硬盘结构图

合集下载

硬 盘

硬  盘

2.SCSI接口的硬盘 SCSI(Small Computer System Interface,小型计算机 系统接口)最早研制于20世纪70年代末。经过不断的发展, 今天的SCSI已划分为SCSI-1,SCSI-2以及最新的SCSI-3三 个类型。不过,目前最为流行的版本是SCSI-2。
目前,SCSI硬盘接口有三种,分别是50针、68针和 80针。我们常见的硬盘型号上标有“N”“W”“SCA”,就 是表示接口针数的。N即窄口(Narrow),50针;W即宽 口(Wide),68针;SCA即单接头(Single ConnectorAttachment),80针。其中80针的SCSI硬盘一 般支持热插拔。
四、硬盘的主要参数 硬盘的主要参数有磁头数、柱面、每磁道扇区数和 交错因子。 (1)磁头数。硬盘的每一个盘片均有两个磁面,每 个磁面都有一个磁头,磁头数的多少与硬盘内部的盘片 数有关。一般情况下,磁头数数量是盘片数的两倍。 (2)柱面。硬盘由一组重叠的盘片组成,每个盘面 都被划分为数量相等的磁道,最外圈是0磁道,内部的磁 道编号依次加1。具有相同磁道编号的磁道形成一个圆柱, 因而磁道数就等于柱面数。
图5.1.6 浮动磁头装置
3.主轴组件 主轴组件包括轴承、马达等。用户存取的资料是通过 马达的转动被带到磁头下方的,因而马达的转速越快,用 户存取数据的时间就越短,磁盘马达的转速决定了硬盘最 终的速度。
三、硬盘的性能指标 我们只有熟悉硬盘的性能指标,才能根据这些指标 来判断硬盘品质的优劣,硬盘的性能指标很多,其中主 要的几个性能指标如下: (1)主轴转速。硬盘主轴马达带动盘片高速旋转, 产生浮力使磁头源浮在盘片上方,将所要存取资料的扇 区带到磁头下方来进行数据的存取。转速越快,数据传 输率就越高,硬盘性能就越好。目前的硬盘转速有5 400 r/m和7 200 r/m,也有一些高端硬盘达到了10 000 r/m,甚 至15 000 r/m。

