2019-2020学年黑龙江省哈师大附中高一下学期期末数学试卷 (解析版)
2019-2020学年高一数学下学期期末考试试题(含解析)_13
2019-2020学年高一数学下学期期末考试试题(含解析)一、选择题:本大题共8小题.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数,则()A. B. C. D. 5【答案】C【解析】【分析】根据复数模的定义直接求解即可.【详解】故选:C【点睛】本题考查复数模,考查基本求解能力,属基础题.2. 数据1,2,3,4,5,6的60%分位数为()A. 3B. 3.5C. 3.6D. 4【答案】D【解析】【分析】根据一组数据的百分位数定义,求出对应的数值即可.【详解】由660%=3.6,所以数据1,2,3,4,5,6的60%分位数是第四个数,故选:D【点睛】本题考查分位数的定义与计算,属于简单题.3. 设为所在平面内一点,且,则()A. B.C. D.【答案】A【解析】【分析】由可知,然后利用向量的加法和减法法则运算即可得到答案.【详解】由可知,则故选:A【点睛】本题考查向量加法,减法法则的应用,属于基础题.4. 若圆锥的底面半径为,侧面积为,则该圆锥的体积为()A. B. C. D.【答案】C【解析】【分析】根据侧面积得到母线长,再计算,计算体积得到答案.【详解】设圆锥母线长为,则侧面积为,故.故圆锥的高,圆锥体积为.故选:C.【点睛】本题考查了圆锥的侧面积和体积,意在考查学生的计算能力和空间想象能力.5. 一水平放置的平面图形,用斜二测画法画出此直观图恰好是一个边长为1的正方形,则原平面图形的面积为()A. B. C. D.【答案】B【解析】【分析】根据斜二测画法原图与直观图面积的关系,求得原平面图形的面积.【详解】在斜二测画法中,设原图面积为,直观图面积为,则.依题意,所以原平面图形的面积.故选:B【点睛】本小题主要考查斜二测画法的有关计算.6. 甲、乙、丙、丁四位同学的身高各不相同,从这四位同学中随机抽出三人排成一排,则抽出的三人中恰好身高最高的同学位于中间位置的概率为()A. B. C. D.【答案】B【解析】【分析】先求出从甲、乙、丙、丁四位同学中随机抽出三人排成一排的基本事件总数,再求出抽出的三人中恰好身高最高的同学位于中间位置包含的基本事件个数,利用古典概型公式计算可得出答案.【详解】从甲、乙、丙、丁四位同学中随机抽出三人排成一排,基本事件总数为抽出的三人中恰好身高最高的同学位于中间位置包含的基本事件个数为则抽出的三人中恰好身高最高的同学位于中间位置的概率为故选:B【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.7. 如图所示,已知正三棱柱的所有棱长均为1,则四棱锥的体积为()A. B. C. D.【答案】D【解析】【分析】先确定四棱锥的高,再根据锥体体积公式求结果.【详解】取中点连接,因为正三棱柱,所以为正三角形,所以,因为正三棱柱,所以平面平面,因此平面,从而四棱锥的体积为,故选:D【点睛】本题考查锥体体积、线面垂直,考查基本分析求解能力,属基础题.8. 在中,,,,则的面积为()A. B. C. D.【答案】A【解析】【分析】先利用已知条件得到,再利用诱导公式和二倍角公式得到,又,可得;已知,可以根据正弦定理求出的长度,再根据三角形的面积公式,即可得出结果.【详解】由题意得:,,又,,,,,,由正弦定理得,,即,,为锐角,,,.故选:A.【点睛】本题主要考查了解三角形的相关内容,主要包括诱导公式,二倍角公式以及正弦定理和三角形的面积公式.属于中档题.二、多项选择题:本大题共4个小题.9. 下列命题中,正确的是()A. 复数的模总是非负数B. 复数集与复平面内以原点为起点的所有向量组成的集合一一对应C. 如果复数对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限D. 相等的向量对应着相等的复数【答案】ABD【解析】【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数,对于A,,故A正确.对于B,复数对应的向量为,且对于平面内以原点为起点的任一向量,其对应的复数为,故复数集与复平面内以原点为起点的所有向量组成的集合一一对应,故B正确.对于B,复数对应的向量为,且对于平面内的任一向量,其对应的复数为,故复数集中的元素与复平面内以原点为起点的所有向量组成的集合中的元素是一一对应,故B正确.对于C,如果复数对应的点在第一象限,则与该复数对应的向量的终点不一定在第一象限,故C错.对于D,相等的向量的坐标一定是相同的,故它们对应的复数也相等,故D正确.故选:ABD.【点睛】本题考查复数几何意义,注意复数对应的向量的坐标为,它与终点与起点的坐标的差有关,本题属于基础题.10. 2020年2月8日,在韩国首尔举行的四大洲花样滑冰锦标赛双人自由滑比赛中,中国组合隋文静/韩聪以总分217.51分拿下四大洲赛冠军,这也是他们第六次获得四大洲冠军.中国另一对组合彭程/金杨以213.29分摘得银牌.花样滑冰锦标赛有9位评委进行评分,首先这9位评委给出某对选手的原始分数,评定该队选手的成绩时从9个原始成绩中去掉一个最高分、一个最低分,得到7个有效评分,则7个有效评分与9个原始评分相比,可能变化的数字特征是()A. 中位数B. 平均数C. 方差D. 极差【答案】BCD【解析】【分析】根据中位数、平均数、方差、极差概念逐一辨析即可选择.【详解】因为7个有效评分是9个原始评分中去掉一个最高分、一个最低分,所以中位数不变,平均数、方差、极差可能发生变化,所以变化的数字特征是平均数、方差、极差,故选:BCD【点睛】本题考查中位数、平均数、方差、极差概念,考查基本辨析能力,属基础题.11. 设向量,满足,且,则以下结论正确的是()A. B. C. D.【答案】AC【解析】【分析】由已知条件结合向量数量积的性质对各个选项进行检验即可.【详解】,且,平方得,即,可得,故A正确;,可得,故B错误;,可得,故C正确;由可得,故D错误;故选:AC【点睛】本题考查向量数量积的性质以及向量的模的求法,属于基础题.12. 如图,矩形中,,为边的中点.将沿直线翻折成(点不落在底面内),若在线段上(点与,不重合),则在翻转过程中,以下命题正确的是()A. 存在某个位置,使B. 存在点,使得平面成立C. 存在点,使得平面成立D. 四棱锥体积最大值为【答案】CD【解析】【分析】利用反证法可得A、B错误,取为的中点,取的中点为,连接,可证明平面,当平面平面时,四棱锥体积最大值,利用公式可求得此时体积为.【详解】如图(1),取的中点为,连接,则,,故,故即.若,因为,故,而,故平面,因为平面,故,矛盾,故A错.若平面,因为平面,故,因为,,故平面,因为平面,故,但,矛盾,故B错.当平面平面时,四棱锥体积最大值,由前述证明可知,而平面平面,平面,故平面,因为为等腰直角三角形,,故,又四边形的面积为,故此时体积为,故D正确.对于C,如图(2),取为的中点,取的中点为,连接,则,而,故即四边形为平行四边形,故,因为平面,平面,故平面,故C正确.故选:CD.【点睛】本题考查立体几何中的折叠问题,注意对于折叠后点线面的位置的判断,若命题的不成立,往往需要利用反证法来处理,本题属于难题.三、填空题:本大题共4小题.13. 复数______.【答案】【解析】【分析】利用复数除法运算进行化简,由此求得正确结果.【详解】依题意,原式故答案为:【点睛】本小题主要考查复数除法运算,属于基础题.14. 若正方体ABCD-A1B1C1D1的棱长为1,则它的外接球的体积为____________.【答案】.【解析】试题分析:通过分析可知,正方体的外接球的直径是正方体的对角线长为,由球的体积公式可得,外接球体积为.考点:球的体积.15. 某人5次上班途中所花的时间(单位:分钟)分别为,,10,12,8.已知这组数据的平均数为10,方差为2,则的值为______.【答案】2【解析】【分析】利用平均数和方差列方程,解方程求得,由此求得的值.【详解】依题意,解得或,所以.故答案为:【点睛】本小题主要考查平均数和方差的计算,属于基础题.16. 在平面直角坐标系中,已知向量,,.若,则______;若存在两个不同的值,使得恒成立,则实数的取值范围为______.【答案】 (1). (2).【解析】【分析】(1)由向量共线得,则,即可得;(2)计算得,则,,由条件可转化得在上有两个不同的解,故可得的取值范围.【详解】(1)由向量共线得,则,又,则;(2)计算得,则,又存在两个不同的值,使得恒成立,则在上有两个不同的解,令,令,则,如图:所以有.故答案为:(1);(2)【点睛】本题考查向量共线,向量数量积的坐标运算,三角函数的性质,考查了函数与方程的关系,考查了转化与化归和数形结合的思想.四、解答题:本大题共6小题,解答应写出文字说明、证明过程或演算步骤.17. 已知复数满足,且的虚部为,在复平面内所对应的点在第四象限.(1)求;(2)若,在复平面上对应的点分别为,,为坐标原点,求.【答案】(1);(2).【解析】【分析】(1)设代数形式,根据解得;(2)先根据复数得向量坐标,再根据向量夹角公式得结果.【详解】(1)设:,因为:,所以,得或,又在复平面内所对应的点在第四象限,所以;(2),所以,,,,,所以,所以.【点睛】本题考查复数代数运算、复数概念、向量夹角公式,考查基本分析求解能力,属基础题.18. 已知向量,.(1)若,求;(2)若,求.【答案】(1);(2)或.【解析】【分析】(1)由数量积的坐标公式得,计算即得;(2)先算出,,再由夹角公式列方程,解方程即得结果.【详解】(1)因为,所以,即,得;(2),,,所以,整理得,得或【点睛】本题考查向量数量积的坐标运算,向量的夹角公式,考查学生的运算求解能力,属于基础题.19. 某城市100户居民的月平均用电量(单位:千瓦时),以,,,,,,分组的频率分布直方图如图.(1)求直方图中的值;(2)在月平均用电量为,,的三组用户中,用分层抽样的方法抽取10户居民,则月平均用电量在的用户中应抽取多少户?【答案】(1)0.0125;(2)3户.【解析】【分析】(1)由频率分布直方图的性质列出方程,能求出的值.(2)月平均用电量在,的用户有25户,月用电量在,的用户有15户,月平均用电量在,的用户有10户,求出抽取比例为,由此能求出月平均用电量在,的用户中应该抽取的户数.【详解】(1)由频率分布直方图得:,解得.(2)月平均用电量在,的用户有(户,月用电量在,的用户有(户,月平均用电量在,的用户有(户,抽取比例为:,月平均用电量在,的用户中应该抽取:(户.【点睛】本题考查频率、频数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.20. 如图,在三棱柱中,侧面是矩形,平面平面,是棱的中点.,.(1)求证:;(2)若是的中点,求证:平面.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)首先证得,根据面面垂直的性质定理得到平面,由此证得.(2)通过构造面面平行的方法来证得平面.【详解】(1)因为,,所以三角形是等边三角形,由于是的中点,所以.因为平面平面且两个平面的交线为,所以平面,又平面,所以.(2)取中点,连结,.因为是的中点,是的中点,所以在中,,由于平面,平面,所以平面.又在三棱柱中,所以,即,且.所以四边形平行四边形,所以,由于平面,平面,所以平面.因为,所以平面平面,又平面.所以平面.【点睛】本小题主要考查线线垂直、线面平行的证明,考查空间想象能力和逻辑推理能力,属于中档题.21. 在平面四边形中,已知,.(1)若,求;(2)求.【答案】(1);(2)1.【解析】【分析】(1)在中,利用余弦定理求出,进而在中求出;(2)在和中分别使用余弦定理表示,联立方程组可得出的值.【详解】(1)在中,,,,,得,所以,,;(2)在中,由余弦定理得,在中,由余弦定理得,,得,所以为定值1.【点睛】本题考查余弦定理在解三角形中的应用,考查学生数形结合思想和计算能力,属于基础题.22. 为进一步增强全市中小学学生和家长的防溺水安全意识,特在全市开展“防溺水安全教育”主题宣传活动.该市水利部门在水塘等危险水域设置警示标志,警示标志如下图所示.其中,,均为正方形,且,.其中,为加强支撑管.(1)若时,求到地面距离;(2)若记,求支撑管最长为多少?【答案】(1)米;(2)3米.【解析】【分析】(1)由勾股定理可得,再由三角形的面积公式计算可得到的距离,即可求解;(2)在中,分别应用余弦定理和正弦定理,以及辅助角公式和正弦函数的值域,即可求得其最大值,得到答案.【详解】(1)当时,,点离的距离,所以点离地面的距离为米;(2)在中,由于,利用余弦定理得,所以,设,在中,利用余弦定理得,所以,①在中,由正弦定理得,所以,②②代入①式得,其中,所以当时,最大,最大值为,所以加强钢管最长为3米.【点睛】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力,属于基础题.2019-2020学年高一数学下学期期末考试试题(含解析)一、选择题:本大题共8小题.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数,则()A. B. C. D. 5【答案】C【解析】【分析】根据复数模的定义直接求解即可.【详解】故选:C【点睛】本题考查复数模,考查基本求解能力,属基础题.2. 数据1,2,3,4,5,6的60%分位数为()A. 3B. 3.5C. 3.6D. 4【答案】D【解析】【分析】根据一组数据的百分位数定义,求出对应的数值即可.【详解】由660%=3.6,所以数据1,2,3,4,5,6的60%分位数是第四个数,故选:D【点睛】本题考查分位数的定义与计算,属于简单题.3. 设为所在平面内一点,且,则()A. B.C. D.【答案】A【解析】【分析】由可知,然后利用向量的加法和减法法则运算即可得到答案.【详解】由可知,则故选:A【点睛】本题考查向量加法,减法法则的应用,属于基础题.4. 若圆锥的底面半径为,侧面积为,则该圆锥的体积为()A. B. C. D.【答案】C【解析】【分析】根据侧面积得到母线长,再计算,计算体积得到答案.【详解】设圆锥母线长为,则侧面积为,故.故圆锥的高,圆锥体积为.故选:C.【点睛】本题考查了圆锥的侧面积和体积,意在考查学生的计算能力和空间想象能力.5. 一水平放置的平面图形,用斜二测画法画出此直观图恰好是一个边长为1的正方形,则原平面图形的面积为()A. B. C. D.【答案】B【解析】【分析】根据斜二测画法原图与直观图面积的关系,求得原平面图形的面积.【详解】在斜二测画法中,设原图面积为,直观图面积为,则.依题意,所以原平面图形的面积.故选:B【点睛】本小题主要考查斜二测画法的有关计算.6. 甲、乙、丙、丁四位同学的身高各不相同,从这四位同学中随机抽出三人排成一排,则抽出的三人中恰好身高最高的同学位于中间位置的概率为()A. B. C. D.【答案】B【解析】【分析】先求出从甲、乙、丙、丁四位同学中随机抽出三人排成一排的基本事件总数,再求出抽出的三人中恰好身高最高的同学位于中间位置包含的基本事件个数,利用古典概型公式计算可得出答案.