用 , 其实通过坐标法许多几何图形 问题都可以转化为方程知识来处理. 当然具体考虑问题,我们的思维要灵活, 用形直觉,以数解形,数形结合思维这能大大 提高分析问题、解决问题的能力. 本节课 , 我们来学习几个有关直线与椭 圆的综合问题.
直线m与椭圆的交点到直线l的距离最近。 15 且d 41 42 52 41 40 25
o
x
dmax
思考:最大的距离是多少?
65 41 42 52 41
40 25
知识点2:弦长公式
可推广到任意二次曲线
设直线与椭圆交于P1(x1,y1),P2(x2,y2)两点,直线P1P2的斜率为k.
代数方法
Ax By C 0 2 由方程组 x y2 2 2 1 b a
mx 2 nx p 0(m 0)
△=n2 4mp
△ 0
方程组有两解 方程组有一解 方程组无解
两个交点 一个交点 无交点
相交 相切 相离
△=0 △ 0
知识点1.直线与椭圆的位置关系
解:设直线m平行于l,
则l可写成: 4x 5 y k 0
4 x 5 y k 0 2 2 2 2 消去y,得25x 8kx k - 225 0 由方程组 x y 1 2- 225) 0
8 3 8 x1 x2 , x1 x2 5 5
AB 1 k 2 x1 x2 1 k 2
题型二:弦长公式
x2 y2 1 的左、右 例 2:已知点 F1 、F2 分别是椭圆 2 1 焦点,过 F2 作倾斜角为 的直线交椭圆于 A、B 两点, 4 求 △F1 AB 的面积.
x y 1 , 直线 4 x 5 y 40 0 , 椭圆 例 3: 已知椭圆 25 9 上是否存在一点,到直线 l 的距离最小?最小距离是多少?
分析:设 P( x0 , y0 ) 是椭圆上任一点, 试求点 P 到直线 4 x 5 y 40 0 的距离的表达式.
4 5 尝试遇到困难怎么办?
分析:先画图熟悉题意,
点 F1 到直线 AB 的距离易知,
要求 S△F1 AB ,关键是求弦长 AB. 设 A( x1 , y1 ), B( x2 , y2 ) . 由直线方程和椭圆方程联立方程组
x2 y2 1 的左、右 例 2:已知点 F1 、F2 分别是椭圆 2 1 焦点,过 F2 作倾斜角为 的直线,求 △F1 AB 的面积. 4 x2
2 2
d
4 x0 5 y0 40

4 x0 5 y0 40 41
l

m
x0 2 25

y0 2 9
m
1
作出直线 l 及椭圆, 观察图形,数形结合思考.
题型一:直线与椭圆的位置关系
x2 y 2 例3:已知椭圆 1,直线l: 4 x - 5 y 40 0.椭圆上 25 9 是否存在一点,它到直线l的距离最小? y 最小距离是多少?
2 2 2
的右焦点,
右焦点F ( 3,0).
y x 3 2 x 2 y 1 4
直线l方程为: y x 3. 消y得: 5x2 8 3x 8 0
设A( x1, y1 ), B( x2 , y2 )
8 2 ( x1 x2 ) 4 x1 x2 5
弦长公式: | AB | 1 k 2 | x x | 1 1 | y y | A B A B 2
k
当直线斜率不存在时,则 AB y1 y2 .
题型二:弦长公式
例1:已知斜率为1的直线L过椭圆 交椭圆于A,B两点,求弦AB之长.
解 :由椭圆方程知 : a 4, b 1, c 3.
解得k1 =25,k 2 =-25
o
x
由图可知k 25.
题型一:直线与椭圆的位置关系
2 2
x y 例3:已知椭圆 1,直线l: 4 x - 5 y 40 0.椭圆上 25 9 是否存在一点,它到直线l的距离最小? y =0 最小距离是多少? x2 y2 程为 2 + 2 = 1(a > b > 0)弦两端点为A(x1 , y1 ),B(x2 , y2 ) a b
6 当k = 时有一个交点 3 当k> 当6 6 或k<时有两个交点 3 3
x2 y2 1 练习2.无论k为何值,直线y=kx+2和曲线 9 4 交点情况满足( D )
6 6 k< 时没有交点 3 3
A.没有公共点
C.两个公共点
B.一个公共点
D.有公共点
题型一:直线与椭圆的位置关系
2 2
回忆:直线与圆的位置关系
问题1:直线与圆的位置关系有哪几种?
问题2:怎么判断它们之间的位置关系?
几何法: d>r
d=r d<r
代数法: ∆<0
∆=0
∆>0
直线与椭圆的位置关系
种类:
相交 相离 相切 (( 二个交点 没有交点 一个交点 )) 相离 (没有交点 )
相切(一个交点)
相交(二个交点)
直线与椭圆的位置关系的判定
1.位置关系:相交、相切、相离 2.判别方法(代数法) 联立直线与椭圆的方程 消元得到二元一次方程组 (1)△>0直线与椭圆相交有两个公共点; (2)△=0 直线与椭圆相切有且只有一个公共点; (3)△<0 直线与椭圆相离无公共点.
通法
题型一:直线与椭圆的位置关系 例1:已知直线y=x们的位置关系。
相关文档
最新文档