硬盘物理结构

硬盘物理结构

硬盘物理结构先看下硬盘物理结构1 硬盘物理结构硬盘物理上主要是盘片、机械手臂、磁头、和主轴等组成. 在盘片逻辑划分上又分为磁道、扇区, 例如下图:2 盘片磁道、扇区磁道:当硬盘盘片旋转时, 磁头若保持在一个位置上, 则磁头会在盘片表面划出一个圆形轨迹, 这些圆形轨迹就叫做磁道. 以盘片中心为圆心, 由此可以划分出很多磁道来, 这些磁道用肉眼是根本看不到的, 因为它们仅是盘面上以特殊方式磁化了的一些磁化区, 硬盘上的信息便是沿着这样的轨道存放的, 盘片上的磁道由外向内依次从“0”开始进行编号.柱面:由于硬盘可以由很多盘片组成, 不同盘片的相同磁道就组成了柱面(cylinder), 如图1所示.磁头:假设有N个盘片组成的硬盘, 那么有2N个盘面(一个盘片有2面), 那么磁头也就有2N个, 即每个盘面有一个磁头.扇区:早期的硬盘盘片的盘面以圆心开始向外放射状将磁道分割成等分的弧段, 这些弧段便是硬盘的扇区(如图2). 每个扇区一般规定大小为512byte, 这里大家应该比较疑惑, 外圈周长很明显比内圈要长, 怎么可能每个扇区都是512byte?其实答案早期硬盘外圈存储比内圈存储密度低一些, 所以外圈很长但是仍然只能存储512byte, 因此如果我们知道了柱面数(磁道数) Cylinders、磁头数Heads、扇区数Sectors, 基本上硬盘的容量我们能够计算出来硬盘总容量= Cylinders * Heads * Sectors * 512byte. 但是由于早期硬盘外圈密度低, 导致盘片利用率不高, 现在的硬盘盘片则采用内外存储密度一致的方式, 每个磁道都划分成以512byte大小的弧段, 这样也造成了内外磁道上扇区数量会不一样, 外圈上的扇区数要多于内圈扇区数.硬盘寻址方式硬盘存取、读取数据, 首先要做的就是寻址, 即定位到数据所在的物理地址, 在硬盘上就要找到对应的柱面、磁头以及对应的扇区, 那么怎么寻址呢?有两种方式: CHS和LBACHS模式:CHS(Cylinder/Head/Sector)寻址模式也称为3D模式, 是硬盘最早采用的寻址模式, 它是在硬盘容量较小的前提下产生的.硬盘的C/H/S 3D参数既可以计算出硬盘的容量, 也可以确定数据所在的具体位置. 这是因为扇区的三维物理地址与硬盘上的物理扇区一一对应, 即三维物理地址可完全确定硬盘上的物理扇区. 三维物理地址通常以C/H/S的次序来书写, 如C/H/S为0/1/1, 则第一个数字0指0柱面, 第二个数字1指1磁头(盘面), 第三个数字1指1扇区, 表示该数据位于硬盘1盘面上的0磁道1扇区. 现在定位已完成, 硬盘内部的参数和主板BIOS之间进行协议, 正确发出寻址信号, 从而正确定位数据位置.早期硬盘一个磁道上分63个扇区, 物理磁头最多16个(8个盘片, 盘片多了硬盘那就真要加厚了). 采用8位寻址方式, 8位二进制位的最大值是256(0-255), 可以表示磁头数, 而扇区只有63个(1-63), 只需要其中6个二进制位即可表示, 剩下2位拿去表示柱面, 柱面数用10(8+2)位来表达, 达到1024个柱面(0-1023), 因此总扇区数(1024×16×63). 前面说一个扇区大小为512byte, 这也就是说, 如果以C/H/S寻址模式寻址, 则IDE硬盘的最大容量只能为1024×16×63×512B= 500MB左右.可以思考下, 在8位寻址模式下, 其实可以寻址的硬盘最大容量为1024×256×63×512B =8G,那为啥CHS模式硬盘只支持到500MB呢?原因很简单, 我们的硬盘盘片不可能让128片盘片重叠起来吧, 那会是多厚??如果采用28位寻址方式, 那么可以寻址137G, 盘片也不可能一直堆叠下去.LBA(Logical Block Addressing)经常去买硬盘的人都知道, 目前硬盘经常都说单碟、双碟, 其实意思就是说硬盘盘片只有1个或者2个, 而且都只是用一面, 单碟一个磁头而已, 但是硬盘容量确是几百G, 而且硬盘柱面往往都大于1024个柱面, CHS是无法寻址利用完这些硬盘容量的.另外由于老硬盘的扇区划分方式对硬盘利用率不高, 因此出现了现在的等密度盘, 外圈的扇区数要比内圈多, 原来的3D寻址方式也就不能适应这种方式, 因此也就出现了新的寻址方式LBA, 这是以扇区为单位进行的线性寻址方式, 即从最外圈柱面0开始, 依次将扇区号编为0、1….等等, 举个例子, 假设硬盘有1024个柱面, 由于是等密度硬盘, 柱面0(最外圈)假设有128个扇区, 依次编号为0-127, 柱面1有120个扇区, 则依次编号为127-246, …..依次最内圈柱面127只有扇区64个, 则编号到最后.因此要定位到硬盘某个位置, 只需要给出LBA 数即可, 这个就是逻辑数.在LBA 模式下, 为了保留原来CHS时的概念, 也可以设置柱面、磁头、扇区等参数, 但是他们并不是实际硬盘的物理参数, 只是为了计算方便而出的一个概念, 1023之前的柱面号都一一物理对应, 而1023以后的所有柱面号都记录成1023磁头最大数可以设置为255, 而扇区数一般是每磁道63个, 硬盘控制器会把由柱面、磁头、扇区等参数确定的地址转换为LBA 数. 这里我们再此明确两个概念:物理扇区号:一般我们称CHS模式下的扇区号为物理扇区号, 扇区编号开始位置是1逻辑扇区号:LBA下的编号, 扇区编号是从0开始.CHS模式转换到逻辑扇区号LBA计算公式LBA(逻辑扇区号)=磁头数×每磁道扇区数×当前所在柱面号+ 每磁道扇区数×当前所在磁头号+ 当前所在扇区号–1例如: CHS=0/0/1, 则根据公式LBA=255 ×63 ×0 + 63 ×0 + 1 –1= 0也就是说物理0柱面0磁头1扇区, 是逻辑0扇区.硬盘分区我们知道, 一般使用硬盘, 我们首先会对硬盘进行分区, 然后对分区使用某个文件系统格式(NTFS、FAT、ext2/ext3)进行分区格式化, 然后才能正常使用. 那么分区是怎么回事呢?我们常见的windows中说到的c、d、e盘是怎么划分出来的呢?其实, 在装windows系统过程中, 一般我们只需要填写每个分区的大小, 看不出来分区过程的实际工作情况, 我们可以从linux系统分区过程反而能反应底层实际分区情况.柱面是分区的最小单位, 即分区是以某个某个柱面号开始到某个柱面号结束的.如图, 柱面1~200我们可以分为一个区, 柱面201~500再划分为一个区, 501~1000再划分为一个区, 以此类推. 大家可以看到, 柱面0没有在任何分区里面, 为何?这里说说, 前面说到硬盘从外圈(柱面0)到内圈扇区是依次编号, 看似各个扇区没有什么区别, 但是这里硬盘的柱面0的第一个扇区(逻辑扇区0, CHS表示应该是0/0/1)却是最重要的, 因为硬盘的第一个扇区记录了整个硬盘的重要信息, 第一个扇区(512个字节)主要记录了两部分:①MBR(Master Boot Record): 主引导程序就放在这里, 主引导程序是引导操作系统的一个程序, 但是这部分只占446字节.②DPT(Disk Partition table): 硬盘分区表也在这里, 分区表就是用来记录硬盘的分区情况的, 例如c盘是1~200柱面, d盘是201~500柱面, 分区表总共只占64字节, 可以看出, 分区其实很简单, 就是在这个表里面修改一下记录就重新分区了, 但是由于只有64字节, 而一条记录就要占用16字节, 这个分区表最多只能记录4个分区信息, 为了继续分出更多分区来, 引入了扩展分区的概念, 也就是说, 在这4个分区中, 可以使用其中一条记录来记录扩展分区的信息, 然后在扩展分区中再继续划分逻辑分区, 而逻辑分区的分区记录则记录在扩展分区的第一个扇区中, 如此则可以像链表一样划分出很多分区来. 但是请注意, 一个分区表中可以有1~4条主分区, 但是最多只能有1个扩展分区.举例, 主分区可以是P1:1~200, 扩展分区P2: 2~1400, 扩展分区开始的第一个扇区可以用来记录扩展分区中划分出来的逻辑分区.分区表链分区表之间是如何关联的, 详细讲一下, 分区表是一个单向链表, 第一个分区表, 也就是位于硬盘第一个扇区中的DPT, 可以有一项记录扩展分区的起始位置柱面, 类似于指针的概念, 指向扩展分区(图3), 根据这项记录我们可以找到扩展分区的某柱面0磁头1扇区(CHS), 而这个扇区中又存放了第二个分区表, 第二个分区表第一项记录一般表述了当前所在的逻辑分区的起始/终止柱面, 第二项记录表述了下一个逻辑分区所在的0磁头1扇区(CHS),第三、第四项记录不存任何信息(图4).请看下图, 主引导记录/分区表所在的是硬盘第一个分区, 基本分区1、基本分2、基本分区3都是主分区、扩展分区内有2个逻辑分区, 每个逻辑分区的第一个扇区都是分区表, 至于引导扇区(DBR), 在系统启动一节中会提及.系统启动:之前提到MBR中安装的引导加载程序, 他的作用是什么?①提供开机菜单选项: 可以供用户选择启动哪个操作系统, 这是多重引导功能.②加载操作系统内核: 每个操作系统都有自己的内核, 需要引导程序来加载③转交给其他引导程序: 可以将工作移交给其他引导程序来进行上述操作.其实引导加载程序除了可以安装在MBR中, 还可以直接安装在每个分区的引导扇区(DBR)中, 注意下, 每个分区(主分区、逻辑分区)都有一个自己的启动扇区, 专门用来安装引导加载程序, 如上图标3结构图.系统启动过程:①首先,BIOS启动后, 读取硬盘第一个扇区MBR中的引导加载程序(可能是windows或者linux 的grub)②MBR中的引导程序提供开机菜单, 你可以选择1)直接加载windows 内核2)将工作转交给windows 分区内的引导扇区中的加载程序, 让他自己去加载内核3)转交给linux分区内引导扇区, 让他去加载linux.③根据用户选择的选项和引导加载程序中记录的分区, 到分区表找对应的分区柱面号等分区信息, 启动内核或者分区加载程序.Window安装时默认会自动将MBR和windows所在分区的引导扇区都装上引导程序, 而不会提供任何选项给用户选择, 因此如果之前装过其他操作系统, 然后再另外装一个windows时, 会把公用的MBR覆盖掉, 如此, 原来的操作系统就无法启动了. 如果先装windows, 然后装linux, linux会覆盖MBR, 然后让用户选择是否将windows等其他操作系统的启动项添加进来, 如果你选择了添加进来, 那么你在开机时就会有两个选项让用户进行选择了.后记l 这里讨论的全部是硬盘相关的东西, 光盘不在此列, 而且光盘的磁道并不是从外圈到内圈编号, 而是从内圈开始编号, 这点注意.l 硬盘第一个扇区是由MBR和分区表占据, 因此0柱面0磁头上剩下的62个扇区一般会空出来保留(这部分保留称为隐藏扇区, 因为操作系统读取不到这部分扇区, 这部分扇区是提供给BIOS读取的), 而系统分区则从0柱面1磁头1扇区开始, 折算成LBA=255 ×63 ×0 + 63 ×1 + 1 –1= 63, 即从LBA 63号扇区开始分区. 不过查阅有的资料提及到另外一种说法, 那就是有的硬盘可能0柱面全部空下来, 如果真是这样, 那浪费可就真的大了.l 对于扩展分区的分区表我们知道也是由扩展分区的第一个扇区开始写, 而且是写到每个逻辑驱动器的第一个扇区, 同样, 扩展分区内的第一个扇区所在的磁道剩余的扇区也会全部空余出来, 这些保留的扇区操作系统也是无法读取的, 注意在扩展分区的第一个扇区里面是没有引导加载记录的. 引导加载记录都是放在隐藏扇区后面的. 可以看图3, 图4。