【详解】从甲、乙、丙、丁四位同学中随机抽出三人排成一排,基本事件总数为抽出的三人中恰好身高最高的同学位于中间位置包含的基本事件个数为则抽出的三人中恰好身高最高的同学位于中间位置的概率为故选:B【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.7. 如图所示,已知正三棱柱的所有棱长均为1,则四棱锥的体积为()A. B. C. D.【答案】D【解析】【分析】先确定四棱锥的高,再根据锥体体积公式求结果.【详解】取中点连接,因为正三棱柱,所以为正三角形,所以,因为正三棱柱,所以平面平面,因此平面,从而四棱锥的体积为,故选:D【点睛】本题考查锥体体积、线面垂直,考查基本分析求解能力,属基础题.8. 在中,,,,则的面积为()A. B. C. D.【答案】A【解析】【分析】先利用已知条件得到,再利用诱导公式和二倍角公式得到,又,可得;已知,可以根据正弦定理求出的长度,再根据三角形的面积公式,即可得出结果.【详解】由题意得:,,又,,,,,,由正弦定理得,,即,,为锐角,,,.故选:A.【点睛】本题主要考查了解三角形的相关内容,主要包括诱导公式,二倍角公式以及正弦定理和三角形的面积公式.属于中档题.二、多项选择题:本大题共4个小题.9. 下列命题中,正确的是()A. 复数的模总是非负数B. 复数集与复平面内以原点为起点的所有向量组成的集合一一对应C. 如果复数对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限D. 相等的向量对应着相等的复数【答案】ABD【解析】【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数,对于A,,故A正确.对于B,复数对应的向量为,且对于平面内以原点为起点的任一向量,其对应的复数为,故复数集与复平面内以原点为起点的所有向量组成的集合一一对应,故B正确.对于B,复数对应的向量为,且对于平面内的任一向量,其对应的复数为,故复数集中的元素与复平面内以原点为起点的所有向量组成的集合中的元素是一一对应,故B 正确.对于C,如果复数对应的点在第一象限,则与该复数对应的向量的终点不一定在第一象限,故C错.对于D,相等的向量的坐标一定是相同的,故它们对应的复数也相等,故D正确.故选:ABD.【点睛】本题考查复数几何意义,注意复数对应的向量的坐标为,它与终点与起点的坐标的差有关,本题属于基础题.10. 2020年2月8日,在韩国首尔举行的四大洲花样滑冰锦标赛双人自由滑比赛中,中国组合隋文静/韩聪以总分217.51分拿下四大洲赛冠军,这也是他们第六次获得四大洲冠军.中国另一对组合彭程/金杨以213.29分摘得银牌.花样滑冰锦标赛有9位评委进行评分,首先这9位评委给出某对选手的原始分数,评定该队选手的成绩时从9个原始成绩中去掉一个最高分、一个最低分,得到7个有效评分,则7个有效评分与9个原始评分相比,可能变化的数字特征是()A. 中位数B. 平均数C. 方差D. 极差【答案】BCD【解析】【分析】根据中位数、平均数、方差、极差概念逐一辨析即可选择.【详解】因为7个有效评分是9个原始评分中去掉一个最高分、一个最低分,所以中位数不变,平均数、方差、极差可能发生变化,所以变化的数字特征是平均数、方差、极差,故选:BCD【点睛】本题考查中位数、平均数、方差、极差概念,考查基本辨析能力,属基础题.11. 设向量,满足,且,则以下结论正确的是()A. B. C. D.【答案】AC【解析】【分析】由已知条件结合向量数量积的性质对各个选项进行检验即可.【详解】,且,平方得,即,可得,故A 正确;,可得,故B错误;,可得,故C正确;由可得,故D错误;故选:AC【点睛】本题考查向量数量积的性质以及向量的模的求法,属于基础题.12. 如图,矩形中,,为边的中点.将沿直线翻折成(点不落在底面内),若在线段上(点与,不重合),则在翻转过程中,以下命题正确的是()A. 存在某个位置,使B. 存在点,使得平面成立C. 存在点,使得平面成立D. 四棱锥体积最大值为【答案】CD【解析】【分析】利用反证法可得A、B错误,取为的中点,取的中点为,连接,可证明平面,当平面平面时,四棱锥体积最大值,利用公式可求得此时体积为.【详解】如图(1),取的中点为,连接,则,,故,故即.若,因为,故,而,故平面,因为平面,故,矛盾,故A错.若平面,因为平面,故,因为,,故平面,因为平面,故,但,矛盾,故B错.当平面平面时,四棱锥体积最大值,由前述证明可知,而平面平面,平面,故平面,因为为等腰直角三角形,,故,又四边形的面积为,故此时体积为,故D正确.对于C,如图(2),取为的中点,取的中点为,连接,则,而,故即四边形为平行四边形,故,因为平面,平面,故平面,故C正确.故选:CD.【点睛】本题考查立体几何中的折叠问题,注意对于折叠后点线面的位置的判断,若命题的不成立,往往需要利用反证法来处理,本题属于难题.三、填空题:本大题共4小题.13. 复数______.【答案】【解析】【分析】利用复数除法运算进行化简,由此求得正确结果.【详解】依题意,原式故答案为:【点睛】本小题主要考查复数除法运算,属于基础题.14. 若正方体ABCD-A1B1C1D1的棱长为1,则它的外接球的体积为____________.【答案】.【解析】试题分析:通过分析可知,正方体的外接球的直径是正方体的对角线长为,由球的体积公式可得,外接球体积为.考点:球的体积.15. 某人5次上班途中所花的时间(单位:分钟)分别为,,10,12,8.已知这组数据的平均数为10,方差为2,则的值为______.【答案】2【解析】【分析】利用平均数和方差列方程,解方程求得,由此求得的值.【详解】依题意,解得或,所以.故答案为:【点睛】本小题主要考查平均数和方差的计算,属于基础题.16. 在平面直角坐标系中,已知向量,,.若,则______;若存在两个不同的值,使得恒成立,则实数的取值范围为______.【答案】 (1). (2).【解析】【分析】(1)由向量共线得,则,即可得;(2)计算得,则,,由条件可转化得在上有两个不同的解,故可得的取值范围.【详解】(1)由向量共线得,则,又,则;(2)计算得,则,又存在两个不同的值,使得恒成立,则在上有两个不同的解,令,令,则,如图:所以有.故答案为:(1);(2)【点睛】本题考查向量共线,向量数量积的坐标运算,三角函数的性质,考查了函数与方程的关系,考查了转化与化归和数形结合的思想.四、解答题:本大题共6小题,解答应写出文字说明、证明过程或演算步骤.17. 已知复数满足,且的虚部为,在复平面内所对应的点在第四象限.(1)求;(2)若,在复平面上对应的点分别为,,为坐标原点,求.【答案】(1);(2).【解析】【分析】(1)设代数形式,根据解得;(2)先根据复数得向量坐标,再根据向量夹角公式得结果.【详解】(1)设:,因为:,所以,得或,又在复平面内所对应的点在第四象限,所以;(2),所以,,,,,所以,所以.【点睛】本题考查复数代数运算、复数概念、向量夹角公式,考查基本分析求解能力,属基础题.18. 已知向量,.(1)若,求;(2)若,求.【答案】(1);(2)或.【解析】【分析】(1)由数量积的坐标公式得,计算即得;(2)先算出,,再由夹角公式列方程,解方程即得结果.【详解】(1)因为,所以,即,得;(2),,,所以,整理得,得或【点睛】本题考查向量数量积的坐标运算,向量的夹角公式,考查学生的运算求解能力,属于基础题.19. 某城市100户居民的月平均用电量(单位:千瓦时),以,,,,,,分组的频率分布直方图如图.(1)求直方图中的值;(2)在月平均用电量为,,的三组用户中,用分层抽样的方法抽取10户居民,则月平均用电量在的用户中应抽取多少户?【答案】(1)0.0125;(2)3户.【解析】【分析】(1)由频率分布直方图的性质列出方程,能求出的值.(2)月平均用电量在,的用户有25户,月用电量在,的用户有15户,月平均用电量在,的用户有10户,求出抽取比例为,由此能求出月平均用电量在,的用户中应该抽取的户数.【详解】(1)由频率分布直方图得:,解得.(2)月平均用电量在,的用户有(户,。
黑龙江省重点名校2019-2020学年高一下学期期末检测数学试题含解析
黑龙江省重点名校2019-2020学年高一下学期期末检测数学试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列极限为1的是( ) A .lim(0.999)n →∞(n 个9)B .lim (1)(0.9999)n nn →∞-⋅⎢⎥⎣⎦C .2lim n n n π-→∞⎛⎫+ ⎪⎝⎭D .2273lim 714n n n n n →∞++++【答案】A 【解析】 【分析】利用极限的运算逐项求解判断即可 【详解】对于A 项,极限为1,对于B 项,极限不存在,对于C 项,极限为1.对于D 项,222273lim =lim 71473117144n n n n n n nn n n →∞→∞++=++++++, 故选:A . 【点睛】本题考查的极限的运算及性质,准确计算是关键,是基础题 2.在△ABC 中角ABC 的对边分别为A .B .c ,cosC =19,且acosB+bcosA =2,则△ABC 面积的最大值为() AB.9CD【答案】D 【解析】 【分析】首先利用同角三角函数的关系式求出sinC 的值,进一步利用余弦定理和三角形的面积公式及基本不等式的应用求出结果. 【详解】△ABC 中角ABC 的对边分别为a 、b 、c ,cosC 19=, 利用同角三角函数的关系式sin 1C+cos 1C =1, 解得sinC =利用余弦定理222222222a c b b c a a b ac bc+-+-⋅+⋅=,解得c =1.所以c 1=a 1+b 1﹣1abcosC , 整理得42229a b ab =+-, 由于a 1+b 1≥1ab ,故1649ab ≥, 所以94ab ≤.则11922492ABCSabsinC =≤⋅⋅=,△ABC 故选D . 【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦定理余弦定理和三角形面积的应用,基本不等式的应用,主要考查学生的运算能力和转换能力,属于中档题. 3.已知x 、y 的取值如下表所示:如果y 与x 呈线性相关,且线性回归方程为4y x b =-+ ,则b =( ) A .10 B .11C .212 D .434【答案】A 【解析】 【分析】计算出x 、y ,再将点(),x y 的坐标代入回归直线方程,可求出b 的值. 【详解】由表格中的数据可得2345645x ++++==,9786575y ++++==,由于回归直线过样本的中心点(),x y ,则有3474b -⨯+=,解得10b =,故选:A.【点睛】本题考查回归直线方程中参数的计算,解题时要充分利用回归直线过样本的中心点(),x y 这一结论,考查计算能力,属于基础题.4.已知点(1,1)A 和点(4,4)B , P 是直线10x y -+=上的一点,则||||PA PB +的最小值是( ) A .36 B .34C .5D .25【答案】D 【解析】 【分析】求出A 关于直线l :10x y -+=的对称点为C ,则BC 即为所求 【详解】 如下图所示:点(1,1)A ,关于直线l :10x y -+=的对称点为C (0,2),连接BC,此时||||PA PB +的最小值为16425BC =+=故选D .【点睛】本题考查的知识点是两点间距离公式的应用,难度不大,属于中档题. 5.某几何体的三视图如图所示,则该几何体的体积为( )C .223D .203【答案】A 【解析】该立方体是正方体,切掉一个三棱柱, 所以体积为826-=,故选A 。
2019-2020学年高一数学下学期期末考试试卷(含解析)
2019-2020学年高一数学下学期期末考试试卷(含解析)一、选择题(每个小题5分,共12个题)1.已知集合,则的子集个数为()A. 2B. 4C. 7D. 8【答案】D【解析】【分析】根据集合交集的定义和集合中子集的个数的计算公式,即可求解答案.【详解】由题意集合,∴,∴的子集个数为.故选D.【点睛】本题主要考查了集合的交集运算及子集个数的判定,其中熟记集合交集的运算和集合中子集个数的计算公式是解答的关键,着重考查了推理与计算能力,属于基础题.2.函数的定义域是( )A. (-1,+∞)B. [-1,+∞)C. (-1,1)∪(1,+∞)D. [-1,1)∪(1,+∞)【答案】C【解析】由题意得,∴,故选C.3.一个直角三角形绕其最长边旋转一周所形成的空间几何体是()A. 一个棱锥B. 一个圆锥C. 两个圆锥的组合体D. 无法确定【答案】C【解析】一个直角三角形绕其最长边AC旋转一周所形成的空间几何体是以斜边的高BD为半径的底面圆,以斜边被垂足D分得的两段长AD,CD为高的两个倒扣的圆锥的组合体故选C4.已知一个几何体的三视图如图所示,则这个几何体的体积是()A. B. C. D.【答案】B【解析】【分析】根据几何体的三视图,得到该几何体为一个圆柱去掉一个内接圆锥,利用圆柱和圆锥的体积公式,即可求解.【详解】由题意,根据给定的三视图可知,该几何体为一个圆柱去掉一个内接圆锥,所以体积为,故选B.【点睛】在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.5.为了得到函数的图像,可以将函数的图像()A. 向左平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向右平移个单位长度【答案】B【解析】【分析】先化简函数,再根据三角函数的图象变换,即可求解.【详解】由题意,函数,所以为了得到函数的图象,可以将函数的图象向右平移个单位长度,故选B.【点睛】本题考查三角函数的图象的平移与伸缩变换,注意先伸缩后平移时的系数是解题的关键,着重考查了分析问题和解答问题的能力,属于基础题.6.若直线过点(1,2),(4,2+)则此直线的倾斜角是()A. B. C. D.【答案】A【解析】【分析】设直线的倾斜角为,根据直线的斜率和倾斜角的关系,即可求解.【详解】设直线的倾斜角为,则,又∵,所以,故选A.【点睛】本题主要考查直线的斜率与倾斜角,属于简单题. 求直线的倾斜角往往先求出直线的斜率,求直线斜率的常见方法有一以下三种,(1)已知直线上两点的坐标求斜率:利用;(2)已知直线方程求斜率:化成点斜式即可;(2)利用导数的几何意义求曲线切点处的切线斜率.7.圆的圆心坐标和半径分别是A. B. C. D.【答案】D【解析】【分析】把圆的一般方程化简为圆的标准方程,即可求解圆的圆心坐标和半径,得到答案.【详解】依题意可得:∴圆的圆心坐标和半径分别是,,故选:D【点睛】本题主要考查了圆的方程的应用,其中熟记圆的标准方程和圆的一般的形式和互化是解答的关键,着重考查了推理与运算能力,属于基础题.8.直线截圆所得的弦长为A. B.C. D.【答案】D【解析】【分析】由题意,求得圆的圆心坐标和半径,利用圆的弦长公式,即可求解.【详解】由题意圆的方程,可知圆心,半径,则圆心到直线的距离为,所以弦长为,故选D.【点睛】本题主要考查了圆的弦长公式应用,其中解答中熟记直线与圆的位置关系和直线与圆的弦长公式是解答的关键,着重考查了推理与运算能力,属于基础题.9.中,角的对边分别为,已知,,,则()A. B. C. D.【答案】C【解析】【分析】在三角形中,利用正弦定理,即可求解.