外存储器

外存储器

基于DRAM的固态硬盘:采用DRAM作为存储介质,它仿效传统 硬盘的设计,它是一种高性能的存储器,而且使用寿命很长, 美中不足的是需要独立电源来保护数据安全。DRAM固态硬盘属 于比较非主流的设备,主要用于服务器中。
第五章 外存储器
5.1.5 固态硬盘(SSD)
优点: 读写速度快:采用闪存作为存储介质,读取速度相对机械硬 盘更快。固态硬盘不用磁头,寻道时间几乎为0。固态硬盘的快 绝不仅仅体现在持续读写上,随机读写速度快才是固态硬盘的 终极特色,这最直接体现在绝大部分的日常操作中。最常见的 7200转机械硬盘的寻道时间一般为12-14毫秒,而SSD可达到0.1 毫秒甚至更低。
第五章 外存储器
5.2.4
1.保持光驱、光盘清洁;
2.定期清洁保养激光头; 3.保持光驱水平放置;
光驱的维护
4.养成关机前及时取盘的习惯; 5.减少光驱的工作时间; 6.少用盗版光盘,多用正版光盘; 7.正确开关盘盒; 8.利用程序进行开关盘盒;
9.谨慎小心维修;
10.尽量少放影碟;
第五章 外存储器
固态硬盘的存储介质分为两种,一种是采用闪存 (FLASH芯片)作为存储介质,另外一种是采用DRAM 作为存储介质。
第五章 外存储器
5.1.5 固态硬盘(SSD)
基于闪存类 基于闪存的固态硬盘:采用FLASH芯片作为存储介质,这也是 通常所说的SSD。它的外观可以被制作成多种模样,例如:笔记 本硬盘、微硬盘、存储卡、U盘等样式。这种SSD固态硬盘最大 的优点就是可以移动,而且数据保护不受电源控制,能适应于 各种环境,但是使用年限不高,适合于个人用户使用。 基于DRAM类
第五章 外存储器
5.4.2 软盘驱动器
1976年世界上第一台5.25英寸软盘驱动器由Shugart Assaciates公司为IBM的大型机研发成功,1980年索尼公司推出 了3.5英寸软驱,1.44MB、125KB/s传输速度、300rpm转速、 容易损坏。

第2章 预备知识-硬盘结构

第2章  预备知识-硬盘结构

偏移字节 0x01BE 0x01BF 0x01C0 0x01C1 0x01C2
字段长度 BYTE BYTE WORD 6位 10位 BYTE
值 0x80 0x01 0x01 0x00 0x07
字段名和定义 引导指示符号(Boot Indicator) 起始磁头号(Start Head) 起始扇区号(Start Sector) 起始柱面号(Start Cylinder) 系统ID(System ID),定义了分区的类型
值 0x80 0x01 0x01 0x00 0x07 0xFE 0xBF 0xFC 0x0000003F 0x00BB867E
字段名和定义 引导指示符号(Boot Indicator) 起始磁头号(Start Head) 起始扇区号(Start Sector) 起始柱面号(Start Cylinder) 系统ID(System ID),定义了分区的类型 结束磁头号(End Head) 结束扇区号(End Sector) 结束柱面号(End Cylinder) 相对扇区数(Relative Sectors) 总扇区数(Total Sectors),该分区中扇区总数
偏移字节 0x01BE 0x01BF 0x01C0 0x01C1 0x01C2
字段长度 BYTE BYTE WORD 6位 10位 BYTE
值 0x80 0x01 0x01 0x00 0x07
字段名和定义 引导指示符号(Boot Indicator) 起始磁头号(Start Head) 起始扇区号(Start Sector) 起始柱面号(Start Cylinder) 系统ID(System ID),定义了分区的类型
0x01C3 0x01C4 0x01C5
0x01C6 0x01CA

硬盘内部结构

硬盘内部结构

1、硬盘的组成硬盘大家一定不会陌生,我们可以把它比喻成是我们电脑储存数据和信息的大仓库。

一般说来,无论哪种硬盘,都是由盘片、磁头、盘片主轴、控制电机、磁头控制器、数据转换器、接口、缓存等几个部份组成。

所有的盘片都固定在一个旋转轴上,这个轴即盘片主轴。

而所有盘片之间是绝对平行的,在每个盘片的存储面上都有一个磁头,磁头与盘片之间的距离比头发丝的直径还小。

所有的磁头连在一个磁头控制器上,由磁头控制器负责各个磁头的运动。

磁头可沿盘片的半径方向动作,而盘片以每分钟数千转到上万转的速度在高速旋转,这样磁头就能对盘片上的指定位置进行数据的读写操作。

由于硬盘是高精密设备,尘埃是其大敌,所以必须完全密封。

2、硬盘的工作原理硬盘在逻辑上被划分为磁道、柱面以及扇区.硬盘的每个盘片的每个面都有一个读写磁头,磁盘盘面区域的划分如图所示。

磁头靠近主轴接触的表面,即线速度最小的地方,是一个特殊的区域,它不存放任何数据,称为启停区或着陆区(Landing Zone),启停区外就是数据区。

在最外圈,离主轴最远的地方是“0”磁道,硬盘数据的存放就是从最外圈开始的。

那么,磁头是如何找到“0”磁道的位置的呢?在硬盘中还有一个叫“0”磁道检测器的构件,它是用来完成硬盘的初始定位。

“0”磁道是如此的重要,以致很多硬盘仅仅因为“0”磁道损坏就报废,这是非常可惜的。

早期的硬盘在每次关机之前需要运行一个被称为Parking的程序,其作用是让磁头回到启停区。

现代硬盘在设计上已摒弃了这个虽不复杂却很让人不愉快的小缺陷。

硬盘不工作时,磁头停留在启停区,当需要从硬盘读写数据时,磁盘开始旋转。

旋转速度达到额定的高速时,磁头就会因盘片旋转产生的气流而抬起,这时磁头才向盘片存放数据的区域移动。

盘片旋转产生的气流相当强,足以使磁头托起,并与盘面保持一个微小的距离。

这个距离越小,磁头读写数据的灵敏度就越高,当然对硬盘各部件的要求也越高。

早期设计的磁盘驱动器使磁头保持在盘面上方几微米处飞行。

FAT文件结构

FAT文件结构

一、硬盘的物理结构:硬盘存储数据是根据电、磁转换原理实现的。

硬盘由一个或几个表面镀有磁性物质的金属或玻璃等物质盘片以及盘片两面所安装的磁头和相应的控制电路组成(图1),其中盘片和磁头密封在无尘的金属壳中。

硬盘工作时,盘片以设计转速高速旋转,设置在盘片表面的磁头则在电路控制下径向移动到指定位置然后将数据存储或读取出来。

当系统向硬盘写入数据时,磁头中“写数据”电流产生磁场使盘片表面磁性物质状态发生改变,并在写电流磁场消失后仍能保持,这样数据就存储下来了;当系统从硬盘中读数据时,磁头经过盘片指定区域,盘片表面磁场使磁头产生感应电流或线圈阻抗产生变化,经相关电路处理后还原成数据。

因此只要能将盘片表面处理得更平滑、磁头设计得更精密以及尽量提高盘片旋转速度,就能造出容量更大、读写数据速度更快的硬盘。

这是因为盘片表面处理越平、转速越快就能越使磁头离盘片表面越近,提高读、写灵敏度和速度;磁头设计越小越精密就能使磁头在盘片上占用空间越小,使磁头在一张盘片上建立更多的磁道以存储更多的数据。

二、硬盘的逻辑结构。

硬盘由很多盘片(platter)组成,每个盘片的每个面都有一个读写磁头。

如果有N个盘片。

就有2N个面,对应2N个磁头(Heads),从0、1、2开始编号。

每个盘片被划分成若干个同心圆磁道(逻辑上的,是不可见的。

)每个盘片的划分规则通常是一样的。

这样每个盘片的半径均为固定值R的同心圆再逻辑上形成了一个以电机主轴为轴的柱面(Cylinders),从外至里编号为0、1、2……每个盘片上的每个磁道又被划分为几十个扇区(Sector),通常的容量是512byte,并按照一定规则编号为1、2、3……形成Cylinde rs×Heads×Sector个扇区。