【详解】在△ABC中,,∴则,∴由正弦定理可得:故选C【点睛】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.在中,通常涉及三边三角,知三(除已知三角外)求三,可解出三角形,当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.10.在中,角的对边分别为,若,则( )A. 60°B. 120°C. 45°D. 30°【答案】B【解析】【分析】根据题意,由余弦定理求得,即可求解答案.【详解】因为,由余弦定理得,又∵,所以,故选B.【点睛】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.在中,通常涉及三边三角,知三(除已知三角外)求三,可解出三角形,当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.11.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为()A. B. 1 C. - D. -1【答案】D【解析】【分析】利用等差数列的通项公式,列出方程组,求得的值,得到答案.【详解】等差数列中,,由等差数列的通项公式,可得解得,即等差数列的公差d=﹣1.故选D.【点睛】本题主要考查等差数列的通项公式、等差数列的前项和公式,属于中档题. 等差数列基本量的运算是等差数列的一类基本题型,数列中的五个基本量,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,另外,解等差数列问题要注意应用等差数列的性质与前项和的关系,利用整体代换思想解答.12.数列的前项和为,若,则等于()A. 1B.C.D.【答案】C【解析】试题分析:由题意得,数列的通项公式,所以,故选B.考点:数列的求和.【方法点晴】本题主要考查了数列的求和问题,其中解答中涉及到数列通项公式的列项、数列的列项相消求和,着重考查了学生分析问题和解答问题的能力,以及退了与运算能力,试题比较基础,属于基础题,本题解答中吧数列的通项公式化简为是解答的关键,平时注意总结和积累.二、填空题(共20分)13.已知,且是第二象限角,则___________.【答案】【解析】【分析】根据角为第二象限角,得,再由三角函数的基本关系式,即可求解.【详解】因为是第二象限角,∴,又,由三角函数的基本关系式可得.【点睛】本题主要考查了同角三角函数的基本关系的化简求值问题,其中根据角的象限,判定三角函数的符号是解答的一个易错点,同时熟记三角函数的基本关系式是解答的关键,着重考查了推理与运算能力.14.已知点与点,则的中点坐标为__________.【答案】【解析】【分析】根据题意与点,根据中点的坐标公式,即可求解.【详解】由题意点与点,根据中点坐标公式可得的中点坐标为,即的中点坐标为.【点睛】本题主要考查了空间向量的坐标表示及中点中点坐标公式的应用,其中解答中熟记空间向量的坐标表示和中点的坐标公式是解答的关键,着重考查了推理与运算能力,属于基础题.15.函数,则的值为__________.【答案】1【解析】【分析】根据分段函数的解析式,代入即可求解.【详解】当时,,,当时,,.【点睛】本题主要考查了分段函数的求函数值问题,其中把握分段函数的分段条件,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.16.直线与直线互相垂直,则实数等于________.【答案】2【解析】【分析】利用两条直线互相垂直,列出方程,即求解.【详解】直线与直线互相垂直,则,∴,故答案为2【点睛】本题主要考查了两条直线的位置关系的应用,其中熟记两条直线的位置关系,列出方程求解是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题(共70分,17题10分其各题每题12分,要求写出必要的解题步骤)17.在等差数列{a n}中,a12=23,a42=143,a n=239,求n及公差d.【答案】n=66,d=4【解析】试题分析:由题意结合等差数列的定义可先求公差,再列关于n的方程,解方程可得试题解析:由题意可得,d==4,∴a1=﹣21∵a n=a1+(n﹣1)d=﹣21+4(n﹣1)=239,解得n=66综上,n=66,d=4.点睛:本题主要考查等差数列的通项公式、等差数列的前项和公式,属于中档题. 等差数列基本量的运算是等差数列的一类基本题型,数列中的五个基本量,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,另外,解等差数列问题要注意应用等差数列的性质()与前项和的关系,利用整体代换思想解答.18.已知等比数列{a n}满足记其前n项和为(1)求数列{a n}的通项公式a n;(2)若,求n.【答案】(1);(2)5.【解析】【分析】(1)设出等比数列的公比,由条件得到关于的方程组,求得便可得到数列的通项公式;(2)根据前n项和得到关于n的方程,解方程可得解.【详解】(1)设等比数列{a n}的公比为,由条件得,解得,∴ an=a1q n−1=.即数列{a n}的通项公式为.(2)由题意得,解得:.【点睛】本题主要考查了等比数列的通项公式及等比数列的前项和公式的应用,其中熟记等比数列的通项公式和前项和公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.19.如图,在中,,是边上一点,且.(1)求的长;(2)若,求的长及的面积.【答案】(1) (2)【解析】【分析】(1)在中由正弦定理可求得AD的长;(2)在中,由余弦定理可得,利用可得所求面积.【详解】(1)在中,由正弦定理得,即,∴(2)∵,∴在中,由余弦定理得∴∴.综上,的面积为.【点睛】本题主要考查了利用正弦定理和余弦定理、三角形的面积公式求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.20.在中,内角的对边分别为,且.(Ⅰ)求;(Ⅱ)若,求.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)利用正弦定理可对进行化简,即可得到的值;(Ⅱ)利用正弦定理对进行化简,可得到,再利用的余弦定理,可求出的值.【详解】(Ⅰ)由及正弦定理,得.在中,..(Ⅱ)由及正弦定理,得,①由余弦定理得,,即,②由①②,解得.【点睛】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.在中,通常涉及三边三角,知三(除已知三角外)求三,可解出三角形,当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.21.已知直线经过点,且斜率为.(1)求直线的方程.(2)求与直线平行,且过点的直线方程.(3)求与直线垂直,且过点的直线方程.【答案】(1) (2) (3)【解析】【分析】(1)写出直线的点斜式方程,整理成一般方程即可.(2)可设直线的一般方程为,代入点求出的值,即可答案.(3)可设所求直线的方程为,代入点,求得的值,即可求解直线的方程;所求直线的斜率为,写出直线的点斜式方程,整理成一般方程即可.【详解】(1)由题设,根据直线的点斜式方程可得,整理得.(2)由题意,所以求直线与平行,设所求直线方程为,代入点,解得,所以直线方程为.(3)由题意,所以求直线与垂直,设所求直线的方程为,代入点,解得,所以直线方程为.【点睛】本题主要考查了直线方程的求解,其中熟记直线的点斜式方程、直线的一般式方程等形式,合理应用和准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.22.如图,在五面体中,已知平面,,,,.(1)求证:;(2)求三棱锥的体积.【答案】(1)详见解析,(2)【解析】【分析】(1)由题意,利用线面平行的性质定理与判定定理进行转化,可作出证明;(2)由平面,所以有面平面,则作就可得平面,确定是三棱锥的高,利用三棱锥的体积公式,可求解.【详解】(1)因为,平面,平面,所以平面,又平面,平面平面,所以.(2)在平面内作于点,因为平面,平面,所以,又,平面,,所以平面,所以是三棱锥的高.在直角三角形中,,,所以,因为平面,平面,所以,又由(1)知,,且,所以,所以,所以三棱锥的体积.【点睛】本题主要考查了线面平行判定定理与性质定理,线面垂直判定定理与性质定理及三棱锥体积,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.欢迎您的下载,资料仅供参考!资料仅供参考!!!。
2019-2020学年黑龙江省哈尔滨师范大学附属中学高一下学期四月月考数学试题(解析版)
2019-2020学年黑龙江省哈尔滨师范大学附属中学高一下学期四月月考数学试题一、单选题1.已知数列1L )项 A .20 B .21C .22D .23【答案】D【解析】==,得2145n -=, 即246n = , 解得23n = , 故选D2.已知(cos ,sin )P αα,(cos ,sin )Q ββ,则||PQ 的最大值为( )A .B .2C .4D .【答案】B【解析】由两点的距离公式表示PQ ,再运用两角差的余弦公式化简,利用余弦函数的值域求得最值. 【详解】∵(cos ,sin )P αα,(cos ,sin )Q ββ,∴||PQ ===∵cos()[1,1]αβ-∈-,∴||[0,2]PQ ∈. 故选B . 【点睛】本题综合考查两点的距离公式、同角三角函数的平方关系、两角差的余弦公式和余弦的值域,属于中档题.3.在等差数列{}n a 中,2100a a +=,684a a +=-,则其公差为( ) A .2 B .1C .1-D .2-【答案】D【解析】等差数列{}n a 中,根据下标和性质解得:6a 、7a ,即可得出公差. 【详解】解:在等差数列{}n a 中,210620a a a +==Q ,60a ∴=, 又68724a a a +==-Q ,72a ∴=-,∴公差为762d a a =-=-.故选:D. 【点睛】本题考查了等差数列的通项公式及性质,考查了推理能力与计算能力,属于基础题. 4.若ABC ∆是边长为1的等边三角形,向量AB c =u u u v v ,BC a =u u u v v ,CA b =u u u v v,有下列命题:①a b =v v ;②a b +v v 与a b -v v 垂直;③0a b c ++=v v v v ;④a b c +=v v v .其中正确命题的个数是( ) A .0个 B .1个C .2个D .3个【答案】D【解析】根据向量模长可判断命题①的正误;计算a b +r r 与a b -r r的数量积,可判断命题②的正误;利用平面向量加法法则可判断命题③④的正误. 【详解】1a b ==r rQ ,命题①正确;()()22220a b a b a b a b +⋅-=-=-=r r r r r r r r Q ,命题②正确;0a b c BC CA AB ++=++=r r r u u u r u u u r u u u r rQ ,命题③正确; a b BC CA BA c +=+==-r r u u u r u u u r u u u r rQ ,命题④错误.因此,正确命题的个数为3. 故选:D. 【点睛】本题考查与平面向量相关命题真假的判断,涉及平面向量加法法则、垂直向量的表示以及向量模的概念,考查推理能力,属于中等题.5.下图是某省从1月21日至2月24日的新冠肺炎每日新增确诊病例变化曲线图.若该省从1月21日至2月24日的新冠肺炎每日新增确诊人数按日期顺序排列构成数列{}n a ,{}n a 的前n 项和为n S ,则下列说法中正确的是( )A .数列{}n a 是递增数列B .数列{}n S 是递增数列C .数列{}n a 的最大项是11aD .数列{}n S 的最大项是11S【答案】C【解析】根据数列的性质及每日新增确诊病例变化曲线图中的数据对各个选项进行判断,可得答案. 【详解】解:因为1月28日新增确诊人数小于1月27日新增确诊人数,即78>a a ,所以{}n a 不是递增数列,所以选项A 错误;因为2月23日新增确诊病例数为0,所以3334=S S ,所以数列{}n S 不是递增数列,所以选项B 错误;因为1月31日新增病例数最多,从1月21日算起,1月31日是第11天,所以数列{}n a 的最大项是11a ,所以选项C 正确;数列{}n S 的最大项是最后项,所以选项D 错误, 故选:C. 【点睛】本题主要考查折线图与数列的性质、数列前n 项的和等知识,注意灵活分析图中数据进行判断.6.在平行四边形ABCD 中,设AB a =u u u r r ,AD b =u u u r r ,12BE BC =u u u r u u u r ,13AF AC =u u u r u u u r ,则EF =u u u r( )A .2136a b --r rB .2136a b -+r rC .1136a b --r rD .1136a b -+r r【答案】A【解析】由向量加法有EF EB BA AF =++u u u r u u u r u u u r u u u r,再根据()1133AF AC=AB AD =+u u u r u u u r u u u r u u u r ,结合条件可得答案. 【详解】在平行四边形ABCD 中, 1=132EF EB BA AF BC A C B A =++--+u u u r u u u r u u u r u u u r u u ur u u u r u u u r()=3121BC A AB AD B -++-u u ur u u u r u u u r u u u r111233AD AB AB AD =--++u u ur u u u r u u u r u u u r21213636AB AD a b =--=--u u u r u u u r r r故选:A.【点睛】本题考查向量的加法法则和平面向量的基本定理,属于中档题. 7.已知等差数列{}n a 的前11项之和为114π,则()468tan a a a ++等于( ) A .33B 3C .1-D .1【答案】C【解析】根据等差数列性质结合前11项之和为114π,求出64a π=,4686334a a a a π++==,即可求解. 【详解】根据等差数列()11111111124a a S π+=⨯=即111622a a a π+==,所以64a π=,又因为4686334a a a a π++==, 所以()6783tan tan 14a a a π++==-, 故选:C. 【点睛】此题考查根据等差数列性质求数列的项,进行基本计算,属于基础题目. 8.在ΔABC 中,若2AB AB AC BA BC CA CB =⋅+⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r,则ΔABC 是( ) A .等边三角形 B .锐角三角形C .直角三角形D .钝角三角形【答案】C【解析】此题考查向量的数量积的计算、余弦定理的应用。
2019-2020学年高一(下)期末数学试卷 (19)-720(解析版)