这三个参数即是硬盘的物理参数。

我们下面的很多实践需要深刻理解这三个参数的意义。

三、磁盘引导原理。

3.1 MBR(master boot record)扇区:计算机在按下power键以后,开始执行主板bios程序。

硬盘结构图

硬盘结构图

2扇区
1ቤተ መጻሕፍቲ ባይዱ区
硬盘物理结构及MBR详解
日期:2004.7.18
3.MBR数据结构(0柱面,0磁头,1扇区).
0柱面,0磁头,1扇区起始位置
结束标志: 55 AA (1FEH~1FFH) 2字节
硬盘磁头安全 着陆区
分区表信息 (1BEH~1FDH) 64字节
主引导程序 (0H~1BDH) 446字节
转动轴
硬盘物理结构及MBR详解
日期:2004.7.18
1.结构总图: 转动轴
0磁头
盘片
2磁头
1磁头
移 动 臂
3磁头
4磁头
5磁头
2.俯视图(0磁头)
转动 方向
磁盘边缘
0磁道 1磁道 0扇区 2磁道
MBR起始位置: 0柱面,0磁头,1扇区. 大小为1个扇区(512B) 分为三部分: (1).主引导程序. (2).分区表. (3).结束标志.
说明: 1.主引导程序:共446字节, 包括启动引导程序及出错信息两部分. 2.分区表信息:共64字节,分为四个分区表项,每个表项均为16字节,一般第一表项为主分区信息, 第二表项为扩展分区信息,第三,四表项全为零字节.表项中各字节分配及含义如下: 序号 字节数 数值 含义 主分区为 80( 可自举 ), 扩展分区为 00. 第1字节 80或00 1 2 3 4 5 6 7 8 第2字节 第3,4字节 第5字节 第6字节 第7,8字节 第9~12字节 第13~16字节
3F 00 00 00(第一表项)
00或01
05,06,0B,0F等
于第一表项中表示主分区(即C盘)首扇所在的磁头,扇区,柱面(通常为1头1 扇0柱). 于第二表项中表示扩展分区首扇所在的磁头,扇区,柱面(通常为0头1扇,柱 面号为C盘的终止柱面加1) 于第一表项中表示主分区(即C盘)末扇所在的磁头,扇区,柱面(通常磁头数 为硬盘的磁头数减1,扇区数为63扇,柱面数为C盘的终止柱面) 于第二表项中表示扩展分区末扇(也即整个硬盘的末扇)所在的磁头,扇区, 柱面(通常磁头数为硬盘磁头减1,扇区数为63,柱面数为硬盘柱面数减1) 于第一表项指C盘首扇区之前的隐含扇区数(通常为63), 于第二表项指C盘扇区总数加隐含扇区数(63) 于第一表项为主分区的逻辑扇区总数, 于第二表项为扩展分区的逻辑扇区总数.

硬盘硬盘硬盘

硬盘硬盘硬盘

硬盘的维护及选购
4.3
硬盘的选购: (1)重视硬盘的单碟容量,因为其值越高,所需要的碟片数量就越少,硬 盘的磁头数量就会减少,发热量也会减少,从而稳定性就越高。 (2)当前主流转速是7200转,比5400转有了不小的提升。 (3)稳定性:购买主流产品,稳定性最高。 (4)缓存:大容量缓存可以很明显的提高硬盘性能。 (5)质保:各品牌的盒装硬盘一般提供三年或五年的质量保证。
吐举止、知识能力等方面做出积极、准确的评价吗? • A 不能B 很难说C 我想可以
• 5 你说话时姿态是否丰富?
• A 偶尔做些手势B 从不指手画脚C 我常用姿势补充 言语表达
• 6 若别人谈到了你兴味索然的话题,你将:
• A 打断别人,另起一题B 显得沉默、忍耐C 仍然认 真听,从中寻找乐趣
• 7 你是否在寒暄之后,很快就能找到双方共同感兴趣的 话题?
• A 是的,对此我很敏锐B 我觉得这很难C 必须经 过较长一段时间才能找到
• 8 你和别人告别时,下次相会的时间地点是: • A对方提出的B谁也没有提这事C我提议的
• 9 你讲话的速度怎么样?
• A频率相当高B十分缓慢C节律适中
• 10 你同他(她)谈话时,眼睛望着何处?
• A直视对方眼睛B看着其他的东西或人C盯着自己的纽扣, 不停玩弄
• 11 会面时你说话的音量总是:
• A 很低,以致别人听得较困难B 柔和而低沉C 声音 高亢热情
• 12 通常第一次交谈,你们分别所占用的时间是:

A 差不多B 他多我少C 我多于他
• 12~22分:第一印象差 • 也许你会感到吃惊,因为很可能你只是依着自己的习惯行事而
已。也许你本来是很愿意给别人留下一个美好的印象,可是你的 不经心或缺乏体贴、或言语无趣,无形中却让来人做出关于你的 错误的勾勒。你必须记住交往是种艺术,而艺术是不能不修边幅 的。 • 23~46分:第一印象一般 • 你的表现中存在着某些令人愉快的成分,但同时又偶有不够精 彩之处,这使得别人不会对你印象恶劣,却也不会产生很强的吸 引力。如果你希望提高自己的魅力,首先必须从心理上重视,努 力在“交锋”的第一回合中显示出自己的最佳形象。 • 47~60分:第一印象好 • 你的适度、温和、合作给第一次见到你的人留下了深刻的印象。 无论对方是你工作范围抑或私人生活中的接触者,他们无疑都有 与你进一步接触的愿望。你的问题只在于注意那些单向的对你“一 见钟情”者。

硬盘分区

硬盘分区

6
硬盘的IO
硬盘读写的时候都是以扇区为最小寻址单位,也就是说不可能往某某扇区 的前半部分写入某某数据。一个扇区的大小是512B,每次磁头连续读写的 时候,只能以扇区为单位,即使一次只写了一个字节的数据,那么下一次 就不能再向这个扇区剩余部分来接着写入,只能再寻找一个空扇区来写。 对于磁盘来说,一次磁头的连续读或者写叫做一次IO,而一次连续读或者 写的过程,不管读写了几个扇区,扇区剩余部分均不能再使用。 目前4KB大小扇区的硬盘已经发布了。因为操作系统的Page、文件系统的 Block一般都是4KB。 影响硬盘性能的因素:转速、寻道速度、单碟容量、接口速度
5
硬盘的机械结构
数据的读写按柱面进行,即磁头读写数据时首先在同一柱面内从0磁头开始进行操作,依 次向下在同一柱面的不同盘面(即磁头)上进行操作。只有在同一柱面所有的磁头全部读 写完毕后磁头才转移到下一柱面。因为选取磁头只需通过电子切换即可,而选取柱面必须 通过机械切换,即寻道。因为寻道时间较长,才有了后来的磁盘队列技术。
硬盘和分区
硬盘的机械结构
硬盘最基本的组成部分是由坚硬金属材料制成的涂以磁性介质的盘片,不同容量硬盘的 盘片数不等。每个盘片有两面,都可记录信息。盘片被分成许多扇形的区域,每个区域 叫一个扇区,每个扇区可存储128×2的N次方(N=0.1.2.3)字节信息。通常每扇区为 128×2的2次方=512字节,盘片表 面上以盘片中心为圆心,不同半径的同心圆称为磁道。 硬盘中,不同盘片相同半径的磁道所组成的圆柱称为柱面。磁道与柱面都是表示不同半 径的圆,在许多场合,磁道和柱面可以互换使用,由于每个硬盘有两个面,每个面都有 一个磁头,所以习惯用磁头号来区分。扇区,磁道(或柱面)和磁头数构成了硬盘结构 的基本参数,通过这些参数可以得到硬盘的容量,其计算公式为: 存储容量=磁头数×磁道(柱面)数×每道扇区数×每扇区字节数 (1)硬盘有数个盘片,每盘片两个面,每个面一个磁头 (2)盘片被划分为多个扇形区域即扇区 (3)同一盘片不同半径的同心圆为磁道 (4)不同盘片相同半径构成的圆柱面即柱面 (5)存储容量=磁头数×磁道(柱面)数×每道扇区数×每扇区字节数 (6)信息记录可表示为:××磁道(柱面),××磁头,××扇区

移动硬盘拆解1

移动硬盘拆解1

近日整理出一个老式移动硬盘,还是大USB接口的,带移动电源插口和写保护开关。

回忆了下,似乎是某次拷贝完成后不小心跌落地面后损毁了,然后一直丢在书架内,擦干净后,找出双USB插头接上电脑一试,果然读不出来了。

可惜。

我的仓井、小泽,还有村上。

过节无事,外面阴雨。

于是手贱拆解开看看到底里面啥结构。

不懂电路,所以分析从略,抱歉。

1、手术台上的硬盘旅之星似乎是给帝都的牌子。

2、拔去外套后看看身穿四角内裤的样子看了下标识,原来是马来妹子。

应当说外套穿的还是很讲究的,是两侧两个暗扣,扣下就能移除外罩,没有用工具,硬盘的四周塑料外框,用了四个发黑的平头螺栓。

整体看还是很简洁的,硬盘铝合金腔体也是通过这四个螺栓直接和后面电路板固定的,板上独立的电源插座,写保护开关,和USB接口另一侧通过针脚焊接和硬盘本体链接。

3、开始脱内裤了硬盘保护罩外观一共四个螺栓固定,分别在四角,但是拆除螺栓后扣不开,怀疑有隐藏固定螺栓,撕去不干胶标牌贴后,在中间位置找到一个隐藏螺栓(后面证实这个螺栓同时也是硬盘移动磁头的轴心固定螺栓。

螺栓上套螺栓。

对了,标签的右下有个缺口,画着一个箭头指向一个小黑窟窿,写着“DO NOT COVER",貌似一插就爽的样子,不知道是不是复位?干什么用的有明白的没给说道说道。

打开后样子就如同上图下面,贼亮的就是仓老师她们的住处了。

上下两层磁片。

一个小机械臂内样的是移动磁头,共三个,分别读取上层内面和下层双面。

4、来个特写可以看到结构还是很简单的,通过针脚传过来信号汇集到一个集成芯片上,通过软排线控制移动磁头移动和读写,移动磁头固定在中轴上,后补是一个感应线圈,整个后座是一个永磁体。

5、再来一张这个可以很清楚看见三层磁头和软排线6、继续拆除周边小零碎,内个细长的钩状物似乎是和淡黄色部件一起控制磁头移动位置的,橙色塑料件是磁头定位导槽,确保磁头进出顺畅。

7、最后是大结局到此除了磁盘因为是雪花状内六星槽口没有合适工具拆除外,其他软排线和集成电路板因为拆下来也没啥结构看(主要是我不懂),就没继续下去了。

第8讲 认识硬盘

第8讲  认识硬盘
将硬盘的固定面 板取下后,就可以挪 动最上面的一张盘片 了,可以发现这块硬 盘采用的是双盘,在 两个盘片中间,有一 个垫圈,取下后可以 拿出另外一张盘片。
2. 硬盘结构
2. 硬盘结构
1.磁头(Head) 磁头是硬盘中最昂贵的部件,也是硬盘技术中最重 要和最关键的一环。 2.磁道(Track) 当磁盘旋转时,磁头若保持在一个位置上,则每个 磁头都会在磁盘表面划出一个圆形轨迹,这些圆形 轨迹就叫做磁道。 3.扇区(Sector) 磁盘上的每个磁道被等分为若干个弧段,这些弧段 便是磁盘的扇区 4.柱面(Cylinder) 硬盘通常由重叠的一组盘ቤተ መጻሕፍቲ ባይዱ构成,每个盘面都被划 分为数目相等的磁道,并从外缘的“0”开始编号, 具有相同编号的磁道形成一个圆柱,称之为磁盘的 柱面 。
IDE接口的优点是价格低廉、兼容性非常好; 而缺点是速度慢,只能做内置使用,对接口电缆 的长度有很严格的限制。
3.2 SCSI硬盘接口
SCSI(Small Computer System Interface, 小型计算机系统接口)最早研制于1979年,原来 是为小型机而研制出的一种接口技术,但随着电 脑技术的发展,现已被移植到了普通微机上。
IEEE 1394与USB是两种外接硬盘的接口, 通常使用的移动硬盘就属于这两种类型之一。
3.1 IDE(ATA)硬盘接口
IDE(Integrated Drive Electronics)接口又 叫ATA接口,是目前最常用的一种硬盘接口。
IDE接口是指把控制器与盘体集成在一起的 硬盘驱动器。把盘体与控制器集成在一起的做法 减少了硬盘接口的电缆数目与长度,数据传输的 可靠性得到了增强,硬盘制造起来变得更容易, 硬盘安装起来也更为方便,只需用一根电缆将硬 盘与主板或接口卡连起来就可以了。目前使用的 IDE接口能够将达到133MB/s的数据传输率。