2019-2020学年高一(下)期末数学试卷 (19)一、选择题(本大题共12小题,共36.0分)1. 若集合A ={x |−5<x <2},B ={x |−3<x <3},则A ∩B =( )A. {x |−3<x <2}B. {x |−5<x <2}C. {x |−3<x <3}D. {x |−5<x <3}2. 在空间直角坐标系中,点P(0,−2,3)关于y 轴对称的点的坐标是( )A. (0,2,3)B. (0,2,−3)C. (0,−2,3)D. (0,−2,−3)3. 已知直线l 上两点A(−4,1)与B(x,−3),且直线l 的倾斜角为135°,则x 的值是( )A. −8B. −4C. 0D. 84. 若函数f (x )=(x +1)(x −a )为偶函数,则a =( )A. −2B. −1C. 1D. 25. 下列说法中错误的是( )①如果一条直线和平面内的一条直线垂直,那么该直线与这个平面必相交;②如果一条直线和平面内的两条平行线垂直,那么该直线必在这个平面内;③如果一条直线和平面的一条垂线垂直,那么该直线必定在这个平面内;④如果一条直线和一个平面垂直,那么该直线垂直于平面内的任何直线.A. ①②B. ②③④C. ①②④D. ①②③6. 已知奇函数f(x)={3x −a, x ≥0g (x ), x <0,则f(−3)的值为( ) A. 27 B. −26 C. −27 D. 267. 如图,在正方体ABCD −A 1B 1C 1D 1中,棱长为1,M ,N 分别是CD ,CC 1的中点,则异面直线A 1M 与DN 所成角的大小是( )A. π6B. π4C. π3D. π28. 直线y =x +4与圆(x −a)2+(y −3)2=8相切,则a 的值为( )A. 3B. 2√2C. 3或−5D. −3或59. 设a =ln 12,b =log 1312,则( ) A. a +b <ab <0 B. ab <a +b <0 C. a +b <0<ab D. ab <0<a +b10. 已知圆C 的圆心为y =14x 2的焦点,且与直线4x +3y +2=0相切,则圆C 的方程为( ) A. (x −1)2+y 2=3625B. x 2+(y −1)2=3625 C. (x −1)2+y 2=1 D. x 2+(y −1)2=111. 点A(1,3)关于直线3x +y +4=0的对称点坐标为( )A. (−1,−3)B. (−5,3)C. (−5,1)D. (−1,1)12. 已知函数f(x)={2−x ,x ≤0−lnx,x >0若关于x 的方程f 2(x)+f(x)+m =0有三个不同实数根,则m 的取值范围是( )A. m <14B. m ≤−2C. −2≤m <14D. m >2 二、填空题(本大题共4小题,共12.0分) 13. 若a >0,a 23=49,则log 23a = ______ . 14. 已知f(x +7)是定义在R 上的奇函数,当x <7时,f(x)=−x 2,则当x >7时,f(x)=__________.15. 若一个圆锥的侧面展开图是半圆,则这个圆锥的底面面积与侧面积的比是______ .16. 若函数f(x)=2x −1,则f(3)=______.三、解答题(本大题共6小题,共72.0分)17. 已知集合A ={x|x 2−x <0},B ={x|x 2−2x −m <0}.(Ⅰ)求∁R A ;(Ⅱ)若A ∩B =⌀,求实数m 的取值范围.18. 已知圆C :x 2+y 2=4,直线l :ax +y +2a =0,当直线l 与圆C 相交于A ,B 两点,且|AB|=2√2时,求直线l 的方程.19. 在四棱锥P −ABCD 中,△PBC 为正三角形,AB ⊥平面PBC ,AB//CD ,AB =12DC ,E 为PD 中点.(1)求证:AE//平面PBC;(2)求证:AE⊥平面PDC.20.某企业拟用10万元投资甲、乙两种商品.已知各投入x万元,甲、乙两种商品可分别获得y1,y2万元的利润,利润曲线P1,P2如图所示.问怎样分配投资额,才能使投资获得最大利润?21.已知Rt△ABC中,∠A=90∘,AB=1,BC=2,D为BC的中点,将△ADB沿AD折起,使点B在面ADC所在平面的射影E在AC上.(Ⅰ)求证:CD⊥平面BDE(Ⅱ)求折起后三棱锥B―ACD的体积;22.已知函数f(x)=−3x+a3x+1+b(1)当a=b=1时,求满足f(x)≥3x的x的取值范围;(2)若y=f(x)是定义域为R的奇函数,求y=f(x)的解析式;(3)若y=f(x)的定义域为R,判断其在R上的单调性并加以证明.-------- 答案与解析 --------1.答案:A解析:【分析】本题主要考查集合的交集运算,属于基础题.直接根据集合交集的定义求解即可.【解答】解:根据题意得,A∩B={x|−3<x<2},故选A.2.答案:D解析:【分析】本题考查了空间直角坐标系中,某一点关于y轴对称点的坐标问题,是基础题目.【解答】解:在空间直角坐标系中,点P(0,−2,3)关于y轴对称的点的坐标是(0,−2,−3).故选D.3.答案:C解析:【分析】本题考查直线的斜率与直线的倾斜角的关系的应用,考查计算能力.由直线的倾斜角可得直线的斜率为−1,再由直线的斜率公式求出x的值即可.【解答】解:由题意得,,解得x=0.故选C.4.答案:C解析:f(x)=x2+(1−a)x−a,f(x)为偶函数,∴1−a=0,a=1,故选C.5.答案:D解析:解:在①中,如果一条直线和平面内的一条直线垂直,那么该直线与这个平面相交、平行或该直线在该平面内,故①错误;在②中,如果一条直线和平面内的两条平行线垂直,那么该直线与平面相交、平行或在这个平面内,故②错误;在③中,如果一条直线和平面的一条垂线垂直,那么该直线与平面相交、平行或在这个平面内,故③错误;④如果一条直线和一个平面垂直,那么由线面垂直的性质定理得该直线垂直于平面内的任何直线,故④正确.故选:D.在①中,该直线与这个平面相交、平行或该直线在该平面内;在②中,该直线与平面相交、平行或在这个平面内;在③中,该直线与平面相交、平行或在这个平面内;④由线面垂直的性质定理得该直线垂直于平面内的任何直线.本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.6.答案:B解析:【分析】本题主要考查函数的奇偶性,与分段函数.【解答】解:因为函数f(x)是奇函数,所以f(0)=1−a=0,解得a=1,所以f(−3)=−f(3)=−(33−1)=−26,故选B.7.答案:D解析:【分析】本题目主要考查异面直线所成角,属于一般题.解析:解:如图,取CN的中点K,连接MK,则MK为△CDN的中位线,所以MK//DN.所以∠A1MK为异面直线A1M与DN所成的角或其补角.连接A1C1,AM.正方体棱长为1,则A1K=√(√2)2+√622=√7,MK=12DN=12√12+122=√52,A1M=√12+12+122=32,∴A1M2+MK2=A1K2,∴∠A1MK=90°.故选择D.8.答案:C解析:解:∵直线y=x+4与圆(x−a)2+(y−3)2=8相切,∴圆心(a,3)到直线x−y+4=0的距离等于半径√8=2√2,即d=√2=√2=2√2,即|a +1|=2√2×√2=4,解得a =3或a =−5,故选:C .根据直线和圆相切的等价条件转化为圆心到直线的距离等于半径即可得到结论.本题主要考查直线和圆的位置关系的应用,根据相切的等价条件是解决本题的关键.9.答案:B解析:解:∵a =ln 12<ln 1e =−1,0<b =log 1312<log 1313=1, ∴ab <a +b <0.故选:B .利用对数函数的性质、运算法则直接求解.本题考查命题真假的判断,考查对数函数的性质、运算法则等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.10.答案:D解析:解:y =14x 2的焦点为(0,1),所以圆C 为x 2+(y −1)2=r 2, r =√32+42=1,所以x 2+(y −1)2=1,故选:D .求出圆心坐标,利用点到直线的距离公式,求出圆的半径,即可求出圆C 的方程.本题考查圆C 的方程,考查抛物线的性质,确定圆心坐标与半径是关键.11.答案:C解析:【分析】本题考查求点关于直线的对称点的坐标的方法,利用垂直、中点在对称轴上两个条件,待定系数法求对称点的坐标.设出点A(1,3)关于直线l 的对称点的坐标,利用对称点的连线被对称轴垂直平分,可以建立方程组,由此即可求得结论.解析:解:设点A(1,3)关于直线l 的对称点的坐标为(x,y),则:{y−3x−1=133×x+12+y+32+4=0,解得{x =−5y =1, ∴点A(1,3)关于直线l 的对称点的坐标为(−5,1).故选C .12.答案:B解析:【分析】本题考查的是方程的根的存在性以及根的个数判断,考查转化的思想、数形结合的思想方法,属中档题.结合方程f 2(x)+f(x)+m =0有三个不同的实数根,将问题转化为函数图象交点的个数判断问题,结合函数f(x)的图象即可获得解答.【解答】解:函数f(x)={2−x ,x ≤0−lnx,x >0的图象如图,若关于x 的方程f 2(x)+f(x)+m =0有三个不同实数根,令f(x)=t ,则方程t 2+t +m =0的两根一个大于等于1而另一个小于1.再令g(t)=t 2+t +m ,则g(1)≤0,即2+m ≤0,得m ≤−2.故选:B .13.答案:3解析:解:由a 23=49得a =(49)32=(23)3,所以log 23a =log 23(23)3=3 故答案为:3先解出a 的值,然后代入即可.本题主要考查求对数值的问题,属基础题.14.答案:−(x −14)2解析:【分析】本题考查了与奇函数有关函数性质的问题,考查对奇偶性质的理解.【解答】∵f(x +7)是定义在R 上的奇函数,∴f(x +7)=−f(−x +7),∴f(x)=−f(−x +14), ∴当x >7时,−x +14<7,故f(x)=−f(−x +14)=−(−x +14)2=−(x −14)2,故答案为−(x −14)2.15.答案:1:2解析:解:设该圆锥体的底面半径为r ,母线长为l ,根据题意得;2πr =πl ,∴l =2r ;所以这个圆锥的底面面积与侧面积的比是πr 2:12πl 2=r 2:12(2r)2=1:2.故答案为1:2.根据圆锥体的侧面展开图是半圆,球场底面半径r 与母线长l 的关系,再求它的底面面积与侧面积的比.本题考查了圆锥体的侧面积与底面积的计算问题,也考查了空间想象能力的应用问题,是基础题目.16.答案:5解析:解:∵函数f(x)=2x−1,∴f(3)=2×3−1=5.故答案为:5.利用函数性质求解.本题考查函数值的求法,是中档题,解题时要认真审题,注意函数性质的合理运用.17.答案:解:(Ⅰ)由x2−x<0得,0<x<1,故A=(0,1),所以∁R A=(−∞,0]∪[1,+∞).(Ⅱ)若B=⌀,则(−2)2+4m≤0,故m≤−1;若B≠⌀,则不满足A∩B=⌀.综上所述,实数m的取值范围是(−∞,−1].解析:本题考查补集的求法,考查实数的取值范围的求法,考查补集、交集的定义等基础知识,考查运算求解能力,是基础题.(Ⅰ)由x2−x<0得,0<x<1,求出A=(0,1),由此能求出∁R A.(Ⅱ)若B=⌀,则(−2)2+4m≤0,故m≤−1;若B≠⌀,则不满足A∩B=⌀.由此能求出实数m的取值范围.18.答案:解:圆C:x2+y2=4,圆心为(0,0),半径为2,∵|AB|=2√2,∴圆心到直线的距离为√4−2=√2,=√2∴√a2+1解得a=1或a=−1.故所求直线方程为x+y+2=0或x−y+2=0.解析:求出圆心到直线的距离,利用点到直线的距离公式,即可得出结论.本题考查直线和圆的方程的应用,考查点到直线的距离公式,考查学生分析解决问题的能力,属于中档题.DC,19.答案:证明:(1)取PC的中点M,连接EM,则EM//CD,EM=12所以有EM//AB且EM=AB,则四边形ABME是平行四边形.所以AE//BM,因为AE不在平面PBC内,所以AE//平面PBC.(2)因为AB⊥平面PBC,AB//CD,所以CD⊥平面PBC,CD⊥BM.由(1)得BM⊥PC,所以BM⊥平面PDC,又AE//BM,所以AE⊥平面PDC.解析:本题考查直线与平面垂直与平行的判定定理的应用,考查空间想象能力.(1)取PC的中点M,连接EM,BM,证明EM//AB,EM=AB,推出AE//BM.然后证明AE//平面PBC.(2)证明CD ⊥平面PBC ,推出CD ⊥BM.,结合BM ⊥PC 可证BM ⊥平面PDC ,又AE//BM ,所以AE ⊥平面PDC..20.答案:解:由图可得y 1=54√x ,(x ≥0),y 2=14x ,(x ≥0),设用x 万元投资甲商品,那么投资乙商品为(10−x)万元,总利润为y 万元.y =54√x +14(10−x)=−14x +54√x +104=−14(√x −52)2+6516,(0≤x ≤10) 当且仅当√x =52即x =254=6.25时,y max =6516答:用6.25万元投资甲商品,3.75万元投资乙商品,才能获得最大利润.(也可把投资乙商品设成x 万元,把投资甲商品设成(10−x)万元)解析:根据函数的模型求出两个函数解析式.将企业获利表示成对产品乙投资x 的函数,再利用配方法,求出对称轴,即可求出函数的最值.本题考查将实际问题的最值问题转化为函数的最值问题、考查二次函数的最值,属于中档题. 21.答案:(Ⅰ)证明:在对折图中作BO ⊥AD 于O ,连结OE ,由条件及三垂线定理知OE ⊥AD , 对照原图知点B 、O 、E 共线,∵BA =BD ,∴BE 是AD 中垂线,∴∠BDE =∠BAE =90°,∴CD ⊥DE ,又∵BE ⊥平面ACD ,∴CD ⊥BE ,又DE ∩BE =E∴CD ⊥平面BDE ;( Ⅱ)解:∵AB ⊥面BCD ,CD ⊂面BCD ,∴AB ⊥CD ,又∵AD ⊥CD ,AB ∩AD =A ,AB ,AD ⊂面ABD ,∴CD ⊥面ABD ,而BD ⊂面ABD ,∴CD ⊥BD ,∵CD =√6,∴AC =√2CD =2√3,∴BC =ACsin60°=2√3×√32=3,∴BD =√BC 2−CD 2=√3,在直角△ABC 中,DH =BD·CD BC =√2,∴DH ⊥面ABC,AE =12AC =√3,AB =ACcos60°=√3,第11页,共11页 三棱锥B −ACD 的体积为√64.解析:本题以平面翻折问题为例,证明了线面垂直并求几何体的体积,着重考查了线面垂直的判定与性质、点到平面距离的求法和锥体体积公式等知识,属于中档题.(Ⅰ)根据线面垂直的判定定理,得到CD ⊥平面BDE ;(Ⅱ)利用锥体体积公式求出三棱锥B −ACD 的体积.22.答案:解:(1)由题意知,−3x +13x+1+1≥3x ;化简得,3(3x )2+2·3x −1≤0,解得,−1≤3x ≤13 .故x ≤−1.(2)由题意,f(0)=−1+a 3+b =0,故a =1.再由f(1)+f(−1)=0得,b =3;经验证f(x)=1−3x 3(3x +1)是奇函数.(3)证明:∵y =f(x)的定义域为R ,∴b ≥0.任取x 1,x 2∈R ,且x 1<x 2,则f(x 1)−f(x 2)=(3a +b)3x 2−3x 1(3x 1+1+b)(3x 2+1+b),∵x 1<x 2,∴3x 2−3x 1(3x 1+1+b)(3x 2+1+b)>0.故当3a +b >0时,f(x)在R 上单调递减,当3a +b <0时,f(x)在R 上单调递增,当3a +b =0时,f(x)在R 上不具有单调性.解析:本题考查了函数的性质应用及证明,属于基础题.(1)由题意知,−3x +13x+1+1≥3x ;从而解不等式;(2)由题意知f(0)=−1+a 3+b =0,再由f(1)+f(−1)=0解出a.b ;从而验证即可;(3)由单调性的定义去证明.。
2019-2020学年高一数学下学期期末考试测试题(含解析)
2019-2020学年高一数学下学期期末考试测试题(含解析)一、单项选择题(本题共8小题,每小题5分,只有一项是符合题目要求的)1.在复平面内,复数(是虚数单位),则复数的共轭复数所对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】先利用复数代数形式的乘除运算化简,然后再求出其共轭复数在复平面内对应的点的坐标判断即可.【详解】,,其在复平面内对应的点的坐标为,位于第三象限.故选:C.【点睛】本题考查复数代数形式的乘除运算,考查复数的几何意义,考查逻辑思维能力和计算能力,属于常考题.2. 一个圆柱的侧面展开图是一个正方形,这个圆柱全面积与侧面积的比为()A. B. C. D.【答案】A【解析】解:设圆柱底面积半径为r,则高为2πr,全面积:侧面积=[(2πr)2+2πr2]:(2πr)2这个圆柱全面积与侧面积的比为,故选A3.如图所示,在四棱锥中,分别为上的点,且平面,则()A. B. C. D. 以上均有可能【答案】B【解析】∵MN∥平面PAD,平面PAC∩平面PAD=PA,MN⊂平面PAC,∴MN∥PA.故选B.考点:直线与平面平行的性质.4.已知中,,,分别是,,的中点,则()A. B.C. D.【答案】A【解析】【分析】利用平行四边形法则求解即可.【详解】依题意,,故故选A.【点睛】本题主要考查了平面向量基本定理的应用,属于基础题.5.在中,分别是角的对边,满足,则的最大角为()A. B. C. D.【答案】B【解析】【分析】由已知条件和余弦定理可得选项.【详解】根据方程可知:,故,由余弦定理得:,又,故.故选:B.【点睛】本题主要考查三角形中余弦定理应用,熟记余弦定理的形式是关键,属于基础题.6.从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为()A. B. C. 3 D.【答案】B【解析】【详解】试题分析:根据平均数、方差、标准差的概念直接运算即可.解:∵,∴==,.故选B.7.在中,分别是角的对边,满足,则的形状为()A. 直角三角形B. 等边三角形C. 等腰三角形D. 锐角三角形【答案】C【解析】【分析】利用余弦定理表示出,代入已知等式变形后得到,即可结论.【详解】,,即,整理得:,即,则为等腰三角形.故选:C.【点睛】本题考查了余弦定理以及等腰三角形的判定,熟练掌握余弦定理是解本题的关键,属于基础题.8.掷一枚骰子试验中,出现各点的概率均为,事件表示“出现小于5的偶数点”,事件表示“出现小于5的点数”,则一次试验中,事件(表示事件的对立事件)发生的概率为A. B. C. D.【答案】C【解析】【分析】由题意知试验发生包含的所有事件是6,事件和事件是互斥事件,看出事件和事件包含的基本事件数,根据互斥事件和古典概型概率公式得到结果.【详解】解:事件表示“小于5的点数出现”,的对立事件是“大于或等于5的点数出现”,表示事件是出现点数为5和6.事件表示“小于5的偶数点出现”,它包含的事件是出现点数为2和4,,.故选:.【点睛】本题考查互斥事件和对立事件的概率,分清互斥事件和对立事件之间的关系,互斥事件是不可能同时发生的事件,对立事件是指一个不发生,另一个一定发生的事件,属于基础题.二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对得5分,部分选对得3分,有选错的得0分)9.若复数,其中为虚数单位,则下列结论正确的是()A. 的虚部为B.C. 为纯虚数D. 的共轭复数为【答案】ABC【解析】【分析】首先利用复数代数形式的乘除运算化简后得:,然后分别按照四个选项的要求逐一求解判断即可.【详解】因为,对于A:的虚部为,正确;对于B:模长,正确;对于C:因为,故为纯虚数,正确;对于D:的共轭复数为,错误.【点睛】本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,侧重考查对基础知识的理解和掌握,属于常考题.10.有5件产品,其中3件正品,2件次品,从中任取2件,则互斥的两个事件是()A. 至少有1件次品与至多有1件正品B. 至少有1件次品与都是正品C. 至少有1件次品与至少有1件正品D. 恰有1件次品与恰有2件正品.【答案】BD【解析】【分析】根据互斥事件的定义,对每个选项做出判断,从而得到结论.【详解】对于A,至少有1件次品与至多有1件正品不互斥,它们都包括了“一件正品与一件次品”的情况,故不满足条件;对于B,至少有1件次品与都是正品是对立事件,属于互斥事件,故满足条件;对于C,至少有1件次品与至少有1件正品不互斥,它们都包括了“一件正品与一件次品”的情况,故不满足条件;对于D,恰有1件次品与恰有2件正品是互斥事件,故满足条件.【点睛】本题考查互斥事件的判断,考查逻辑思维能力和分析求解能力,侧重考查对基础知识的理解和掌握,属于基础题. 11.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图,则下列结论正确的是()注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A. 互联网行业从业人员中从事技术和运营岗位的人数占总人数的三成以上B. 互联网行业中从事技术岗位的人数超过总人数的20%C. 互联网行业中从事运营岗位的人数90后比80前多D. 互联网行业中从事技术岗位的人数90后比80后多【答案】ABC【解析】【分析】根据扇形统计图和条状图,逐一判断选项,得出答案.【详解】选项A:因为互联网行业从业人员中,“90后”占比为56%,其中从事技术和运营岗位的人数占的比分别为39.6%和17%,则“90后”从事技术和运营岗位的人数占总人数的.“80前”和“80后”中必然也有从事技术和运营岗位的人,则总的占比一定超过三成,故选项A正确;选项B:因为互联网行业从业人员中,“90后”占比为56%,其中从事技术岗位的人数占的比为39.6%,则“90后”从事技术岗位的人数占总人数的.“80前”和“80后”中必然也有从事技术岗位的人,则总的占比一定超过20%,故选项B正确;选项C:“90后”从事运营岗位的人数占总人数的比为,大于“80前”的总人数所占比3%,故选项C正确;选项D:“90后”从事技术岗位的人数占总人数的,“80后”的总人数所占比为41%,条件中未给出从事技术岗位的占比,故不能判断,所以选项D错误.故选:ABC.【点睛】本题考查了扇形统计图和条状图的应用,考查数据处理能力和实际应用能力,属于中档题.12.已知正方体的外接球与内切球上各有一个动点、,若线段的最小值为,则()A. 正方体的外接球的表面积为B. 正方体的内切球的体积为C. 正方体的棱长为2D. 线段的最大值为【答案】ABC【解析】【分析】设正方体的棱长为,由此确定内切球和外接球半径,由的最小值为两球半径之差可构造方程求得,进而求得外接球表面积和内切球体积;由的最大值为两球半径之和可得到最大值.【详解】设正方体的棱长为,则正方体外接球半径为体对角线长的一半,即;内切球半径为棱长的一半,即.分别为外接球和内切球上的动点,,解得:,即正方体棱长为,正确,正方体外接球表面积为,正确;内切球体积为,正确;线段最大值为,错误.故选:.【点睛】本题考查正方体外接球和内切球相关问题的求解,关键是通过球的性质确定两球上的点的距离最小值为,最大值为.三、填空题13.已知向量,,其中,,与的夹角为________.【答案】【解析】【分析】根据题意,根据平面向量坐标加减法运算和模的求法,分别求出和的坐标和,再利用平面向量的数量积运算,即可求出与的夹角.【详解】解:由题可知,,,则,,得,,所以,又因为两向量的夹角范围为,所以与的夹角为.故答案为:.【点睛】本题考查利用平面向量的数量积求向量的夹角,以及向量的坐标加减法运算和模的求法,属于基础题.14.在中,若,,,则等于________.【答案】或.【解析】【分析】由正弦定理,求得,得到或,分类讨论,即可求得的值.【详解】由正弦定理,可得,所以,因为,所以或,当时,,可得;当时,,此时,综上可得或.故答案为:或.【点睛】本题主要考查了正弦定理的应用,其中解答中利用正弦定理求得的值,得出的大小是解答的关键,着重考查分类讨论,以及运算与求解能力.15.如图,在中,,是上的一点,若,则实数的值为________.【答案】【解析】【分析】解法1:先根据得到,从而可得,再根据三点共线定理,即可得到的值.解法2:根据图形和向量的转化用同一组基底去表示,根据图形可得:,设,通过向量线性运算可得:,从而根据平面向量基本定理列方程组,解方程组得的值.【详解】解法1:因为,所以,又,所以因为点三点共线,所以,解得:.解法2:因为,设,所以,因为,所以,又,所以,所以,又,所以解得:,所以.故答案为:.【点睛】本题主要考查平面向量的线性运算、三点共线定理,平面向量基本定理的运用,属于基础题.16.在平行四边形中,,,且,以为折痕,将折起,使点到达点处,且满足,则三棱锥的外接球的表面积为__________.【答案】【解析】【分析】先由余弦定理求得,在四面体中,根据棱长关系可知,将四面体放在长方体中,则三棱锥的外接球转化为长方体的外接球,根据棱长关系求出长方体的长、宽、高,利用长方体的体对角线等于外接球的直径,求出外接球半径,从而可求得外接球的表面积.【详解】解:在中,,,且,由余弦定理,得,即:,解得:,在四面体中,,,,三组对棱长相等,可将四面体放在长方体中,设长方体的相邻三棱长分别为,,,设外接球半径为,则,,,则,即,所以.所以,四面体外接球的表面积为:.故答案为:.【点睛】本题考查外接球的表面积,涉及长方体的外接球的性质,考查转化思想和计算能力.四、解答题(本题共6题,共70分.解答应写出文字说明、证明过程或演算步骤)17.已知复数w满足为虚数单位,.求z;若中的z是关于x的方程的一个根,求实数p,q的值及方程的另一个根.【答案】(1).(2),,.【解析】【分析】利用复数的运算计算出w,代入z即可得出.把代入关于x的方程,利用复数相等解出p,q,即可得出.【详解】,,.是关于x的方程的一个根,,,,q为实数,,解得,.解方程,得实数,,方程的另一个根为.【点睛】本题考查了复数的运算法则、复数相等,考查了推理能力与计算能力,属于中档题.18.在中,,,分别是角,,的对边,并且.已知________,计算的面积.请①,②,③这三个条件中任选两个,将问题(1)补充完整,并作答.注意,只需选择其中的一种情况作答即可.【答案】答案不唯一,见解析【解析】【分析】根据余弦定理求出,若选择①,②,,根据余弦定理求出,然后根据面积公式可求得结果;若选择①,③,根据正弦定理和余弦定理求出和,然后根据面积公式可求得结果;若选择②,③,根据正弦定理求出,再根据面积公式可求得结果.【详解】因为,所以,所以,因为,所以,若选择①,②,由,得,即,解得(负值舍去)所以.若选择①,③,由以及正弦定理可得,由得,得,,所以.若选择②,③,由以及正弦定理可得,所以,所以.【点睛】本题考查了正弦定理、余弦定理和三角形的面积公式,属于基础题.19.如图,四棱锥中,底面为矩形,面,为的中点.(1)证明:平面;(2)设,,三棱锥的体积,求A到平面PBC的距离.【答案】(1)证明见解析(2)到平面的距离为【解析】【详解】试题分析:(1)连结BD、AC相交于O,连结OE,则PB∥OE,由此能证明PB∥平面ACE.(2)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出A到平面PBD的距离试题解析:(1)设BD交AC于点O,连结EO.因为ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB又EO平面AEC,PB平面AEC所以PB∥平面AEC.(2)由,可得.作交于.由题设易知,所以故,又所以到平面的距离为法2:等体积法由,可得.由题设易知,得BC假设到平面的距离为d,又因为PB=所以又因为(或),,所以考点:线面平行的判定及点到面的距离20.若5张奖券中有2张是中奖的,先由甲抽1张,然后由乙抽1张,求:(1)甲中奖的概率;(2)甲、乙都中奖的概率;(3)只有乙中奖的概率.【答案】(1);(2);(3)【解析】【分析】(1)记甲中奖为事件A,5张奖券中有2张是中奖的,由等可能事件的概率公式计算可得答案;(2)记甲、乙都中奖为事件B,由(1)可得,首先由甲抽一张,中奖的概率,分析此条件下乙中奖的概率,由相互独立事件的概率的乘法公式计算可得答案;(3)记只有乙中奖为事件C,首先计算由对立事件的概率性质计算甲没有中奖的概率,进而分析此条件下乙中奖的概率,由相互独立事件的概率的乘法公式计算可得答案.【详解】(1)根据题意,甲中奖为事件A,5张奖券中有2张是中奖的,则甲从中随机抽取1张,则其中奖的概率为.(2)记甲、乙都中奖事件B,由(1)可得,首先由甲抽一张,中奖的概率为,若甲中奖,此时还有4张奖券,其中1张有奖,则乙中奖的概率为,则甲、乙都中奖的概率.(3)记只有乙中奖为事件C,首先甲没有中奖,其概率为,此时还有4张奖券,其中2张有奖,则乙中奖的概率为,则只有乙中奖的概率为.【点睛】本题主要考查相互独立事件的概率的乘法公式,注意在甲中奖与否的条件下,乙中奖的概率不同,属于中档题. 21.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为(1)求频率分布直方图中的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率.【答案】(Ⅰ)0.006;(Ⅱ);(Ⅲ)【解析】【详解】试题分析:(Ⅰ)在频率分布直方图中,由频率总和即所有矩形面积之和为,可求;(Ⅱ)在频率分布直方图中先求出50名受访职工评分不低于80的频率为,由频率与概率关系可得该部门评分不低于80的概率的估计值为;(Ⅲ)受访职工评分在[50,60)的有3人,记为,受访职工评分在[40,50)的有2 人,记为,列出从这5人中选出两人所有基本事件,即可求相应的概率.试题解析:(Ⅰ)因为,所以……..4分)(Ⅱ)由所给频率分布直方图知,50名受访职工评分不低于80的频率为,所以该企业职工对该部门评分不低于80的概率的估计值为………8分(Ⅲ)受访职工评分在[50,60)的有:50×0.006×10=3(人),即为;受访职工评分在[40,50)的有:50×0.004×40=2(人),即为.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是又因为所抽取2人的评分都在[40,50)的结果有1种,即,故所求的概率为考点:1.频率分布直方图;2.概率和频率的关系;3.古典概型.