硬盘逻辑结构

硬盘逻辑结构

一. 硬盘逻辑结构简介1. 硬盘参数释疑到目前为止, 人们常说的硬盘参数还是古老的CHS(Cylinder/Head/Sector)参数. 那么为什么要使用这些参数,它们的意义是什么?它们的取值范围是什么?很久以前, 硬盘的容量还非常小的时候,人们采用与软盘类似的结构生产硬盘. 也就是硬盘盘片的每一条磁道都具有相同的扇区数.由此产生了所谓的3D参数(Disk Geometry). 既磁头数(Heads), 柱面数(Cylinders),扇区数(Sectors),以及相应的寻址方式.其中:磁头数(Heads)表示硬盘总共有几个磁头,也就是有几面盘片, 最大为255 (用8 个二进制位存储);柱面数(Cylinders) 表示硬盘每一面盘片上有几条磁道,最大为1023(用10 个二进制位存储);扇区数(Sectors) 表示每一条磁道上有几个扇区, 最大为63(用6个二进制位存储).每个扇区一般是512个字节, 理论上讲这不是必须的,但好象没有取别的值的.所以磁盘最大容量为:255 * 1023 * 63 * 512 / 1048576 = 8024 GB ( 1M =1048576 Bytes )或硬盘厂商常用的单位:255 * 1023 * 63 * 512 / 1000000 = 8414 GB ( 1M =1000000 Bytes )在CHS 寻址方式中, 磁头, 柱面, 扇区的取值范围分别为0到Heads - 1,0 到Cylinders - 1,1 到Sectors (注意是从1 开始).2. 基本Int 13H 调用简介BIOS Int 13H 调用是BIOS提供的磁盘基本输入输出中断调用, 它可以完成磁盘(包括硬盘和软盘)的复位, 读写, 校验, 定位, 诊断,格式化等功能.它使用的就是CHS 寻址方式, 因此最大识能访问8 GB 左右的硬盘(本文中如不作特殊说明, 均以1M = 1048576 字节为单位).3. 现代硬盘结构简介在老式硬盘中, 由于每个磁道的扇区数相等,所以外道的记录密度要远低于内道, 因此会浪费很多磁盘空间(与软盘一样). 为了解决这一问题,进一步提高硬盘容量, 人们改用等密度结构生产硬盘. 也就是说,外圈磁道的扇区比内圈磁道多. 采用这种结构后, 硬盘不再具有实际的3D参数,寻址方式也改为线性寻址, 即以扇区为单位进行寻址.为了与使用3D寻址的老软件兼容(如使用BIOSInt13H接口的软件), 在硬盘控制器内部安装了一个地址翻译器,由它负责将老式3D参数翻译成新的线性参数. 这也是为什么现在硬盘的3D参数可以有多种选择的原因(不同的工作模式, 对应不同的3D参数, 如LBA, LARGE, NORMAL).4. 扩展Int 13H 简介虽然现代硬盘都已经采用了线性寻址, 但是由于基本Int13H 的制约, 使用BIOS Int 13H 接口的程序, 如DOS 等还只能访问8 G以内的硬盘空间.为了打破这一限制, Microsoft 等几家公司制定了扩展Int 13H 标准(Extended Int13H), 采用线性寻址方式存取硬盘, 所以突破了8 G的限制,而且还加入了对可拆卸介质(如活动硬盘) 的支持.二. Boot Sector 结构简介1. Boot Sector 的组成Boot Sector 也就是硬盘的第一个扇区, 它由MBR (MasterBoot Record),DPT (Disk Partition Table) 和Boot Record ID三部分组成.MBR 又称作主引导记录占用Boot Sector 的前446 个字节( 0 to 0x1BD ),存放系统主引导程序(它负责从活动分区中装载并运行系统引导程序).DPT 即主分区表占用64 个字节(0x1BE to 0x1FD),记录了磁盘的基本分区信息. 主分区表分为四个分区项, 每项16 字节,分别记录了每个主分区的信息(因此最多可以有四个主分区).Boot Record ID 即引导区标记占用两个字节(0x1FE and0x1FF), 对于合法引导区, 它等于0xAA55, 这是判别引导区是否合法的标志.Boot Sector 的具体结构如下图所示:0000 |---------------------------------------------||||||Master Boot Record||||||主引导记录(446字节)|||||||01BD ||01BE |---------------------------------------------|||01CD |分区信息1(16字节)|01CE |---------------------------------------------|||01DD |分区信息2(16字节)|01DE |---------------------------------------------|||01ED |分区信息3(16字节)|01EE |---------------------------------------------|||01FD |分区信息4(16字节)||---------------------------------------------|| 01FE |01FF||55| AA||---------------------------------------------|2. 分区表结构简介分区表由四个分区项构成, 每一项的结构如下:BYTE State: 分区状态, 0 =未激活, 0x80 = 激活(注意此项)BYTE StartHead: 分区起始磁头号WORD StartSC: 分区起始扇区和柱面号,底字节的低6位为扇区号,高2位为柱面号的第9,10 位, 高字节为柱面号的低8 位BYTE Type: 分区类型, 如0x0B = FAT32, 0x83 = Linux 等,00 表示此项未用,07 = NTFSBYTE EndHead: 分区结束磁头号WORD EndSC:分区结束扇区和柱面号, 定义同前DWORD Relative:在线性寻址方式下的分区相对扇区地址(对于基本分区即为绝对地址)DWORD Sectors: 分区大小(总扇区数)注意: 在DOS / Windows 系统下,基本分区必须以柱面为单位划分( Sectors * Heads 个扇区), 如对于CHS 为764/255/63 的硬盘,分区的最小尺寸为255 * 63 * 512 / 1048576 = 7.844 MB.3. 扩展分区简介由于主分区表中只能分四个分区, 无法满足需求,因此设计了一种扩展分区格式. 基本上说, 扩展分区的信息是以链表形式存放的,但也有一些特别的地方.首先, 主分区表中要有一个基本扩展分区项,所有扩展分区都隶属于它,也就是说其他所有扩展分区的空间都必须包括在这个基本扩展分区中.对于DOS / Windows 来说, 扩展分区的类型为0x05. 除基本扩展分区以外的其他所有扩展分区则以链表的形式级联存放, 后一个扩展分区的数据项记录在前一个扩展分区的分区表中,但两个扩展分区的空间并不重叠.扩展分区类似于一个完整的硬盘, 必须进一步分区才能使用.但每个扩展分区中只能存在一个其他分区. 此分区在DOS/Windows环境中即为逻辑盘.因此每一个扩展分区的分区表(同样存储在扩展分区的第一个扇区中)中最多只能有两个分区数据项(包括下一个扩展分区的数据项).下面是我Copy的别人的学习成果,很需要,在此对作者表示感谢表示感谢:(图片似乎看不了,将就了。

硬盘结构及原理

硬盘结构及原理


电机:硬盘内的电机都为无刷电机,在高 速轴承支撑下机械磨损很小,可以长时间 连续工作。高速旋转的盘体产生了 明显的 陀螺效应,所以工作中的硬盘不宜运动, 否则将加重轴承的工作负荷。硬盘磁头的 寻道饲服电机多采用音圈式旋转或者直线 运动步进电机,在饲服跟踪的调节 下精确 地跟踪盘片的磁道,所以在硬盘工作时不 要有冲击碰撞,搬动时要小心轻放所示:
1-2 硬盘内部结构图



磁头组件—读写磁头、传动手臂、传动轴组成 磁头发展—亚铁盐类磁头、MIG磁头、薄膜磁头、 MR磁头(磁阻磁头,感应写、磁阻读)、GMR磁头 磁头驱动电路—直接控制寻道电机,使磁头定位; 盘片—硬盘存储数据的载体,金属薄膜材料,逻 辑上是由磁道tracks、扇区sectors、柱面cylinders、 磁头head组成。 主轴组件—主要由轴承和马达组成 主轴调速电路—控制主轴电机带动盘体以恒定速 率转动的电路;
1.1.2 硬盘的性能参数
1、容量: 单位:MB或GB 影响硬盘容量因素:单碟容量和碟片数量,目前 单碟容量可500GB,碟片数<=5张 2、转速: 概念:指硬盘内电机主轴的转动速度 单位:RPM(Round Per Minutes) 大小:主流是7200 RPM
3、数据传输率: (1)内部数据传输率: 概念:是磁头到硬盘的高速缓存之间的数据传输速度; 重要性和影响因素:是硬盘整体性能的关键,与硬盘的盘 片转速和盘 片数据线密度有关; 单位:mpbs。 (2)外部数据传输率: 概念:是指从硬盘缓存读取数据的速度;


盘片:硬盘盘片是将磁粉附着在铝合金(新材料 也有用玻璃)圆盘片的表面上.这些磁粉被划分成 称为磁道的若干个同心圆,在每个同心圆的磁道 上就好像有无数的任 意排列的小磁铁,它们分别 代表着0和1的状态。当这些小磁铁受到来自磁头 的磁力影响时,其排列的方向会随之改变。利用 磁头的磁力控制指定的一些小磁铁方 向,使每个 小磁铁都可以用来储存信息。 盘体:硬盘的盘体由多个盘片组成,这些盘片重 叠在一起放在一个密封的盒中,它们在主轴电机 的带动下以很高的速度旋转,其每分钟转速达 3600,4500,5400,7200甚至以上。

硬盘内部结构(PDF)

硬盘内部结构(PDF)

硬盘内部结构硬盘内部由头盘组件和前置读写控制电路组成,其中头盘组件属于机械装置部分,组件中每一个组成部分都是由高度精密的机械零件组装而成;前置读写控制电路由一组复杂电路组成,负责调制硬盘与中央处理器之间交换的信号类型并将其放大。

下面以实物图与示意图相结合的形式详细介绍这些结构组成。

1. 头盘组件头盘组件是硬盘的核心部分,包括盘体、主轴电机、读写磁头、寻道电机等主要部件,打开密封的外壳即可看到其内部构造,如下图所示。

因为这个体腔是非常干净的,而且里面都属于高度精密机械配件,所以万万不可开启外壳。

生产硬盘的车间对无尘度要求非常严格,平均每平方米不超过十粒尘埃。

虽然有相关文章谈到过开盖除尘,坏盘复用的实例,但这仍然是下下策,除非是一块烂盘或是扔货,否则……了解了硬盘内部头盘组件的总体结构以后,再来看看每个组成部分的详细结构。

z z盘体:硬盘的盘体由单个或多个盘片重叠在一起组成,是数据存储的载体,也就是保存文件的地方。

由多个盘片组成的盘体,可以形象的理解成一个圆柱,每个盘片与其他盘片之间都有垫圈隔开。

这些盘片是一些表面极为平整光滑的金属圆片,并涂有记录数据的磁性物质。

组成盘体的金属盘片多为铝制品,不过早期的盘片也有用陶瓷制成的,而现在则有用玻璃材料来充当盘片基质的,比如IBM的腾龙二代产品玻璃之星Deskstar 75GXP (DTLA-307030,30GB)硬盘。