【名师点睛】本题考查频率分布直方图、概率与频率关系、古典概型,属中档题;利用频率分布直方图解题的时,注意其表达的意义,同时要理解频率是概率的估计值这一基础知识;在利用古典概型解题时,要注意列出所有的基本事件,千万不可出现重、漏的情况.22.在四棱锥中,侧面⊥底面,底面为直角梯形,//,,,,为的中点.(Ⅰ)求证:PA//平面BEF;(Ⅱ)若PC与AB所成角为,求的长;(Ⅲ)在(Ⅱ)的条件下,求二面角F-BE-A的余弦值.【答案】(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)二面角的余弦值为.【解析】分析:(Ⅰ)连接AC交BE于O,并连接EC,FO,由题意可证得四边形ABCE为平行四边形,则,//平面.(Ⅱ)由题意可得,且,则,故.(Ⅲ)取中点,连,由题意可知的平面角,由几何关系计算可得二面角的余弦值为.详解:(Ⅰ)证明:连接AC交BE于O,并连接EC,FO,,为中点AE//BC,且AE=BC四边形ABCE为平行四边形O为AC中点又F为AD中点,,//平面(Ⅱ)由BCDE为正方形可得由ABCE为平行四边形可得//为即,侧面底面侧面底面平面,,.(Ⅲ)取中点,连,,,平面,的平面角,又,,所以二面角的余弦值为.点睛:(1)求直线与平面所成角的一般步骤:①找直线与平面所成的角,即通过找直线在平面上的射影来完成;②计算,要把直线与平面所成的角转化到一个三角形中求解.(2)作二面角的平面角可以通过垂线法进行,在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.2019-2020学年高一数学下学期期末考试测试题(含解析)一、单项选择题(本题共8小题,每小题5分,只有一项是符合题目要求的)1.在复平面内,复数(是虚数单位),则复数的共轭复数所对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】先利用复数代数形式的乘除运算化简,然后再求出其共轭复数在复平面内对应的点的坐标判断即可.【详解】,,其在复平面内对应的点的坐标为,位于第三象限.故选:C.【点睛】本题考查复数代数形式的乘除运算,考查复数的几何意义,考查逻辑思维能力和计算能力,属于常考题.2. 一个圆柱的侧面展开图是一个正方形,这个圆柱全面积与侧面积的比为()A. B. C. D.【答案】A【解析】解:设圆柱底面积半径为r,则高为2πr,全面积:侧面积=[(2πr)2+2πr2]:(2πr)2这个圆柱全面积与侧面积的比为,故选A3.如图所示,在四棱锥中,分别为上的点,且平面,则()A. B. C. D. 以上均有可能【答案】B【解析】∵MN∥平面PAD,平面PAC∩平面PAD=PA,MN⊂平面PAC,∴MN∥PA.故选B.考点:直线与平面平行的性质.4.已知中,,,分别是,,的中点,则()A. B.C. D.【答案】A【解析】【分析】利用平行四边形法则求解即可.【详解】依题意,,故故选A.【点睛】本题主要考查了平面向量基本定理的应用,属于基础题.5.在中,分别是角的对边,满足,则的最大角为()A. B. C. D.【答案】B【解析】【分析】由已知条件和余弦定理可得选项.【详解】根据方程可知:,故,由余弦定理得:,又,故.故选:B.【点睛】本题主要考查三角形中余弦定理应用,熟记余弦定理的形式是关键,属于基础题.6.从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为()A. B. C. 3 D.【答案】B【解析】【详解】试题分析:根据平均数、方差、标准差的概念直接运算即可.解:∵,∴==,.故选B.7.在中,分别是角的对边,满足,则的形状为()A. 直角三角形B. 等边三角形C. 等腰三角形D. 锐角三角形【答案】C【解析】【分析】利用余弦定理表示出,代入已知等式变形后得到,即可结论.【详解】,,即,整理得:,即,则为等腰三角形.故选:C.【点睛】本题考查了余弦定理以及等腰三角形的判定,熟练掌握余弦定理是解本题的关键,属于基础题.8.掷一枚骰子试验中,出现各点的概率均为,事件表示“出现小于5的偶数点”,事件表示“出现小于5的点数”,则一次试验中,事件(表示事件的对立事件)发生的概率为A. B. C. D.【答案】C【解析】【分析】由题意知试验发生包含的所有事件是6,事件和事件是互斥事件,看出事件和事件包含的基本事件数,根据互斥事件和古典概型概率公式得到结果.【详解】解:事件表示“小于5的点数出现”,的对立事件是“大于或等于5的点数出现”,表示事件是出现点数为5和6.事件表示“小于5的偶数点出现”,它包含的事件是出现点数为2和4,,.故选:.【点睛】本题考查互斥事件和对立事件的概率,分清互斥事件和对立事件之间的关系,互斥事件是不可能同时发生的事件,对立事件是指一个不发生,另一个一定发生的事件,属于基础题.二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对得5分,部分选对得3分,有选错的得0分)9.若复数,其中为虚数单位,则下列结论正确的是()A. 的虚部为B.C. 为纯虚数D. 的共轭复数为【答案】ABC【解析】【分析】首先利用复数代数形式的乘除运算化简后得:,然后分别按照四个选项的要求逐一求解判断即可.【详解】因为,对于A:的虚部为,正确;对于B:模长,正确;对于C:因为,故为纯虚数,正确;对于D:的共轭复数为,错误.故选:ABC.【点睛】本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,侧重考查对基础知识的理解和掌握,属于常考题.10.有5件产品,其中3件正品,2件次品,从中任取2件,则互斥的两个事件是()A. 至少有1件次品与至多有1件正品B. 至少有1件次品与都是正品C. 至少有1件次品与至少有1件正品D. 恰有1件次品与恰有2件正品.【答案】BD【解析】【分析】根据互斥事件的定义,对每个选项做出判断,从而得到结论.【详解】对于A,至少有1件次品与至多有1件正品不互斥,它们都包括了“一件正品与一件次品”的情况,故不满足条件;对于B,至少有1件次品与都是正品是对立事件,属于互斥事件,故满足条件;对于C,至少有1件次品与至少有1件正品不互斥,它们都包括了“一件正品与一件次品”的情况,故不满足条件;对于D,恰有1件次品与恰有2件正品是互斥事件,故满足条件.故选:BD.【点睛】本题考查互斥事件的判断,考查逻辑思维能力和分析求解能力,侧重考查对基础知识的理解和掌握,属于基础题.11.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图,则下列结论正确的是()注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A. 互联网行业从业人员中从事技术和运营岗位的人数占总人数的三成以上B. 互联网行业中从事技术岗位的人数超过总人数的20%C. 互联网行业中从事运营岗位的人数90后比80前多D. 互联网行业中从事技术岗位的人数90后比80后多【答案】ABC【解析】【分析】根据扇形统计图和条状图,逐一判断选项,得出答案.【详解】选项A:因为互联网行业从业人员中,“90后”占比为56%,其中从事技术和运营岗位的人数占的比分别为39.6%和17%,则“90后”从事技术和运营岗位的人数占总人数的.“80前”和“80后”中必然也有从事技术和运营岗位的人,则总的占比一定超过三成,故选项A正确;选项B:因为互联网行业从业人员中,“90后”占比为56%,其中从事技术岗位的人数占的比为39.6%,则“90后”从事技术岗位的人数占总人数的.“80前”和“80后”中必然也有从事技术岗位的人,则总的占比一定超过20%,故选项B正确;选项C:“90后”从事运营岗位的人数占总人数的比为,大于“80前”的总人数所占比3%,故选项C正确;选项D:“90后”从事技术岗位的人数占总人数的,“80后”的总人数所占比为41%,条件中未给出从事技术岗位的占比,故不能判断,所以选项D错误.故选:ABC.【点睛】本题考查了扇形统计图和条状图的应用,考查数据处理能力和实际应用能力,属于中档题.12.已知正方体的外接球与内切球上各有一个动点、,若线段的最小值为,则()A. 正方体的外接球的表面积为B. 正方体的内切球的体积为C. 正方体的棱长为2D. 线段的最大值为【答案】ABC【解析】【分析】设正方体的棱长为,由此确定内切球和外接球半径,由的最小值为两球半径之差可构造方程求得,进而求得外接球表面积和内切球体积;由的最大值为两球半径之和可得到最大值.【详解】设正方体的棱长为,则正方体外接球半径为体对角线长的一半,即;内切球半径为棱长的一半,即.分别为外接球和内切球上的动点,,解得:,即正方体棱长为,正确,正方体外接球表面积为,正确;内切球体积为,正确;线段最大值为,错误.故选:.【点睛】本题考查正方体外接球和内切球相关问题的求解,关键是通过球的性质确定两球上的点的距离最小值为,最大值为.三、填空题13.已知向量,,其中,,与的夹角为。
2019-2020学年___高一下学期期末数学试卷 (解析版)
2019-2020学年___高一下学期期末数学试卷 (解析版)2019-2020学年___高一第二学期期末数学试卷一、选择题(共10小题)1.若复数z1对应复平面内的点(2,-3),且z1·z2=1+i,则复数z2的虚部为()A。
-1.B。
1.C。
-2.D。
22.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A。
若m∥α,m∥β,则α∥βB。
___⊥α,___,则n⊥αC。
___⊥α,___,则n⊥αD。
若α⊥β,m⊥α,则___β3.设x,y∈R,向量a=(x,1),b=(1,y),c=(2,-4),且a⊥b,a∥c,则|a+b|+|a-c|=()A。
2√10.B。
4√2.C。
4√5.D。
104.某社区组织“研究强国”的知识竞赛,从参加竞赛的市民中抽出40人,将其成绩分成以下6组:第1组[40,50),第2组[50,60),第3组[60,70),第4组[70,80),第5组[80,90),第6组[90,100],得到如图所示的频率分布直方图。
现采用分层抽样的方法,从第3,4组中按分层抽样抽取8人,3,4组抽取的人数依次为()A。
1,3,4.B。
2,3,3.C。
2,2,4.D。
1,1,65.雕塑成了大学环境不可分割的一部分,有些甚至能成为这个大学的象征,在___校园中就有一座___的雕像。
雕像由像体AD和底座CD两部分组成。
如图,在Rt△ABC中,∠ABC=70.5°,在Rt△DBC中,∠DBC=45°,且CD=2.3米,求像体AD的高度(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)。
A。
4.0米。
B。
4.2米。
C。
4.3米。
D。
4.4米6.如图,△ABC中,D是边BC上一点,AD=3,则()A。
△ABC和△ADB的面积比为2:1B。
2023-2024学年黑龙江省哈尔滨师范大学附属中学高一下学期期末考试数学试题
2023-2024学年黑龙江省哈尔滨师范大学附属中学高一下学期期末考试数学试题1.样本数据36,27,25,22,20,16,13,12,11的第60百分位数为()A.16B.21C.22D.23.52.已知复数,其中为虚数单位,则()A.0B.1C.2D.3.已知向量,,则在上的投影向量为()A.B.C.D.4.连续地掷一枚质地均匀的骰子两次,记录每次的点数,记事件为“第一次出现2点”,事件为“第二次的点数小于等于4点”,事件为“两次点数之和为奇数”,事件为“两次点数之和为9”,则下列说法不正确的是()A.与不是互斥事件B.与相互独立C.与相互独立D.与相互独立5.海洋蓝洞是地球罕见的自然地理现象.若要测量如图所示的蓝洞的口径,即两点间的距离,现在珊瑚群岛上取两点,测得,,,,则两点间的距离为()A.80B.C.160D.6.如图,某系统由A,B,C,D四个零件组成,若每个零件是否正常工作互不影响,且零件A,B,C,D正常工作的概率都为,则该系统正常工作的概率为()A.B.C.D.7.某一时段内,从天空降落到地面上的雨水,未经蒸发、渗透、流失而在水平面上积聚的深度,称为这个时段的降雨量(单位:).24小时降雨量的等级划分如下:24小时降雨量(精确到)降雨等级小雨中雨大雨暴雨在一次降雨过程中,用一个侧棱的三棱柱容器收集的24小时的雨水如图所示,当侧面水平放置时,水面恰好过的中点.则这24小时的降雨量的等级是()A.小雨B.中雨C.大雨D.暴雨8.在边长为的菱形中,,将沿着折叠,得到三棱锥,若,则该三棱锥的外接球的体积是()A.B.C.D.9.已知a,b,c为三条直线,,,为三个平面.下列命题为真命题的是()A.若,,则B.若,,,则C.若,,则D.若,,,则10.设,为两个随机事件,且,,则下列命题正确的是()A.若,则,相互独立B.若和相互独立,则和一定不互斥C.若和互斥,则和一定相互独立D.11.在正方体中,是棱的中点,则下列结论正确的是()A.若是线段的中点,则异面直线与所成角的余弦值是B.若为线段上的动点,则的最小值为C.若为线段上的动点,则平面与平面夹角的余弦值的取值范围为D.若为线段上的动点,且与平面交于点,则三棱锥的体积为12.已知向量,若三点共线,则______.13.在空间直角坐标系中,若一条直线经过点,且以向量为方向向量,则这条直线可以用方程来表示,已知直线的方程为,则点到直线的距离为______.14.在中,内角所对的边分别为,若,,则的最大值为___________.15.如图,在正三棱柱中,点D是BC的中点,.(1)求证:平面;(2)求证:平面平面;(3)求直线到平面的距离.16.第33届奥林匹克运动会将于2024年7月26日至2024年8月11日在法国巴黎举行,某调研机构为了了解人们对“奥运会”相关知识的认知程度,针对本市不同年龄和不同职业的人举办了一次“奥运会”知识竞赛,满分100分(95分及以上为认知程度高),结果认知程度高的有m人,按年龄分成5组,其中第一组,第二组,第三组,第四组,第五组,得到如图所示的频率分布直方图,已知第一组有10人.(1)根据频率分布直方图,估计这m人的平均年龄;(2)现从以上各组中用分层随机抽样的方法选取20人,担任本市的“奥运会”宣传使者.①若有甲(年龄38),乙(年龄40)两人已确定入选,现计划从第四组和第五组被抽到的使者中,再随机抽取2名作为组长,求甲、乙两人至少有一人被选上的概率;②若第四组宣传使者的年龄的平均数与方差分别为36和,第五组宣传使者的年龄的平均数与方差分别为42和1,据此估计这m人中35~45岁所有人的年龄的方差.17.如图,是圆的直径,点是圆上异于,的点,平面,,,,分别为,的中点,平面与平面的交线为,在圆上.(1)在图中作出交线(说明画法,不必证明),并求三棱锥的体积;(2)若点满足,且与平面所成角的正弦值为,求的值.18.在中,角A,B,C所对应的边分别为a,b,c,,,(1)求A的大小:(2)点D在BC上,(Ⅰ)当,且时,求AC的长;(Ⅱ)当,且时,求的面积.19.如图,在四面体ABCD中,,,,,,E,F,G分别为棱BC,AD,CD的中点,点在线段AB上.(1)若平面AEG,试确定点的位置,并说明理由;(2)求平面AEG与平面CDH的夹角的取值范围.。
黑龙江省哈尔滨师范大学附属中学2019-2020学年高一下学期期末考试数学试题
A.
B.
C.
D.
9. 某几何体的三视图如图所示,则该几何体的表面积为( )
A.
B.
C.
D.
10. 在正项等比数列 A.1
中,
B.3
,
,则 的个位数字是
C.7
D.9
11. 刘徽注《九章算术•商功》“斜解立方,得两堑堵.斜解堑堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.合两鳖臑三而一,验 之以棊,其形露矣.”如图一解释了由一个长方体得到“堑堵”、“阳马”、“鳖臑”的过程.堑堵是底面为直角三角形的直棱柱;阳马是一条侧棱垂直于 底面且底面为矩形的四棱锥;鳖臑是四个面都为直角三角形的四面体.
19. 正三棱柱
中, 是棱 的中点.
(Ⅰ)求证: (Ⅱ)设
平面 ,
; ,求点 到平面
的距离.
20. 已知数列 的前n项和为 ,且满足
.
(Ⅰ)求数列 的通项公式;
(Ⅱ)令
,记数列
的前n项和为 ,求证:
.
21. 四棱锥P﹣ABCD中,侧面PAB为正三角形,底面ABCD是正方形,且平面PAB⊥平面ABCD,E,F分别为PB,BC中点,AB=2.
,求数列bn的前n项和Tn;
(Ⅲ)在条件(Ⅱ)下,若不等式
对任意正整数n都成立,求 的取值范围.
黑龙江省哈尔滨师范大学附属中学2019-2020学年高一下学期期末考试数学试题
一、单选题
1. 若a>b,则下列各式中正确的是( )
A.ac>bc
B.ac2>bc2
C.a+c2>b+c2
D.
2. 过点(0,1)且与直线2x﹣y+1=0垂直的直线方程是( )
A.x+2y﹣1=0
2019-2020学年哈师大附中高一下学期期末数学试卷
2019-2020学年哈师大附中高一下学期期末数学试卷一、单选题(本大题共12小题,共60.0分) 1.若实数a ,b ,c 满足,则下列关系中不可能成立的是( )A.B.C.D.2.过点(5,3)且与直线x −2y −2=0垂直的直线方程是( )A. x +2y −11=0B. 2x +y −13=0C. 2x −y −7=0D. x −2y +1=03.已知A(1,−2),B(3,2),则AB⃗⃗⃗⃗⃗ =( ) A. (2,4)B. (2,0)C. (−2,−4)D. (−2,0)4.圆锥的底面半径为1,母线长为3,则圆锥的表面积为( )A. πB. 2πC. 3πD. 4π5.在△ABC 中,|AB⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ |=3,∠ABC =60°,AD 是边BC 上的高,则AD ⃗⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ 的值等于( ) A. −94B. 94C. 274D. 96.已知b >0,直线x −b 2y −1=0与直线(3b 2+1)x +ay +2=0互相垂直,则ab 最小值等于( )A. 1B. 2C. 2√2D. 2√37.已知等差数列{a n }中,a 2+a 4=16,a 1=1,则a 5的值是( )A. 15B. 30C. 31D. 648.如图,直三棱柱ABC −A 1B 1C 1中,∠BCA =90°,点D 1,F 1分别是A 1B 1,A 1C 1的中点,若BC =CA =2CC 1,则BD 1与AF 1所成的角是( )A. 30°B. 45°C. 60°D. 90°9.图中,小方格是边长为1的正方形,图中粗线画出的是某几何体的三视图,且该几何体的顶点都在同一球面上,则该几何体的外接球的表面积为( )A. 32πB. 48πC. 50πD. 64π10. 公差不为零的等差数列{a n }的前n 项和为S n .若a 4是a 3与a 7的等比中项,S 8=32,则S 10等于( )A. 18B. 24C. 60D. 9011. 已知A ,B ,C ,D 是以O 为球心的球面上的四点,AB ,AC ,AD 两两互相垂直,且AB =3,AC =4,AD =√11,则球的半径为( )A. 3B. 4C. 5D. 612. 若O 是△ABC 所在平面上一点,且满足|OB ⃗⃗⃗⃗⃗⃗ −OC ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ −2OA ⃗⃗⃗⃗⃗ |,则△ABC 的形状为( ) A. 等腰直角三角形 B. 直角三角形 C. 等腰三角形D. 等边三角形二、单空题(本大题共4小题,共20.0分) 13. 11.直线的倾斜角的范围是 .14. 已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=−5,数列{1a2n−1a 2n+1}的前2016项的和为______.15. 已知△ABC ,点O 满足OC ⃗⃗⃗⃗⃗ =2BO⃗⃗⃗⃗⃗⃗ ,过点O 的直线与线段AB 及AC 的延长线分别相交于点E ,F ,设AE ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ ,AF ⃗⃗⃗⃗⃗ =μAC⃗⃗⃗⃗⃗ ,则8λ+μ的最小值是______ . 16. 命题“若x >1,则(x −1)(x +3)>0”的等价命题是“______ ;它是______ 命题(填:“真”或“假”).三、解答题(本大题共6小题,共70.0分) 17. 求满足下列条件的直线的方程:(1)经过两条直线2x −3y +10=0和3x +4y −2=0的交点,且垂直于直线3x −2y +4=0; (2)经过两条直线2x +y −8=0和x −2y +1=0的交点,且平行于直线4x −3y −7=0.18. 已知a >0,b >0,且a 2+b 2=2.(Ⅰ)若a+b≤|2x−1|−|x−1|恒成立,求x的取值范围;(Ⅱ)证明:(1a +1b)(a5+b5)≥4.19.如图,四棱锥P−ABCD的底面ABCD是正方形,PA⊥底面ABCD,E,F分别是AC,PB的中点.(1)求证:EF//平面PCD;(2)若PA=AB,求异面直线EF与PA所成角的大小.20.已知等差数列{a n}的前n项和为S n,a3=5,a5=9.(1)求{a n}的通项公式;(2)设b n=2a n,求数列{b n}的前n项和T n.21.如图,在直三棱柱ABC−A1B1C1中,已知∠BAC=90°,AB=a,AC=2,AA1=1,点D在棱B1C1上,且B1D:DC1=1:3.过点D作DE//A1B1交A1C1于点E.(1)求证:A1C⊥平面BDE;(2)当点B1到平面A1BD的距离为12时,求直线B1D与平面A1BD所成的角.22.已知数列{a n}的前n项和S n,且2a n=2+S n.(1)求数列{a n}的通项公式;(2)若b n=(2n−1)a n,求数列{b n}的前n项和T n.【答案与解析】1.答案:A解析:试题分析:因为已知中给定,且,,根据已知条件,且y=是定义域内的增函数,那么对于对数的底数进行讨论结合图像可知,1<a<b<c成立,或者是c>1,b<a<1,或者也可以是a<c<1,b>1,则可知是,故可知选A.考点:本试题考查了对数不等式的运用。
哈尔滨师范大学附属中学2019_2020学年高一数学下学期第二次线上考试试题含解析
分别为 中点,
将 沿 折起得到三棱锥 ,
故 , , ,
故棱锥 外接球可以转化为分别以六条棱为面对角线的长方体的外接球,
设长方体的长宽高分别为 , , ,
则 , , ,
即 ,
即长方体的外接球半径 满足:
,
故三棱锥 外接球的表面积为
。
故选:D
【点睛】本题主要考查了多面体的外接球问题、球的表面积公式,属于中档题.
(1)求数列 的通项公式;
(2)若 , 为数列 的前 项和,当 对于任意的 恒成立时,求实数 的取值范围。
【答案】(1) ;(2)
【解析】
【分析】
(1)根据等比中项列出等式,即可求出等差数列 的公差,从而求出数列 的通项公式;
(2)根据 的形式可变形为 ,由裂项相消法可求出 ,再根据恒成立问题的解法即可求出.
A. 7B. 6C。 5D。 4
【答案】C
【解析】
【分析】
根据题意可求出等差数列 的通项公式,再根据邻项变号法(或二次函数法)即可求出.
【详解】设等差数列 的公差为 ,由 可得, ,解得 ,所以 .当 取最小值时, ,即 ,
解得 ,而 ,所以 .
故选:C.
【点睛】本题主要考查等差数列 的前 项和最小值的求法应用,属于基础题.
(Ⅱ)由 ,得 .当 时, .来自当 时,,∴ ,
两式相减得 ,
∴ 。
综上可得 .
【解析】
【详解】(Ⅰ)设等差数列 公差为 ,由 得: ,所以 ,即 ,所以 .
(Ⅱ)由 ,得 .所以 ,
当 时, ;
当 时, ,
即
21.在 中,内角 的对边分别是 ,向量 , ,若 ,
(1)求角 的大小;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年黑龙江省哈师大附中高一第二学期期末数学试卷一、选择题(共12小题).1.若a>b,则下列各式中正确的是()A.ac>bc B.ac2>bc2C.a+c2>b+c2D.2.过点(0,1)且与直线2x﹣y+1=0垂直的直线方程是()A.x+2y﹣1=0B.x+2y﹣2=0C.2x﹣y﹣1=0D.2x﹣y﹣2=0 3.设,则=()A.(4,1)B.(4,﹣1)C.(﹣4,1)D.(﹣4,﹣1)4.圆锥的底面直径为2,它的侧面展开图是一个半圆,则该圆锥的高为()A.B.2C.D.45.已知向量,满足||=1,•=﹣1,则•(2﹣)=()A.0B.2C.3D.46.已知x,y>0且x+4y=1,则的最小值为()A.8B.9C.10D.117.设等差数列{a n}的前n项和为S n,若S3=9,S9=72,则S6=()A.27B.33C.36D.458.矩形ABCD中,AB=2,AD=1,E,F分别是边AB,CD的中点,将正方形ADFE沿EF折到A1D1FE位置,使得二面角A1﹣EF﹣B的大小为120°,则异面直线A1F与CE 所成角的余弦值为()A.B.C.D.9.某几何体的三视图如图所示,则该几何体的表面积为()A.B.C.D.10.在正项等比数列{a n}中,a22+a42=900﹣2a1a5,a6=9a4,则a2022的个位数字是()A.1B.3C.7D.911.刘徽注《九章算术•商功》“斜解立方,得两堑堵.斜解堑堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.合两鳖臑三而一,验之以棊,其形露矣.”如图一解释了由一个长方体得到“堑堵”、“阳马”、“鳖臑”的过程.堑堵是底面为直角三角形的直棱柱;阳马是一条侧棱垂直于底面且底面为矩形的四棱锥;鳖臑是四个面都为直角三角形的四面体.在如图二所示由正方体得到的堑堵ABC﹣A1B1C1中,当点P在下列三个位置:A1A中点、A1B中点、A1C中点时,分别形成的四面体P﹣ABC中,鳖臑有()A.0个B.1个C.2个D.3个12.已知△ABC的内角A,B,C的对边分别为a,b,c,且.M为△ABC内部的一点,且a+b+c=,若=λ+μ,则的最小值为()A.B.C.D.1二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.直线x﹣y+a=0的倾斜角为.14.已知{a n}为等差数列,其公差为2,且a7是a3与a9的等比中项,S n为{a n}前n项和,则S10的值为.15.圆O为△ABC的外接圆,半径为2,若+=2,且||=||,则向量在向量方向上的投影为.16.已知正四棱柱ABCD﹣A1B1C1D1的底面边长,侧棱长,它的外接球的球心为O,点M是AB的中点,点P是球O上任意一点,下列四个结论:①线段PM的长度最大值是9;②存在过点M的平面,截球O的截面面积是7π;③过点M的平面截球O所得截面面积最小时,B1C1平行该截面;④过点M的平面截球O所得截面面积最大时,B1C垂直该截面.其中正确的结论序号是.(写出所有正确的结论序号).三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.设直线l经过点A(1,0),且与直线3x+4y﹣12=0平行.(Ⅰ)求直线l的方程;(Ⅱ)若点B(a,1)到直线l的距离小于2,求实数a的取值范围.18.已知函数f(x)=|x+1|+|x﹣2|.(Ⅰ)求关于x的不等式f(x)<4的解集;(Ⅱ)如果关于x的不等式f(x)<a的解集不是空集,求实数a的取值范围.19.正三棱柱ABC﹣A1B1C1中,M是棱AC的中点.(Ⅰ)求证:AB1∥平面BC1M;(Ⅱ)设AB=2,AA1=,求点A1到平面BC1M的距离.20.已知数列{a n}的前n项和为S n,且满足S n=﹣a n+,n∈N*.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令,记数列的前n项和为T n,求证:.21.四棱锥P﹣ABCD中,侧面PAB为正三角形,底面ABCD是正方形,且平面PAB⊥平面ABCD,E,F分别为PB,BC中点,AB=2.(Ⅰ)求证:平面AEF⊥平面PBC;(Ⅱ)棱AD上是否存在点M,使得BM与平面PAD所成角为45°?若存在,求AM 的长度;若不存在,说明理由.22.已知等比数列{a n}的前n项和为S n,a1=1,且S3=3S2+1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{a n}为递增数列,数列{b n}满足b n=(n∈N*),求数列b n的前n项和T n;(Ⅲ)在条件(Ⅱ)下,若不等式2λnT n﹣﹣2nλ+b n<0对任意正整数n都成立,求λ的取值范围.