下面以实物图与示意图相结合的方式来认识盘体的详细内容。

注意提示盘体从物理的角度分为磁面(Side )、磁道(Track )、柱面(Cylinder )与扇区(Sector )等4个结构。

磁面也就是组成盘体各盘片的上下两个盘面,第一个盘片的第一面为0磁面,下一个为1磁面;第二个盘片的第一面为2磁面,以此类推……。

由于每个磁面对应一个读写磁头,因此在对磁面进行读写操作时,也可称为磁头0、1、2……。

磁道也就是在格式化磁盘时盘片上被划分出来的许多同心圆。

硬盘 结构 原理 磁道,扇区和柱面图示

硬盘 结构 原理 磁道,扇区和柱面图示

硬盘结构原理磁道,扇区和柱面图示/pspio/blog/item/313592607bd09b4feaf8f865.html/blog/185252硬盘工作原理(转)硬盘结构原理磁道,扇区和柱面图示我们知道硬盘中是由一片片的磁盘组成的,大家可能没有打开过硬盘,没见过它具体是什么样.不过这不要紧.我们只要理解了什么是磁道,扇区和柱面就够了.在下图中,我们可以看到一圈圈被分成18(假设)等分的同心圆,这些同心圆就是磁道(见图).不过真打开硬盘你可看不到.它实际上是被磁头磁化的同心圆.如图可以说是被放大了的磁盘片.那么扇区就是每一个磁道中被分成若干等分的区域.相邻磁道是有间隔的,这是因为磁化单元太近会产生干扰.一个小软盘有80个磁道,硬盘嘛要远远大于此值,有成千上万的磁道.每个柱面包括512个字节。

那么什么是柱面呢?看下图,我们假设它只有3片.每一片中的磁道数是相等的.从外圈开始,磁道被分成0磁道,1磁道,2磁道......具有相同磁道编号的同心圆组成柱面,那么这柱面就像一个没了底的铁桶.哈哈,这么一说,你也知道了,柱面数就是磁盘上的磁道数.每个磁面都有自己的磁头.也就是说,磁面数等于磁头数.硬盘的容量=柱面数(CYLINDER)*磁头数(HEAD)*扇区数(SECTOR)*512B.这下你也可以计算硬盘的一些参数了.什么是簇?文件系统是操作系统与驱动器之间的接口,当操作系统请求从硬盘里读取一个文件时,会请求相应的文件系统(FAT 16/32/NTFS)打开文件。

扇区是磁盘最小的物理存储单元,但由于操作系统无法对数目众多的扇区进行寻址,所以操作系统就将相邻的扇区组合在一起,形成一个簇,然后再对簇进行管理。

每个簇可以包括2、4、8、16、32或64个扇区。

显然,簇是操作系统所使用的逻辑概念,而非磁盘的物理特性。

为了更好地管理磁盘空间和更高效地从硬盘读取数据,操作系统规定一个簇中只能放置一个文件的内容,因此文件所占用的空间,只能是簇的整数倍;而如果文件实际大小小于一簇,它也要占一簇的空间。

普通硬盘结构图

普通硬盘结构图

普通硬盘结构图主要性能参数∙硬盘容量:硬盘内部往往有多个叠起来的磁盘片,所以说硬盘容量=单碟容量×碟片数,单位为GB,硬盘容量当然是越大越好了,可以装下更多的数据。

要特别说明的是,单碟容量对硬盘的性能也有一定的影响:单碟容量越大,硬盘的密度越高,磁头在相同时间内可以读取到更多的信息,这就意味着读取速度得以提高。

目前市场上主流硬盘的容量为80GB—120GB。

∙转速:硬盘转速(Rotation speed)对硬盘的数据传输率有直接的影响,从理论上说,转速越快越好,因为较高的转速可缩短硬盘的平均寻道时间和实际读写时间,从而提高在硬盘上的读写速度;可任何事物都有两面性,在转速提高的同时,硬盘的发热量也会增加,它的稳定性就会有一定程度的降低。

所以说我们应该在技术成熟的情况下,尽量选用高转速的硬盘。

∙缓存:一般硬盘的平均访问时间为十几毫秒,但RAM(内存)的速度要比硬盘快几百倍。

所以RAM通常会花大量的时间去等待硬盘读出数据,从而也使CPU效率下降。

于是,人们采用了高速缓冲存储器(又叫高速缓存)技术来解决这个矛盾。

简单地说,硬盘上的缓存容量是越大越好,大容量的缓存对提高硬盘速度很有好处,不过提高缓存容量就意味着成本上升。

目前市面上的硬盘缓存容量通常为2MB—16MB。

∙平均寻道时间(average seek time):意思是硬盘磁头移动到数据所在磁道时所用的时间,单位为毫秒(ms)。

平均访问时间越短硬盘速度越快。

∙硬盘的数据传输率(Data transfer rate):也称吞吐率,它表示在磁头定位后,硬盘读或写数据的速度。

硬盘的数据传输率有两个指标:突发数据传输率(burst data transfer rate):也称为外部传输率(external transfer rate)或接口传输率,即微机系统总线与硬盘缓冲区之间的数据传输率。

突发数据传输率与硬盘接口类型和硬盘缓冲区容量大小有关。

目前的支持ATA/100的硬盘最快的传输速率能达到100MB/s。

大卸八块,让我们一探硬盘内部长啥样

大卸八块,让我们一探硬盘内部长啥样

大卸八块,让我们一探硬盘内部长啥样在前面的分享中,我们已经初步介绍了硬盘的基本结构,不知大家是否对硬盘有了一定的了解。

在今天的分享中,我们把硬盘拆开,仔细认识一下它长啥样?在此先郑重声明一下:有事没事别瞎拆硬盘,瞅瞅我这儿分享的就可以,硬盘内部一旦沾灰,就此宣布报废。

硬盘结构图看到这张图,我们先回顾一下之前分享的内容熟悉一下硬盘的结构,它的构成主要由盘片,磁头,盘片转轴、控制电机,磁头控制器,数据转换器,接口,缓存等,下面我们一部分一部分进行介绍。

1、盘片盘片是硬盘内存储数据的载体。

硬盘盘片特别容易脏,一碰一个手印。

盘片的基板由金属或玻璃材质制成,基板要求表面光滑而平整,基板表面被涂上一层不含杂质且及其细密的磁粉,每个磁性粒子存在N、S极,磁头通过改变这些磁性粒子的N、S极状态来达到存储数据的目的。

通常一个硬盘内部包含有多张盘片。

盘片2、磁头组件磁头是硬盘内读取数据的工具,同时磁头是硬盘中最精密的部件之一。

在下图中所展示的磁头组件从右到左依次为磁头、传动手臂和传动轴三个部分。

磁头与盘片之间采用了非接触式读取方式,硬盘在加电后,主轴带动盘片高速旋转,气流将磁头托起,一般而言,盘片与磁头之间的距离保持在0.1~0.3um,据说比头发丝直径还要小,这样磁头就不会划伤盘片。

磁头组件3、磁头驱动器我们知道硬盘的寻道是靠移动磁头,而移动磁头则需要该组建才能够实现。

磁头驱动器由电磁线圈电机、磁头驱动小车、防震动装置构成,这部分主要在磁头组件后面。

高精度的轻型磁头驱动机构能够对磁头进行正确的驱动和定位,并能在很短的时间内精确定位系统指令指定的磁道。

磁头驱动器4、控制电路板控制电路板一般在硬盘的背面,大多数的控制电路板都采用贴片式焊接,它包括主轴调速电路、磁头驱动与定位电路、读写电路、控制与接口电路等。

在电路板上还有一块ROM芯片,里面固化的程序可以进行硬盘的初始化,执行加电和启动主轴电机,加电初始寻道、定位以及故障检测等,在电路板上还安装有容量不等的高速数据缓存芯片。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