参考答案一、选择题(共12小题).1.若a>b,则下列各式中正确的是()A.ac>bc B.ac2>bc2C.a+c2>b+c2D.【分析】由a>b,根据不等式的基本性质即可得出结论.解:由a>b,可得ac与bc大小关系不确定,ac2≥bc2,a+c2>b+c2,与的大小关系不确定.因此只有C确定.故选:C.2.过点(0,1)且与直线2x﹣y+1=0垂直的直线方程是()A.x+2y﹣1=0B.x+2y﹣2=0C.2x﹣y﹣1=0D.2x﹣y﹣2=0【分析】由已知直线的斜率可得所求直线的斜率,再由直线方程的斜截式得答案.解:∵所求直线与直线2x﹣y+1=0垂直,而直线2x﹣y+1=7的斜率为2,∴所求直线的斜率为﹣,由所求直线过点(0,1),故选:B.3.设,则=()A.(4,1)B.(4,﹣1)C.(﹣4,1)D.(﹣4,﹣1)【分析】可以得出,然后带人的坐标,进行向量坐标的减法和数乘运算即可.解:=.故选:D.4.圆锥的底面直径为2,它的侧面展开图是一个半圆,则该圆锥的高为()A.B.2C.D.4【分析】若圆锥的侧面展开图是半圆,则圆锥的母线长为底面半径的2倍,求出圆锥的母线长为l=2,由此能求出圆锥的高.解:若圆锥的侧面展开图是半圆,则圆锥的母线长为底面半径的2倍,∴圆锥的母线长为l=2,故选:A.5.已知向量,满足||=1,•=﹣1,则•(2﹣)=()A.0B.2C.3D.4【分析】根据平面向量数量积的运算法则即可得解.解:•(2﹣)=2﹣•=2×1﹣(﹣5)=3.故选:C.6.已知x,y>0且x+4y=1,则的最小值为()A.8B.9C.10D.11【分析】由=()(x+4y),展开多项式乘多项式,然后利用基本不等式求最值.解:∵x,y>0且x+4y=1,∴=()(x+4y)=1+4+.∴的最小值为8.故选:B.7.设等差数列{a n}的前n项和为S n,若S3=9,S9=72,则S6=()A.27B.33C.36D.45【分析】由题意利用等差数列的性质,求出S6的值.解:∵等差数列{a n}的前n项和为S n,若S3=9,S5=72,∴S3,S6﹣S3,S9﹣S6成等差数列,故2(S6﹣S6)=S3+S9﹣S6 ,故选:B.8.矩形ABCD中,AB=2,AD=1,E,F分别是边AB,CD的中点,将正方形ADFE沿EF折到A1D1FE位置,使得二面角A1﹣EF﹣B的大小为120°,则异面直线A1F与CE 所成角的余弦值为()A.B.C.D.【分析】以E为原点,在平面A1EB中,过E作EB的垂线为x轴,EB为y轴,EF为z轴,建立空间直角坐标系,利用向量法能求出异面直线A1F与CE所成角的余弦值.解:矩形ABCD中,AB=2,AD=1,E,F分别是边AB,CD的中点,将正方形ADFE沿EF折到A1D1FE位置,使得二面角A5﹣EF﹣B的大小为120°,A1(,﹣,0),F(5,0,1),C(0,1,1),E(3,0,0),设异面直线A1F与CE所成角为θ,∴异面直线A1F与CE所成角的余弦值为.故选:D.9.某几何体的三视图如图所示,则该几何体的表面积为()A.B.C.D.【分析】首先把三视图转换为直观图,进一步求出几何体的表面积.解:根据几何体的三视图转换为直观图为:该几何体为四棱锥体,如图所示:根据三角形的面积公式:S表=S四边形ABCD+S△SAB+S△SBC+S△SDC+S△SAD,=.故选:D.10.在正项等比数列{a n}中,a22+a42=900﹣2a1a5,a6=9a4,则a2022的个位数字是()A.1B.3C.7D.9【分析】由已知结合等比数列的性质及通项公式可求q及a2,进而可求a2022,然后根据个位数周期性出现即可求解.解:∵正项等比数列{a n}中,∵+=900﹣7a1a5=900﹣2a2a4,∴=900,故a2+a8=30.再根据a2•(1+q2)=30,求得,a2=3.a2022=a2•q2020=32021=3505×4+3,故a2022的尾数即为3的尾数,故选:B.11.刘徽注《九章算术•商功》“斜解立方,得两堑堵.斜解堑堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.合两鳖臑三而一,验之以棊,其形露矣.”如图一解释了由一个长方体得到“堑堵”、“阳马”、“鳖臑”的过程.堑堵是底面为直角三角形的直棱柱;阳马是一条侧棱垂直于底面且底面为矩形的四棱锥;鳖臑是四个面都为直角三角形的四面体.在如图二所示由正方体得到的堑堵ABC﹣A1B1C1中,当点P在下列三个位置:A1A中点、A1B中点、A1C中点时,分别形成的四面体P﹣ABC中,鳖臑有()A.0个B.1个C.2个D.3个【分析】设正方体的棱长为a,分别计算出三种情况下四面体的各边长,结合线面垂直的性质以及勾股定理可判断每种情况下各个三角形是否为直角三角形,即可选出正确答案.解:设正方体的棱长为a,则由题意知,∠PAC=∠PAB=90°,∠ABC=90°,,又BC=a,当P为A1B的中点时,因为BC⊥面ABB1A1,那么△PAB是直角三角形,则又BC=a,由勾股定理可知,△PBC不是直角三角形,则此时当P为A1C的中点时,此时,又△PAC不是直角三角形,则此时P﹣ABC不是鳖臑;故选:B.12.已知△ABC的内角A,B,C的对边分别为a,b,c,且.M为△ABC内部的一点,且a+b+c=,若=λ+μ,则的最小值为()A.B.C.D.1【分析】由a+b+c=,可得=+,然后用含a、b、c的式子分别表示出λ和μ,得到=+1,再在△ABC中,结合余弦定理和基本不等式的性质,得到≥,进一步求出的最小值.解:∵a+b+c=,∴a=b+c=b(﹣)+c(﹣),∵=λ+μ,∴λ=,μ=,在△ABC中,由余弦定理知,a2=b2+c2﹣5bc•cos A=b2+c2+bc=,∴a2≥(b+c)2﹣×=(b+c)2,∴=+1≥+1=.故选:A.二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.直线x﹣y+a=0的倾斜角为60°.【分析】由直线的倾斜角α与斜率k的关系,可以求出α的值.解:设直线x﹣y+a=0的倾斜角是α,则直线的方程可化为y=x+a,∵2°≤α<180°,故答案为60°.14.已知{a n}为等差数列,其公差为2,且a7是a3与a9的等比中项,S n为{a n}前n项和,则S10的值为﹣110.【分析】由等比数列的中项性质和等差数列的通项公式,解方程可得首项,再由等差数列的求和公式,计算可得所求和.解:{a n}为等差数列,其公差为2,由a7是a3与a9的等比中项,可得a74=a3a9,即(a1+12)2=(a1+7)(a1+16),则S10=10×(﹣20)+×10×8×2=﹣110.故答案为:﹣110.15.圆O为△ABC的外接圆,半径为2,若+=2,且||=||,则向量在向量方向上的投影为3.【分析】由△ABC外接圆圆心O满足,可得点O在BC上.由于.可得△OAC是等边三角形.可得,进而得到向量在方向上的投影=.解:△ABC外接圆半径等于2,其圆心O满足,∴点O在BC上,∴∠BAC=90°.∴△OAC是等边三角形.∴=2.故答案为:3.16.已知正四棱柱ABCD﹣A1B1C1D1的底面边长,侧棱长,它的外接球的球心为O,点M是AB的中点,点P是球O上任意一点,下列四个结论:①线段PM的长度最大值是9;②存在过点M的平面,截球O的截面面积是7π;③过点M的平面截球O所得截面面积最小时,B1C1平行该截面;④过点M的平面截球O所得截面面积最大时,B1C垂直该截面.其中正确的结论序号是②.(写出所有正确的结论序号).【分析】球心O在体对角线的中点,求出球的半径,然后求OM的长+半径,即可判断①;过点M的平面截球O所得截面面积最小时,即OM垂直于截面,此时该截面圆的面积恰好为7π,由图可判断可判断OM与B1C1异面且不垂直,可得此时B1C1不平行该截面,可判断②③;过点M的平面截球O所得截面面积最大时,即为过球心的大圆面,可为截面ABC1D1,显然B1C与BC1不垂直,即可判断④.解:对于①,由题意可知球心O在体对角线的中点,直径为=8,即球半径是4,故①错误;面积为5π,由图可得OM与B1C1异面且不垂直,所以此时B1C1不平行该截面,故②正确,③错误;显然B1C与BC4不垂直,故④错误.故答案为:②.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.设直线l经过点A(1,0),且与直线3x+4y﹣12=0平行.(Ⅰ)求直线l的方程;(Ⅱ)若点B(a,1)到直线l的距离小于2,求实数a的取值范围.【分析】(Ⅰ)设直线l的方程为3x+4y+c=0,把A(1,0)代入,能求出直线l的方程.(Ⅱ)由点B(a,1)到直线l:3x+4y﹣3=0的距离小于2,利用点到直线的距离公式列出不等式,能求出实数a的取值范围.解:(Ⅰ)∵直线l经过点A(1,0),且与直线3x+4y﹣12=6平行.∴设直线l的方程为3x+4y+c=0,∴直线l的方程为2x+4y﹣3=0.∴d=<2,∴实数a的取值范围是(﹣,3).18.已知函数f(x)=|x+1|+|x﹣2|.(Ⅰ)求关于x的不等式f(x)<4的解集;(Ⅱ)如果关于x的不等式f(x)<a的解集不是空集,求实数a的取值范围.【分析】(Ⅰ)先将f(x)写为分段函数的形式,然后根据f(x)<4,利用零点分段法解不等式即可;(Ⅱ)由(Ⅰ)知,f(x)min=3,然后根据条件可知,只需a>f(x)min即可.解:(Ⅰ)f(x)=|x+1|+|x﹣2|=.∵f(x)<4,∴或﹣1≤x≤2或,∴,(Ⅱ)由(Ⅰ)知,f(x)min=3.∴a>f(x)min=3,∴a的取值范围为(8,+∞).19.正三棱柱ABC﹣A1B1C1中,M是棱AC的中点.(Ⅰ)求证:AB1∥平面BC1M;(Ⅱ)设AB=2,AA1=,求点A1到平面BC1M的距离.【分析】(Ⅰ)连结B1C,交BC1于点N,连结MN,则MN∥AB1,由此能证明AB1∥平面BC1M.(Ⅱ)以A为原点,在平面ABC中过A作AC的垂线为x轴,AC为y轴,AA1为z轴,建立空间直角坐标系,利用向量法能求出点A1到平面BC1M的距离.解:(Ⅰ)证明:正三棱柱ABC﹣A1B1C1中,M是棱AC的中点.由正三棱柱的性质得四边形BCC1B2是矩形,连结MN,则MN∥AB1,∴AB1∥平面BC1M.AC为y轴,AA1为z轴,建立空间直角坐标系,=(,0,0),=(0,1,),=(0,﹣1,),则,取y=,得=(3,,﹣1),∴点A1到平面BC1M的距离d===.20.已知数列{a n}的前n项和为S n,且满足S n=﹣a n+,n∈N*.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令,记数列的前n项和为T n,求证:.【分析】(Ⅰ)直接利用数列的递推关系式求出数列的通项公式.(Ⅱ)利用裂项相消法和放缩法的应用求出结果.解:(Ⅰ)数列{a n}的前n项和为S n,满足S n=﹣a n+,①当n=5时,,解得a1=1.①﹣②得,所以=.所以=,则=.21.四棱锥P﹣ABCD中,侧面PAB为正三角形,底面ABCD是正方形,且平面PAB⊥平面ABCD,E,F分别为PB,BC中点,AB=2.(Ⅰ)求证:平面AEF⊥平面PBC;(Ⅱ)棱AD上是否存在点M,使得BM与平面PAD所成角为45°?若存在,求AM 的长度;若不存在,说明理由.【分析】(Ⅰ)由已知可得AE⊥PB,再由底面ABCD是正方形,平面PAB⊥平面ABCD,利用平面与平面垂直的性质可得BC⊥平面PAB,进一步得到BC⊥AE,然后由直线与平面垂直的判定可得AE⊥平面PBC,从而得到平面AEF⊥平面PBC;(Ⅱ)取PA中点G,连接BG,同(Ⅰ)可证BG⊥平面PAD,假设棱AD上存在点M,使得BM与平面PAD所成角为45°,连接BM,GM,得到GM=BG=,求解直角三角形可得AM.解:(Ⅰ)证明:∵△PAB为等边三角形,E为PB的中点,∴AE⊥PB.∵底面ABCD是正方形,∴BC⊥AB,∴BC⊥平面PAB,则BC⊥AE,∴AE⊥平面PBC,而AE⊂平面AEF,(Ⅱ)取PA中点G,连接BG,同(Ⅰ)可证BG⊥平面PAD.则∠BGM为BM与平面PAD所成角为45°,则GM=BG,在Rt△GAM中,由GM=,GA=1,得AM=.故棱AD上存在点M,使得BM与平面PAD所成角为45°,AM的长度为.22.已知等比数列{a n}的前n项和为S n,a1=1,且S3=3S2+1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{a n}为递增数列,数列{b n}满足b n=(n∈N*),求数列b n的前n项和T n;(Ⅲ)在条件(Ⅱ)下,若不等式2λnT n﹣﹣2nλ+b n<0对任意正整数n都成立,求λ的取值范围.【分析】(Ⅰ)设公比为q,由等比数列的通项公式,解方程可得q,进而得到所求通项公式;(Ⅱ)由题意可得,,由数列求和的错位相减法,结合等比数列的求和公式,计算可得所求和;(Ⅲ)由题意得恒成立,设,再利用作差法求数列{c n}的单调性,进而求出数列c n的最大值即可.解:(Ⅰ)设等比数列{a n}的公比为q,∵S3=3S2+1,又因为a1=1,所以q5﹣2q﹣3=0,当q=8时,;当q=﹣1时,.,两式相减,化简得到,(Ⅲ)∵,设,那么当n=1时c n+8>c n;当n≥2时c n+1<c n,∴,故λ的取值范围为.。