硬盘几种结构
硬盘是电脑中存贮数据的重要部件,可是由于它长期被封闭在机箱内部,属于那种“幕后英雄”,所以大部分用户可能对其了解不是很透彻。

没有关系,在这里,我们将一起去冒险,对它作一个全面的了解吧。

由于SCSI硬盘平时我们接触较少,因此我们目前所提到的硬盘一般指的是IDE接口的硬盘。

这种硬盘多属于温盘(Winchester),由头盘组件(HDA,Head Disk Assembly)与印刷电路板组件(PCBA,Print Circuit Board Assembly)组成。

平时我们了解硬盘,多是从产品外观、产品特征及磁盘性能等方面去认识,那么硬盘的内部到底是什么样呢?相信许多用户都不太清楚,毕竟谁都不会去冒冒失失地将硬盘拆开来,所以了解硬盘内部结构的机会实在太少了。

那么就随着我一起来看看吧。

1、硬盘外部结构
(1)接口:接口包括电源接口插座和数据接口插座两部分,其中电源插座就是与主机电源相连接,为硬盘正常工作提供电力保证。

数据接口插座则是硬盘数据与主板控制芯片之间进行数据传输交换的通道,使用时是用一根数据线将其与主板IDE接口或与其他控制适配器的接口相连接,经常听说的40针、80芯的接口电缆也就是指数据线,数据接口可以分成IDE 接口和SCSI接口两大派系(见图1)。

图1 SCSI接口
(2)控制电路板:大多数的控制电路板都采用贴片式焊接,它包括主轴调速电路、磁头驱动与伺服定位电路、读写电路、高速缓存、控制与接口电路等。

在电路板上还有一块ROM芯片,里面固化的程序可以进行硬盘的初始化,执行加电和启动主轴电机,加电初始寻道、定位以及故障检测等。

在电路板上还安装有容量不等的高速数据缓存芯片。

读写电路的作用就是控制磁头进行读写操作。

磁头驱动电路直接控制寻道电机,使磁头定位。

主轴调速电路是控制主轴电机带动盘体以恒定速率转动的电路。

缓存(Cache)对磁盘性能所带来的作用是毋庸置疑的,在读取零碎文件数据时,大缓存能带来非常大的优势。

(3)外壳:硬盘的外壳与底板结合成一个密封的整体,正面的外壳保证了硬盘盘片和机构的稳定运行。

在固定面板上贴有产品标签,上面印着产品型号、产品序列号、产地、生产日期等信息,由此我们可以对这款产品作一番大致的了解。

除此,还有一个透气孔,它的作用就是使硬盘内部气压与大气气压保持一致。

另外,硬盘侧面还有一个向盘片表面写入伺服信号的Servo孔。

Servo孔的作用是向硬盘盘片写入伺服信号
2、硬盘内部结构
拆下控制电路板后再将外面的保护面拆后就现出了硬盘的内脏(见图4)。

它由磁头、盘片、主轴、电机、接口及其他附件组成,其中磁头盘片组件是构成硬盘的核心,它封装在硬盘的净化腔体内,包括有浮动磁头组件、磁头驱动机构、盘片、主轴驱动装置及前置读写控制电路这几个部分。

将硬盘面板揭开后,内部结构即可一目了然。

硬盘内部结构
(1)磁头组件:这个组件是硬盘中最精密的部位之一,它由读写磁头、传动手臂、传动轴三部分组成。

磁头是硬盘技术中最重要和关键的一环,众所周知,一块硬盘存取数据的工作完全依靠磁头来进行的。

没有磁头,也就没有实际意义上的硬盘。

磁头的作用就类似于在硬盘盘体上进行读写的“笔尖”,通过全封闭式的磁阻感应读写,将信息记录在硬盘内部特殊的介质上。

硬盘磁头的发展先后经历了“亚铁盐类磁头”、“MIG磁头”和“薄膜磁头”、“MR磁头(磁阻磁头)”等几个阶段。

前三种传统的磁头技术都是采取了读写合一的电磁感应式磁头,造成了硬盘在设计方面的局限性。

第四种磁阻磁头在设计方面引入了全新的分离式磁头结构,写入磁头仍沿用传统的磁感应磁头,而读取磁头则应用了新型的MR磁头,即所谓的感应写、磁阻读,针对读写的不同特性分别进行优化,以达到最好的读、写性能。

现在的磁头实际上是集成工艺制成的多个磁头的组合,它采用了非接触式头、盘结构,加电后在高速旋转的磁盘表面移动,与盘片之间的间隙只有0.1~0.3μm,这样可以获得很好的数据传输率。

5磁头组件
(2)磁头驱动机构:由音圈电机和磁头驱动小车组成,新型大容量硬盘还具有高效的防震动机构。

硬盘的寻道是靠移动磁头,而移动磁头则需要该机构驱动才能实现。

磁头驱动机构由电磁线圈电机、磁头驱动小车、防震动装置构成,高精度的轻型磁头驱动机构能够对磁头进行正确的驱动和定位,并能在很短的时间内精确定位系统指令指定的磁道。

(3)盘片(见图6):盘片是硬盘存储数据的载体。

硬盘的盘体由多个重叠在一起并由垫圈隔开的盘片组成,盘片是表面极为平整光滑且涂有磁性物质的金属圆片。

它们通过表面的磁性物质结合在一起。

这种特殊物质的金属磁盘具有更高的记录密度和更强的安全性能。

目前市场上主流硬盘的盘片大都是由金属薄膜磁盘构成,这种金属薄膜磁盘较之普通的金属磁盘具有更高的剩磁和高矫顽力,因此也被大多数硬盘厂商所普遍采用。

除金属薄膜磁盘以外,目前已经有一些硬盘厂商开始尝试使用玻璃作为磁盘基片。

与金属薄膜磁盘相比,用玻璃作为盘片有利于把硬盘盘片做得更平滑,单位磁盘密度也会更高,同时由于玻璃的坚固特性,新一代的玻璃硬磁盘在性能方面也会更加稳定。

图6盘片结构
(4)主轴组件。

主轴组件包括主轴部件如轴承和马达等。

硬盘在工作时,通过马达的转动将用户需要存取的资料所在的扇区带到磁头下方,马达的转速越快,用户存取数据的时间也就越短。

从这个意义上讲,硬盘马达的转速在很大程度上决定了硬盘最终的速度。

随着硬盘容量的扩大和速度的提高,马达的速度也在不断提升,在当今硬盘不断向着超大容量迈进的同时,硬盘的速度也在不断提高,目前,现在7200转、2MB缓存的大容量硬盘已经成为装机的首选。

随着硬盘转速的不断提高,同时也会带来诸如磨损加剧、温度升高、噪声增大等一系列负面问题。

传统的普通滚珠轴承马达无法妥善解决这些问题,于是先前曾广泛应用在精密机械工业上的液态轴承马达(Fluid Dynamic Bearing Motors)被引入到硬盘技术中。

希捷推出的酷鱼四产品中就采用了上述技术。

这种技术与传统的滚珠轴承马达相比,一方面避免了与金属面的直接磨擦,将传统马达所带来的噪声及温度降至最低;另一方面,油膜可以有
效地吸收外来的震动,使硬盘的抗震能力得到了提高,从而也使硬盘的寿命得到了延长。

至此,我们对于硬盘的内部结构也算是走马观花地看一遍,希望能为朋友们更好地了解硬盘使用硬盘起一点作用。

相关文档
最新文档